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necessiTies and necessaRy TRuThs. 
PRoof- TheoReTically.
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Munich Center for Mathematical Philosophy, LMU München

In his seminal “Outline of a Theory of Truth” kripke (1975) proposed understanding 
modal predicates as complex expressions defined by a suitable modal operator and a 
truth predicate. In the case of the alethic modality of logical or metaphysical necessity, 
this proposal amounts to understanding the modal predicate ‘is necessary’ as the com-
plex predicate ‘is necessarily true’. In this piece we work out the details of kripke’s pro-
posal, which we label the Kripke reduction, from a proof- theoretic perspective. To this 
end we construct a theory for the modal predicate and a theory of truth formulated in 
a language with a modal operator and show that the modal predicate theory is inter-
pretable in the theory of truth where the interpretation translates the modal predicate 
‘N’ by the complex predicate ‘☐T’, the truth predicate modified by the modal operator. 
In addition, we show that our work can be viewed as the proof- theoretic counterpart 
to the semantic kripke reduction recently carried out by Halbach and Welch (2009), 
which is based on kripke’s theory of truth.

1. Introduction

In his seminal “Outline of a Theory of Truth” kripke (1975) proposed understand-
ing modal predicates by appeal to a corresponding modal operator and the truth 
predicate. He writes:

Ironically, the application of the present approach [his theory of truth] to 
languages with modal operators may be of some interest to those who dis-
like intensional operators and possible worlds and prefer to take predicates 
true of sentences (or sentence tokens). . . . now, if a necessity operator and 
a truth predicate are allowed, we could define a necessity predicate Nec(x) 
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applied to sentences, either by ☐T(x) or by T(☐. x) [slight change of nota-
tion] according to taste (. . .). (kripke 1975: 713)

kripke’s suggestion is thus to define the modal predicate in a language contain-
ing a truth predicate and a modal operator. The hope would be that by defining 
the modal predicate in such a way, one arrives at a workable predicate approach 
to modality that combines the advantages of the operator approach with the ben-
efits of the predicate approach. It is often thought that the predicate approach to 
modality is preferable to the operator approach because of its greater expressive 
strength. For example, within the predicate approach it is possible to quantify over 
the argument position of the modality at stake where nothing of the like is possible 
within the operator approach without moving to some restricted form of second- 
order logic. Another advantage of the predicate approach is that it ties well with 
the so- called relational analysis of propositional attitudes, which views proposi-
tional attitudes as relations between agents and propositions.

kripke’s proposal lends itself to two possible interpretations. On the one hand 
it may serve as a defense of the predicate approach against the backdrop of Mon-
tague’s theorem.1

Montague’s theorem shows that the standard principles of modal operator 
logic cannot be adopted within the predicate setting for otherwise inconsistency 
arises. This result has often been viewed as a knock- down argument against predi-
cate approaches to modality because it allegedly shows that no intuitive and philo-
sophically satisfactory account of modalities qua predicates is available. Yet with 
kripke’s proposal we possess a strategy for providing such, arguably, intuitive and 
philosophically satisfactory predicate approaches to modality.

On the other hand, an alternative understanding of kripke’s proposal recon-
structs it as an argument in favor of operator approaches to modality. According 
to this interpretation, reducing the modal predicate to a modal operator and the 
truth predicate shows that the expressive strength of the predicate approach (to 
modality) can be accounted for within the operator setting, i.e., we can dispense 
with primitive modal predicates and stick to modal operators. Halbach and Welch 
(2009) view kripke’s proposal in this way and, accordingly, take kripke’s proposal 
to show that the expressive strength of the predicate approach can be recovered 
within the operator setting. Halbach and Welch strengthen their argument by—  
instead of defining the modal predicate in the modal operator language— reducing 
a semantic theory of the modal predicate to a semantic theory of truth formulated 
in a modal operator language. That is, they show that understanding the modal 

1. See Montague (1963) for a statement and proof of Montague’s theorem and Stern (2014c) 
for a discussion of Montague’s result.
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predicate ‘N’ as the complex predicate ‘☐T’ results in a truth preserving translation 
with respect to the two semantics they put forward.

Reducing a semantic theory of a modal predicate to a semantic theory of truth 
formulated in a modal operator language has the advantage over simply defining 
a modal predicate in the latter language that it may serve as a defense of operator 
approaches to modality against proponents of the predicate approach. By using 
this strategy one may show that we can recover the modal predicate within the 
operator language. The modal predicate therefore proves to be dispensable. In 
contrast, if we define a modal predicate in the operator language we only show 
that we may define some sentential predicate that need not be of any appeal to 
the proponent of the predicate approach to modality. Indeed she may not even 
consider this predicate to be a modal predicate. In case of the reduction strategy, 
if the semantic theory of the modal predicate is accepted and if, in addition, we 
consider the expressive strength to be the sole argument in favor of the predicate 
approach, then the modal predicate is dispensable and we may stick to the opera-
tor approach. Obviously, the fact that it is possible to carry out a reduction does 
not imply that we must, but considering the fact that modal operator logic is well 
entrenched in philosophical and mathematical logic while the predicate approach 
is a niche phenomenon from this perspective, there seems to be good reason for 
dismissing the predicate approach as superfluous and for sticking to the “stan-
dard” operator approach to modality. Viewed from this perspective Halbach and 
Welch’s reduction puts some pressure on the proponent of the predicate approach 
to abandon his theory of modality in favor of the operator approach.

In this paper we show that kripke’s proposal can be carried out from a proof- 
theoretic perspective and thereby supplement Halbach and Welch’s reduction by 
its proof- theoretic counterpart. To this end we construct two axiomatic theories: 
One axiomatizes the modal predicate; the other is a theory of truth formulated in 
a language containing a modal operator. We show that the theory of the modal 
predicate can be interpreted within (“reduced to”) the theory of truth formulated 
in the modal operator language where the modal predicate is translated as the 
truth predicate modified by an appropriate modal operator and, additionally, that 
the two theories match the two semantics of Halbach and Welch used for carrying 
out their reduction.

The structure of the paper then is as follows. In the next section we motivate 
our work from a philosophical perspective. In particular, we clarify what kind of 
reduction we are attempting, why it may be considered as a proof- theoretic coun-
terpart of Halbach and Welch’s work and why it is philosophically interesting. In 
section 3 we construct the theory of the modal predicate and the theory of truth 
in a modal operator language. next we reduce the theory of the modal predicate 
to the theory of truth, that is we show that the theory of the modal predicate can 
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be interpreted in the theory of truth (section 4). We then turn to semantic aspects 
and introduce the two semantics that Halbach and Welch use to carry out their 
reduction (section 5). Finally, we show that the two theories capture the relevant 
semantics in an interesting way (section 6). We end the paper with a summary and 
evaluation of our findings.

2. The Syntactic Reduction and Its Two Possible Interpretations

As we have mentioned, Halbach and Welch view their reduction as an argument 
in favor of the operator approach to modality. Their idea is that the sole argument 
for opting for a predicate approach to modality is the alleged expressive strength 
of the predicate approach. Accordingly, they take their reduction to show that the 
expressive strength of the predicate approach can be recovered within the operator 
approach, as the modal predicate can be reduced to a modal operator and the truth 
predicate. However, their reduction is carried out solely in semantic terms: they 
show that the translation is truth preserving with respect to the two semantics em-
ployed. Yet, both semantics are based on possible world semantics and therefore 
the reduction is convincing only if one accepts possible worlds or similar notions in 
the analysis of modal notions. Within the predicate approach, in contrast to the op-
erator approach, there is no interpretation problem, i.e., we are not forced to move 
to possible worlds to provide an interpretation of the modal notion— standard 
first- order semantics will do the job. Consequently, the proponent of the predicate 
approach to modality who dislikes possible worlds will remain unconvinced by 
the semantic reduction proposed by Halbach and Welch.2 The reduction we are 
going to propose will be carried out syntactically by employing proof- theoretic 
means only and therefore simple skepticism toward possible worlds will no longer 
do. Rather, such a syntactic reduction, if successful both from a philosophical and 
technical perspective, would, together with Halbach and Welch’s semantic reduc-
tion, put the proponent of the predicate approach under considerable pressure— at 
least if one were to follow Halbach and Welch’s dialectic.

