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ABSTRACT

This article argues that common intuitions regarding (a) the specialness of ‘use-novel’

data for confirmation and (b) that this specialness implies the ‘no-double-counting rule’,

which says that data used in ‘constructing’ (calibrating) a model cannot also play a role in

confirming the model’s predictions, are too crude. The intuitions in question are pertinent

in all the sciences, but we appeal to a climate science case study to illustrate what is at

stake. Our strategy is to analyse the intuitive claims in light of prominent accounts of

confirmation of model predictions. We show that on the Bayesian account of confirm-

ation, and also on the standard classical hypothesis-testing account, claims (a) and (b) are

not generally true; but for some select cases, it is possible to distinguish data used for

calibration from use-novel data, where only the latter confirm. The more specialized

classical model-selection methods, on the other hand, uphold a nuanced version of

claim (a), but this comes apart from (b), which must be rejected in favour of a more

refined account of the relationship between calibration and confirmation. Thus, depend-

ing on the framework of confirmation, either the scope or the simplicity of the intuitive

position must be revised.
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1 Introduction

Scientists and philosophers alike have the intuition that the empirical fit of a

model or theory—that is, how well the theory accords with relevant data—has

lesser significance for the predictive reliability or truth of the theory, to the

extent that the theory was designed to accommodate the data in question. For

example, empirical fit with observed retrogressions of planets was considered

less indicative of the reliability of Ptolemy’s theory as compared to

Copernicus’s theory given that the former, as opposed to the latter, was

refined specifically to account for the observational data about retrogressions

(cf. Lakatos and Zahar [1976]). The puzzle arises, however, as to whether these

intuitions are vindicated by a plausible account of confirmation and, if so, how

any such account explains the differential power of predicted (and thus use-

novel), as opposed to accommodated, data in giving support to or, in other

words, confirming the reliability of a theory.

John Worrall ([2010]) goes a long way towards meeting this challenge.1

Rather than appealing to broad psychological tendencies amongst scientists

or to properties of data, such as time of discovery, that surely do not have a

direct bearing on confirmation, Worrall offers an account of use-novelty that

rests on the relationship, in terms of actual empirical content, between theory

and data (cf. Musgrave’s ([1974]) distinction between logical and historical

theories of confirmation). Worrall casts use-novelty as turning on whether

data are used to settle on a specific version of a general theory or, in other

words, whether data are used to settle the free parameters of a general (or

base) theory. Data that are not used to settle free parameters are predicted

data as opposed to accommodated data, and thus when it comes to confirm-

ation, such data are use-novel.

The significance of use-novelty for Worrall is summed up in his ‘no-double-

counting’ rule, which effectively says that data used in settling the free

parameters of a general theory cannot play a role in adding support or incre-

mentally confirming the theory’s truth or reliability. More precisely, while

data used to fix free parameters provide support for the resulting version

(or instance) of a general theory relative to other versions that fit the data

less well, this support does not ‘spread’ to the general theory itself. In other

words, data used to fix free parameters provide support for the calibrated

theory conditional on the general theory being correct, but these data do

not provide unconditional support for the calibrated (or the general) theory.

This account provides an effective way of conceiving the difference between,

for instance, the Copernican and Ptolemaic theories, vis-à-vis the observa-

tional data about retrogressions. In the case of the Ptolemaic theory, the

1 Note that the main claims are already articulated in (Worrall [1985], [1989]; see also his [2002],

[2006]). The position is further clarified in (Worrall [2014]).

Katie Steele and Charlotte Werndl2

Downloaded from https://academic.oup.com/bjps/advance-article-abstract/doi/10.1093/bjps/axw024/2669792
by guest
on 13 December 2017

Deleted Text: is 
Deleted Text: is 
Deleted Text: is 
Deleted Text: is 
Deleted Text: is 
Deleted Text: s
Deleted Text: s
Deleted Text: this 
Deleted Text: es


data are used to settle on a specific instance of the theory that can fit the data

about retrogressions; while it follows from the basic geometry of the

Copernican theory that there are retrogressions, and hence there is a qualita-

tive fit to the data about retrogressions without further refinements of the

Copernican theory (Lakatos and Zahar [1976]). Intuitively, there is no con-

firmation of the general Ptolemaic theory in this case (albeit confirmation of a

specific version of Ptolemaic theory relative to others), while there is indeed

confirmation of the general Copernican theory. Furthermore, given the em-

phasis on incremental rather than absolute confirmation, Worrall’s account

succeeds in explaining the differing standing of theories constructed to accom-

modate data. While neither the Ptolemaic theory nor, say, various Intelligent

Design theories are incrementally confirmed by data used to construct or

calibrate them, the former is simply more credible from the outset, since the

basic form of the Ptolemaic theory, unlike Intelligent Design, is supported by

other data and also by theoretical considerations.

This article examines the cogency of Worrall’s account when it is applied

broadly. Calibration is a widespread phenomenon in science, and the question

is whether Worrall’s overarching maxims concerning calibration and confirm-

ation are themselves plausible across a diversity of cases. While appealing to

the intuitions of scientists and philosophers alike, does Worrall’s account of

use-novelty and his associated no-double-counting rule (henceforth, ‘the in-

tuitive position’) make sense in the full range of confirmation contexts?

We appeal to a case study from climate science, illustrative of the more

standard model-building problem in science, as the platform from which to

examine Worrall’s claims. This case study is outlined in Section 2. Subsequent

sections assess the intuitive position in light of prominent accounts of evidence

and confirmation. Our primary goal is to challenge intuitions about use-nov-

elty and its significance for confirmation by exposing just how varied the

stances of prominent theories of confirmation are on this issue. Others have

critiqued Worrall’s claims about use-novelty from the perspective of one or

another theory of confirmation: notably, Howson ([1988]), Steele and Werndl

([2013]), and Schurz ([2014]) give more or less charitable Bayesian critiques of

Worrall’s claims, Mayo (for instance [1991], [2014]) compares Worrall’s views

with the tenets of ‘severe testing’, and Hitchcock and Sober ([2004]) evaluate

Worrall’s claims by appeal to the standards of model-selection theory. We cite

this work where relevant in our discussion. The importance of our contribu-

tion here is the comparative treatment of different theories of confirmation.

We show that intuitions about use-novelty such as Worrall’s do not clearly

favour any particular theory of confirmation. This is not intended as an ar-

gument for pluralism about confirmation; it is, more modestly, an argument

for caution in assessing the normative significance of intuitions about

confirmation.
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Following the presentation of our case study, the article proceeds as follows:

Section 3 considers the Bayesian perspective, and shows why it does not gen-

erally uphold the intuitive position, despite permitting a distinction between

data for calibration and use-novel, confirming data in certain types of cases.

Section 4 presents the simplest classical approach to assessing models, the

hypothesis-testing method, which is shown to be very similar to the

Bayesian method when it comes to use-novelty and double-counting.

