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ABSTRACT 

How should one conceive of the method of mathematics, if one takes a naturalist stance? 

Mathematical knowledge is regarded as the paradigm of certain knowledge, since 

mathematics is based on the axiomatic method. Natural science is deeply mathematized, and 

science is crucial for any naturalist perspective. But mathematics seems to provide a 

counterexample both to methodological and ontological naturalism. To face this problem, 

some naturalists try to naturalize mathematics relying on Darwinism. But several difficulties 

arise when one tries to naturalize in this way the traditional view of mathematics, according 

to which mathematical knowledge is certain and the method of mathematics is the axiomatic 

method. This paper suggests that, in order to naturalize mathematics through Darwinism, it 

is better to take the method of mathematics not to be the axiomatic method. 

Keywords: Axiomatic method; Darwinism; Mathematical knowledge; Mathematical 

Platonism; Naturalism. 

 

 

1. Introduction 

 

The scope of this article is quite limited, since it is mainly intended to point out how 

“the very commonplace view that mathematical knowledge is essentially obtained 

by deductive inference” (Prawitz 2014, p. 73) cannot easily be made compatible with 

a naturalist stance. As “Quine and any other naturalists would claim,” from a 

naturalist point of view all “knowledge is part of scientific knowledge; natural 

science is the one and only source of reliable beliefs, including reliable beliefs about 

the nature of belief itself,” and mathematical knowledge “is a part of this” (Brown 
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2012, p. 117). But the idea that mathematical knowledge is part of our scientific 

knowledge is in contrast with the traditional view of mathematics, according to 

which mathematical knowledge has a special epistemic status with respect to 

knowledge provided by natural sciences (Paseau 2013). This article does not even 

try to provide a fully developed alternative view to the traditional view of 

mathematics, it just suggests that if one adopts a naturalist stance, one should at least 

carefully reflect before accepting the claim that the axiomatic method is the method 

of mathematics, and that it is likely that, upon reflections, a naturalist will dismiss 

such claim. 

The article is organized as follows: in Section 2, the traditional view of 

mathematical knowledge is presented; in Section 3, it is presented the axiomatic view 

of the method of mathematics; in Section 4, the issue of a naturalist perspective on 

mathematics is discussed; in Section 5, some attempts aimed at naturalizing 

mathematics through Darwinism are discussed; Section 6 contains a brief digression 

on whether consistency is a sufficient condition for truth, and whether the idea that 

mathematical knowledge is acquired by deduction can account for the ampliation of 

mathematical knowledge; finally, in Section 7 some conclusions are drawn. 

 

 

2. Mathematics and Knowledge 

 

Although there are some exceptions,1 mathematics is still regarded as “the paradigm 

of certain and final knowledge” (Feferman 1998, p. 77) by most mathematicians and 

philosophers. According to many authors, the degree of certainty that mathematics 

is able to provide is one of its qualifying features. For example, Byers states that the 

certainty of mathematics is “different from the certainty one finds in other fields [...]. 

Mathematical truth has [...] [the] quality of inexorability. This is its essence” (Byers 

2007, p. 328). Mathematics is also usually thought to be objective, in the sense that 

it is regarded as mind-independent, and so independent from our biological 

constitution. For example, George and Velleman state that understanding the nature 

of mathematics does not require asking “such questions as ‘What brain, or neural 

activity, or cognitive architecture makes mathematical thought possible?’,” because 

                                                           
1 See Kline 1980; Cellucci 2017, 2013; Bell, Hellman 2006; Clarke-Doane 2014. 
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“such studies focus on phenomena that are really extraneous to the nature of 

mathematical thought itself” (George, Velleman 2002, p. 2). Mathematics proved 

tremendously useful for dealing with the world. Indeed, current natural science is 

“mathematical through and through: it is impossible to do physics, chemistry, 

molecular biology, and so forth without a very thorough and quite extensive 

knowledge of modern mathematics” (Weir 2005, p. 461). 

But, despite its being so pervasive in scientific knowledge, we do not have yet an 

uncontroversial and science-oriented account of what mathematics is. So, “in a 

reality [...] understood by the methods of science,” we are unable to answer to the 

following question: “where does mathematical certainty come from?”, even because 

most mathematicians and scientists “do not take seriously the problem of 

reconciling” the certainty of mathematical knowledge “with a scientific world-view” 

(Deutsch 1997, p. 240). Moreover, many authors are skeptical about the very 

possibility of developing a naturalist perspective on mathematics. They think that 

“mathematics is an enormous Trojan Horse sitting firmly in the center of the citadel 

of naturalism,” because even if “natural science is mathematical through and 

through,” mathematics seems to “provide a counterexample both to methodological 

and to ontological naturalism.” Indeed, mathematics ultimately rests on axioms, 

which are “traditionally held to be known a priori, in some accounts by virtue of a 

form of intuitive awareness.” The epistemic role of the axioms in mathematics seems 

“uncomfortably close to that played by the insights of a mystic. When we turn to 

ontology, matters are, if anything, worse: mathematical entities, as traditionally 

construed, do not even exist in time, never mind space” (Weir 2005, p. 461-462). In 

fact, the majority of mathematicians and philosophers of mathematics argues for 

some form of mathematical realism (Balaguer 2009). Thus, it is very difficult even 

to envisage how it could be possible to naturalistically account for what mathematics 

is and how we acquire mathematical knowledge.2 

                                                           
2 In this article ‘naturalism’ is understood as it is usually understood in the philosophy of 

science (see below, Sect. 4). In order to avoid misunderstanding, it is important to note 

that ‘naturalism’ is used in a quite different sense in the philosophy of mathematics 

proper, where it indicates a philosophical position, according to which, roughly, the only 

authoritative standards in the philosophy of mathematics are those of mathematics itself 

(Paseau 2013). 
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A clarification is in order here. There is a huge amount of work in cognitive 

science devoted to study numerical capacities in human and non-human animals (see 

e.g. Cohen Kadosh, Dowker 2015; Dehaene, Brannon 2011), but we will not be 

primarily concerned with those works here. Indeed, these researches may well shed 

light on how to naturalistically conceive of mathematics. But they have so far 

investigated the origin and functioning of just some very basic numerical abilities. 

These basic capacities are thought to have evolved because they allowed our 

ancestors to approximately deal with numerosities sufficiently well to ensure their 

survival. But this ability seems insufficient to justify the claim that mathematical 

knowledge is knowledge of the most certain kind. And no adequate scientific account 

of how we develop advanced mathematics starting from those basic numerical 

abilities has been provided yet (see e.g. Spelke 2011). Thus, even if prima facie the 

study of such basic cognitive abilities does not support the traditional view of 

mathematics, it seems at the moment even unable to definitely confute that view. 

Indeed, according to many authors that support the traditional view of mathematics, 

showing the evolutionary roots of these numerical capacities is insufficient to 

naturalistically explain the degree of certainty and effectiveness that our advanced 

mathematics displays. For example, Polkinghorne states that while it is easily 

conceivable that “some very modest degree of elementary mathematical 

understanding [...] would have provided our ancestors with valuable evolutionary 

advantage,” it is, on the contrary, very difficult to evolutionarily explain “the human 

capacity [...] to attain the ability to conjecture and eventually prove Fermat’s Last 

Theorem, or to discover non-commutative geometry.” Indeed, that ability appears 

not only to convey no direct survival advantage, but it also seems “vastly to exceed 

anything that might plausibly be considered a fortunate spin-off from such mundane 

necessity” (Polkinghorne 2011, p. 31-32). Since we are dealing here with the issue 

of whether the traditional view of mathematics is compatible with a naturalist stance, 

we will not dwell on those attempts that (1) try to naturalize mathematics by focusing 

on discoveries related to our basic numerical abilities, but (2) do not address the issue 

of whether or not the traditional view of mathematics should be maintained in the 

light of our scientific understanding of those basic abilities. 

Turning to the issue at stake, the difficulty of accommodating mathematical 

knowledge within a coherent scientific world-view is what Mary Leng called ‘the 

problem of mathematical knowledge’. According to her, “the most obvious answers 
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to the two questions ‘What is a human?’ and ‘What is mathematics?’ together seem 

to conspire to make human mathematical knowledge impossible” (Leng 2007, p. 1). 