Of course, this kind of argument can only be convincing if the reduction we 
propose is a plausible reduction in its own right and so far, without further speci-
fication, it remains unclear what it means to carry out the reduction by purely 
proof- theoretic means.3 We shall now attempt to fill this gap. To this end, let us 

2. One might argue that while the proponent of the predicate approach need not accept pos-
sible world semantics as her preferred semantics she should be happy to accept possible worlds for 
instrumental reasons. We think the proponent of the predicate approach has every reason to resist 
this kind of argument because at least prima facie it is unclear whether the modal theory she has in 
mind will be sound with respect to possible world semantics.

3. I would like to thank an anonymous referee for stressing this point.
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first reconsider the reduction carried out by Halbach and Welch in more detail. 
Halbach and Welch construct an intended model for both the language of the mod-
al predicate and the language of the modal operator plus the truth predicate. Let 
us call the first model MN and the second model M☐T. It is assumed that the two 
languages only differ in the way they conceive of the modal notion, that is, whether 
they conceive of the modal notion as a predicate or an operator. next Halbach and 
Welch provide a translation function 𝜌 from the language of the modal predicate 
LN to the language of the modal operator plus truth predicate L☐T. The transla-
tion function translates the modal predicate ‘n’ as ‘☐T’ but leaves the remaining 
vocabulary fixed. In particular the translation commutes with the logical connec-
tives and quantifiers. Thus 𝜌 clearly captures the idea behind kripke’s proposal and 
should therefore be considered as a philosophically interesting translation function 
that translates formulas of LN in an intended way.4 Halbach and Welch show that 
for all sentences ϕ of LN

(SR)  M MN T φ ρ φ⇒


( ).

In a way, (SR) asserts that whether we treat the modal predicate as a primitive 
predicate or as a complex predicate that is constructed using the modal operator 
and the truth predicate does not affect the truth of a modal statement. Therefore, 
following the dialectics of Halbach and Welch, the modal predicate is dispensable 
and we can stick to modal operators. With this in mind let us return to outlining 
the proof- theoretic counterpart of Halbach and Welch’s reduction. The idea is to 
replace the semantic notions used in (SR) by purely syntactic or proof- theoretic no-
tions. Consequently, we shall replace the notion of truth in a model by the notion 
of derivability in a theory. This requires developing two theories, which we shall 
call TN and T☐T for now. TN is the theory of the modal predicate formulated in the 
language LN. T☐T is the theory of truth formulated in the modal operator language 
L☐T . We then show that for all ϕ ∈ LN

(PR) T TN T φ ρ φ⇒


( ).

(PR) asserts that theoremhood is preserved modulo translation in moving from TN 
to T☐T. In more technical terms, because of the properties of the translation func-
tion, (PR) shows that TN is a subtheory of a definitorial extension of T☐T where the 
arithmetical vocabulary is left unaltered. This is a fairly strong notion of reduction. 
In other words, 𝜌 is an unrelativized interpretation of TN in T☐T in the sense of 

4. In particular, we think one should not criticize the reduction by blaming the translation func-
tion to be unprincipled or counterintuitive. This also holds for our syntactic reduction since we use 
the same translation function as Halbach and Welch.
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Tarski, Mostowski, and Robinson (1953).5 This sets the syntactic reduction in (PR) 
apart from reductions where preservation of theoremhood is achieved by translat-
ing formulas of the source language in an unintended way.

Consequently, it seems fair to conclude that (PR) establishes from a proof- 
theoretic side what (SR) establishes from a semantic side, if one accepts TN and T☐T 
as the intended theories of the languages and the notions involved.6 For now, let 
us assume that TN and T☐T were such theories, or at least plausible candidate theo-
ries, then it seems the proponent of the predicate approach can no longer resist the 
dialectics of Halbach and Welch by simply dismissing possible world semantics. 
Rather, she would also need to dismiss at least one of the two theories as apt char-
acterizations of the notions at stake. Such a dismissal should not be taken lightly, 
however, because there is an asymmetry between rejecting possible world seman-
tics in the case of the semantic reduction and of rejecting the modal theories and 
possible world semantics when we have both a semantic and a syntactic reduction. 
Whereas in the first case the modal semantics, i.e., possible world semantics, was, 
in a way, superfluous, as one can appeal to simple first- order semantics,7 and as a 
last resort adopt a purely proof- theoretic account there is no obvious substitute 
available for the two theories appealed to in the syntactic reduction. As a conse-
quence, simply rejecting the theories will not be sufficient, rather the proponent of 
the predicate approach would need to provide us with alternative, well- motivated 
theories for which the proposed reduction does not hold. This kind of worry is 
even more pressing in light of Montague’s theorem, which threatens the intelligibil-
ity of the predicate approach altogether. It therefore seems crucial for a proponent 
of the predicate approach to provide us with a positive account, that is, she has to 
offer a modal theory for which the “kripke reduction” is not feasible. However, 
to date there has been little success in direction of such a theory. Consequently, if 
one subscribes to Halbach and Welch’s claim that the expressive strength is the 
sole argument favoring predicate approaches to modality, then a proof- theoretic 
counterpart of Halbach and Welch’s reduction puts the proponent of the predicate 
approach under considerable pressure given the enormous success of the operator 
approach in logic and philosophy.

However, in the introduction we have already suggested that if one thinks 
that predicate approaches are motivated independently of their alleged expressive 
strength, then the success of the reduction can be viewed as an argument in favor 

5. See niebergall (2000) and Feferman (2000) for a discussion of concepts of reducibility.
6. However, there is one decisive difference between (SR) and (PR). In the case of (SR) the con-

verse direction of the implication will hold as well. In other words the translation is faithful in this 
case. This might not be so in the case of (PR). Indeed to date we do not know whether this holds for 
the syntactic reduction we propose. We shall come back to this issue in the conclusion of the paper.

7. One might rightly point out that while standard first- order semantics is an apt semantics for 
the language of the modal predicate it does not tell us which subsets of the domain of the model are 
apt interpretations of the modal predicate.



 Necessities and Necessary Truths. Proof-Theoretically • 213

Ergo • vol. 2, no. 10 • 2015

of the modal theory we are about to construct and thus ultimately as an argument 
in favor of predicate approaches to modality. The guiding idea is that since the 
predicate approach is motivated independently of its expressive strength and the 
success of the “kripke reduction” (as we shall call the reduction from now on) 
shows that we have constructed a workable theory of modality where the modal 
notion is conceived as a predicate. This shows that contra Montague there are 
well motivated, intuitive and consistent accounts of modalities conceived as predi-
cates. Moreover, the syntactic and semantic reduction taken together show that we 
can have both semantic and syntactic, that is, axiomatic theories of modal predi-
cates. Incidentally, the modal theory we propose will match the semantics Halbach 
and Welch employ in their semantic reduction. On the one hand this shows that 
our syntactic reduction really is the proof- theoretic counterpart to Halbach and 
Welch’s reduction. On the other hand, Halbach and Welch’s work together with 
our proof- theoretic addendum may be viewed as a full- fledged defense of the pred-
icate approach to modality against the challenges raised by Montague’s theorem 
and related inconsistency results. One might even hope that based on kripke’s idea 
a general strategy for devising modal theories in which the modal notion is con-
ceived as a predicate can be developed.8

3. The Theories Modal PKF and Operator PKF

In this section we introduce the theory of the modal predicate and the theory of 
truth formulated in a language containing a modal operator. Both theories will be 
formulated in non- classical logic, namely FDe or BDM (as Field 2008 would call 
it). The reason for our departure from classical logic is twofold. First, the seman-
tics employed by Halbach and Welch is based on kripke’s theory of truth, which is 
based on a partial evaluation scheme.9 Formulating the modal theories in partial 
logic thus goes nicely with these semantics.10 Second, if we wish to capture the 
semantics of Halbach and Welch in classical logic it proves necessary to introduce 
a primitive possibility predicate. This is a side effect of the so- called diverging in-
ner and outer logic in classical axiomatizations of kripke’s theory of truth11 and 
may be nicely illustrated by reading the modal predicate following the spirit of the 
kripke reduction as a modified truth predicate. Under this reading ‘necessarily true 

8. Stern (2014a) develops a general strategy for developing modal theories that can be under-
stood in this way.

9. As a matter of fact the evaluation scheme is not only partial but also paraconsistent. In this 
paper we use the word “partial” carelessly to stand for both.

