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Abstract
Why should moral philosophers, moral psychologists, and machine ethicists care about 
computational complexity? Debates on whether artificial intelligence (AI) can or should 
be used to solve problems in ethical domains have mainly been driven by what AI can 
or cannot do in terms of human capacities. In this paper, we tackle the problem from the 
other end by exploring what kind of moral machines are possible based on what computa-
tional systems can or cannot do. To do so, we analyze normative ethics through the lens of 
computational complexity. First, we introduce computational complexity for the uninitiated 
reader and discuss how the complexity of ethical problems can be framed within Marr’s 
three levels of analysis. We then study a range of ethical problems based on consequential-
ism, deontology, and virtue ethics, with the aim of elucidating the complexity associated 
with the problems themselves (e.g., due to combinatorics, uncertainty, strategic dynam-
ics), the computational methods employed (e.g., probability, logic, learning), and the avail-
able resources (e.g., time, knowledge, learning). The results indicate that most problems 
the normative frameworks pose lead to tractability issues in every category analyzed. Our 
investigation also provides several insights about the computational nature of normative 
ethics, including the differences between rule- and outcome-based moral strategies, and 
the implementation-variance with regard to moral resources. We then discuss the conse-
quences complexity results have for the prospect of moral machines in virtue of the trade-
off between optimality and efficiency. Finally, we elucidate how computational complexity 
can be used to inform both philosophical and cognitive-psychological research on human 
morality by advancing the moral tractability thesis.
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1 Introduction

Computational systems of hardware and software continue to enter and transform a grow-
ing number of human domains. As autonomous vehicles, virtual teachers, and carebots 
augment or even take over traditional human roles of drivers, educators, and caretakers, 
it becomes hard to ignore the need for systems that align with the norms and moral stand-
ards associated by such roles.1 These concerns have spawned the interdisciplinary field of 
machine ethics, which broadly explores the prospects of implementing ethics into machines 
(Wallach and Allen 2008; Anderson and Anderson 2011). Lying in the intersection of com-
puter science and moral philosophy, machine ethics encompasses a spectrum of more or 
less interconnected research aims, including work that addresses the challenges of value 
alignment (Gabriel 2020), explainability (Gunning et al. 2019), and safety (Amodei et al. 
2016) of existing AI methods, the development of systems tackling various ethical dilem-
mas (Cervantes et al. 2020; Tolmeijer et al. 2020), and theoretical debates on whether and 
to what extent artificial moral agents are feasible or desirable (Floridi and Sanders 2004; 
Behdadi and Munthe 2020).2

The feasibility debate has, in turn, mainly been driven by what AI systems can or can-
not do in terms of human capacities; whether artificial agents could be autonomous or have 
free will (Hellström 2013), be equipped with human-like rationality (Purves et al. 2015), 
or capable of conscious experience (Himma 2009). However, by centering on capacities 
that remain elusive and conceptually opaque from a computational perspective, debates on 
artificial morality fails to engage with the technical dimensions of AI, and as a result, they 
become practically otiose for the design and development of ethical machines (Mabaso 
2021; Behdadi and Munthe 2020; Stenseke 2022b). Another issue that obscures the feasi-
bility of moral machines is the absence of systemic evaluation tools (Tolmeijer et al. 2020). 
In machine ethics, there are at present no domain-specific nor general benchmarks that can 
be used to evaluate the performance of different ethical systems. Consequentially, since 
evaluations of systems are limited to the experimental conditions of their particular imple-
mentation, the scalability of solutions and generalizability of results are severely restricted.

In this paper, we address these issues by exploring what kind of moral machines are 
possible based on the ethical problems computational systems can or cannot solve effec-
tively. To do so, we analyze normative ethics through the lens of computational complexity 
theory, which classifies problems in terms of the resources (e.g., time and space) a com-
puter requires to solve them. While previous work have discussed computational limita-
tions for moral machines more informally (Brundage 2014; Stenseke and Balkenius 2022), 
and provided embryonic complexity analyses of ethical actions (Reynolds 2005) and plans 
(Lindner et  al. 2020), the computational complexity of ethics and its potential relevance 
for machine ethics remains largely unexplored. For instance, if artificial systems were to 
operate in ethical domains where time is of the essence (e.g., a self-driving ambulance), 
it is crucial that such systems can make efficient as well as competent ethical decisions. 
Furthermore, if human moral cognition is constrained by tractability (Van Rooij 2008), the 
analysis might also serve moral psychology and normative theory by constraining the space 
of problems an agent following a certain normative theory can be reasonably expected to 
solve.