This article aims to suggest that a promising step towards the elaboration of an 

adequate naturalist account of mathematics and mathematical knowledge based on 

Darwinism, may be to take the method of mathematics not to be the axiomatic 

method. It will be argued that it is impossible to naturalize mathematics relying on 

Darwinism without challenging at least some crucial aspects of the traditional view 

of mathematics, according to which mathematical knowledge is certain and the 

method of mathematics is the axiomatic method. Nor does it seem possible to keep 

maintaining that mathematical knowledge is the paradigm of certain knowledge, if 

we dismiss the claim that the method of mathematics is the axiomatic method.3 

 

 

3. Mathematics and Method 

 

The certainty of mathematical knowledge is usually supposed to be due to the 

method of mathematics, which is commonly taken to be the axiomatic method.4  In 

this view, the method of mathematics differs from the method of investigation in the 

natural sciences: whereas “the latter acquire general knowledge using inductive 

methods, mathematical knowledge appears to be acquired [...] by deduction from 

basic principles” (Horsten 2015). According to Frege, when we do mathematics we 

form chains of deductive “inferences starting from known theorems, axioms, 

postulates or definitions and terminating with the theorem in question” (Frege 1984, 

p. 204). In the same vein, Gowers states that what mathematicians do is that they 

“start by writing down some axioms and deduce from them a theorem” (Gowers 

2006, p. 183). So, it is the deductive character of mathematical demonstrations that 

                                                           
3 For a positive alternative view on the method of mathematics, see e.g. Cellucci (2013; 

2017), who takes the method of mathematics to be the analytic method. Such proposal 

cannot be illustrated here for reason of space. See also Sterpetti 2018; Bertolaso, Sterpetti 

2017. 

4  Cf. e.g. Baker 2016, Sect. 1: “there is a philosophically established received view of the 

basic methodology of mathematics. Roughly, it is that mathematicians aim to prove 

mathematical claims [...], and that proof consists of the logical derivation of a given claim 

from axioms.” 
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confers its characteristic certainty to mathematical knowledge, since demonstrative 

“reasoning is safe, beyond controversy, and final” (Pólya 1954, I, p. v), precisely 

because it is deductive in character. In this view, “deductive proof is almost the 

defining feature of mathematics” (Auslander 2008, p. 62).  

If the method of mathematics is the axiomatic method, mathematics mainly 

consists in deductive chains from given axioms.5 So, in order to claim that 

mathematical knowledge is certain, we have to know that those axioms are ‘true’, 

where ‘true’ is usually understood as ‘consistent with each other’. As well as the 

consistency of axioms, the problem of justifying our reliability about mathematics is 

also related to the problem of justifying our reliability about logic. Indeed, if we 

think that the method of mathematics is the axiomatic method, proving the reliability 

of deductive inferences is essential for claiming for the certainty of mathematical 

knowledge. 

Thus, there are two statements that one should be able to prove in order to safely 

claim that mathematical knowledge is certain: (α) axioms are consistent; (β) 

deduction is truth-preserving. Indeed, a deductive proof “yields categorical 

knowledge [i.e. knowledge which is independent of any particular assumptions] only 

if it proceeds from a secure starting point and if the rules of inference are truth-

preserving” (Baker 2016). 

Now, while whether it is possible to deductively prove (β) is at least controversial 

(see e.g. Haack 1976; Cellucci 2006), it is almost uncontroversial that it is generally 

impossible to mathematically prove (α), i.e. that axioms are consistent, because of 

Gödel’s results.6 By Gödel’s second incompleteness theorem, for any consistent, 

sufficiently strong deductive theory T, the sentence expressing the consistency of T 

is undemonstrable in T. Nevertheless, despite Gödel’s incompleteness theorems 

seem to refute the view that the method of mathematics is the axiomatic method, this 

view is still in fact the most widespread view among mathematicians (see Cellucci 

                                                           
5 Cf. Prawitz 2014, p. 78: “mathematics, after its deductive turn in ancient Greek, is 

essentially a deductive science, which is to say that it is by deductive proofs that 

mathematical knowledge is obtained.” 

6  Cf. Baker 2016, Sect. 2.3: “Although these results apply only to mathematical theories 

strong enough to embed arithmetic, the centrality of the natural numbers (and their 

extensions into the rationals, reals, complexes, etc.) as a focus of mathematical activity 

means that the implications are widespread.” 
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2017, Sect. 20.12). Usually, those authors that despite these results maintain that 

mathematical knowledge is certain, make reference to a sort of faculty that we are 

supposed to possess, a faculty that would allow us to ‘see’ that axioms are consistent. 

For example, Brown states that we “can intuit mathematical objects and grasp 

mathematical truths. Mathematical entities can be ‘perceived’ or ‘grasped’ with the 

mind’s eye” (Brown 2012, p. 45). 

This view has been advocated by many great mathematicians and philosophers. 

Detlefsen describes the two main claims of this view as follows: (1) “mathematicians 

are commonly convinced that their reasoning is part of a process of discovery, and 

not mere invention;” (2) “mathematical entities exist in a noetic realm to which the 

human mind has access” (Detlefsen 2011, p. 73). With respect to the ability of 

grasping mathematical truths, i.e. accessing the mathematical realm, this view 

traditionally assumes “a type of apprehension, noēsis, which is characterized by its 

distinctly ‘intellectual’ nature. This has generally been contrasted to forms of 

aisthēsis, which is broadly sensuous or ‘experiential’ cognition […].” (Ibidem, p. 

73). For example, Gödel states that “despite their remoteness from sense experience 

we do have something like a perception also of the objects of set theory, as is seen 

from the fact that the axioms force themselves upon us as being true” (Gödel 1947: 

1990, p. 268). 

The problem is that this view is commonly supported by authors that are anti-

naturalists.7 More precisely, many of them are explicitly anti-Darwinist, in the sense 

that they overtly deny that our intellectual ability to grasp mathematics can be made 

compatible with the claim that all our cognitive abilities have evolutionary roots. For 

example, Gödel claims that mathematical intuition is a superior faculty which is not 

“derived from subconscious induction or Darwinian adaptation” (Gödel 1953: 1995, 

p. 354). Hence, those anti-naturalist authors do not take care of articulating a 

scientifically plausible account of how such ‘intuition’ may work or may have 

evolved. 

Obviously, adopting the same attitude is less easy for the naturalists. Evolution is 

central to naturalism. For example, Giere states that if “evolutionary naturalism is 

                                                           
7  On the anti-naturalism of many supporters of this view, cf. e.g. Gödel 1947: 1990, p. 323: 

“There exists [...] an entire world consisting of the totality of mathematical truths, which 

is accessible to us only through our intelligence, just as there exists the world of physical 

realities; each one is independent of us, both of them divinely created.” 
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understood to be a general naturalism informed by the facts of evolution and by 

evolutionary theory, then no responsible contemporary naturalist could fail to be an 

evolutionary naturalist in this modest sense” (Giere 2006, p. 53). As modest this 

commitment can be, if one commits oneself to naturalism, one would find difficult 

to claim that some cognitive ability cannot be explained in the light of evolutionary 

theory. The following question then arises: Is it possible to naturalize the human 

ability to grasp mathematics and logic, and keep maintaining the traditional view of 

mathematical knowledge, i.e. that mathematical knowledge is certain, and the 

method of mathematics is the axiomatic method? In other words, how can we 

account for the reliability of mathematics and logic, if we accept the idea that they 

are both produced by humans and humans are evolved organisms? 

There is no clear answer to this question. Some authors tried in the last decade to 

naturalize mathematics and logic by relying on Darwinism (see e.g. De Cruz 2006, 

2004; Krebs 2011; Núñez 2009; Schechter 2013; Smith 2012; Woleński 2012; Ye 

2011).8 The main difficulties afflicting those approaches derive from the fact that 

they try both to (1) naturalize mathematics through Darwinism and (2) avoid the risk 

of being excessively revisionary on what we take mathematical knowledge to be.9 In 

other words, they try to show that mathematics rests on some evolved cognitive 

abilities, and that this evolutionary ground confers a degree of epistemic justification 

to how we actually do mathematics which is able to secure our traditional convictions 

on what mathematical knowledge is. The fact is that it is not easy to defend the claim 

that evolution can provide the degree of justification needed to maintain the 

traditional view of mathematics as the paradigm of certain knowledge. Briefly, in 

order to claim that natural selection gave us the ability at attaining the truth with 

regard to mathematics, we should demonstrate that natural selection is an aimed-at-

truth process in the first place. For example, Wilkins and Griffiths state that to 

“defeat evolutionary skepticism, true belief must be linked to evolutionary success 

                                                           
8  Those interesting proposals cannot be individually discussed here for reason of space. 

9 Cf. Paseau 2013, Sect. 4.1: “Scientific naturalism about mathematics proper is thus a 

philosophically revolutionary view, since it advocates a different set of standards with 

which to judge mathematics […] from the traditional ones […]. It is also potentially 

revolutionary about mathematics itself, as it might lead to a revision of mathematics […]. 