Section 5 turns to the more specialized classical model-selection methods.

These methods affirm the specialness of use-novelty—or, at least, they expli-

citly account for the related danger of over-fitting models to data, and so

partially conform to the intuitive position, but they do not uphold the link

between use-novelty and no-double-counting. We return to the climate case

study in Section 6, drawing attention to the dilemma posed in the article for

extending and reforming the intuitive position.

2 A Climate Case Study

Willett et al. ([2007]) are concerned with explaining the increase of surface-

specific humidity (the mass of water vapour in a unit mass of moist air) in the

past decades. More specifically, they compare the performance of two base

models as an explanation of this trend. The first base model, M1, is the third

Hadley Centre coupled model with a linear combination of anthropocentric

forcings and natural forcings. The second base model, M2, is the third Hadley

Centre coupled model where only natural forcings are considered.

There is a specific spatio-temporal pattern of change (a fingerprint) asso-

ciated with the anthropocentric forcings and a specific spatio-temporal pattern

of change associated with the natural forcings. While this fingerprint is given,

what is not known is the extent of the response to the forcings. Thus the extent

of the response corresponds to free parameters in the models that have to be

estimated from the data. That is, in the case of base model M1, there are two

free parameters (one that measures the extent of the response to the anthropo-

centric forcings and one that measures the extent of the response to the natural

forcings), and model instances of M1 are obtained when the two parameters

are assigned specific values. For model M2, there is only one free parameter

(that measures the extent of the response to the natural forcings) and, again,

model instances of M2 are obtained when the free parameter is assigned a

specific value.

Willett et al.’s data consist of observations of surface-relative humidity

changes from 1973 to 2003. The squared distance between simulations and

observations is used to measure the fit of the observations with the model

instances. Willett et al. first use the data about surface humidity to estimate the

parameter values of M1. The best estimates for the extent of the
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anthropocentric forcing and natural forcing, respectively, are (1.12, 2.22). The

95% confidence intervals that Willett et al. also report reveal that both par-

ameter values are significantly different from zero. From this, Willett et al.

conclude that none of the model instances of M2 provides a satisfactory fit

with the data about relative humidity, and thus that base model M1 is con-

firmed relative to base model M2. They also emphasize that this is the first

demonstration that specific humidity trends can only be explained with both

natural and anthropocentric forcings.

To sum up, Willett et al. use data about surface-relative humidity to esti-

mate the values of the free parameters (calibration). At the same time, they use

the same data to confirm base model M1 relative to base model M2.

Philosophers as well as climate scientists have often debated whether such

a procedure is legitimate. More specifically, one question is whether data

have to be use-novel, that is, whether data can only be used for confirmation

if they have not already been used before for calibrating the free parameters. A

second and related question is whether it is permissible to use the same data

both for calibration and confirmation (in this case, one says that there is

double-counting). Note that it is just an accidental feature of the base

models in the case study that they are nested base models. The questions of

use-novelty and double-counting arise whenever two base models are com-

pared, whether they are nested base models or not. Indeed, in the next section

we will compare two base models, M and N, that are not nested.

3 The Bayesian Method vis-à-vis Intuitions

This section focuses on what Bayesian logic of confirmation and evidence has

to say about the questions of use-novelty and double-counting posed above.

For the Bayesian, what is at issue for model confirmation is the truth of a

proposition, in this case a hypothesis describing the model prediction(s). The

extent of confirmation of the truth of the hypothesis is measured in terms of

probability. Typically, the Bayesian is interested in the change in the prob-

ability of the truth of a hypothesis due to new data, that is, incremental

confirmation.

For ease of exposition and because it permits a clearer analysis, we will

shortly introduce illustrative models that are simpler than those employed

in the climate science case study. We will see that, while the Bayesian frame-

work permits a formal depiction of calibration very much in line with

Worrall’s account, it does not vindicate the intuitive position in its general

form (cf. Steele and Werndl [2013]). Having said that, something of the pos-

ition can be salvaged for a restricted set of cases.
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Consider the following two base models:

M : zðx; yÞ ¼ a � xþ b � yþ cþNð0;sÞ;

N : zðx; yÞ ¼ d � xþ e � y2 þ f þNð0;sÞ:

Here � is given; it is the standard deviation for the Gaussian error term. On the

other hand, a, b, c, d, e, and f are uncertain, with each assumed to be in

the range �10–10. (For simplicity of exposition, we restrict our attention to

the discrete case where the uncertain parameters may take only values from a

finite set within this range.)

In line with Worrall’s account of calibration, the Bayesian treats a base

model as a set of fully specified model hypotheses, one hypothesis for each

possible instantiation of the base model or, in other words, one hypothesis for

each possible combination of free-parameter values for the base model. For

our example, assume that each of these model-instance hypotheses claims to

give the value of z, as would be observed in the real world or, rather, a prob-

ability distribution for the observed z. Note that the probabilistic error term

may account for observational error, that is, the discrepancy between the true

value of z, as predicted by the model, and the observed z. It may otherwise

account for model structural error in predicting the true value of z.

For the case we are considering, there are two base models, M and N,

corresponding to two sets of model-instance hypotheses, which may be

labelled Ma,b,c and Nd,e,f, where the subscripts indicate the values of the par-

ameters for the model instance in question. The scientist’s initial assessment of

the truth of the various hypotheses is represented by a prior probability dis-

tribution over these hypotheses. (In fact, the prior probability distribution

extends to all propositions in the domain, a Boolean algebra, including all

hypotheses and potential evidence.)

For the Bayesian, calibration is not really distinct from confirmation. When

new data are learnt, the relevant evidence proposition is effectively assigned a

probability of one, and the probabilities for all other propositions in the domain

are updated according to the Bayesian rule of conditionalization. This rule can

be stated in terms of a ratio of the new probabilities, Prnew, of any proposition,

H, relative to some other proposition, H 0, where E is the evidence or the data

learnt, and Pr is the initial or prior probability distribution:

PrnewðHÞ

PrnewðH 0Þ
¼

PrðHjEÞ

PrðH 0jEÞ
¼

PrðEjHÞ

PrðEjH 0Þ
�

PrðHÞ

PrðH 0Þ
: ð1Þ

The term PrðEjHÞ
PrðEjH 0 Þ

is referred to as the likelihood ratio. If this term in greater

than one, then H is more incrementally confirmed than H 0 by evidence E. If

it is less than one, then H is disconfirmed relative to H 0, and if it is equal to

one, then H is neither confirmed nor disconfirmed relative to H 0.