1 Unless specified, terms such as “AI system”, “machine”, and “computer” will be used interchangeably to 
denote computational systems of hardware and software.
2 See also Coeckelbergh (2020) for an accessible introduction and overview of AI ethics.
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In the rest of the paper, concepts and theories from both moral philosophy and computer 
science are introduced and explained in a way that is friendly for readers with a limited 
background in one or both areas. It is structured as follows. First, we give an introduction 
to computational complexity and tractability with the aim of explaining their relevance for 
the uninitiated reader (Sect. 2). In Sect. 3, we survey previous implementations in machine 
ethics and discuss various interpretations of the complexity of ethics using Marr’s three 
levels of analysis (Sect. 3.1), which motivates the analysis of problems posed by normative 
theory (computational level, Sect. 3.1.1) that are solved through a variety of computational 
methods (algorithmic level, Sect. 3.1.2) by a deterministic Turing Machine (implementa-
tion level, Sect. 3.1.3). We then explore the complexity of various ethical problems based 
on consequentialism (Sect. 4), deontology (Sect. 5), and virtue ethics (Sect. 6). The main 
aim is to elucidate the complexity associated with the problems themselves (e.g., due to 
uncertainty, combinatorics, strategic dynamics, and generality), the available resources 
(e.g., time, cognition, and domain knowledge), and the computational methods employed 
to tackle the problems (e.g., probability, logic, and learning). The results indicate that most 
problems the normative theories pose lead to intractability issues (a succinct summary is 
given in Table 3), and especially if the prescriptive ideal should be optimally satisfied. In 
particular, based on the intractability (and undecidability) stemming from combinatorics 
of action plans (Sect.  4.1), probabilistic causal inference (Sect.  4.2), dynamic and par-
tially observable environments (Sect.  4.3), general rules (Sect.  5.1), strategic dynamics 
(Sect. 5.1.3), logic (Sect. 5.2), semantics (Sect. 5.2.3) and learning (Sect. 6.1), we firmly 
conclude that perfect moral machines are impossible. Our investigation also provides 
additional insights regarding the computational nature of the normative theories, includ-
ing (i) the differences between action- and outcome-based strategies, (ii) the benefits of 
moral hybrids (Sect.  5.3), and (iii) the extreme implementation-variance with regard to 
moral resources. In Sect. 7, we discuss the consequences the results have for the prospects 
of moral machines by focusing on the trade-off between optimality and efficiency, the 
equivocal role of normative theory, and the intimate relationship between different moral 
resources. Finally, we demonstrate how computational tractability can be used to inform 
both philosophical and psychological research on human morality by advancing the Moral 
Tractability Thesis.

2  The complexity of making a salad

Let us begin with an illustrative example.3 There is a high chance that you have stumbled 
upon a salad bar where you can choose ingredients to your own liking.4 The question is, 
what ingredients do you pick in order to create the best tasting salad? Let us assume that 
you can immediately assess the tastiness of each ingredient in isolation and give them a 
“taste value” (v) on a scale ranging from the most off-putting ( −10 ) to the most delicious 
( +10 ). With these values, you find that one efficient way of putting together a decent salad 
is to exclusively pick ingredients (I) with a positive v ( v(I) > 0 ), or a v that is higher than 
a certain threshold (e.g., v(I) > 5 ). Let us name this strategy Ψ . In fact, as a queue is lin-
ing up behind the salad bar, you appreciate the speed Ψ allows you to make a salad: you 

3 The reader who is already familiar with computational complexity is advised to skip to Sect. 3.
4 The example is inspired by the excellent introduction to complexity analysis given in Van  Rooij et  al. 
(2019).
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only have to visit each ingredient once and check whether they are sufficiently tasty to be 
included in your mix. Furthermore, you realize that the performance of Ψ grows, in the 
worst-case, linearly with the number of salad ingredients. This means that, regardless of 
how many ingredients there could be, Ψ will always be efficient: for any input—in this 
case, n number of ingredients—the time it takes to make a salad will closely mirror the size 
of the input (i.e., 1000 ingredients equals 1000 visits to distinct ingredients).