Having said that, recent scientific naturalists have tended to be mathematically 

conservative in temperament and have advocated little or no revision of mathematics.” 
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in such a way that selection will favour organisms which have true beliefs” (Wilkins, 

Griffiths 2013, p. 134). The problem is exactly how to justify such a link, and the 

issue is at least very controversial (see e.g. Vlerick, Broadbent 2015; Sage 2004). 

Consider, for instance, our confidence in the fact that deduction is truth-

preserving, while non-deductive inference rules are not. Since there is no non-

circular justification of the validity of deductive inferences rules (Cellucci 2006), nor 

there is an uncontroversial justification of the claim that circular justifications are 

acceptable, non-deductive rules and deductive rules seem to be on a par with respect 

to the issue of the formal justification of their validity (see also Carroll 1895; Haack 

1976). Thus, what we take to be the distinctive feature of deductive rules, i.e. truth-

preservation, has to be grounded in some different way. According to many authors, 

the justification of the claim that deduction is truth-preserving is grounded in our 

intuition. For example, Kyburg states that “our justification of deductive rules must 

ultimately rest, in part, on an element of deductive intuition: we see that M[odus] 

P[onens] is truth-preserving − this is simply the same as to reflect on it and fail to 

see how it can lead us astray” (Kyburg 1965, p. 276). The problem is that our failing 

in conceiving an alternative to some issue we reflect on could justify the reliability 

of the deductive rules only if our ability in conceiving alternatives to some issue we 

reflect on could be shown to be able to reliably exhaust the space of all the possible 

alternatives to such issue. The fact is that there is not such a demonstration of the 

reliability of our ability in conceiving alternatives, so that in order to ground our 

confidence in such ability we can only rely on our ‘intuition’. So, in the ultimate 

analysis, our confidence in the truth-preservation of deductions relevantly rests on 

(1) our failing in finding any counterexample able to convince ourselves that MP can 

lead us astray, and on (2) the fact that the ‘intuition’ that no possible alternative has 

been overlooked in the search for a counterexample appears self-evident to us. But 

the fact that some statements appear to us as self-evidently true it is not by itself a 

guarantee of their truth, if our ability in evaluating the self-evident truth of a 

statement is an evolved capacity. Our ‘sense’ of the self-evident may be not only 

oriented towards contingent connections which were useful in the past and that do 

not reflect necessary and eternal truths, but given that we are not able to demonstrate 



PENULTIMATE DRAFT – PLEASE CITE THE PUBLISHED VERSION 

Philosophia, DOI: 10.1007/s11406-018-9953-1. 

 

10 

 

that only true beliefs can permit us to successfully deal with the world,10 we cannot 

even eliminate the possibility that an ability in perceiving as self-evident some 

falsities has been selected because perceiving such falsities as self-evident truths was 

adaptively useful (Nozick 2001; see also Vaidya 2016). 

It is worth noting that, if we want to maintain that mathematical knowledge is 

certain, and we want to naturalize mathematical knowledge, the evolved cognitive 

ability to grasp whether axioms are consistent cannot be supposed to be fallible. 

Indeed, if this faculty is fallible, and we are not able to correctly determine whether 

axioms are true in all the cases we examine, then we will generally be unable to claim 

that our mathematical knowledge is certain in any particular case. Indeed, as we have 

seen, a mathematical result is true and certain if the axioms from which it is derived 

are true (at least in the sense of ‘being consistent’), and deduction is truth-preserving. 

If naturalizing mathematics implies that our evolved ability in assessing the truth of 

the axioms is fallible, and we have no other way to verify our verdict, we find 

ourselves in a situation in which we may have erred in assessing the consistency of 

axioms, and we are unable to detect whether or not we made an error. Thus, we 

would never be able to safely claim that we judged correctly, and so that our 

mathematical knowledge is actually certain. So, if the justification of our 

mathematical knowledge rests on some fallible faculty, then the attempt to naturalize 

mathematics cannot maintain the traditional view of mathematics. 

Contrary to this perspective, McEvoy (2004) argues for the compatibility of 

reliabilism and mathematical realism. According to him, our mathematical intuition 

may be at the same time an a priori, reliable, and fallible faculty of reason. In a 

similar vein, Brown (2012) maintains that platonism and fallibilism can be 

combined. But, even if we concede that fallibilism in epistemology is compatible 

with platonism in ontology, this view seems not compatible with a naturalist stance, 

since it is not able to give a naturalist account of how we “can intuit mathematical 

objects and grasp mathematical truths”, given that in this perspective mathematics is 

a priori, and mathematical truths are necessary truths. This view has to face the same 

difficulties discussed above with regard to the justification of the claim that 

                                                           
10  Cf. e.g. McKay, Dennett 2009, p. 507: “In many cases [...], beliefs will be adaptive by 

virtue of their veridicality. The adaptiveness of such beliefs is not independent of their 

truth or falsity. On the other hand, the adaptiveness [...] of some beliefs is quite 

independent of their truth or falsity.” 
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deduction is truth-preserving: when evolution enters the picture, it is not easy to 

justify the claim that we are able to correctly assess what is possible or impossible 

through reasoning alone. This impinges on the possibility of claiming that our 

mathematical beliefs are certainly true because they cannot be otherwise. So, any 

kind of evolutionary reliabilism seems not really able to provide a naturalist way of 

supporting the traditional view of mathematics, since it is not able to secure the 

certainty of our knowledge (Sage 2004). That a belief is reliably produced may be 

insufficient for conferring to mathematics the degree of certainty that many 

platonists are looking for. If instead a platonist accepts the idea that mathematical 

knowledge can be fallible, i.e. she claims that, although mathematics is an a priori 

discipline, mathematical knowledge need not be certain (see e.g. Brown 2012), and 

so she rejects (at least to some extent) the traditional view of mathematics, she has 

now to face the problem of justifying her own view of mathematics: If mathematical 

knowledge is fallible, how can the platonist justify the claim that the platonist view 

of mathematics is the true one? If mathematical knowledge is fallible, what we think 

about mathematics may be incorrect or even false. If the adoption of a platonist 

attitude depends on (or it is part of) our mathematical knowledge, platonism itself 

may be incorrect or even false. Many platonists would be unwilling to accept this 

claim, so rejecting the traditional view of mathematics is not an easy way for the 

platonist to take. 

 

 

4. Mathematics and Naturalism 

 

With regard to the issue of how to understand the term ‘naturalism’ in the context 

we are dealing with, we will not be concerned here with any specific view of 

naturalism, nor we will survey the many criticisms that have been so far moved to 

this (family of) view(s) (for a survey on naturalism, see Clark 2016; Papineau 2016; 

see Paseau 2013 for a survey on naturalism in the philosophy of mathematics). For 

the purpose of this article, ‘naturalism’ can just be understood as the claim that we 

should refute accounts or explanations that appeal to non-natural entities, faculties 

or events, where ‘non-natural’ has to be understood as indicating that those entities, 

faculties or events cannot in principle be investigated, tested and accounted for in 
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the way we usually do in science.11 In other words, non-natural entities, faculties or 

events are those that are characterized and defined precisely by their inaccessibility, 

by the impossibility of being assessed, empirically confirmed, or even made 

compatible with what we consider genuine knowledge in the same or in some close 

domain of investigation. In all those cases, we have to face a problem of 

accessibility12 and a claim of exceptionality that usually lacks sufficiently strong 

reasons to be conceded. 

                                                           
11 Cf. e.g. Lacey 2005, p. 604: “[Naturalism is] the view that everything is natural, i.e., that 

everything there is belongs to the world of nature, and so can be studied by the methods 

appropriate for studying that world.” 

12  The access problem, first raised in the philosophy of mathematics by Benacerraf (1973), 

is now thought to arise in many other domains. It is the problem of justifying the claim 

that our D-beliefs align with the D-truths of a given domain D, if D is regarded as an a 

priori domain, i.e. a domain whose objects cannot in principle be empirically investigated 

(see Clarke-Doane 2016). Benacerraf’s epistemological challenge to mathematical 

platonism has been criticized because it assumes the causal theory of knowledge, which 

nowadays is discredited among epistemologists. But Benacerraf’s argument may be 

raised against platonism without assuming the causal theory of knowledge, as Field 

(1989) maintains. On this issue, cf. Baron 2015, p. 152: “Field’s version of the access 

problem focuses on mathematicians’ mathematical beliefs. The mathematical 

propositions that mathematicians believe tend to be true. If platonism is correct, however, 

then these propositions are about mathematical objects. So, the mathematical beliefs held 

by mathematicians [...] are reliably correlated with facts about such objects. The challenge 

facing the platonist, then, is to provide an account of this reliable correlation.” It may be 

objected that this formulation implicitly assumes a sort of correspondence view of truth, 

and that this view of truth has not to be necessarily held by platonists. But, even if 

accepting the correspondence view of truth is not strictly mandatory for a realist, the 

correspondence view is in fact the view of truth usually adopted by realists of all stripes. 