Calibration may be understood as a specific aspect of this probability
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updating due to new evidence: the updating of the probabilities for the

model-instance hypotheses associated with each base model. For instance,

assume that for base model M, the prior probabilities, Pr, for model in-

stances are equal. Now we learn new data. Then the ratio of probabilities,

Prnew, for the model instances of M is given by:

Prnew Ma;b;c

� �
Prnew Md;e;f

� � ¼ Pr Ma;b;cjE
� �

Pr Md;e;f jE
� � ¼ Pr EjMa;b;c

� �
Pr EjMd;e;f

� � � 1: ð2Þ

The above describes the calibration of base model M in light of new data

E, assuming the prior probabilities for the model-instance hypotheses are

equal.

In Steele and Werndl ([2013]), we showed why the Bayesian framework does

not generally accord a special role for use-novel data, and that the no-double-

counting rule does not generally hold (for a similar underlying analysis, see

Howson [1988]). In short, all data should be used for calibration; in other

words, the probabilities for model-instance hypotheses should be updated in

light of all new data. Moreover, it is logically possible that calibration in this

sense also coincides with incremental confirmation of a base model relative to

another (set of) base model(s). This will occur when the likelihood ratio for the

base model relative to the other (set of) base model(s) is positive. Note that the

likelihood for any set of hypotheses (for example, a base model or set of base

models) depends on both the likelihoods of the individual hypotheses in the

set, and the prior probabilities for these individual hypotheses, conditional on

the set being true. Note also that, as discussed in detail in Steele and Werndl

([2013]), the points about use-novelty and double-counting carry over to non-

comparative confirmation, namely, when the concern is not the comparison

between two base models but rather whether a base model is confirmed by the

data tout court.

The intuitive position on use-novelty and double-counting clearly does not

accord with the logical possibilities of Bayesian confirmation. One might

nonetheless argue that the Bayesian approach does capture the spirit of the

intuitive position, at least for a restricted set of cases. These special cases may

indeed have been the original impetus for the intuitive position; they are cases

of deterministic rather than indeterministic or stochastic hypotheses. Base

models M and N both describe sets of stochastic hypotheses due to the prob-

abilistic error term for each. As such, none of the model-instance hypoth-

eses—that is, the instances of these base models—can ever be falsified;

rather, calibration is an ongoing process whereby model-instance hypotheses

are continually updated in light of new data. For a deterministic base model,

by contrast, calibration may come to an end when only one instance of a base

model remains unfalsified. This permits a distinction between data needed for

Model Selection, Use-Novelty, and Double-Counting 7
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calibration and use-novel data that may bear on the truth of a base model once

calibration has finished.2 For cases where there is a certain symmetry in the

prior probability distribution (specifically, where the likelihood of the cali-

brating data is the same for all base models under consideration), it may

moreover be true that the data used for calibration do not change the prob-

ability of the base models, whereas the ‘use-novel’ data do (dis)confirm the

base model(s).

Let us consider an example of the above special case. Assume we are com-

paring two base models, M0 and N 0, where these models are defined as per M

and N above, but without the stochastic error terms. Assume too that each of

the model-instance hypotheses, whether they are associated with M0 or N 0,

have equal prior probability. Given that the two base models correspond to an

equal number of model-instance hypotheses, the base models themselves con-

sequently have equal prior probability. Now three data points suffices to fals-

ify all but one hypothesis for each base model, if the data are in fact consistent

with one hypothesis for each base model. Assume that three data points are

learnt. For instance, the data points may be ðz ¼ 6; x ¼ 1; y ¼ 2Þ; ðz ¼ 8;

x ¼ 2; y ¼ 3Þ, and ðz ¼ 12; x ¼ 2; y ¼ 4Þ. This suffices for calibrating the

base models without changing their probabilities. For the data described,

the unfalsified model instance for each base model is then

M0 : zðx; yÞ ¼ �2xþ 4yþ 0;

N 0 : zðx; yÞ ¼ �
6

7
� xþ

4

7
� y2 þ 4

4

7
:

Now assume that a fourth data point is learnt: (z¼ 10; x¼ 3; y¼ 4). This use-

novel data point is consistent with M0 but not N 0, so M0 is maximally con-

firmed relative to N 0, which is falsified.

For the special example just described, only the use-novel data (dis)confirm

the base models. So the data used for calibration are not also used for con-

firmation. This is due to the special structure of the prior probability function.

Note also that for the special example, the number of parameters plays a key

role in the sense that when there are p free parameters, p data are needed to

determine the parameter values and only the rest of the data (dis)confirm the

base models. (This role for the number of parameters is often emphasized by

defenders of the intuitive position, for example, in (Worrall [2010]).) So we can

at least say that Bayesian logic accords with the intuitive position for a re-

stricted set of cases where the prior probability distribution has a special

structure, including a deterministic relationship between hypotheses and

2 Note that here we are taking Worrall quite literally in his characterization of ‘use-novelty’ and

‘double-counting’. For instance, Worrall ([2014], p. 55) states that ‘what matters is whether or

not the evidence was used in the construction of the theory (or rather the particular version of

the theoretical framework/program that entails it)’.
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evidence. In this way, one might argue that the intuitive position supports a

Bayesian approach to model selection in that it reflects Bayesian reasoning, at

least for a restricted set of cases. It follows that the intuitive position should be

refined and extended in line with Bayesian logic.

Note that Schurz ([2014]) can be understood as offering a refinement of this

sort (he takes a much more charitable view of Worrall’s position, interpreting

use-novelty so that the role Worrall attributes to it is consistent with Bayesian

reasoning). Schurz argues that the examples put forward by Worrall to mo-

tivate use-novelty and the no-double-counting rule are all of the same kind.

Namely, these are cases where a base theory can be ‘successfully fitted’ to every

possible set of data points, and hence fitting to some particular set of data does

not raise the probability of the base theory, as the likelihood for these data is

the same as the likelihood for competing possible data.3 In these cases, data

used for calibration are not use-novel and so cannot confirm. In other cases,

however, where a base theory would not be equally well fitted to any possible

data, the relative success of the fit at hand may (dis)confirm the base theory.4

Schurz effectively refines the notion of use-novelty such that in the cases

where, by Bayesian reasoning, a base theory is (dis)confirmed by its fit with

the data, use-novelty is respected, and thus the ‘spread of confirmation’ does

not amount to double-counting. As Schurz puts it, use-novel data bear on that

part of the content of the base theory that transcends or goes beyond the data

itself.

We will see in the next section that classical hypothesis-testing has similar

implications to the Bayesian approach with respect to use-novelty and double-

counting (at least on our interpretation of these terms) so, arguably, this

method has just as much claim to clarifying and reforming the intuitive pos-

ition. Later, we will consider rather different readings of the intuitive position,

and what it purportedly gets right about model selection.

4 Classical Tests vis-à-vis Intuitions

Classical statistics offers various methods for assessing the reliability of model

predictions. The simplest of these is, arguably, the standard hypothesis-testing

method, our focus in this section. Like the Bayesian approach to model cali-

bration and prediction, classical hypothesis testing involves the enumeration

of all plausible model-instance hypotheses associated with a base model.