But upon further reflection, you realize that something is odd with Ψ . It asks you to put 
sun-dried tomatoes on top of pineapple. You imagine how the saltiness of sun-dried toma-
toes mixes with the sweet–sourness of pineapple as they traverse the taste buds of your 
tongue. Your immediate disgust of the image reveals a fatal flaw of Ψ : even if these two 
ingredients were given some of the highest taste values ( v > 9 ), their combination yields a 
taste value that is terribly off-putting ( v = −10 ). You realize that Ψ violates a fundamental 
principle of gastronomy, namely, that combinations of ingredients yield taste values that do 
not necessarily correspond with the tastiness of its individual ingredients. We can call this 
principle the combinatorial principle of gastronomy (CPG).

Luckily, you have a perfect gustatory imagination and can immediately assess the taste 
value of any given combination of ingredients. How do you find the optimal combination 
of ingredients in a way that maximizes taste value and adheres to CPG? We can formally 
describe this as the following computational problem:

optimal salad following cpg

Input: A salad bar as a set SB = {I1, I2,… , In} of n ingredients and a value function 
v that assigns a taste value to every subset (or salad) S ⊆ SB.
Output: A salad S ⊆ SB such that v(S) is maximized over all possible salads in the 
salad bar ( S ⊆ SB).

You realize that there is a straight-forward strategy, you call it Φ , that is guaranteed to pro-
duce an optimal salad while satisfying CPG: simply imagine the taste value of each possi-
ble subset S ⊆ SB and pick the salad with the highest v(S). But you have a feeling that there 
must be a catch with Φ . You do some basic combinatorics: if there was only one ingredi-
ent, e.g., {cucumber} , there would be one possible salad (made entirely of cucumber); two 
ingredients yield three distinct salads, e.g., {cucumber}, {onion}, {cucumber, onion} ; three 
ingredients make seven; four make fifteen; etc. You determine that the number of possible 
salads grows exponentially with the number of ingredients, so that n ingredients produce 
2n − 1 possible salads. The salad bar you are currently facing has 30 ingredients, which 
presents 230 − 1 = 1, 073, 741, 823 distinct salads. Since your otherwise extraordinary gus-
tatory system can only assess the taste of one salad per second, Φ asks you to imagine 
salads for roughly 34 years, that is, if you were to optimally satisfy the combinatorial prin-
ciple of gastronomy. Unfortunately, you have already wasted more than enough time, and 
the people in the queue behind you are very upset.

The example serves to draw four important lessons about computational complexity:

(1)  The first is that many decision problems that we encounter in everyday life can be 
formulated in similar ways, from planning an itinerary, packing a bag for a trip, or 
inviting a selection of friends to a birthday party in your small apartment. And as we 
will see throughout this paper, ethical problems are no exception. You might wonder 
why it matters so much to find the optimal salad; at worst, you end up with a poor-
tasting salad, which is far from a disastrous consequence. But would you be so quick 
to disregard optimal results if the problem was a matter of life and death? And even if 
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you do not care much about the combinatorial principle of gastronomy, there might be 
moral principles that are fundamental to your ethical life.

(2)  The second lesson is that the complexity of a problem can be expressed in terms of 
the resources an agent or algorithm requires to solve it. For computational systems, the 
two most interesting resources are time and space. The latter conventionally denotes 
the size of computer memory (e.g., bits), whereas the former refers to the number 
of machine operations (or synonymously used terms such as “computations”, “cal-
culations”, “steps”, or “state transitions”). Why measure time in terms of machine 
operations and not in seconds or minutes? The reason is that, while the real-time 
speed of computers solving a problem by running some algorithm A can vary greatly, 
the amount of machine operations they need to execute A remain unchanged. A 21st 
century computer and one from the 1960s both have to consider 2n − 1 salads if they 
were to produce the best tasting salad following Φ , even if the modern computer could 
potentially do so a million times faster. Importantly, this forms the basis of the Invari-
ance Thesis,5 which allows us to analyze and compare the worst-case complexity that 
is inherent to computational problems independent of specific machines.