10. See Halbach and Horsten (2006) for further arguments in favor of axiomatizing kripke’s 
theory of truth in partial logic.

11. See Halbach (2011) for a discussion of classical axiomatizations of kripke’s theory of truth.
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not’ would need to be equivalent to ‘not possibly true’ for a possibility predicate 
to be interdefinable with a necessity predicate. But the latter is (by standard modal 
logic) equivalent to ‘necessarily not true’, which is not, in general, equivalent to 
the former statement because of the diverging inner and outer logic.12 Halbach 
and Welch do not have a primitive possibility predicate in their language and by 
axiomatizing their semantics in FDe the introduction of a primitive possibility 
predicate can be avoided. A further welcome side effect of formulating the modal 
theory in non- classical logic is that the standard principles of modal operator logic 
can be transferred to the predicate setting without much trouble. If we were to 
work in classical logic this would not be possible because of Montague’s theorem. 
nonetheless, one can still construct intuitive and “kripke reducible” modal theo-
ries in classical logic, but a lot more care has to be taken in spelling out the modal 
principles. Roughly, one has to make sure that the modal principles are stated in a 
way such that any type of semantic ascent or descent is avoided within the modal 
principle. This can be achieved in stating the modal principles by appeal to a truth 
predicate in addition to the modal predicate.13 In fact as a residue of this strategy 
the non- classical theory of the modal predicate we are about to construct will be 
developed in a language containing a modal predicate and a truth predicate.

Accordingly, the theory of the modal predicate called “modal theory” will be 
formulated in the language LPATN extending the language of arithmetic LPA by two 
unary predicates; the modal predicate ‘N’ and the truth predicate ‘T’. We add a 
truth predicate because this allows to establish the connection between the modal 
theory and its intended semantics. Moreover, adding a truth predicate seems to be 
desirable independently since principles linking truth and the modal notion can 
be stated in this way. The theory of truth formulated in the language L PAT

 ′, i.e., a 
language extending LPA by a truth predicate ‘T’ and a unary modal operator ‘☐’, 
will be called the “operator theory of truth”. In formulating the modal theory and 
the operator theory of truth we assume some standard coding scheme and denote 
the code, e.g., the Gödel number, of an expression ζ by #ζ and its name, that is the 
numeral of #ζ, by � �ζ . In the remainder of the paper we then freely equate the ex-
pressions with their codes in order to keep things as simple as possible. We let the 
sets SentL (“L- sentences”) and CtermL (“L- closed terms”) represent themselves 
and, moreover, drop the subscript when no confusion can arise. In most cases, if 
⊳ is a syntactic operation we represent it by ⊳. . However, there are few exceptions 
to this rule: we represent the ternary substitution function by x(s/t) where x(s/t) is 
a name of the formula that results from replacing t by s in x. Also, let Val(·) repre-

12. See Stern (2014b) for a discussion of this problem and a classical modal theory with a primi-
tive possibility predicate. The kripke reduction can still be carried out for this theory despite these 
pathologies.

13. See Stern (2014a) for a presentation and discussion of the strategy. This strategy has been 
independently applied by koellner (2015).
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sent the function that takes codes of closed terms as arguments and provides the 
code of their denotation as output. Finally, we represent the so- called num func-
tion, i.e., the function that takes codes of expressions (#ζ) as input and provides 
the code of the name of the expression as output ( #� �ζ ) by a superdot. We thus 
have � � �� ��ζ ζ= . Sometimes, in case of scope ambiguities, we represent the num 
function by num•.

As a matter of fact both the modal theory and the operator theory of truth will 
be based on the same underlying theory of truth, for otherwise we would arguably 
fail to reduce the modal predicate to a modal operator and the truth predicate. 
Instead, from the perspective of the modal theory, the reduction would then show 
that we may reduce the modal predicate to a modal operator and some other 
sentential predicate— a sentential predicate that does not share the characteristics 
of the truth predicate employed in the modal theory. Since Halbach and Welch’s 
proposal is a generalization of kripke’s theory of truth to the modal setting, the 
theory of truth we assume should arguably be a proof- theoretic counterpart of 
kripke’s theory of truth and, as we have argued, the theory should be formulated 
in partial logic.

It turns out that a theory of truth which fits the bill has already been developed 
by Halbach and Horsten (2006).14 Their theory of truth “Partial kripke- Feferman 
(PkF)” captures kripke’s construction and is formulated in partial logic. The theo-
ry PkF comes in two versions. In Halbach and Horsten (2006), symmetric strong 
kleene logic is assumed as the underlying logic, while Halbach (2011: Ch. 16) for-
mulates the theory using FDe, which allows for truth value gaps and gluts. Here 
we adopt Halbach’s version of the theory PkF. We now introduce the logic of FDe 
and the aforementioned theory of truth PkF.

3.1. FDE and Partial Kripke- Feferman

We provide a two sided sequent formulation of FDe which is the underlying logic 
of PkF. In what is to come we denote sequents by ∆ ⇒ Γ with ∆ and Γ being finite 
(possibly empty) sets of formulas. We sometimes write ∆ ⇔ Γ to convey the se-
quents ∆ ⇒ Γ and Γ ⇒ ∆.15 Throughout, the only primitive logical symbols will be 
¬, ∧ and ∀. We also take a primitive two place identity predicate = to be part of the 
language. The existential quantifier ∃, disjunction ∨ and material implication → are 
defined in the usual way. However, it is important to understand the definitions as 
mere notational abbreviations.

We now provide the laws and initial sequents of this logic which is basically a 
variant of the logic presented in Scott (1975).

14. See also kremer (1988) for a related “logic of truth”.
15. We also use the symbols ⇒ and ⇔ to convey the notions of metalinguistic or semantic impli-

cation and equivalence. But the intended use of these symbols should be clear from context.
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3.1.1. Structural Rules and Initial Sequents

The structural rules and initial sequents of FDe are the following

(IN)  Γ ∆ Γ ∆⇒ ∩ ≠, where 0

(WL) 
Γ ∆
Γ ∆

⇒
⇒,φ

(WR) 
Γ ∆
Γ ∆

⇒
⇒ ,φ

(Cut) 
Γ ∆ Γ ∆

Γ ∆
⇒ ⇒

⇒
φ φ, ,

3.1.2. Rules and Initial Sequents for the Logical Constants

We provide rules for negation, conjunction, the universal quantifier, and the iden-
tity symbol. note that ¬Γ stands for the set of all negations of sentences in a set Γ.