And according to many authors, the “major argument for mathematical realism appeals 

to a desire for a uniform semantics for all discourse: mathematical and non-mathematical 

alike [...]. Mathematical realism, of course, meets this challenge easily, since it explains 

the truth of mathematical statements in exactly the same way as in other domains” 

(Colyvan 2015, Sect. 5), i.e. by assuming that there is a correspondence between the realm 

of mathematical objects and our mathematical knowledge. So, if platonists try to avoid 

Benacerraf’s challenge by rejecting the correspondence view of truth, they risk dismissing 

one of the most convincing reasons for adopting platonism in the first place. 
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Although such a characterization of naturalism is quite broad, it nevertheless 

retains the idea that every naturalist view requires both (1) an ontological and (2) an 

epistemological commitment. This means that, in order to naturalize a domain D, it 

is insufficient to merely specify what kind of entities we can admit in our ontology 

of D. We have also to provide a naturalistic (i.e. a scientific adequate and reliable) 

account of how we can acquire knowledge of those D-entities. 

This point is relevant also for those attempts aimed at naturalizing mathematics 

by relying on Darwinism. To see this, it is important to distinguish (a1) the fact that 

a subject S has some D-beliefs about a domain D, and (a2) the ability to deal with the 

world that those D-beliefs confer to S, from (b1) the beliefs that S has about the nature 

of such D-beliefs, and (b2) the beliefs that S has about the reasons why those D-

beliefs give her such an ability to deal with the world. 

In this regard, consider sight, i.e. the ability to see. Sight gives us an ability to 

deal with the world (a2) and allows us to form beliefs related to what we see and 

about the possibility of seeing that may well be regarded as reliable to some extent 

(a1). Nevertheless, for many millennia humans have known very little about how 

sight was possible (b1), and many ideas we humans have proposed to explain this 

phenomenon proved untenable in the light of successive scientific inquiry (b2). We 

can conceive of our ability to see as evolutionarily rooted. Thus, natural selection 

may well have equipped us with the ability to form reliable (at least to some extent) 

beliefs through our innate ability to see, and these beliefs proved very useful for 

dealing with the world. Nevertheless, we would not draw the conclusion that our 

innate ability to see allowed us to form reliable beliefs about how it is that we can 

see, or about how human sight works. On the contrary, it is starting from our current 

scientific knowledge that we can assess whether (and to what extent) our innate 

ability to see allows us to form reliable beliefs. 

Consider now mathematics. Mathematicians are supposed to have highly justified 

beliefs about mathematics (a1), and mathematics certainly helps us to deal with the 

world (a2). But this does not mean that the beliefs that philosophers of mathematics 

or mathematicians have about what mathematics is (b1), or about the reasons why 

mathematics proves so helpful to deal with the world (b2), are justified or reliable. In 

other words, even if natural selection gave us the ability to produce some reliable D-

beliefs in some domain D, because these beliefs were useful to deal with our 

ancestors’ environment, this does not mean that any belief we may produce about D 
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or about how D-beliefs are produced is reliable or justified. So, even if mathematics 

is useful to deal with the world and mathematicians are reliable when doing 

mathematics, this may be insufficient to take for granted what mathematicians think 

about what mathematics is and the way we acquire mathematical knowledge. In a 

naturalist perspective, such claims should be supported by adequate scientific 

findings, or at least be compatible with our scientific knowledge on similar issues 

(e.g. what we know about how we acquire different kinds of knowledge). 

This is the reason why naturalists should resist those attempts aimed at 

‘platonizing naturalism’ (see e.g. Linsky, Zalta 1995), which are mainly devoted to 

defending the claim that an ontology which comprehends abstract objects is not 

incompatible with a science-oriented world-view. Those accounts support what 

Brown (2012) calls semi-naturalism, in the sense that they aim at supporting a 

platonist ontology in some domain D, while they reject the classical platonist account 

of how we come to know D-entities. For example, in the case of mathematics, Linsky 

and Zalta (1995) wish both to (1) maintain a platonist perspective on mathematical 

objects, according to which mathematical entities are abstract objects (i.e. non-

spatiotemporally located), and (2) reject the platonist view according to which we 

come to know about such abstract objects through a sort of intuition either of those 

objects, or of the truth of the axioms from which we can derive them. 

According to Linsky and Zalta, we have not to conceive of abstract objects on the 

model of physical objects. Indeed, unlike “ordinary objects, for which reference 

proceeds by some combination of causal processes, referential intentions, and [...] 

descriptive properties, reference to abstract objects is ultimately based on 

descriptions alone” (Linsky, Zalta 1995, p. 546). In this view, mathematical objects 

are described through a comprehension principle for individual abstract objects.13 

This principle says that for “every condition on properties, there is an abstract 

individual that encodes exactly the properties satisfying the condition” (Ibidem, p. 

536). This means that “if a mathematical entity is logically possible, then it is actual” 

(Brown 2012, p. 122). In this way, every consistent mathematical structure can be 

said to exist, and no epistemic contact with any mathematical object is needed in 

order to say that it exists. In this view, “our cognitive faculty for acquiring 

                                                           
13  Comprehension principles are general existence claims stating which conditions specify 

an object of a certain sort. 
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knowledge of abstracta is simply the one we use to understand the comprehension 

principle” (Linsky, Zalta 1995, p. 547). 

The main problem with this perspective, as it has been correctly pointed out by 

Brown (2012), is that it does not provide any naturalist account of how we come to 

know the comprehension principle.14 Moreover, Linsky’s and Zalta’s idea that there 

are as many abstract objects as there could possibly be seems to commit them to 

possible-worlds modal realism. For example, they claim that every “consistent 

mathematical theory describes an abstract mathematical realm that, however bizarre 

or convoluted, might be needed to characterize some portion of the physical reality 

of some metaphysically possible world” (Linsky, Zalta 1995, p. 550). Thus, the 

argument goes, the existence of abstract objects can be derived by their 

indispensability in constructing possible worlds. Since platonism supports realism 

with respect to mathematics, if Linsky and Zalta derive the existence of abstract 

objects by relying on their indispensability in constructing possible worlds, it is fair 

to suppose that Linsky and Zalta embrace some sort of possible-worlds modal 

realism. Adopting a realist attitude on possible worlds and modality amounts to claim 

that we are able to know what is necessary and what is possible. Obviously, if one 

adopts such a stance, one immediately has to face the problem of justifying the claim 

that one knows what is necessary and what is possible, i.e. one has to explain how 

one comes to know what is necessary and what is possible.  

Now, possible-worlds modal realism is usually deemed to be incompatible with 

a naturalist stance. The reason for this incompatibility is analogous to the one seen 

above with regard to the incompatibility between platonism and naturalism, i.e. 

possible-worlds modal realism implies the existence of empirically inaccessible 

domains. If some worlds are empirically inaccessible, and nevertheless we do know 

what is necessary or possible in such worlds, and we are realist about the existence 

of such worlds, this means that we can have knowledge of some inaccessible domain 

D which is independent from any empirical confirmation of our D-beliefs. This 

knowledge is a sort of a priori knowledge, in the broad sense that it is knowledge 

                                                           
14  Cf. Linsky, Zalta 1995, p. 547: “The comprehension principle […] is known a priori. The 

reason is that it is not subject to confirmation or refutation on the basis of empirical 

evidence.” But many naturalists are unwilling to concede that a priori knowledge is 

possible (see Devitt 1998). 



PENULTIMATE DRAFT – PLEASE CITE THE PUBLISHED VERSION 

Philosophia, DOI: 10.1007/s11406-018-9953-1. 