(3)  This leads to the third lesson, which is the simple observation that some problems are 
more complex than others. If a problem is undecidable, it means that it can be proven 
that no algorithm can be constructed to solve the problem.6 Among the decidable 
problems, the most important distinction is between problems that are tractable and 
intractable. Crudely put, a problem is tractable if it can be solved using a ‘realistic’ 
amount of resources. For most computational theorists, however, tractable is synony-
mous with “computable in polynomial time”. This means that the runtime (number of 
machine operations) of an algorithm is upperbounded by a polynomial expression in 
its input, i.e., of the type nc (where c is some positive constant). This includes functions 
that show logarithmic ( log n) , linear (n), quadratic ( n2 ), or cubic ( n3 ) growth in time as 
the input n increases. The class of decision problems that can be solved in polynomial 
time by a deterministic Turing machine is called P, capturing the notion of decision 
problems with “effective” decision procedures (Cobham 1965). Conversely, problems 
that cannot be solved in polynomial time are called intractable as their runtime grows 
exponentially ( cn ), by a factorial (n!), or super-exponentially ( nn ). This notion of trac-
tability is illustrated in the difference between decision procedure Ψ and Φ . For Ψ , 
salad-making time will never grow more than linearly in relation to the number of 
ingredients. Using Big O notation, which expresses an asymptomtotic upperbound7 of 
a function (in this case, a mapping between input size n and time), the time complexity 
of Ψ is O(n). By contrast, performing an exhaustive search over all possible salads of 

5 More formally, the thesis states that given two machines M1 and M2 , and a given computational problem 
Θ , the complexity of Θ executed by M1 and M2 will differ at most by a polynomial amount. That is, if M1 
is able to compute Θ in time t, M2 can compute Θ in tc , where c is a constant. The thesis is widely accepted 
among computer scientists provided that M1 and M2 are any type of Turing machine or any other reasonable 
model of computation (e.g., cellular automata, neural networks) and the input is reasonably encoded (e.g., it 
does not involve irrelevant information). See Garey and Johnson (1979).
6 The halting problem is an example of an undecidable problem: in 1936, Alan Turing proved that there is 
no algorithm that can determine whether an arbitrary program eventually halts. Decidability will be further 
addressed in Sect. 5.2.1.
7 “asymptotic” means that we can ignore lower order polynomials and constants when we describe a func-
tion. For instance, the function f (n) = 4n + n3 is written as O(n3) , since 4n becomes insignificant compared 
to n3 as n increases.
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the salad bar leads Φ to the exponential O(2n) . Even if your gustatory imagination could 
utilize the speed of the parallelized neural computation of your brain, which allowed 
you to imagine one billion salads per second, a salad bar of 50 ingredients would still 
take you 13 days to master, and a bar of 60 takes you roughly 37 billion years. Of 
course, no sane person would spend that much time imagining the taste of different 
salads. But the problem with problems remains: if we want to solve them effectively, 
we might need to give up our requirement of optimality. Instead of “best imaginable”, 
we need compromises that are “good enough” given the available resources. As such, 
intractable problems can present an uncomfortable trade-off between ideal and feasi-
ble. And it is precisely how this uncomfortable trade-off affects ethical decisions for 
computational agents that will be the topic of this paper.

  Part of the reason why there is no effective way to make an optimal salad follow-
ing CPG is captured in the widely believed conjecture P ≠ NP. It states that decision 
problems that have solutions which can be checked (or verified) effectively cannot 
necessarily be solved effectively. To be more precise, it states that the complexity 
class P does not equal NP: the class of decision problems solvable in polynomial time 
by a non-deterministic TM, or equivalently, decision problems where solutions can 
be verified in polynomial time. Φ exemplifies such a case. Even if you can check the 
taste of any combination of salad ingredients quickly (polynomial time), there is no 
deterministic procedure that allows you to find the optimal; you still have to check the 
entire space of combinations to ensure that you have the optimal subset. In fact, finding 
the optimal salad following CPG is NP-hard, which means that it is at least as hard as 
the hardest problem in NP. More formally, a problem X is NP-hard when every problem 
in NP can be reduced in polynomial time to X. This means that if we assume that a 
solution for X takes one unit of time, the solution can be used to solve every problem 
in NP in polynomial time. A closely related property is the notion of completeness. An 
NP-complete problem is both NP-hard and belongs to NP. Note that, while P and NP 
are classes of decision problems—which can be framed as a yes/no-type question—NP-
hard problems are not restricted to decision problems as such; they are simply at least as 
hard as the hardest decision versions of the same problem. For instance, while decision 
variants of NP-hard problems might be NP-complete—e.g., the Boolean satisfiability 
problem (SAT) or subset sum problem (SSP)—other variants of the same problem, e.g., 
framed as optimization or search problems, are not (they are not decision problems). 
Again, this is illustrated in our example: salad making following CPG is NP-hard since 
it is an optimization version of the subset sum problem (SSP), which is NP-complete.