(¬) 
Γ ∆
∆ Γ
⇒

¬ ⇒ ¬

(¬¬) φ φ⇔ ¬¬

(Ù1) φ ψ φ ψ, ⇒ ∧

(Ù2) φ ψ φ∧ ⇒

(Ù3) φ ψ ψ∧ ⇒

(") ∀ ⇒x t xφ φ( / )

(R") 
Γ ∆

Γ ∆
⇒

⇒ ∀
,

,
,

φ
φx

where x is not free in the lower seqment

(= 1) ⇒ =t t

(= 2) s t s x t x= ⇒, ( / ) ( / )φ φ

This completes our presentation of the logic of FDe underlying PkF. even 
though this is not strictly speaking part of the syntax of the logic, we indicate the 
underlying consequence relation in order to avoid misunderstandings and confu-
sion. Let M ⊧SK ϕ[β] denote that ϕ is true in M under a variable assignment β ac-
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cording to the strong kleene evaluation scheme we shall define shortly. Then Γ ⊧SK 
∆ iff for all models M and all variable assignments β:

(i) If M SK φ β[ ]  for all f ∈Γ , then there exists a y ∈∆  such that M SK ψ β[ ]

(ii)  If M SK ¬ψ β[ ]  for all y ∈∆ , then there exists a f ∈Γ  such that  

M SK ¬φ β[ ].

It is easy to check that the rules and initial sequents of FDe are sound with respect 
to the consequence relation so defined: if the sequent Γ ⇒ ∆ is FDe- derivable, then 
Γ ⊧SK ∆.

It is important to bear in mind the definition of the consequence relation be-
cause several alternative definitions are used within the realm of partial logic and, 
depending on the consequence relation employed, the rule (¬) may fail to be a 
sound rule.16

The classical rules for negation, that is

(¬RR) 
Γ ∆
Γ ∆

,
,

f
f

⇒
⇒ ¬

(¬RL) 
Γ ∆
Γ ∆
⇒
¬ ⇒

,
,

f
f

are not admissible within the logic of FDe. Yet, FDe will collapse into classical 
logic for arithmetic ϕ, i.e., for arithmetic ϕ the rules (¬RR) and (¬RL) are derivable. 
As a consequence of this and the rules and initial sequents we are about to give, the 
arithmetic fragment of PkF will be a supertheory of classical PA.

3.1.3. Rules and Initial Sequents for Arithmetic

Besides the rule of induction we have an initial sequent for every axiom ϕ of PA:

(PA) Þ f f, is an axiom of PA

(Ind) 
Γ ∆
Γ ∆

, ( ) ( ),

, ( ),

y y
y y
x x

t

⇒ +
⇒

1

0

Finally, we give the principles characterizing the truth predicate which to-
gether with the arithmetic sequents and rules constitute the theory Partial kripke- 
Feferman PkF.

16. It is very plausible that the reduction we are attempting could be carried out if alternative 
partial logic were adopted. In particular, most of what we say should also hold modulo some neces-
sary modifications of calculus and semantics for the logics S3, LP and k3.
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3.1.4. Partial kripke- Feferman

The system PkF consists of the rules and initial sequents of arithmetic in the lan-
guage LPAT together with the following truth specific initial sequents:

For a more in depth discussion of the theory PkF we refer the reader to Hal-
bach and Horsten (2006) and Halbach (2011: Ch. 16). However, we note the fol-
lowing facts. First, as we have already mentioned, PkF behaves classically on the 
arithmetical fragment:

Fact 3.1. For arithmetic ϕ the rules (¬RR) and (¬RL) are derivable in PKF.

Proof. Cf. Halbach (2011: Ch. 16). The proof uses the fact that in PKF the sequent 
⇒ ϕ, ¬ϕ is derivable for arithmetical ϕ

☐

The second fact we mention highlights some derivability facts.

Fact 3.2. The following sequents are derivable in PKF where ϕ ∈ SentLPATN and λ is 
some liar sentence such that PAT (PA in the language LPAT) proves λ λ⇔ ¬T � � :

( )

( )

i T

ii

φ φ
λ λ
⇔
⇔ ¬

� �

next we construct our modal theory, i.e., the theory of the modal predicate.

3.2. Modal Partial Kripke- Feferman

Modal Partial kripke- Feferman extends PkF as formulated in the language LPATN 
by initial sequents and rules characterizing the modal predicate. We first give the 
system Basic Modal Partial kripke- Feferman (BMPkF) which consists of initial 
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sequents characterizing the interaction of the modal predicate and the connec-
tives, quantifiers and the identity symbol. In addition we have a modal version of 
(PKF5) which connects the modal predicate and the truth predicate, as well as the 
rule (RN), which is a substitute of the rule of (R☐) known from modal operator 
logic and which we shall encounter when dealing with the operator truth theory.

3.2.1. Basic Modal Partial kripke- Feferman

The system BMPkF consists of all initial sequents and rules of PkF in the lan-
guages LPATN 17 and the following initial sequents and rules.18 In the formulation 
of the rule (RN), T N� � � �Γ Γ( )  is short for the set { : } ({ : })T N� � � �γ γ γ γ∈ ∈Γ Γ  
for arbitrary sets of formulas Γ.

Our main interest, however, will not be in BMPkF but in MPkF, i.e., Modal 
Partial kripke- Feferman.19 We obtain MPkF from BMPkF by adding initial se-

17. This also means that the concepts of syntax such as ‘Sent’ should now be read as of concepts 
of syntax LPATN . That is, Sent(x) should now be read as SentL PATN

(x).
18. As a matter of fact most of the initial sequents can be omitted. As far as we can see, only (n1), 

(n3), (n7)(i) and (RN) are required. However, a proof of this fact is rather lengthy and complicated 
and would take us too far afield. In a nutshell one first has to prove φ φ( ,...., ) ( ,..., )x x N x xn n1 1⇒ � �   for 
arithmetic ϕ. Then one can derive the redundant initial sequents using the axioms of PkF and the 
rule (RN).

19. BMPkF proves to be quite important for establishing the link between the modal theories 
and the semantics we shall discuss shortly.
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quents expressing further modal properties to the theory. These initial sequents 
should appear familiar as they are reformulations of the classical modal principles 
(T), (4) and (e). In contrast to their usual formulation in the operator setting we 
formulate them for arbitrary terms of the language. For the modal principle (T) 
this requires the introduction of the truth predicate in the consequent, for other-
wise there would not be a term position in the consequents.

3.2.2. Modal Partial kripke- Feferman

The system MPkF is BMPkF extended by the following initial sequents:

As the focus of this piece is on the kripke reduction we refrain from investigat-
ing BMPkF and MPkF in further detail and move on to introducing the operator 
theory of truth.

3.3. Operator Partial Kripke- Feferman

We now set out the details for operator PkF, that is, PkF formulated in the lan-
guage L PAT

 .20 The theory will again be formulated in partial logic but as the 
language now contains a modal operator we also have to specify the logic of this 
operator. That is, we have to specify the modal logic we employ, which will be a 
partial modal logic constructed over FDe. However, the rules and sequents of the 
modal operator are just the standard ones and the partial character of the logic 
stems solely from its propositional fragment.

3.3.1. Partial Modal Logic

The quantified modal logic QM consists of the rules and initial sequents of FDe 
together with

( )
,
,

R
  

Γ ∆
Γ ∆
⇒ ¬
⇒ ¬

φ
φ

20. notice in contrast to the operator language provided by Halbach and Welch our formation 
rules are standard. In particular, we allow for the application of the modal operator to open formulas.
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Here, (R☐) replaces the more usual rule

Γ
Γ
⇒
⇒
φ
φ 

.

In classical logic the latter implies (R☐) due to the rules (¬RR) and (¬RL) but 
this is no longer the case in partial logic.21

If we add a further modal initial sequent X, we call the resulting modal logic 
QMX. In the remainder we consider the following additional initial sequents:

( )

( )

( )

TS

S

ES



 

  

φ φ
φ φ
φ φ

⇒
⇒

¬ ⇒ ¬
4

We call the modal logic that results from addition of (TS), (4S) and (ES) to 
QM, QM5. As in standard quantified normal modal logic, sequent formulations 
of what is known as necessity of Identity (NI) and the Converse Barcan Formula 
(CBF) are derivable in the modal logic QM.