3 We take it that Schurz means by ‘successfully fitted’ that the distribution of likelihoods for the

various instances of the base theory, as well as the corresponding distribution of prior plausi-

bility for the instances, conditional on the truth of the base theory, are the same for all possible

data sets. Only in this case does it follow that the likelihoods of all possible data with respect to

some base theory are equal.
4 Strictly speaking, whether there is (dis)confirmation of the base theory depends on how the

likelihood for the theory compares with that of other base theories.
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Generally, only one base model is considered, although this includes any

nested base models (as these are just subsets of the full set of model-instance

hypotheses, restricted to those with common zero-valued parameters). Also in

common with the Bayesian approach, calibration is not distinct from infer-

ence; calibration is just ordinary hypothesis testing, but for a specific kind of

hypothesis, namely, the set of model-instance hypotheses associated with a

base model.

Classical hypothesis testing differs from the Bayesian approach in that

confidence in the predictions entailed by a model-instance hypothesis is

not grounded in confidence or support for the hypothesis per se, but

rather depends on confidence in the long-run properties of the testing pro-

cedure that is used to discriminate the hypotheses on the basis of the data

(with sample-size n). The typical procedure is as follows: All model-instance

hypotheses for which the n data at hand are too unlikely are rejected, leaving

some subset of model-instance hypothesis that has not been rejected. These

remaining accepted hypotheses (under normal conditions, a convex set) ef-

fectively form a confidence interval of plausible parameter values for the

base model. The long-run properties of the testing procedure that are of

interest are the type-I errors for rejecting hypotheses, and the corresponding

confidence level for the set of accepted hypotheses. The type-I error is the

(long-run frequentist) probability of rejecting any given model-instance hy-

pothesis when it is in fact true; it matches the probability that is used as the

cutoff for rejection (referred to as the significance level, typically 0.05 or

0.01).5 The confidence level is the flip-side of the type-I error/significance

level; the two values add to one. The confidence level gives the (long-run

frequentist) probability that the set of accepted model hypotheses—or, in

other words, the confidence interval for the various parameter values—con-

tains the true hypothesis/parameter values, if the same experiment (with n

data generated by nature) were repeated indefinitely. The assumption here is

that the set of hypotheses under consideration form a suitable continuum

and the true hypothesis is indeed amongst them.

By way of illustration, assume that we need to make well-supported model

predictions on the basis of model M, defined as in the previous section:

M : zðx; yÞ ¼ axþ byþ cþNð0;sÞ:

Assume here that a and b are unknown, but c and � have fixed values; so there

are only two free parameters. For the hypothesis-testing method, a continuous

set of model-instance hypotheses is appropriate, effectively treating the un-

known parameter values as unbounded reals. As before, each of the model-

5 To be more precise, a model-instance hypothesis is rejected if the data lie in the rejection region

for the hypothesis, where this region includes the most extreme (roughly, furthest away) data

relative to the hypothesis that together have a likelihood equivalent to the significance level.
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instance hypotheses of M claims to give the value of z that would be observed

in the real world, or rather a probability distribution for z. Note that in the

course of testing base model M, two simpler nested base models are also

implicitly under consideration. These are:

Mx : zðx; yÞ ¼ a � xþ cþNð0;sÞ;

My : zðx; yÞ ¼ b � yþ cþNð0;sÞ:

Given the observed n data points, the hypothesis-testing method proceeds as

follows: A significance level is selected, say, 0.05. The model-instance hypoth-

eses that would not be rejected, given the data and the nominated significance

level, are then identified. The structure of the hypothesis space and error term

here are such that this will yield a convex set of model-instance hypotheses, or

rather, convex confidence intervals for the values of the two parameters, a and

b, and ultimately for values of z(x, y). The confidence intervals that are derived

in this way are justified in the sense that, were this procedure implemented

indefinitely (for different n data-points randomly generated by nature), the

confidence interval of accepted hypotheses would contain the true hypothesis

in 95% of cases (assuming that the true data-generating process is indeed

described by some instance of base model M).

Let us reflect now on the question of use-novelty and double-counting. The

analysis is similar in many respects to that in Section 3 above. Calibration just

is the process of rejecting/accepting hypotheses, so it involves the confirm-

ation of model-instance hypotheses. Moreover, in the process of calibration,

one base model may be confirmed relative to an otherwise nested base model.6

For instance, assume that for model M above, hypothesis testing against the

data yields 95% confidence intervals for parameters a and b, where neither of

these intervals contain zero. This effectively confirms the base model M (with

non-zero parameters a and b) relative to the otherwise nested simpler models

Mx and My (for which a or b, respectively, equals zero). Thus, although the

logic of confirmation is different, the importance of use-novel data in classical

hypothesis testing is as per the Bayesian method, namely, it is not a relevant

consideration. Moreover, as just illustrated, the same data that are used for

calibration may also confirm one base model relative to another one, contrary

to the no-double-counting rule.

Contrary to our comments here, one might argue that Worrall’s maxims are

either upheld or else they are inapplicable, in the case of comparing only

nested base models, as per classical hypothesis testing. There is, of course, a

sense in which the fully inclusive base model, here M, can neither be confirmed

nor disconfirmed by any data used for calibration, because M is assumed to be

6 Here it is really the case that the base model subtract the nested model is (dis)confirmed relative

to the nested model.
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true. So calibration does not involve a ‘spread’ of confirmation to M; only

specific instances of M (or, as we put it, sets of these instances of M—that is,

the nested base models) can be (dis)confirmed relative to other (sets of) specific

instances of M. This is, however, hardly a strong vindication of Worrall’s use-

novelty and double-counting maxims: the maxims are trivially upheld by clas-

sical hypothesis testing if we are interested in the (dis)confirmation of the fully

inclusive base model, because the method does not have the resources for

assessing this particular base model. Schurz ([2014]) would presumably take

a different tack, arguing that the question of use-novelty is inapplicable in the

case of hypothesis testing because it is not the case that the competing base

models can all be successfully fitted to any possible data set. Indeed, in our

example above, the simpler base models do not successfully fit the data. Note,

however, that a lot hangs on what is understood by a ‘successful fit’ here; it is,

in fact, a consequence and not an assumption of hypothesis testing that the

simpler base models do not ‘successfully fit’ the data in our example and so are

disconfirmed by these data relative to M with non-zero parameters a and b.

(After all, the data are not logically inconsistent with the simpler base models.)

Our own view is that the lack of successful fit for these simpler base models is

another way of saying that these base models are disconfirmed in the process

of calibration, contrary to the intuitive position.