  Furthermore, note also that, while NP-hardness only denotes a general lower bound, 
it does not say anything about an upper bound, which might be more informative for 
understanding exactly how hard a problem is.8 In computational complexity theory, 
classes of computational problems are instead defined by the upper bound (or con-
straints) on the amount of resources they require in the worst-case (formalized using 
Big O notation). In turn, this allows us to describe general hierarchies of how complex 
problems are. For instance, problems solvable in polynomial time by a deterministic 
TM are also solvable by a non-deterministic TM, which implies that P is a subset ( ⊆ ) 
of NP. Similarly, it is widely believed that P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXP-

8 For instance, the halting problem is NP-hard but undecidable (it is not decidable in a finite amount of 
operations); the true quantified Boolean formula language (QBF) is NP-hard but decidable in polynomial 
space (PSPACE-complete) (Garey and Johnson 1979).
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SPACE (see Appendix 1 for a summary of the complexity classes used in this article). 
The worst-case analysis can be motivated by the fact that an algorithm needs to con-
sider all possible inputs of a problem, which includes the worst-case input. But in the 
analysis of algorithms, there are several other essential tools to study complexity. For 
instance, if the lower and upper bound coincide, we have a tight bound. Again, there 
is such a tight bound on the time complexity of making an optimal salad following Φ : 
we have to imagine the taste of at least and at most 2n − 1 salads to ensure optimality. 
Alternatively, we could imagine that salad bars were arranged in ways that allowed for 
exploitation, e.g., sorted in rows of pre-made combinations. If so, we could measure the 
time complexity of an algorithm in terms of how many operations it required to make 
a salad over a number of different salad bars (inputs), and see how it performed in the 
best-case, average-case, and worst-case.9 In short, computational complexity provides 
a smorgasbord of analytical tools to understand the difficulty of problems and their 
algorithmic solutions.

(4)  The fourth lesson, and a corollary of the third, is that the way an agent solves a problem 
ultimately depends on its resources, broadly construed. Besides time and memory-size, 
these resources include heuristics (efficient strategies), cognition (capacities for per-
ceiving and acting in the world),10 knowledge, and learning. In reality, you might mix 
aspects of Ψ and Φ . You might select a few key ingredients as a basis that you already 
know yields a reasonably tasty salad, and imagine whether this basis could benefit from 
further additions. Drawing from your vast experience of cooking—combining previ-
ous trial-and-error, general rules of thumb, and educated guess-work—you are able 
to quickly put together an almost perfect salad while still adhering to the CPG (albeit 
not optimally). In fact, your stomach might already know what kind of salad it craves 
before you even see what the bar offers; you only have to pick up the ingredients. In 
such cases, a low input-size (e.g., 10 ingredients) could be a curse rather than a bless-
ing, since you find that a critical ingredient is missing. The main point is that, although 
problems might be intractable regarding some specific resource (e.g., time), or due to 
the choice of strategy (e.g., Φ ), it is hard to tell in a given situation whether an effec-
tive solution could be obtained via other means (e.g., using some different strategy or 
given more of a certain resource). Importantly, this leads to a distinction between the 
problem itself (e.g., put together a tasty salad), and how the problem is solved (e.g., 
follow Φ ). And while the distinction between problem and solution might be relatively 
clear in computational contexts (e.g., between problem and algorithmic solution), we 
will dedicate much effort in this paper to elucidate their difference in moral contexts.

9 However, note that such performance measures would not work for finding the optimal salad following Φ , 
since it does not matter in which way the ingredients are arranged.
10 Throughout this paper, the term “cognition” will be broadly used to denote all sorts of information-pro-
cessing that enables capacities such as perception, action, reasoning, and learning. As such, it differs from 
cognitivism in meta-ethics (the view that moral language can express propositions that can be true or false) 
and conceptions of cognition that emphasize prefrontal activity (e.g., thinking, memory, judgement) in con-
trast to ’back of the brain’ sensory processing (Block 2019).
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3  Computational complexity of ethics