 

16 

 

reached by virtue of reasoning alone.15 Indeed, modal realists claim that, for every 

way the world could be, there is a world that is that way (Lewis 1986). This means 

to assume that if something is impossible in our world, but it is conceivable, it is true 

in some other possible world causally isolated from ours. So, the adoption of 

possible-worlds modal realism amounts to assuming that there is something “like a 

realm of metaphysical possibility and necessity that outstrips the possibility and 

necessity that science deals with, but this is exactly what naturalists should not be 

willing to concede” (Morganti 2016, p. 87).16 

It is important to stress that possible-worlds modal realism rests on an analogy 

between modal knowledge and mathematical knowledge developed by Lewis 

(1986): “the key idea is that we have mathematical knowledge by drawing (truth-

preserving) consequences from (true) mathematical principles. And we have modal 

knowledge by drawing (truth-preserving) consequences from (true) modal 

principles” (Bueno, Shalkowski 2004, p. 97). This means that possible-worlds modal 

realism rests on the traditional view of mathematics, according to which axioms are 

known to be true, and mathematical knowledge is ampliated by deducing theorems 

from those axioms. To the extent that Linsky’s and Zalta’s attempt can be regarded 

as an attempt aimed at securing the traditional view of mathematical knowledge by 

grounding it on possible-worlds modal realism, if possible-worlds modal realism 

rests in its turn on the traditional view of mathematical knowledge, Linsky’s and 

Zalta’s move displays a sort of circularity. But what is more interesting, is that 

Lewis’ analogy between modality and mathematics can be developed in exactly the 

opposite direction, if one wishes to adopt a naturalist stance. Let’s unpack this claim 

a bit. Mathematics is regarded by some authors as able to provide support for anti-

                                                           
15 On the realist attitude on coexisting parallel worlds that possible-worlds modal realism 

implies, cf. e.g. Norris 2000, p. 109: “Lewis himself arrives at this conclusion by way of 

modal logic and the argument that necessary truths are those that hold good across all 

possible worlds rather than obtaining only in a certain limited subset of worlds which 

happen to resemble our own in respect of various contingent features. In this form the 

theory goes back to Leibniz and involves the essentially rationalist belief that thinking 

can indeed deliver such real-world applicable truths through a priori reflection on the 

scope and limits of human knowledge in general.” 

16 For a survey of the problems afflicting possible-worlds modal realism, see Vaidya 2016, 

Bueno, Shalkowski 2004. 
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naturalism. Indeed, mathematical knowledge is usually regarded as an instance of 

genuine knowledge despite we do not possess any naturalist account of mathematics. 

So, the argument goes, if we do not possess any naturalist account of how we form 

beliefs about a given domain D, our knowledge of D may well be regarded as an 

instance of genuine a priori knowledge in the same way mathematics is regarded as 

an instance of genuine a priori knowledge. This means that the burden of proof is 

on the naturalist. D can be safely regarded as an a priori domain and our knowledge 

of D can be safely regarded as an instance of genuine a priori knowledge at least 

until an adequate account of how we form D-beliefs will be provided by the 

naturalists.  

But this view rests on the simplistic idea that mathematical statements can really 

be proved to be true by reasoning alone. And so that also D-statements can be 

regarded as true, if D is an a priori domain in the same sense in which mathematics 

is an a priori domain. In fact, things are more complicated. According to Bueno and 

Shalkowski (2004), for instance, as in mathematics, due to Gödel’s results, we are 

generally unable to prove with certainty that the axioms of the theory we are dealing 

with are true, and thus that the theorems that we derive from such axioms are actually 

true, when dealing with modality our modal knowledge may be of the same kind, i.e. 

knowledge whose truth depends on whether the metaphysical assumptions from 

which we start are true, but we are unable to prove whether such assumptions are 

actually true. Indeed, when dealing with non-actual cases, the possibility of 

determining whether something is possible or not will depend on controversial 

assumptions. There are several incompatible and competing assumptions available 

to be taken as the starting point from which we derive our target conclusions on what 

is possible, and there is not a way of proving that such ‘first assumptions’ are in their 

turn ‘true’ without ending in an infinite regress or committing a petitio principii.17 

                                                           
17 Cf. Bueno, Shalkowski 2004, p. 97-98: “If the analogy with mathematics is taken 

seriously, it may actually provide a reason to doubt that we have any knowledge of 

modality. One of the main challenges for platonism about mathematics comes from the 

epistemological front, given that we have no access to mathematical entities – and so it’s 

difficult to explain the reliability of our mathematical beliefs. The same difficulty 

emerges for modal realism, of course. After all, […] we have no access to […] [possible 

worlds]. Reasons to be skeptical about a priori knowledge regarding mathematics can be 

easily ‘transferred’ to the modal case, in the sense that difficulties we may have to 
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It seems fair to conclude that Linsky’s and Zalta’s view is mainly concerned with 

the idea of facing the challenge raised by Benacerraf with regard to the access 

problem for some kind of objects, but it completely misses the other requirement that 

is implied by any naturalist perspective, i.e. that it should be possible (at least in 

principle) to account in naturalistic terms for the means by which we develop our 

scientific knowledge. Thus, naturalists should resist those attempts aimed at 

platonizing naturalism, because they are not really compatible with a naturalist 

stance. 

 

 

5. Mathematics and Darwinism 

 

From the previous sections, it should be clear that in this article we are exclusively 

concerned with those strategies aimed at naturalizing a given domain D, which has 

traditionally been regarded as affected by an ‘access problem’ (e.g. mathematics, 

morality, modality, etc.), by providing a plausible evolutionary account of some 

cognitive abilities that would make our knowledge of some aspects of some D-

objects a natural fact. As an example, Timothy Williamson’s approach to modality 

can be regarded as a way to naturalize modality, by firstly reducing the problem of 

explaining our modal knowledge to the problem of explaining our capacity to 

correctly perform counterfactual reasoning, and then by giving some reasons to think 

that an evolutionary account of the emergence of this capacity may be plausible 

(Williamson 2000).18 This example might give rise to some misunderstanding, since 

                                                           
establish a given mathematical statement may have a counterpart in establishing certain 

modal claims. For example, how can we know that a mathematical theory, say ZFC, is 

consistent? Well, we can’t know that in general; we have, at best, relative consistency 

proofs. And the consistency of the set theories in which such proofs are carried out is far 

more controversial than the consistency of ZCF itself, given that such theories need to 

postulate the existence of inaccessible cardinals and other objects of this sort.” 

18 Cf. also Kitcher 1988, fn. 10, p. 322-323: “it seems to me to be possible that the roots of 

primitive mathematical knowledge may lie so deep in prehistory that our first 

mathematical knowledge may be coeval with our first prepositional knowledge of any 

kind. Thus, as we envision the evolution of human thought (or of hominid thought, or of 

primate thought) from a state in which there is no prepositional knowledge to a state in 
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Williamson justifies our ability to deal with metaphysical modality by relying on a 

sort of evolutionary argument, i.e. an argument which justifies some kind of beliefs 

by appealing to their evolutionary roots. Above such kind of arguments has been 

defined ‘very controversial’ (Sect. 3). In Williamson’s view, our evolved ability to 

perform counterfactual reasoning justifies our reliability to deal with metaphysical 

modality, because if an ability has been selected for by natural selection, this means 

that it is reliable in tracking some aspect of the world. It is precisely this inference 

from ‘having been selected for’ to ‘being reliable in tracking some truths’ that is very 

controversial. But it is not because of this aspect that Williamson’s move may be 

suitable for the naturalists. Rather, it is the general structure of Williamson’s strategy 

that can be of interest if one tries to naturalize a given domain. As already said, 

Williamson’s strategy consists in reducing a controversial domain C, for which we 

do not possess any naturalist explanation of our ability to deal with C-objects, to a 

more familiar domain F, for which a plausible evolutionary explanation f of our 

ability to deal with F-objects is available. In this way, by means of f we can now 

explain our ability to deal with C-objects in naturalistic terms. It is important to stress 

that this strategy is neutral with respect to the issue of whether or not evolved abilities 

are truth-tracking. In order to explain some aspect of domain C, f need not be true, 

since an ability may have been selected for despite it does not track any truth. So, 

Williamson’s move does not imply, by itself, a commitment to a realist or an 

antirealist perspective on a given domain. As well as Williamson supports a non-

sceptical attitude toward metaphysical modality, someone else can support modal 

scepticism by performing a similar reasoning. One can indeed firstly show that our 

ability to deal with modality can be reduced to our ability to perform counterfactual 

reasoning. Then, by noting that counterfactual reasoning is an evolved ability, and 

that natural selection does not guarantee the reliability of evolved abilities in tracking 

truths, one can conclude that we should be skeptical about the reliability of our ability 

to deal with metaphysical modality.19 

Turning to the issue of the naturalization of mathematics, a naturalistic account 

of mathematics has to assume the hypothesis that the human mathematician is “a 

                                                           
which some of our ancestors know some propositions, elements of mathematical 

knowledge may emerge with the first elements of the system of representation.” For 

several criticisms of Kitcher’s mathematical naturalism, see Brown 2012. 