Fact 3.3. The following are derivable in QM

( )

( )

NI s t s t

CBF x x

= ⇒ =
∀ ⇒ ∀



 φ φ

We now provide the operator theory of truth PkF☐ which is just PkF in the 
language L PAT

  supplemented by two further initial sequents.

3.3.2. Operator Partial kripke- Feferman

Operator Partial kripke- Feferman (PkF☐) is just PkF in the language L PAT
 22 

supplemented by two additional initial sequents:

21. If we were to attempt the kripke reduction for theories that are based on some non- 
symmetric logic such as k3 or LP, then we would also need to assume the rule

In FDe the rule can be derived from (R☐) using the rule (¬). See Jaspars and Thijsse (1996) and 
Dunn (1995) for more on partial modal logics.

22. Again the concepts of syntax appearing in the initial sequences are now thought of as con-
cepts of the language L PAT

 .
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Let S be some modal logic. If some sequent Γ ⇒ ∆ has been derived in PkF☐ 
using only modal sequents of S then we say that Γ ⇒ ∆ is derivable in PkF☐ as-
suming the modal logic S. Importantly, already in QM, PkF☐ proves the rigidity of 
arithmetic, i.e., of our theory of syntax. For the proof of this fact it is crucial that, 
at least for arithmetic formulas, (ND) and (BF) can be derived. Indeed, this was the 
principal reason for adding (ND) and (BF) to QM.

Fact 3.4. For all ϕ ∈ LPA the following sequents are derivable in PKF☐ assuming 
QM

( )

( )

i

ii

φ φ
φ φ
⇒

⇒ →




We end the discussion of the modal theory and the operator theory of truth by 
noting that Fact 3.2 carries over to the extended theories. In particular, the sequent

T � �φ φ⇔

will be provable for all sentences ϕ of the language under consideration in the cor-
responding theory.

next we show that the modal theories can be interpreted in appropriate opera-
tor theories of truth, that is we shall carry out the kripke reduction for the modal 
theories we have developed.

4. The Kripke Reduction

We show that MPkF is syntactically reducible to PkF☐ assuming QM5. More 
precisely, we show that MPkF is interpretable in PkF☐ assuming the underlying 
modal logic to be QM5 where the modal predicate ‘N’ gets translates as the modi-
fied truth predicate ‘☐T’. By inspecting the proof of this result it is also easily seen 
that BMPkF is interpretable in PkF☐ assuming QM.

However, it is worth discussing in some more detail what we are going to show 
in this section. In section 2 we have argued that the kripke reduction, if carried out 
from a proof- theoretic perspective, should preserve derivability within a theory. 
But this requirement is slightly ambiguous once one deals with theories formulated 
in partial logic. In the setting of partial logic, one can distinguish between preserva-
tion of theoremhood and what one might call preservation of inferences. Due to 
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the deduction theorem these two notions collapse within classical logic. This is not 
the case within partial logic and we take it that partial logic is foremost a study of 
permissible inferences rather than the study of partial tautologies. Consequently, 
we shall show that Halbach and Welch’s translation does not only preserve deriv-
ability but also inferences.

Before we state the details of our proposed reduction, we restate Halbach and 
Welch’s translation function from L PATN  to L PAT

 — slightly modified to account 
for the truth predicate we have added to the language of the modal predicate.

Lemma 4.1 (Halbach and Welch). There is a translation function 𝜌 from formulas 
of L PATN  to formulas of L PAT

  with the following properties

Here, the function symbol 𝜌•(s) represents the primitive recur-
sive function 𝜌 and thus if s is the name of a formula ϕ, then 𝜌•(s) will 
be the name of the formula 𝜌(ϕ). As an example consider the formu-
la . N T� � ��0 0=  By definition of 𝜌, ρ ρ( ) ( )N T T T� � �� � � ��0 0 0 0= = =•

  
and since ρ ρ ρ• •= = = = =( ) ( ) ( )� � �� � � � � � � � �T T T0 0 0 0 0 0  and 
ρ ρ• = = = = =( ) ( )� � � � � �0 0 0 0 0 0  we get ρ( )N T T T� � �� � � ��0 0 0 0= = = .

The reduction or interpretation then amounts to showing that if a formula ϕ 
is derivable in MPkF, then so will be the formula 𝜌(ϕ) in PkF☐ assuming QM5. 
Before we provide the corresponding theorem we state a lemma that will do the 
main job in the proof of the theorem.

Lemma 4.2. Let ∆ ⇒ Γ be an initial sequent of MPKF. Then the sequent 𝜌(∆) ⇒ 
𝜌(Γ) is derivable in PKF☐ assuming QM5 where 𝜌(A) for some set A is short for 
{𝜌(ϕ) : ϕ ∈ A}.

We only sketch a proof, as the proof basically consists in performing standard 
derivations within the sequent calculus we have provided. note, however, that 
by Theorem 3.4 arithmetic formulas are rigid in PkF☐ assuming QM (and thus 
QM5). In addition, by formalizing the properties of 𝜌 we may prove in PA
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These two facts allow us to deal with the arithmetical conditions appearing in the 
initial sequents of PkF☐ such as Cterm(x) and Sent(x) in the proof.

Proof sketch. We carry out the proof for the sequents (4′S) and (e′S) in some detail 
but leave the remaining items to the reader.

(4′S) Using (4S) and (PKF4)(ii) we derive:

now using (IA☐)(i) we conclude

By (†1), setting x ≐ 𝜌•(x), we may derive the 𝜌((4′S)), that is
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now using this together with (†1) and taking x = 𝜌•(x) we obtain

Sent x T x T T num x
PATNL ( ), ( ) ( ( ))¬ ⇒ ¬• • •� �

� �
�
�

ρ ρ

which is the desired 𝜌((E′S)). The initial sequence of the left branch of the proof 
tree is an instance of (PKF4)(i). The right branch is (∗), which we shall now prove. 
The left branch of the proof tree for (∗) starts with an instance of (IA☐)(ii), the 
right branch uses an instance of (PKF5)(i):

We may now use (ES) to conclude
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One last remark is important before we state the main theorem. The modal 
sequents (TS), (4S) and (ES) of QM5 are only used in the proof of Lemma 4.2 to 
establish, respectively, the cases (T′S), (4′S) and (E′S). Therefore, the above lemma 
carries over directly to the initial sequents of BMPkF with respect to PkF☐ as-
suming QM.

The following theorem establishes that the kripke reduction can be carried out 
from a proof- theoretic perspective. That is, using Halbach and Welch’s translation 
function the theory MPKF can be interpreted in PkF☐ assuming QM5.

Theorem 4.3. Let Γ ⇒ ∆ be a sequent derivable in MPKF. Then the sequent 𝜌(Γ) ⇒ 
𝜌(∆) is derivable in PKF☐ assuming the modal logic QM5. Again 𝜌(A) for some set 
A is short for {𝜌(ϕ) : ϕ ∈ A}.

Proof. By induction on the length of a derivation in MPkF we show that if a 
sequent Γ ⇒ ∆ is derivable in MPkF then so is the sequent 𝜌(Γ) ⇒ 𝜌(∆) in PkF☐ 
assuming QM5. The start of the induction is immediate by the Lemma 4.2. For 
the induction step we show that derivability in PkF☐ is preserved if the rule 
(RN) is applied. Since the remaining rules of BMPkF are also rules of PkF☐ 
this will end our proof. now as our induction hypothesis we may assume that 
ρ ρ ρ( ) ( ), ( )T Tt T� � � �Γ ∆⇒ ¬  is derivable in PkF☐. By the properties of 𝜌 this is 
just T T t T� � � �ρ ρ ρ( ) ( ), ( )Γ ∆⇒ ¬• . But then using the rule (R☐) we may derive 
the sequent   T T t T� � � �ρ ρ ρ( ) ( ), ( )Γ ∆⇒ ¬• , which by the properties of 𝜌 is just 
ρ ρ ρ( ) ( ), ( )N Nt N� � � �Γ ∆⇒ ¬ .