Finally, we note that Mayo (see, for instance, [1991], [2014]) also casts doubt on

the significance of use-novelty for classical or ‘error’ statistics. Mayo argues that

what matters in determining whether good fit with data has confirmatory power

is not use-novelty or double-counting per se, but rather whether the procedure for

fitting the base theory to evidence (‘the use-constructed procedure’) violates the

severity requirement. She claims that severity is often violated in the case of use-

construction, but it is not always violated, as in the construction of confidence

intervals described above. Arguably, Mayo is talking past Worrall to some extent,

in that she is not concerned with incremental confirmation of one base theory

relative to another competing base theory; furthermore, it is not clear whether her

severity requirement succeeds in discriminating the cases that she intends. (This is

queried in (Hitchcock and Sobe [2004]), with responses from Mayo in her ([2008],

[2014]) articles). In any case, we agree with Mayo that use-novelty does not play a

primary role in classical statistics and that there are good procedures by classical

standards that involve double-counting.

5 Classical Model-Selection Methods vis-à-vis Intuitions

5.1 Introducing classical model-selection methods

We now turn to classical model-selection methods, in particular to cross-

validation and the Akaike information criterion selected for their differing
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approaches to use-novelty and its relation to double-counting. Let us first

consider what the classical model-selection methods have in common and

how they are distinct from the methods described in Sections 3 and 4 above.

All model-selection methods (interpreted broadly to include both Bayesian

and classical methods) are in the business of assessing the reliability of model

predictions, not least whether the predictions of one model are better sup-

ported by the data at hand than those of another model. We have already

noted the difference between the Bayesian method and classical hypothesis

testing: while both focus on the model-instance hypotheses associated with

base models, the former is concerned with assessing the truth of these hypoth-

eses in light of the data, while the latter is concerned with whether the pro-

cedure for selecting some hypotheses over others on the basis of the data is

reliable in the long run. The classical model-selection methods introduced in

this section are also concerned with procedures for making model predictions,

and the long-run properties of these procedures. This is the hallmark of the

classical approach. Unlike hypothesis testing, however, the procedures can-

vased here do not assume the truth of any particular base model (where nested

base models are also of interest); rather, this is the problem to be addressed.

The whole point of these model-selection methods is to provide a comparative

assessment of different base-model procedures for deriving model predictions

on the basis of data.7

The base-model procedures themselves are, in a sense, simpler than for

hypothesis-testing. Rather than identifying a confidence interval of ‘accepted’

model-instance hypotheses (premised on the base-model being true), the pro-

cedure is instead to identify the single model-instance hypothesis that has ‘best

fit’ with the data (makes the data most probable); this is referred to as the

maximum-likelihood instance of the base model. Note that, as per hypothesis-

testing, the sample size, or the amount of data used for selecting the max-

imum-likelihood model (n), is also part of the specification of the procedure.

The base-model procedures in effect amount to calibrating the base model

such that it can be used for making predictions.

The reliability of a particular ‘base-model procedure’, thus described, is

taken to be its long-run average predictive accuracy, or the average distance

from the truth, if repeated infinitely many times, of a prediction derived from

the procedure given n random data points generated by nature. The problem,

of course, is that the true data-generating process of nature is unknown, so the

scientist cannot simply calculate which base-model procedure has the best

long-run average predictive accuracy. The different classical model-selection

7 Elsner and Schmertmann ([1994]) similarly emphasize that classical model-selection methods

assess procedures for identifying a model instance for prediction rather than the model instances

themselves. Using their terminology, the targets for confirmation are ‘algorithms’ rather than

‘base-model procedures’.
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methods effectively offer different ways of estimating this long-run average

predictive accuracy of the respective base-model procedures. We will examine

two of these methods. They each assign scores to base-model procedures, such

that they can be ranked in terms of estimated long-run average predictive

accuracy.

Before we do so, let us mention that Hitchcock and Sober ([2004]) also

discuss model-selection theory. They consider various ways scientists might

assess/confirm models, some involving novel or predicted data and others just

accommodated data. Although some model assessments relying on accommo-

dated data are inferior to assessments involving predicted data, the use of

accommodated data may even be advantageous if the danger of over-fitting

models to data is otherwise accounted for (as per some model selection meth-

ods). The focus of this article is somewhat different, in that we consider a

range of prominent logics of confirmation, focusing rather on the roles that

use-novelty and double-counting play. We do not presume, and indeed we do

not think it obvious, that one or more of these logics of confirmation is su-

perior to others. Moreover, note that there is a philosophical debate regarding

the scope and completeness of estimators of predictive accuracy proposed in

model-selection theory, such as those we discuss below (for instance, Forster

[2007]; Myrvold and Harper [2002]). The issue of scope is that model-selection

theory is defensible only to the extent that nature (at least, that part of nature

of interest) is effectively a stationary data generation mechanism, such that all

data, existing and prospective, are independent and identically distributed.

The issue of completeness concerns the extent to which any single estimator

of predictive accuracy assesses what some think really matters, that is, the

extent the data agree on the value of causally relevant parameters. For in-

stance, Forster ([2007]) argues that the methods from classical model selection

theory are incomplete indicators of empirical success and predictive accuracy;

instead, empirical success and predictive accuracy amount to a hierarchical

structure that emerges from the agreement of independent measurements of

theoretically postulated quantities. Here we set these further debates aside. We

simply explore what role use-novelty and double-counting play if one takes

classical model-selection theory as providing a good measure of predictive

success and confirmation (many think that, at least in certain situations,

this is the case).

5.2 Two cases

Case I: First, consider the method of cross-validation. The standard calibrat-

ing procedure as described above is followed for all base models under con-

sideration. That is, for each base model, the best-fitting model instance given

all n data is identified, and the parameter(s) corresponding to this model
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instance is (are) then presented as the best estimate(s) of the free parameter(s)

for the base model in question.

The cross-validation estimator for the reliability of each base-model pro-

cedure (that is, each calibrated base model) is as follows: Given n data points,

one starts by using the first n – 1 data points to arrive at the best-fitting model

instance and then uses the remaining data point to test the performance of the

model instance (by calculating the distance between the predicted data point

and the actual data point). This is repeated for all possible selections of n – 1

data points to calculate the average distance between the predicted data points

and the actual data points (with some distance measure such as the squared

distance or the Kullback–Leibler discrepancy). This average distance is an

asymptotically unbiased estimator of the predictive accuracy of the base-

model procedure given n data points (Linhard and Zucchini [1984];

Zucchini [2000]). Cross-validation is a universal method because it only as-

sumes that data are independently and identically distributed (cf. Arlot and

Celisse [2010]).