19 I wish to thank an anonymous reviewer for urging me to clarify this point. 
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thoroughly natural being situated in the physical universe,” and that therefore “any 

faculty that the knower has and can invoke in pursuit of knowledge must involve 

only natural processes amenable to ordinary scientific scrutiny” (Shapiro 1997, p. 

110). Is this assumption compatible with the traditional view of mathematics? 

Recently, Helen De Cruz argued that an evolutionary account of mathematics 

may well be compatible with a realist view of mathematics. According to her, 

“animals make representations of magnitude in the way they do because they are 

tracking structural (or other realist) properties of numbers” (De Cruz 2016, p. 7). In 

this view, “realism about numbers could be true, given what we know about evolved 

numerical cognition” (Ibidem, p. 2). Indeed, “it seems plausible that numerical 

cognition has an evolved, adaptive function,” and it has been demonstrated that 

numerical cognition “plays a critical role in our ability to engage in formal 

arithmetic” (Ibidem, p. 4). According to De Cruz, “the brain has as proper function 

the production of beliefs that are fitness-enhancing,” and it is possible to develop an 

evolutionary argument, according to which “natural selection will form animal 

brains that tend to produce true beliefs, because true beliefs are essential for adaptive 

decision making” (De Cruz, De Smedt 2012, p. 416-417). With regard to 

mathematics, De Cruz states that since mathematics is the product of evolution by 

natural selection, it “must somehow have promoted the survival and reproductive 

success of the ancestors of those organisms” (De Cruz 2004, p. 80). If the beliefs 

produced by humans need to be true in order to be fitness-enhancing, and 

mathematics is produced by humans because it has been fitness-enhancing, we can 

conclude that in this line of reasoning mathematical beliefs are true. This means that 

mathematical beliefs need to be derivable from axioms which are true, at least in the 

sense that they are consistent. 

The main problem with this view is that if one tries to (1) naturalize mathematics 

and (2) maintain the traditional view, i.e. the view according to which (a) the method 

of mathematics is the axiomatic method and (b) mathematical knowledge is certain, 

then our naturalized account of mathematics risks being incompatible with Gödel’s 

results. Indeed, in the traditional view, as we have already noted, in order to justify 

mathematical knowledge, at least two requirements have to be fulfilled: (α) axioms 

have to be consistent, and (β) deduction has to be truth-preserving.  

We have already mentioned (Sect. 3) the difficulties that arise when one tries to 

justify the claim that deduction is truth-preserving (β), if one takes a naturalist stance. 
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Let’s now focus on the first requirement (α), i.e. axioms have to be consistent. If we 

maintain that evolution is able to justify the traditional view of mathematics, this 

amounts to claim that evolution, in some way, gave us an ability to know with 

certainty whether a set of axioms are true, at least in the sense that they are consistent. 

Let’s name T the ‘result’ that we can obtain thanks to such evolved ability. Consider, 

for example, that T expresses the following content: ‘the axioms of the axiomatic 

system we are considering are consistent’. 

The problem is that, by Gödel’s second incompleteness theorem, it is impossible 

to demonstrate in any sufficiently powerful axiomatic system that the axioms of such 

system are consistent. Let’s name this result G.  

Now, if the method of mathematics is really the axiomatic method, how could we 

accept that T holds? Or, to put it slightly differently, should we consider T be part of 

our mathematical knowledge?  

If T is part of our mathematical knowledge, then the axiomatic method is not 

really the unique method of mathematics, since a crucial result as T is not obtained 

by this method, and so the method by which T has been obtained should be added to 

the list of the legitimate methods of mathematics. This would render G almost 

irrelevant. Indeed, if the axiomatic method is not the only acceptable method in 

mathematics, and we can know that a set of axioms is consistent thanks to some 

evolved faculty, then that in some axiomatic systems we cannot prove whether or 

not a set of axioms is consistent is irrelevant to us. We could safely take as 

established that those axioms are consistent by our evolved faculty and go on. 

But the majority of mathematicians, even of platonist mathematicians, would be 

unwilling to regard Gödel’s contributions as irrelevant, and the consistency of 

axioms establishable by merely relying on an evolved sort of intuition. Precisely 

because they do believe the axiomatic method to be the method of mathematics, they 

tend to confer a higher degree of certainty to Gödel’s results, which have been 

established according to such method, than to the intuitions of an evolved faculty, 

the reliability of which cannot be proved by the same method. Indeed, in a naturalist 

framework, our evolved intuitions can be shown to be reliable only through some 

inductive method, which is peculiar of natural science. If we concede that the method 

of mathematics is distinct from the method of natural science, as the traditional view 

holds, and that the method of mathematics is the axiomatic method, then we will be 

unable to sufficiently justify the belief that our evolved intuition is reliable up to a 
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degree which is comparable with the confidence that the axiomatic method is 

supposed to confer to mathematical results. Thus, even if our evolved intuition were 

in fact reliable and infallible, we would be unable to scientifically demonstrate its 

infallibility with the same degree of certainty with which Gödel’s results can be 

proven, given that they are mathematical results.  

If, on the other hand, we take T not to be part of our mathematical knowledge, 

and protest that T is not really a ‘mathematical result’, we nevertheless find ourselves 

in an uncomfortable position: we should maintain that we possess some knowledge 

about some mathematical issue, and that this knowledge is not part of our 

mathematical knowledge. It is not easy to accommodate this claim by the usual 

epistemological standards. Since knowledge requires (at least) truth and justification, 

if we take T to be knowledge, T is true and justified. If T expresses something true 

about some mathematical issue, then we can affirm that T expresses a mathematical 

truth. But if we refuse to regard T as a part of our mathematical knowledge, and we 

are not able to express the same mathematical truth that T expresses by the means of 

what we take to constitute our current mathematical knowledge, then T would be 

able to express a mathematical truth that cannot be derived in our mathematical 

knowledge. 

It may be objected that T is a mathematical truth that cannot be derived on the 

basis of our mathematical knowledge, because the justification requirement that a 

true belief needs to fulfill in order to become mathematical knowledge is stricter than 

the justification requirement that has to be fulfilled in other domains. Let’s concede, 

for argument’s sake, such claim on the justification requirement for mathematics.20 

If this is the case, T could well able to express a truth about some mathematical issue, 

but this truth may nevertheless be insufficiently justified in order to become part of 

our mathematical knowledge. And this would explain the fact that T is able to 

express a truth on a mathematical issue, and that this truth does not figure among our 

known mathematical truths. But this would amount to saying that our mathematical 

knowledge is a kind of knowledge with a higher degree of certainty than T, since the 

                                                           
20  Cf. e.g. Kitcher 1988, p. 297: “The obvious way to distinguish mathematical knowledge 

from mere true belief is to suggest that a person only knows a mathematical statement 

when that person has evidence for the truth of the statement—typically, though not 

invariably, what mathematicians count as a proof.” 
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true beliefs that constitute our mathematical knowledge are supposed to display a 

higher degree of justification than T.  

But if we try to naturalize mathematics in the way here we are dealing with, things 

should go the other way around. Since T, i.e. the claim that the axioms of the theory 

we are dealing with are consistent, in order to be able to justify the traditional view 

of mathematics has to be certain, T has to be knowledge with the highest degree of 

certainty. Thus, the degree of certainty that our mathematical knowledge may display 

is in some sense subordinated to the degree of certainty that T displays, since the 

certainty of our mathematical knowledge is dependent on the certainty of T. 

Mathematical knowledge would be in this way a kind of knowledge with a less high 

degree of certainty than T. Thus, it cannot be the case that T is a mathematical truth 

which is not an instance of mathematical knowledge because it is insufficiently 

justified. So, this objection is inadequate.  

In both the cases we analyzed, i.e. either we take T to be part of our mathematical 

knowledge or not, we end with implausible scenarios. So, the supporters of the 

traditional view seem unable to really find an adequate way to justify the claim that 

axioms are consistent with each other in naturalistic terms. Since, as we tried to 

show, if one adopts a naturalist stance, both the requirements that should be fulfilled 

in order to maintain the traditional view of mathematics (i.e.: to show that axioms 

are consistent, and deduction is truth-preserving) cannot be fulfilled, it seems fair to 

conclude that if one adopts a naturalist stance, one cannot maintain the traditional 

view of mathematics. 