☐

The theorem establishes that inferences of MPkF are preserved in PkF☐ as-
suming QM5 modulo translation. This immediately implies that theoremhood is 
also preserved modulo translation. We may state this simpler claim as corollary of 
Theorem 4.3 by writing Σ Σ φ φ( )S  if the sequent ⇒ ϕ is derivable in a theory 
Σ (assuming the modal logic S).

Corollary 4.4. For all ϕ ∈ LPATN

MPKF PKF QM φ ρ φ⇒  5 ( )

The corollary and the foregoing theorem establish that MPkF is “kripke- 
reducible” to PkF☐ assuming QM5. In other words the modal predicate of MPkF 
can be understood as a modified truth predicate as suggested by kripke. It remains 
to substantiate our claim that our kripke reduction can be viewed as the proof- 
theoretic counterpart to the semantic reduction by Halbach and Welch.
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5. Modal Fixed- Point Semantics

We now give the semantics for LPATN and L PAT
 , which are slight variants of the 

semantics introduced by Halbach and Welch. Both semantics combine the strategy 
employed by kripke (1975) in formulating his theory of truth with ideas from pos-
sible world semantics for modal operator logic. The two semantics have the same 
structure, are both based on the strong kleene scheme and only diverge in their 
respective clause for the modal notion. The key concepts of the two semantics are 
the notions of a frame and of an evaluation function, a function that assigns to 
each possible world a subset of ω— the interpretation of the truth predicate.

Definition 5.1 (Frame, evaluation function). Let W ≠ ∅ be a set of natural number 
structures and R ⊆ W × W a dyadic relation on W. Then F = 〈W, R〉 is called a 
frame. A function f : W → P(ω) is called an evaluation function for a frame F. The 
set of all evaluation functions of a frame F is denoted by ValF.

Worlds have a two- fold role to play in the present framework. Firstly, they 
serve as parameters in the definition of the notion of “truth in a model” but sec-
ondly, they already provide the interpretation of the arithmetical vocabulary. The 
frame and the evaluation function are then employed to provide an interpretation 
of the semantic vocabulary, i.e., the truth predicate and the modal notion.

The previous remarks should become clearer by the definition of a model for 
LPATN induced by a frame and an evaluation function at a world w. We shall not 
explicitly mention the antiextension of the truth predicate in our presentation of 
the models since it can be taken to consist of the negations of the sentences in the 
truth predicate’s extension. However, we need to explicitly provide the antiexten-
sion of the necessity predicate.

Definition 5.2 (Models for LPATN). Let F be a frame, f an evaluation function and 
f w( )  the set {#¬ϕ : #ϕ ∈ f(w)} for arbitrary w. Furthermore, set

with [wR] being an abbreviation for {v ∈ W : wRv}. Then M w f w Y Yw w w= 〈 〉+ −, ( ), , , 
where w ∈ W is a natural number structure, f(w) is the extension of the truth predi-
cate and Y Yw w

+ −( )  the (anti- )extension of the necessity predicate, is a model of the 
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language LPATN induced by F and f at a world w.23 If it is important to keep track 
of the frame and the evaluation function, we write F, w SK

f φ  instead of Mw⊧SK ϕ.
The necessity predicate is thus interpreted as truth in all accessible worlds, but 

where the relevant notion of truth is not the metalinguistic notion but the notion of 
truth of LPATN itself. As a consequence the antiextension of the necessity predicate 
consists of those sentences whose negation is true in at least one accessible world. 
We now specify the notion of truth in a model M at a world w according to the 
modal strong kleene scheme.

Definition 5.3 (Modal Strong kleene Truth in a Model). Let F be a frame and f 
an evaluation function f . We define the notion of truth in a model induced by the 
frame F and the evaluation function f at a world w according to the strong Kleene 
scheme, ⊧SK by

tn is the interpretation of a term t in the standard model and Sent
PATL  denotes 

the set of natural numbers that are not codes of sentences under the coding scheme 
assumed. We say a formula ϕ is true in the model induced by the frame F and the 
evaluation function f, ( , ) , ( , )F f iff w F wSK SK

f φ φ∀ .
The semantics for the language L PAT

  differs from the semantics we have just 
presented in the way the modal notion is interpreted. Since we are now dealing 
with an operator instead of a predicate, the interpretation is no longer given by 
an extension and antiextension but by the standard clause known from possible 
world semantics.

23. Here ⋂ and ⋃ are taken to be operations on P(ω).

( ) ,

( ) ,

( ) ,

i F w s t s t

ii F w s t s t

iii F w Tt t f

SK
f

SK
f

SK
f







= ⇔ =

≠ ⇔ ≠

⇔ ∈

 

 

 (( )&

( ) , ( ) ( )

w t Sent

iv F w Tt t f w or t Sent

PATN

PATNSK
f



 

∈

¬ ⇔ ¬ ∈ ∈

L

L   

(( ) , &

( ) ,

v F w Nt t Y t Sent

vi F w Nt t Y or t

SK
f

w

SK
f

w

PATN




⇔ ∈ ∈

¬ ⇔ ∈

+

−

 

 

L

∈∈

¬¬ ⇔

∧ ⇔

Sent

vii F w F w

viii F w F w

PATN

SK
f

SK
f

SK
f

S

L

( ) , ,

( ) , ( ,

 

 

ψ ψ

ψ χ KK
f

SK
f

SK
f

SK
f

SK
f

and F w

ix F w F w or F w

x

ψ χ

ψ χ ψ χ

, )

( ) , ( ) ( , , )

(



  ¬ ∧ ⇔ ¬ ¬

)) , ( , ( / ))

( ) ,

F w x for all n F w n x

xi F w x th

SK
f

SK
f

SK
f

 



∀ ⇔ ∈

¬∀ ⇔

ψ ω ψ

ψ

   

eere exists an n F w n xSK
f∈( , ( / )) ψ



 Necessities and Necessary Truths. Proof-Theoretically • 229

Ergo • vol. 2, no. 10 • 2015

Definition 5.4 (Models for L PAT
 ). Let F be a frame and f ∈ ValF an evaluation 

function on F. Then the tuple (F, f) is called a model of L PAT
  .

We define the notion of truth in a model according to the operator strong 
kleene scheme.

Definition 5.5 (Operator Strong kleene Truth in a Model). Let F be a frame and 
f an evaluation function. The truth of a formula ϕ of L PAT

  in the model (F, f) at 
a world w according to operator strong Kleene truth, F, w SK

f


φ , is defined by 
clauses (i)- (iv) and (vii)- (xi) of Definition 5.3 but where the clauses (v) and (vi) of 
Definition 5.3 are replaced by

( ) , ( , )

( ) , ( & ,

′ ⇔ ∀ ⇒

′ ¬ ⇔ ∃

v F w v wRv F v

vi F w v wRv F

SK
f

SK
f

SK
f

 


 







φ φ

φ vv SK
f


¬φ)

We say that ϕ is true in the model (F, f), (F, f) ⊧SK☐ ϕ, iff for all w W F w SK
f∈ ( , )


φ .
Following the outlines of Halbach and Welch we next define operations on 

evaluation functions called the modal strong kleene jump and the operator strong 
kleene jump.