Here is a simple example. Consider the Euclidean distance as a distance

measure and the base models already discussed in the previous subsection:

M : zðx; yÞ ¼ axþ byþ cþNð0;sÞ;

Mx : zðx; yÞ ¼ axþ cþNð0;sÞ:

Suppose the six data points of (x, y, z(x, y)) are (0, 0, 10), (100, 0, 199), (0, 100, 10),

(100, 100, 210), (200, 100, 410), (100, 200, 199). For base model M, one starts by

using the first five data points to arrive at the best-fitting model instance given

these five data points, which is 1.96xþ 0.12yþ 2. Then one uses the remaining

data point (100, 200, 199) to test the performance of the model instance by

determining the distance between the predicted value, 222, and the actual value,

199, that is, 23. This is repeated for all six selections of n� 1 data points. The

six differences are then averaged giving ð32þ 26:6667þ 8:8889þ 10:4348þ

27:8261þ 8Þ=6 ¼ 18:9694. Thus 18.9694 is the cross-validation estimator of

the predictive accuracy of M given six data points.8 Then one turns to base

model Mx. The average of the six differences for model Mx is:

ð8þ 15:7143þ 8þ 8:5714þ 26:6667þ 15:7143Þ=6 ¼ 13:7778. Thus 13.7778 is

the estimator of the predictive accuracy of Mx given six data points. Since 13.7778

is smaller than 18.9694, the maximum-likelihood procedure for base model Mx is

confirmed relative to that for M. The maximum-likelihood instance of Mx is

identified, or, in other words, the best-fitting values of the parameters for Mx

given all six data are identified, which are a¼ 1.97647 and c¼ 5.29412. Note

that this example is especially interesting because it shows that while, clearly,

8 To be precise, 17.969 is the estimate of the predictive accuracy of the M-procedure, where this

procedure amounts to finding the maximum-likelihood instance of M based on six data points.

Model Selection, Use-Novelty, and Double-Counting 15

Downloaded from https://academic.oup.com/bjps/advance-article-abstract/doi/10.1093/bjps/axw024/2669792
by guest
on 13 December 2017

Deleted Text: best 


M has a better fit to the data than Mx (because Mx is a nested model of M), Mx

nevertheless scores better in terms of expected predicted accuracy. Note that, as

already mentioned above, it is just an accidental feature of the base models Mx

and My that they are nested base models. The methods of model selection work

for any arbitrary comparison between base models, whether they are nested or

not.9

For a method such as cross-validation, it is crucial that when estimating

predictive accuracy the data used to test the predictions of model instances are

novel. This is also emphasized by Hitchcock and Sober ([2004]) and expressed

by the following quotes on cross-validation (which are made in the context of

discussing statistical bias):

The results of these experiments using cross-validation reinforce the

point that knowledge gained from the model building dataset is biased.

(Michaelsen [1987], p. 1598)

An example of controlled division is provided by the cautious statistician

who sets aside a randomly selected part of his sample without looking at

it and then plays without inhibition on what is left, confident in the

knowledge that the set-aside data will deliver an unbiased judgment on

the efficacy of his analysis. (Stone [1974], p. 111)

Hence use-novelty is important here, just as proponents of the intuitive

position would argue. However, recall that for the base-model procedure,

all the data are used for calibration to find the best model instance. Hence

cross-validation involves double-counting. So we see that what we find for

methods such as cross-validation is different and more nuanced than the in-

tuitive position: use-novelty is important but at the same time there is double-

counting. Hence, contrary to the intuitive position, use-novelty does not imply

the ‘no-double-counting rule’, which says that data used in calibrating a model

cannot also play a role in confirming the predictions of the model. Despite this

divergence, one might contend that cross-validation captures the spirit of the

intuitive position, in that it gives significance to use-novelty when it comes to

the confirmation of base models and, furthermore, the calibration step itself,

where all the data are used to determine the best model instance, has no

bearing on the confirmation of the base models. This could be said to

accord with Worrall’s remarks on conditional versus unconditional confirm-

ation, the latter of which requires use-novelty. Thus one might argue that the

intuitive position should be refined in keeping with cross-validation.

Notice that what we have called cross-validation is often also called (n� 1)-

cross-validation to emphasize that one data point is used to test the predictive

accuracy of the procedure. There is also (n� k)-cross-validation, where k data

9 For instance, one could equally compare the performance of base models M and N of Section 3

(which are not nested).
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points are used to test the predictive accuracy of the procedure (and, again, as

a final step all n data are used for calibration). It is important to realize that

these methods lead to biased estimates because one tests the performance of

the base-model procedure when n – k data points are used for calibration and

not what one would really like to test, namely, the performance of the pro-

cedure when n data points are used for calibration (as is actually done). There

is least bias for (n� 1)-cross-validation, and, as mentioned above, this method

yields an asymptotically unbiased estimate (Zucchini [2000]; Arlot and Celisse

[2010]). Some have suggested using only half of the data for calibration and

the rest for confirmation, or using only p data for calibration (where p is the

number of free parameters) and the rest for confirmation (cf. Oreskes et al.

[1994]; Worrall [2010]). Such methods indeed yield unbiased estimators of the

predictive accuracy of base-model procedures that use n/2 or p data points for

calibration (Linhard and Zucchini [1984]; Zucchini [2000]). However, this is

not in line with model-selection theory, where the maxim is to use all the data

to estimate the most plausible value of the free parameters and hence to evalu-

ate the predictive accuracy of the base-model procedure when all data are used

for calibration (because one does not want to throw away any information

about the parameters).

Case II: The Akaike information criterion for finite sample sizes measures

the distance between the simulated and actual observations in terms of the

Kullback–Leibler discrepancy.10 Here again the base-model procedures under

consideration are the standard variety: the best-fitting model instance for each

base model relative to the n data points is identified. This is the calibrated base

model that would be used for prediction.

By way of estimating the long-run average predictive accuracy of the afore-

mentioned procedure for each base model, one first calculates the discrepancy

between the maximum-likelihood model instance and the actual data points.

This discrepancy amounts to � ln½L�
n

, where L is the maximum value of the

likelihood function (Zucchini [2000], pp. 52–3). This is then used to calculate

the confirmation score of the procedure given n data points as follows:

CAICc ¼ �
ln L½ �

n
þ

p

n
þ

p pþ 1ð Þ

n n� p� 1ð Þ

� �
; ð3Þ

where p is the number of free parameters. It can be shown that CAICc is an

unbiased estimator of the discrepancy between the true data generation mech-

anism and the base-model procedure, that is, the average predictive accuracy

of the base-model procedure (Burnham and Anderson [1998]; Linhard and

Zucchini [1984]). For CAICc, the data also have to be independently and

10 Our conceptual points also hold for other distance measures.
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identically distributed (and there are some further technical assumptions; see

Burnham and Anderson [1998]; Linhard and Zucchini [1984]).