 

 

6. A Brief Digression on Consistency and Ampliativity 

 

Throughout this article we accepted as undisputed that there are two statements that 

one should be able to prove in order to safely claim that mathematical knowledge is 

certain, and so maintain the traditional view of mathematical knowledge, namely: 

(α) axioms are consistent; and (β) deduction is truth-preserving. But, in fact, the idea 

that these two statements adequately describe the necessary requirements to account 

for mathematical knowledge has been disputed (see e.g. Cellucci 2017). Indeed, both 

(α) and (β) are inadequate to account for mathematical knowledge. Although what 

follows does not impinge on the argumentation we developed above, which assumes, 
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for the sake of the argument, that (α) and (β) are adequate requirements to account 

for mathematical knowledge, in this section we will sketch some of the main 

problems that afflict (α) and (β), because we think that the naturalists should keep in 

mind these concerns on (α) and (β) when developing their view on mathematical 

knowledge. 

As regard to (α), the problem is that consistency is not a sufficient condition for 

truth. So, even if it were possible to prove the consistency of the axioms of a given 

theory, as it is required by the traditional view, this would not be sufficient to justify 

the traditional claim that such axioms are true. For example, Hilbert states that, “if 

the arbitrarily given axioms do not contradict one another with all their 

consequences, then they are true” (Hilbert 1980, p. 39). But, as Cellucci (2017) 

clearly points out, the concept of truth as consistency is inadequate, because by a 

corollary of Gödel’s first incompleteness theorem, for any consistent, sufficiently 

strong, formal system S, there is a consistent extension T of S in which some false 

sentence is demonstrable. From the corollary it follows that the “axioms of T, though 

consistent, cannot be said to be true – if they could be said to be true, only true 

sentences would be demonstrable in T” (Cellucci 2017, p. 103). Thus, contrary to 

Hilbert’s claim, consistency is not a sufficient condition for truth. 

As regard to (β), according to the traditional view mathematical knowledge is 

acquired by deductive proofs from previously acquired mathematical truths, and so 

on. This gives raise to two main problems: (β1) the problem of accounting for how 

we acquired the initial body of mathematical truths from which mathematics 

originated; (β2) the problem of accounting for how mathematical knowledge can be 

ampliated, given that in some cases the advancement of mathematics cannot be 

reduced to the derivation of consequences from already established mathematics. 

As regard to (β1), even if ultimately all mathematical knowledge were acquired 

by deductive proofs from mathematical truths, there would remain “the challenge to 

explain in what way the ultimate starting points for mathematical proofs are obvious 

truths” (Prawitz 2014, p. 90).21 According to Prawitz, explaining this is still “an open 

question” (Ibidem). And certainly, it is not an easy issue to deal with. As noted 

                                                           
21 Cf. Kitcher 1988, p. 299: “Our present body of mathematical beliefs is justified in virtue 

of its relation to a prior body of beliefs; that prior body of beliefs is justified in virtue of 

its relation to a yet earlier corpus; and so it goes. Somewhere, of course, the chain must 

be grounded.” 
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above, postulating the consistency of the axioms would not solve the problem, given 

that consistency is insufficient as a condition for truth. Nor resorting to some 

evolutionary account of some cognitive capacity to grasp fundamental mathematical 

truths would solve the problem, because, as we noted, if one wishes to support the 

traditional view, natural selection cannot guarantee the degree of certainty required 

by such view. 

As regard the difficulty of reaching a consensus on what are the ‘obvious’ truths 

(where ‘obvious’ can be understood as ‘easy to agree on’ and ‘undisputed’) which 

we should regard as the ultimate starting points for mathematical proofs, consider 

set theory. Even if one concedes, for argument’s sake, that the axioms of Zermelo-

Fraenkel set theory, ZF, are generally accepted and undisputed, and so can be 

regarded as ‘obvious truths’ from which mathematical proofs are derived, those 

axioms proved insufficient for deriving many relevant mathematical results, as for 

instance, that every vector space has a basis in algebra. So, some extra axiom has to 

be added to ZF in order to derive those results. A good candidate is the axiom of 

choice, C, which asserts that given a collection of sets, it’s possible to choose a single 

element from each set. But C, although it proved very useful, has been disputed 

because, among other things, it leads to some results which are unpalatable to many. 

For instance, in ZF + C the Banach-Tarski Paradox can be proved: a solid sphere can 

be cut into finitely many pieces, which can then be reassembled to form two solid 

spheres of the same size as the original. Those who reject C in order to avoid weird 

results such as the Banach-Tarski Paradox, have to propose some other axiom to be 

added to ZF in order to derive the important results that cannot be derived in ZF. For 

instance, some prefer axiom LM, according to which every set of reals is Lebesgue 

measurable. In ZF + LM the Banach-Tarski Paradox becomes untenable. But, as 

Stewart (2017) clearly points out, this does not eliminate the possibility of deriving 

weird results, because ZF + LM implies “an arguably worse paradox, the Division 

Paradox. Consider the additive group of reals R and its subgroup of rationals Q. 

Then in ZF + LM, the cardinality of R is less than that of the quotient group R/Q” 

(Stewart 2017, p. 78). In other words, in ZF + LM the set R “can be partitioned into 

disjoint non-empty subsets, in such a way that the number of subsets is greater than 

the number of points” (Ibidem). If one finds this result disturbing, in order to show 

that it is untenable, one should be allowed to rely precisely… on C, i.e. the axiom of 

choice. Indeed, in ZF + C the Division Paradox becomes untenable. Now, consider 
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two subjects, one who argues for ZF + C and one who argues for ZF + LM. It seems 

fair to say that such a case is a good example of ‘faultless’ disagreement (Kölbel 

2004; Clarke-Doane 2014), i.e. disagreement which is not originated by some 

incorrectness in one’s starting points, rather disagreement derives from the 

differences between one’s starting points and the starting points of one’s opponent. 

Such differences lead to different and incompatible conclusions, hence 

disagreement. If disagreement is ‘faultless’, different starting points have to be 

regarded as equally legitimate. And, indeed, there is nothing blatantly incorrect in 

both ZF + C and ZF + LM, nor in the weird results that one can derive in them. Both 

choices are equally legitimate. Supporters of the opposing views give arguments for 

and against each possible choice and argue for its plausibility, and there is 

disagreement precisely because assessing the plausibility of each choice cannot be 

reduced to a mere matter of immediately giving one’s assent to some ‘obvious’ 

truths.22 In fact, one chooses between ZF + C and ZF + LM according to one’s ideas 

on the plausibility of the results that can be derived in ZF + C and ZF + LM. It is 

difficult to say whether C and LM have to be regarded as ‘truths’. Certainly, both C 

and LM are disputed, so they cannot be said to be ‘obvious’ truths. Nevertheless, 

they are undisputedly regarded as genuine axioms by many mathematicians, i.e. 

possible starting points of mathematical proofs according to the axiomatic view. And 

they lead to two incompatible results. There is clearly a tension between the 

disagreement on C and LM, and the idea that mathematical knowledge is acquired 

                                                           
22 As Hellman and Bell writes, contrary to the “popular (mis)conception of mathematics as 

a cut-and-dried body of universally agreed-on truths and methods, as soon as one 

examines the foundations of mathematics, one encounters divergences of viewpoint […] 

that can easily remind one of religious, schismatic controversy” (Bell, Hellman 2006, p. 

64). Cf. Clarke-Doane 2014, p. 243: “consider […] the Axiom of Foundation (which 

states that every set occurs at some level of the cumulative hierarchy). The key questions 

here are whether it is plausible that there are sets that contain themselves or whether it is 

plausible that there are sets with infinitely descending chains of membership. Some seem 

to think that it is—to banish such sets would be unnaturally restrictive. But many others 

seem to think that it is not—such sets are pathological. This seems to be a straightforward 

case of people disagreeing as to the plausibility—not just the truth—of epistemically 

basic mathematical propositions.” For a survey of the arguments for and against some 

crucial axioms given by great mathematicians at the beginning of the 20th century, see 

Kline 1980, especially Chap. IX. 
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by deductive proofs from ‘obvious’ truths. If all results were really deductively 

derivable from the same set of ‘obvious’ truths, results should not be incompatible. 

They are incompatible because they are derived from different axioms. But if the 

truths from which we derive mathematical results were ‘obvious’, they should have 

been shared, so it should have not been possible to have different starting points and 

reach incompatible results, and so disagreement should have been impossible.23 

As regard to (β2), i.e. the problem of accounting for how mathematical knowledge 

can be ampliated, the point is that deduction is regarded as truth-preserving, but it is 

also usually regarded as non-ampliative. This implies that the traditional view of 

mathematical knowledge is not able to account for all those cases in which new 

mathematics has been introduced in order to solve some mathematical problem. For 

example, when Cantor demonstrated that to every transfinite cardinal there exist still 

greater cardinals, “he did not deduce this result from truths already known […] 

because it could not be demonstrated within the bounds of traditional mathematics. 