Definition 5.6 (Modal and Operator Strong kleene Jump). Let F be a frame and 
ValF the set of evaluation functions of F. The modal strong Kleene jump (operator 
strong Kleene jump) ΘF (ΘF

 ) is an operation on ValF relative to F such that for all 
w ∈ W

[ ( )]( ) {# : , }

[ ( )]( ) {# : , }.

Θ

Θ
F SK

f

F SK
f

f w F w

f w F w

=

=

φ φ
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Importantly, the modal and the operator strong kleene jump will be monotone 
operations with respect to an ordering ≤:

Lemma 5.7 (Monotonicity). Let F be a frame. The jump Θ ΘF F( )  is a monotone 
operation on ValF, i.e. for all f,g ∈ ValF:

where f ≤ g :⇔ ∀w ∈ W(f(w) ⊆ g(w)).

f g f g

f g f g
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Proof. Clearly for all evaluation functions f, g with f (w) ≤ g(w) for all w ∈ W we 
have [ΘF(f)](w) ⊆ [ΘF(g)](w) and thus ΘF(f) ≤ ΘF(g). Similarly for ΘF

 .
☐

The monotonicity of ΘF implies, assuming standard set theory, the existence of 
fixed points, i.e., the existence of evaluation functions f, g ∈ ValF such that

Θ

Θ
F

F

f f

g g

( )

( ) .

=

=

As we shall show in the next section, exactly these fixed points induce models for 
BMPkF and PkF☐ assuming the underlying modal logic to be QM.

6. The Adequacy of MPKF and PKF☐ relative to Modal Fixed- 
Point Semantics

In this section we show that the two theories we have constructed are intimately 
related to the corresponding modal fixed- point semantics. However, we should 
warn the reader that we do not attempt to connect the notion of truth in modal 
fixed- point semantics with the notion of derivability in MPkF or PkF☐, as one 
might expect if one thinks of adequacy as entailing the completeness of some proof 
system. Such a result is excluded by the fact that in modal fixed- point semantics 
the standard model of arithmetic is assumed to be the base model at every world. 
Thus every true arithmetical sentence will be true in modal fixed- point seman-
tics but of course not all of them can be proved in the modal theories because of 
Gödel’s incompleteness theorem.24

Rather, our notion of adequacy connects the models of our theories to the 
models of modal fixed- point semantics. It asserts that the fixed- point models that 
we obtain relative to so- called equivalence frames are exactly the models of MPkF 
and PkF☐ assuming QM5 respectively.25 Thus only the fixed- points of the modal 
and the operator kripke jump respectively give rise to models of MPkF and PkF☐ 
assuming QM5 respectively. Philosophically speaking, one might take such a result 
to establish that fixed- point models are precisely the intended models of the theo-
ries. Moreover, this adequacy result also has the nice consequence that the notion 
of truth in modal fixed- point semantics corresponds to the object- linguistic notion 

24. even if we would allow for alternative base models it is unlikely that we would obtain an 
interesting “completeness” result. See Fischer, Halbach, kriener, and Stern (2015) for a discussion of 
these and related issues.

25. In the terminology of Fischer et al. (2015) our adequacy result shows that MPkF and PkF☐ 
are n- categorical relative to equivalence frames.
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of truth as characterized by MPkF and PkF☐ respectively— the theories we have 
developed force these two notions to correspond. By this we mean that if we can 
prove T� �φ  for some sentence ϕ in MPkF (PkF☐ assuming QM5) then ϕ will be 
true in each Sk (SK☐) fixed- point model at every world.26

Before we provide the relevant results to this effect, we introduce some auxil-
iary terminology. Le Σ be some theory. We write F w f, γ Σ  for γ ∈ {SK, SK☐} iff 
for all Σ derivable sequents Γ ⇒ ∆ and variable assignments β:

• ∈ ∈if F w f, [ ] ,γ φ β φ ψ for all  then there exists a  such thΓ ∆ aat 

 then there exists a  such 

F w

if F w

f

f

, [ ]

, ,





γ

γ

ψ β

ψ φ• ¬ ∈ ∈∆ Γ tthat F w f, [ ]γ φ β¬

We assume β to be constant across worlds and assume the Sk- satisfaction rela-
tion to be defined in the expected way. Finally, let S be some modal logic. We take 
PkF☐S to be the set of all PkF☐ derivable sequents assuming the modal logic S.

We state the key result, which establishes that the fixed- point models we obtain 
relative to arbitrary frames are exactly the models of BMPkF and PkF☐ respec-
tively.

Theorem 6.1. Let F be a frame and f ∈ ValF an evaluation function. Then

Proof. For the left- to- right direction we need to show that every BMPkF (PkF☐ 
assuming QM) derivable sequent preserves truth in the respective fixed- point mod-
els. The proof is a routine induction on the length of a proof and is left to the 
reader. For the converse direction we assume the right- hand- side. It then suffices to 
show for an arbitrary world w that (i) [ΘF(f)](w) = f(w) and (ii) [ ( )]( ) ( )ΘF f w f w = . 
(PKF6) tells us that there will be only sentences in the extension of the truth predi-
cate.27 We may thus establish our claim by an induction on the positive complexity 
of the members of (i) [ΘF(f)](w) and (ii) [ ( )]( )ΘF f w . The proof is routine and for 
both (i) and (ii) we only check one of the modal cases for sake of illustration.

(i) We discuss the case where ϕ 
=  Nt. The reader may check the remaining 

cases.

26. Similarly, if the theory proves N� �φ  then ϕ will be true in the model in all the worlds ac-
cessible from some world.

27. note that, as we are working within the standard model, we only need to deal with standard 
sentences.
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(ii) We discuss the case ϕ 
=  ☐ψ and assume that the induction hypothesis 

holds for ψ. The remaining cases are again left to the reader.

☐

Theorem 6.1 tells us that the standard models of BMPkF and PkF☐ (assum-
ing QM) are generated exactly by the fixed- points of the modal and the operator 
strong kleene jump relative to arbitrary frames. More importantly, we may obtain 
similar adequacy results for the theory MPkF and (unsurprisingly) for PkF☐ as-
suming alternative modal logics if we restrict our attention to classes of modal 
frames which meet certain properties.

Definition 6.2. Let F be a frame and Σ some theory. If for all evaluation func-
tions f with Θ ΘF Ff f f f( ) ( ( ) )= =  and ∀ ∀w F w w F wSK

f
SK
f( , ) ( (( , ) ) Σ Σ


, we write 
F FSK SK Σ Σ( )



Theorem 6.3. Let F = 〈W,R〉 be a frame. Then
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Proof sketch. The left- to- right direction works as in possible world semantics for 
modal operator logic. For the converse direction we consider case (i) and assume 
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¬wRw. Moreover, let τ be the truth teller.28 We observe that there is a fixed point, 
that is, an evaluation function f, such that τ ∉ f(w) but τ ∈ f(v) for all v with wRv. 
Therefore, we have F, w NSK

f� � �τ  but F w TSK
f, /� � �τ  which contradicts the se-

quent (T′S). Similarly for the remaining items.
☐

Corollary 6.4. Let F = 〈W,R〉 be a frame. Then

R is an equiv relation F MPKFSK. ⇔ 

Similarly, as a consequence of well- known facts about possible world seman-
tics for modal operator logic we get the parallel results for our modalized theory 
of truth. We only mention the adequacy result for PkF☐ when the modal logic 
QM5 is assumed.

Theorem 6.5. Let F = 〈W,R〉 be a frame. Then

R is an equiv relation F PKFSK QM. ⇔ 


 5

A final trivial corollary of the adequacy results we have put forward is the 
consistency of all the theories we have constructed. Again we only explicitly men-
tion two consistency results as the remaining consistency results are immediately 
implied by those mentioned.

Corollary 6.6. MPKF and PKF☐ assuming QM5 are consistent.