Let us illustrate the Akaike information criterion with the simple base-

models M and Mx above. It can be shown that for normally distributed

error terms with a constant variance, CAICc can be easily computed:

CAICc ¼
ln 2pŝ2
h i

þ 1

2
þ

p

n
þ

p pþ 1ð Þ

n n� p� 1ð Þ

� �
ð4Þ

where ŝ2
¼
Pn

i¼1 "̂
2
i =n, with "̂ i being the estimated residuals in a linear regres-

sion with the Euclidean distance measure (Burnham and Anderson [1998],

p. 63). Starting with M, one first determines the best model instance given

all data points, which is 1.98182x� 0.0181818yþ 6.36364. Then one calcu-

lates the sum of the squared residuals and divides it by six, which amounts to

ð3:63642
þ 14:54552

þ 5:45462
þ 7:27272

þ 9:09092
þ 10:90912

Þ=6 ¼ 84:8488.

By plugging this into Equation (4), one obtains (p¼ 3 because the estimated par-

ameters are a, b, c): ðln½2p84:8488�þ 1Þ=2þ 3=6þð3� 4Þ=6ð6� 3� 1Þ ¼ 5:13937,

which is the expected predictive accuracy for the maximum-likelihood in-

stance of M given six data points. Then the same is repeated for Mx. That

is, one determines the best model instance given all data points, which

is 1.987647xþ5.29412, and calculates the sum of the squared residuals

and divides it by six, which is ð4:70592
þ 12:94122

þ 4:70592
þ 7:05882

þ

9:41182
þ 12:94122

Þ=6¼ 86:2748. From Equation (4), one obtains (p¼2 be-

cause the parameters that are estimated are a and c): ðln½2p86:2748�þ 1Þ=2þ

2=6þð2 � 3Þ=ð6ð6� 2� 1ÞÞ ¼ 4:31437, which is the expected predictive accur-

acy for the maximum-likelihood instance of Mx given six data points. Since

4.31437 is smaller than 5.13937, Mx is confirmed over M, and the best esti-

mates for the parameter values of Mx are a¼1.987647 and c¼5.29412. Note

that, again, Mx is confirmed over M, even though M has a better fit with the

data than Mx (because Mx is a nested model of M).

Clearly, for methods such as AICc, there is double-counting because all the

data are used to estimate the value of the free parameters (the base-model

calibrating procedure) and also to calculate the confirmation score (Equation

(3)). Further, the data used for confirmation are not use-novel because the

maximum likelihood given all the data is a key term in the confirmation ex-

pression; unlike cross-validation, there is no apparent assessment of how the

base-model procedure fares on new data. Still, in a precise sense there is a

penalty term in the expression for the degree of confirmation because the data

have already been used for calibration.

To show this, let us compare two methods for evaluating the predictive

accuracy of base-model procedures that use n data for calibration and only

differ because (i) in the first case, the data used for confirmation are use-novel,
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and (ii) in the second case, they are not (where we work with the Kullback–

Leibler divergence as distance measure). In case of (i), one starts by using n

data for calibration to find the model instance that fits the data best. Then one

goes on to use other novel n data points to calculate the distance between the

predicted and actual data points to estimate the predictive accuracy of the

procedure (the reason for choosing n data points is that we later want to

compare this method with the Akaike information criterion for finite

sample sizes, which also uses n data points for confirmation).11 One can

show that this estimator is unbiased (Linhard and Zucchini [1984]; Zucchini

[2000]).

Let us now turn to (ii) and AICc. One starts as in (i) and uses n data points

for calibration to find the best model instance. But now one does not test the

performance of the model instance with novel data points but instead with the

same n data points that have been used for calibration. With these data points,

one does exactly what has been done in (i) and calculates the average

Kullback–Leibler divergence between the best-fitting model instance and the

n data points. What one obtains is the term on the left-hand side of CAICc

(Equation (3)). What has been done so far is exactly as in (i), with the only

difference being that the data used are not use-novel. But the term on the left-

hand side of CAICc is not enough—using just this term would lead to an esti-

mate that is statistically very biased. Intuitively speaking, the estimate based

on maximum-likelihood fit is a bit optimistic because the good fit of the best-

fitting model is specific to the data at hand, rather than to a new piece of data

and hence the procedure is statistically biased (tending to overestimate pre-

dictive accuracy in the long run). So in order to get an unbiased estimator of

the predictive accuracy of the procedure when n data are used for calibration,

we also need the term on the right-hand side of CAICc. Hence this term on the

right-hand side can be interpreted as a penalty term because the data have

already been used before for calibration. Because of this penalty term, use-

novelty still plays a certain role (but one that is more nuanced than the role it

plays in the standard intuitive account).12 Thus the AIC method could also be

argued to be an apt refinement of the intuitive position in that use-novelty

matters for comparing base models.

Finally, recall that defenders of the intuitive position often emphasize the

crucial role of the number of parameters, p. For the second case (ii), the

number of parameters also plays a role, but it differs from the one advocated

11 The method would also yield an unbiased estimate of predictive accuracy of the procedure if one

used any other finite number of novel data points. The more data points, the better, in the sense

that the more data points are used, the smaller will be the variance of the estimator.
12 Note that Hitchcock and Sober ([2004]) also point out that for CAICc use-novelty (or rather

double-counting) is not a relevant consideration, but our claim about the penalty term is novel

and has not been made by them.
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by the intuitive position. According to the intuitive position, the number of

parameters, p, is crucial because it tells one that p data points should be used

for calibration and the rest for confirmation. In contrast to this, in model-

selection theory, all data should always be used for calibration. Still, for case

(ii) and methods such as AICc, the number of parameters plays a role in the

sense that the penalty term, p
n
þ

pðpþ1Þ
nðn�p�1Þ

� �
, depends on the number of param-

eters of the procedure.

There is an important connection between cross-validation and the Akaike

information criterion. Namely, it can be shown that the (n� 1)-cross-validation

estimator is asymptotically equivalent to the Akaike information criterion—

that is, their estimates of the predictive ability of models coincide approxi-

mately as n goes to infinity (Stone [1977]). Therefore, in some sense, use-novelty

is also implicitly contained in the Akaike information criterion. Our discussion

can make sense of this in the following way: while for cross-validation, use-

novelty is an important requirement, for the Akaike information criterion,

use-novelty also plays some role in the sense that there is a penalty term for

the Akaike information criterion because the data have already been used for

calibration.