Demonstrating it required formulating new concepts and new hypotheses about 

them” (Cellucci 2017, p. 310). So, not all mathematical knowledge is acquired by 

deductive proofs from already established mathematical results.  

Contrary to the view that deduction is non-ampliative, it may be objected that 

deductive arguments are at least ampliative in an epistemic sense, because otherwise 

we should say that we learn nothing in mathematics beyond what we already knew 

                                                           
23 It may be objected that according to Prawitz the problems afflicting the axiomatic method 

do not affect the view that mathematical knowledge is acquired by deductive proofs from 

obvious truths, because “this view is not tied to the idea that one can specify once and for 

all a set of axioms from which all deductive proofs are to start” (Prawitz 2014, p. 90). 

Even granting this point, there remains the incompatibility between the idea that there are 

‘obvious’ truths from which we can derive mathematical proofs and the possibility of 

disagreement on which starting points we should choose. Indeed, mathematical 

“disagreement raises doubts about the supposed self-evidence of the relevant 

propositions” (Clarke-Doane 2014, p. 243). And in mathematics disagreement is 

widespread and persistent: “for core claims in every area of mathematics—from set 

theory to analysis to arithmetic—there are some […] who deny those claims” (Ibidem, p. 

241). If disagreement persists, this means that either we have so far failed to identify the 

right ‘obvious’ truths, or that mathematics cannot be reduced to deductions from 

‘obvious’ truths. But, why should an ‘obvious’ truth be so hard to find out? Shouldn’t be 

more ‘obvious’? 
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by knowing the premises of a proof. For instance, Dummett famously objects that, 

if deductive rules were non-ampliative, then, “as soon as we had acknowledged the 

truth of the axioms of a mathematical theory, we should thereby know all the 

theorems. Obviously, this is nonsense” (Dummett 1991, p. 195). It can be conceded 

that mathematical proofs can be regarded as ampliative in this epistemic sense, since 

we are not deductively omniscient, and so it is impossible for us to know all the 

derivable theorems by simply acknowledging the truth of the axioms of a 

mathematical theory. But epistemic ampliation is not equivalent to knowledge 

ampliation (Cellucci 2017, Sect. 12.7). When dealing with deduction, irrespective of 

how much we are surprised by a given conclusion, nothing objectively new (i.e. 

independent from the agent’s epistemic condition) can be found in such conclusion 

with respect to the premises. If mathematical proofs rest exclusively on deductions, 

a mathematical theorem “asserts nothing that is objectively or theoretically new as 

compared with the postulates from which it is derived, although its content may well 

be psychologically new in the sense that we were not aware of its being implicitly 

contained in the postulates” (Hempel 1945, p. 9). Deduction is extremely useful 

because it “discloses what assertions are concealed in a given set of premises, and it 

makes us realize to what we committed ourselves in accepting those premises.” 

Nevertheless, “none of the results obtained by this technique ever goes by one iota 

beyond the information already contained in the initial assumptions” (Ibidem). So, 

if deduction is ampliative in a merely epistemic sense, this means that it is unable to 

account for how we reach mathematical knowledge which cannot even in principle 

be deductively derived from what we already know. 

Both the challenges to the traditional view illustrated above show that assuming 

that the axiomatic method is the method of mathematics is not compatible with the 

adoption of a naturalist stance. On the contrary, it is often claimed that if one 

dismisses naturalism, one can address these challenges and secure the traditional 

view of mathematics. As Brown claims, if we adopt naturalism, we “may have a 

question-begging circle: How do we know mathematical result R is correct? Because 

it was produced by method M,” namely by the axiomatic method, i.e. by deductive 

proofs from given axioms, but: “How do we know method M is reliable? Because it 

produced result R” (Brown 2012, p. 54). Indeed, there is no other way for the 

naturalist to justify our confidence in our intuition that, for instance, MP cannot lead 

us astray: we have to know that the result we arrived at by means of MP is the correct 
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one in order to confirm our intuition that MP cannot lead us astray. This kind of 

naturalistic confirmation is obviously circular, and this makes, in Brown’s view, the 

naturalist position weaker than the anti-naturalist one. According to Brown, such 

circle “is not ‘vicious’, since it does not lead to contradiction, but neither is it 

‘virtuous’. Platonists can break into the circle by means of intuitions, but […] 

naturalists are trapped” (Ibidem). This means that the axiomatic method is not really 

able to describe by itself how we acquire mathematical knowledge. It must be 

complemented with some sort of ‘intuition’ in order to escape circularity.24 

Obviously, the platonist can do better than the naturalist only if we are willing to 

admit in our view the existence of a faculty such as ‘platonist intuition’ for which 

we have no plausible scientific account, nor even a clue that it exists. If instead one 

does not wish to commit oneself to such an esoteric faculty, one should dismiss the 

claim that the method of mathematics is the axiomatic method. 

 

 

7. Conclusion 

 

                                                           
24 This does not mean that by adding intuition to the axiomatic method one is really able to 

secure the platonist view. On the difficulty of securing platonism by relying on intuition, 

cf. e.g. Cellucci 2017, p. 255: “Gödel claims that we can extend our knowledge of the 

abstract concepts of transfinite set theory by focusing more sharply on the concepts 

concerned. So we will arrive at an intuitive grasping of ever newer axioms, which is 

necessary for the solvability of all problems. This, however, is problematic. Suppose that, 

by focusing more sharply on the concept of set Σ, we get an intuition of that concept. Let 

S be a formal system for set theory, whose axioms this intuition ensures us to be true of 

Σ. So Σ is a model of S, hence S is consistent. Then, by Gödel’s first incompleteness 

theorem, there is a sentence A of S which is true of Σ but is unprovable in S. Since A is 

unprovable in S, the formal system S′ = S ∪ {¬A} is consistent, and hence has a model, 

say Σ′. Then ¬A is true of Σ′ and hence A is false of Σ′. Now, Σ and Σ′ are both models of 

S, but A is true of Σ and false of Σ′, so Σ and Σ′ are not equivalent. Suppose next that, by 

focusing more sharply on the concept of set Σ′, we get an intuition of this concept. Then 

we have two different intuitions, one ensuring us that Σ is the concept of set, and the other 

ensuring us that Σ′ is the concept of set, where the sentence A is true of Σ and false of Σ′. 

This raises the question: Which of Σ and Σ′ is the genuine concept of set? Gödel’s 

procedure gives no answer to this question.” 
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This article tried to suggest that, since it seems that the traditional view of 

mathematics cannot be naturalized, if one wishes to maintain a naturalist stance, a 

promising way to start developing a naturalist account of mathematics and 

mathematical knowledge may be to take the method of mathematics not to be the 

axiomatic method. 

It has been argued that it is impossible to naturalize mathematics without 

challenging at least some crucial aspects of the traditional view. Indeed, in order to 

justify the traditional view of mathematical knowledge, at least two requirements 

have to be fulfilled, i.e. axioms have to be consistent, and deduction has to be truth-

preserving. But, if one adopts a naturalist stance, it seems that there is no way to 

show that these requirements can be fulfilled. If these requirements cannot be 

fulfilled, mathematical knowledge cannot be said to be certain in the same way it can 

be said to be certain in the traditional perspective. Since the certainty of 

mathematical knowledge is supposed to be due (at least in part) to the method of 

mathematics, which the traditional view takes to be the axiomatic method, and since 

the adoption of a naturalist stance seems to imply that mathematical knowledge 

cannot be said to be certain, if one wishes to develop a naturalist account of 

mathematics, one should deem inadequate the claim that the method of mathematics 

is the axiomatic method. 

Certainly, the rejection of the claim that the axiomatic method is the method of 

mathematics comes with a cost: it forces us to rethink the whole traditional image of 

mathematics. Indeed, if one takes the method of mathematics not to be the axiomatic 

method, mathematical knowledge cannot be said to be certain, and the only kind of 

mathematical knowledge that one can have is knowledge which is plausible (Cellucci 

2013; 2017). But even the alternative option, i.e. maintaining the traditional view, 

comes with a cost for the naturalist: she would be unable to scientifically account for 

mathematics, while she maintains the primacy of a thorough mathematized science 

in her world-view. So, dismissing the claim that the axiomatic method is the method 

of mathematics may represent a promising route to take for the naturalist. 
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