This concludes the investigation of the relation between the modal theories and 
modal fixed- point semantics. We have shown that the fixed- points of the two jump 
operations are exactly the evaluation functions that give rise to models of the re-
spective theories, if frames with the suitable property are assumed. This shows that 
there is, to say the least, a close connection between the theories we introduced 
and modal fixed- point semantics, as laid out by Halbach and Welch. Due to this 
close tie between the theories and the semantics employed in Halbach and Welch’s 
reduction, the proof- theoretic version of the reduction we have carried out may 
rightly be considered as a proof- theoretic counterpart to Halbach and Welch’s 
work.29

28. That is a sentence τ for which we can prove T � �τ τ⇔  using only the logical and arithmeti-
cal initial sequents of PkF in the language LPAT.

29. The skeptic may argue that we have failed to axiomatize Halbach and Welch’s semantics for 
their proposal is based on the least fixed point whereas we allow for arbitrary fixed points. Yet, if we 
allow for the least fixed point only, no axiomatization of the semantics in the sense of Theorem 6.1 is 
forthcoming due to complexity issues. See again Fischer et al. (2015) for a discussion of these issues.
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7. Conclusion

Summing up, we have constructed modal theories and operator truth theories for-
mulated in the logic of FDe. We showed that the modal theories were “kripke- 
reducible” to the operator truth theories, that is, the modal theory can be interpret-
ed in the operator truth theory if we assume an appropriate modal logic where the 
modal predicate is translated as the truth predicate modified by the modal operator. 
Finally, we showed that the theories we constructed match the semantics Halbach 
and Welch used to carry out their semantic kripke reduction. We take this to estab-
lish that the semantic reduction of Halbach and Welch has a natural proof- theoretic 
counterpart. Moreover, the family of theories we constructed is rather flexible with 
respect to the modal properties assumed, which in turn suggests that a reducible 
modal theory will be found for almost any set of modal properties one wishes to 
adopt. The critical reader might draw attention to the fact that we have not al-
lowed for contingent vocabulary in our language and have thereby failed to provide 
a philosophically interesting study of modality. However, in this context nothing 
but further complication would arise if we had allowed contingent vocabulary in 
our language. All the results we have provided carry over with minor modification 
when contingent vocabulary is introduced into the picture and the absence of con-
tingent vocabulary should therefore not count against our proposal.30

Let us now turn to the philosophical evaluation of our work. To start with 
we consider the view that understands the kripke reduction along the lines of 
Halbach and Welch, that is, as an argument in favor of the operator approach. 
According to this view, we have argued, the proponent of the predicate approach 
will be under considerable pressure to revise his treatment of modal notions in 
favor of an operator treatment of modality. The idea is that it no longer suffices to 
reject possible worlds because the syntactic reduction we have carried out shows 
that conceiving of the modal predicate as a truth predicate modified by a modal 
operator is equally warranted from a proof- theoretic perspective. The proponent 
of the predicate approach might reply that the modal theories we have constructed 
do not capture the kind of modal predicate she has in mind and that, indeed, the 
success of the kripke reduction is nothing but a case in point. We are more than 
happy to concede this if the proponent of the predicate approach were to provide 
such an alternative modal theory, which fails to be kripke reducible. However, 
so far, very little progress in direction of developing such a theory has been made 
and the proponent of the operator approach has every right to be skeptical as to 

Also even though the reduction of Halbach and Welch is carried out assuming the least fixed 
point we do not think that this is actually of crucial importance: the reduction will go through for 
arbitrary fixed points as long as we make some suitable specification and adjustments to the con-
struction.

30. See Stern (2014a) for hints on how to integrate contingent vocabulary.
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whether a philosophically attractive theory of this kind is forthcoming. So while 
our proof- theoretic addition to Halbach and Welch’s reduction might not seal the 
case for operator approaches, it forces the proponent of the predicate approach to 
put his own non- reducible theory of modality on the table.

There is a further, more subtle argument the proponent of the predicate ap-
proach may bring forward in her defense, which highlights a slight asymmetry 
between Halbach and Welch’s semantic reduction and our proof- theoretic coun-
terpart: while in the semantic case the converse direction of the reduction holds 
as well, this need not be true in the proof- theoretic case. Indeed, to date we don’t 
know whether a formula is derivable in MPkF if its translation is derivable in 
PkF☐ assuming QM5. In other words we don’t know whether 𝜌 faithfully inter-
prets MPkF in PkF☐ assuming QM5. now, assuming that there was a sentence 
for which this implication would fail the proponent of the predicate approach 
could argue that one of the advantages of the predicate approach was precisely 
that it refrained from asserting this particular sentence.31 While this is certainly 
a coherent position it does not strike us as a very plausible one. First, it hinges 
on the fact that the converse direction of the syntactic reduction does not hold, 
which is highly speculative, as we don’t see a principle reason why MPkF should 
not be faithfully interpretable in PkF☐ assuming QM5. But let us assume for sake 
of the argument that MPkF cannot be faithfully interpreted in PkF☐ assuming 
QM5. Still it seems to us that simply because there is no principled reason speaking 
against the converse direction in the case of MPkF, it is unlikely that an alternative 
theory, which can be faithfully interpreted in PkF☐ assuming QM5, will be very 
different in character to MPkF.32

The question then arises why the proponent of the predicate approach is in-
clined to accept MPkF as a philosophically attractive theory of modality, while the 
alternative theory fails to be attractive on principled grounds. We don’t see how this 
question can be answered in a plausible and satisfactory way. nonetheless, a result 
establishing the converse direction of the proposed reduction is clearly desirable.

In sum, it seems that if we follow the dialectics of Halbach and Welch and view 
the expressive strength of the predicate approach as the sole argument in favor 
of conceiving of modalities as predicates, then the syntactic and semantic kripke 
reduction taken together make a strong case in favor of the operator approach. 

31. I thank an anonymous referee for raising this worry. I also owe the formulation of the worry 
to this referee. It is also worth noting how a proponent of the predicate approach should not argue: 
she should not argue that we have failed to provide an attractive theory of modality because the 
modal theory is not faithfully interpretable in the operator truth theory. She should not argue in this 
way since by doing so she would accept the understanding of the modal predicate as the modified 
truth predicate of PkF☐ and thus implicitly accept the reducibility claim.

32. The set of sentence in the range of 𝜌, which are provable in PkF☐ assuming QM5 is recur-
sively enumerable. Therefore there will be an axiomatizable modal theory that is faithfully interpre-
table in PkF☐ assuming QM5.
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However, already in the introduction of this paper we have pointed toward further 
reasons why the predicate approach may be preferable and, presumably, the pro-
ponent of the predicate approach will have further such reasons for her preferred 
approach, other than its expressive strength. On this reading the kripke reduction 
serves as an argument in favor of predicate approaches to modality because it 
shows that we can develop workable and philosophically adequate approaches to 
modality. Viewed in this way Halbach and Welch’s work shows how to obtain an 
attractive semantic theory of modal predicates, whereas our work establishes this 
point from a proof- theoretic perspective and, in addition, shows that the axiomatic 
and the semantic theory fit nicely together. Indeed this interpretation of the kripke 
reduction seems to be more in line with kripke (1975) himself who viewed his pro-
posal as a vindication of predicate approaches to modality against the backdrop of 
liar- like paradoxes that threaten these approaches. kripke writes:

We can even “kick away the ladder” and take Nec(x) as primitive, treating 
it in a possible world scheme as if it were defined by an operator plus the 
truth predicate. (kripke 1975: 713- 14)

now, this is essentially what happens in Halbach and Welch’s semantics for 
the language of the modal predicate and, by the same token, by introducing the 
theory MPKF we have shown that the ladder can be also kicked away from a 
proof- theoretic perspective. Moving on from there the proponent of the predicate 
approach could even try to provide theories of modality in which the modal predi-
cate can no longer be viewed as a modified truth predicate.
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