6 Re-examining Our Case Study

Let us now re-examine our case study in light of the discussion of the previous

sections and ask whether Willett et al. proceed according to any of the four

approaches discussed in this article. A closer look reveals that they follow the

framework of classical tests as outlined in Section 4. Recall that for base model

M1, there are two free parameters—one that measures the extent of the re-

sponse to the anthropocentric forcings and one that measures the extent of the

response to the natural forcings. For base model M2, there is only one free

parameter—this measures the extent of the response to the natural forcings

(the unknown parameter values are treated as taking on some value in the

reals). Willett et al. first consider base-model M1 and use the data about sur-

face specific humidity to identify the model-instance hypotheses that would

not be rejected, given the significance level of 0.05. In this way, they arrive at

confidence intervals for the anthropogenic forcing and natural forcing, re-

spectively. Given that neither interval contains the value zero, this effectively

confirms base model M1 (with positive values for both free parameters) rela-

tive to the nested simpler base model, M2 (for which the anthropocentric

forcing would be zero). As is the case for classical tests, for Willett et al.,

use-novelty is not a relevant consideration and the same data are used both

for calibration and for confirmation of base model M1 relative to M2.13

13 Again, note that really M1 subtract M2 is confirmed relative to M2.
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While Willett et al. appeal to a classical and not a Bayesian framework, their

procedure nevertheless could be roughly reconstructed in Bayesian terms as

follows: Let the uncertainty about the forcing values be represented by some

prior probability distribution over the possible forcing values conditional on

base-model hypothesis M1—say, a uniform distribution over the possible

forcing values. This prior will also incorporate instances of nested base

model M2. For a uniform prior, the posterior probability distribution over

model-instance hypotheses (the result of calibration) will mirror the relative

likelihoods of these model instances. Here, the relative likelihoods depend on

fit with data, E, about changes in surface specific humidity. Willett et al. find

that the best-fitting forcing values for M1 are (1.12, 2.22). In effect, this model-

instance hypothesis has highest posterior probability under a uniform prior.

Moreover, given the classical 95% confidence intervals, we know that in-

stances of nested base model M2 are not amongst the model instances that

have best fit with the data nor the highest posterior probability on the assump-

tion of a uniform distribution. Indeed, it is plausible that the likelihood ratio

for base-model hypothesis M1 relative to nested hypothesis M2 is greater than

one. So we see that the Bayesian reconstruction of Willett et al.’s logic yields

the same conclusion vis-à-vis the intuitive position, namely, in contrast to this

position, all the data are used for both confirmation and calibration, and the

data used for confirmation are not use-novel.

Willett et al. subscribe to the classical framework of hypothesis testing

outlined above, which is different from the framework of classical model-

selection theory. Both frameworks demand double-counting, since all data

must be used for calibration. But of course use-novelty only plays a role in the

latter framework. Willett et al. do not use any method, such as cross-validation,

where use-novelty plays a role, nor a method such as AICc, where there is some

penalty term because the data have already been used for calibration or, more

generally, where it is somehow taken into consideration that it is easier for

model M1 to provide a good fit with the data than for nested model M2.

Instead, Willett et al. simply use all the data for calibration and confirmation,

and use-novelty plays no role for them. Hence their view on double-counting

and use-novelty is not the more nuanced view presented by classical model-

selection theory.

Let us briefly explain how the analysis would go if a model-selection method

such as cross-validation were used. First, one would consider model M1 and

use the first n – 1 data points to determine the best-fitting model instance of

M1, and then use the remaining data point to calculate the distance between

the predicted and actual data point. This would need to be repeated for all

possible selections of n – 1 data points to calculate the average distance be-

tween the predicted and the actual data points for model M1 (with some dis-

tance measure such as the squared distance or the Kullback–Leibler
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discrepancy). Exactly the same would need to be repeated for model M2 to

calculate the average distance between the predicted and actual data points for

model M2. Then one would compare the average distance between predicted

and actual data points for M1 and M2, and the model procedure with the lower

score would be confirmed relative to the model procedure with the higher

score. It is not entirely clear what the model procedure with the lower score

would be; one would need to do the calculations to know for sure. Yet it seems

likely that the model with the lower score will still be M1 because the amount

of data is very large, M1 has only one additional parameter when compared to

M2, and all model instances of M2 have a bad fit with the data (while there are

model instances of M1 that fit to the data well). Assuming that M1 is indeed

confirmed over M2, as a final step all the data points would be used for cali-

bration to obtain the parameter values that correspond to the best-fitting

model instance of M1; the values obtained in this way would be (1.12, 2.22)

(as in Willett et al.).

To conclude, Willett et al. adopt the classical framework of hypothesis

testing, where use-novelty is not a relevant consideration and double-counting

is legitimate. Hence their view is not in line with the intuitive position, which

argues for use-novelty and against double-counting; neither is it with the more

nuanced account presented by model-selection theory. While Willett et al. do

not adopt a Bayesian framework either, their views on use-novelty and

double-counting coincide with the Bayesian position, where double-counting

is proper and use-novelty is not a relevant consideration.

In general, when climate scientists worry about the legitimacy of double-

counting and whether data should be use-novel, an important insight from our

discussion is that an answer to these worries depends on the confirmatory

framework. In this article, we have considered three major confirmation

frameworks: In the Bayesian framework and the classical testing framework,

double-counting is proper and use-novelty is beside the point. In classical

model-selection theory, double-counting is also proper, but the role of use-

novelty is more nuanced. Either data are required to be use-novel or there is a

penalty term because the data have already been used for calibration. Hence if

climate scientists worry about double-counting and use-novelty, they should

carefully think about which confirmation framework they would like to adopt.

This in turn will lead them to certain conclusions about double-counting and

use-novelty.

7 Conclusion

Where does all this leave the general dilemma with which we started? We

noted at the outset that in prominent examples from the history of science,

use-novel as opposed to accommodated data intuitively provide more

Katie Steele and Charlotte Werndl22

Downloaded from https://academic.oup.com/bjps/advance-article-abstract/doi/10.1093/bjps/axw024/2669792
by guest
on 13 December 2017

Deleted Text: best 
Deleted Text: paper


compelling support for the reliability of a theory. The puzzle is how to explain

these intuitions about use-novelty and confirmation such that other deeply

held intuitions or principles concerning confirmation are also respected. To

this end, Worrall makes an important conceptual move: He equates accom-

modating data to settling on a refined version of a general theory, or, in more

technical language, to calibrating the free parameters of a base theory or

model. We have seen, however, that the intuitive position Worrall endorses

regarding use-novelty and double-counting with respect to the calibration of

free parameters is not in fact a widespread truth that is common to all the

major logics of confirmation.

Indeed, none of the prominent logics of confirmation endorses the intuitive

position in full, that is, that use-novel data are not just special for confirmation—

in fact, only data not used for calibration can confirm a general theory.

The troubles arise for stochastic theories or models, which are, moreover,

widespread in scientific practice, as illustrated by our example from climate

science. The question then arises as to which confirmatory framework best

underpins and advances the intuitive position. We showed that the Bayesian

or classical hypothesis-testing framework does capture a certain simplicity in

the intuitive position that holds for special deterministic cases: use-novel data

are identified as data not used for calibration, and only these data can

(dis)confirm a base model or theory. The so-called classical model-selection

methods instead respect the intuitive position in a different way: use-novelty

has a special role to play in confirmation, or in assessing the reliability of

model predictions, but use-novel data cannot simply be identified as data not

used in calibration. We are thus left with a quandary. How it is resolved will

depend on one’s broader commitments regarding the distinguishing properties

of the various logics of confirmation.
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