What is the computational complexity of ethics? First, we should note that “ethics” is a 
multifaceted and equivocal concept that permeates many levels of analysis across differ-
ent disciplines. Throughout the ages, moral philosophers have in more or less systematic 
ways tried to resolve questions regarding what is morally “good” and “bad”. In modern 
times, Anglophone analytical ethics is conventionally divided into (i) applied ethics (deter-
mining what is “good” and “bad” in particular instances), (ii) normative ethics (advancing 
standards and principles of what is “good” and “bad”), and (iii) meta-ethics (determin-
ing the meaning and nature of morality). But the landscape of ethics stretches far beyond 
these divisions. From a biological point of view, it includes the evolutionary foundations of 
cooperation (as extensively studied in game theory (Axelrod and Hamilton 1981; Nowak 
2006)), where morality can be viewed as an adaptive solution to the problem of compe-
tition among self-interested organisms,11 from individual cells (Hummert et  al. 2014) to 
human beings (Leben 2018). The landscape gets further complicated if we also consider 
the social, psychological, and cognitive dimensions, e.g., how ethical behavior is inter-
twined with the empathy, emotions, and reasoning of embodied agents, and carried out 
by highly distributed and parallel cognitive systems (Newen et al. 2018; FeldmanHall and 
Mobbs 2015). Far from being ‘fixed’, moral behavior is something which is developed 
and actively refined through experience.12 Beyond individuals, ethics is also manifested at 
the level of societies and culture; maintained and transformed through practices and insti-
tutions, mediated through the language of ideology and religion, and with justifications 
that ranges from divine authority (e.g., word of God), maintaining political order (Hobbes 
1651), to the promotion of liberty (Mill 1859) or justice (Rawls 1971).

Hence, to delimit our investigation, we will focus on the complexity of ethical problems 
as they have been framed within the field of machine ethics. The majority of technical work 
in machine ethics has been focusing on normative ethics, or more specifically, how certain 
tenets or aspects of a normative theory can be implemented so that an artificial agent acts 
in accordance with the theory (Cervantes et al. 2020; Tolmeijer et al. 2020). As such, it can 
be viewed as a form of applied normative ethics, since it primarily centers on the practical 
implementation of a certain theory as opposed to discussions about what theory that should 
be. In their exhaustive survey of implementations, Tolmeijer et  al. (2020) has suggested 
that approaches to moral machines can be characterized along three broad dimensions: eth-
ical theory, implementation, and technology. The first dimension denotes the ethical theory 
used, which includes normative frameworks such as deontology (Anderson and Anderson 
2008; Malle et al. 2017a; Shim et al. 2017), consequentialism (Abel et al. 2016; Armstrong 
2015; Cloos 2005), virtue ethics (Stenseke 2021; Govindarajulu et al. 2019; Howard and 
Muntean 2017), and hybrids (Dehghani et  al. 2008b; Thornton et  al. 2016). The second 
dimension, following a division proposed by Allen et al. (2005), considers how ethics is 
implemented in the system, e.g., whether it is through a ‘bottom-up’ learning process, car-
ried out via ‘top-down’ principles, or in a combination of both top-down and bottom-up 
processing. The technical dimension, in turn, considers the computational techniques used 

11 Or alternatively put, the function of morality is to alleviate the failures of rationality (Ullmann-Margalit 
2015).
12 From the pioneering work of Kohlberg and Hersh (1977), through refinements by Rest et  al. (1999), 
moral psychology has grown into a mature paradigm that investigates the link between morality and cogni-
tive development.
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to realize the implementation, which include methods from various AI paradigms such as 
logical reasoning (e.g., inductive, deductive, and abductive logic), machine learning (e.g., 
neural networks, reinforcement learning, evolutionary computing), and probability (e.g., 
Bayesian and Markov models).

3.1  The complexity of ethics following Marr’s three‑level analysis

Based on these considerations, how can we frame the computational complexity of ethics 
for machines? Recalling the final lesson in the previous section, we first need to find some 
way of distinguishing problems as such from how these problems are solved. This distinc-
tion is reflected in the influential scheme proposed by Marr (1981). Marr suggested that the 
information processing of a cognitive system can be explained on three distinct yet comple-
mentary levels of analysis: (i) Computational level, (ii) Algorithmic level, and (iii) Imple-
mentation level. The computational level describes the problem itself (e.g., an input–output 
mapping), the algorithmic level specifies the algorithmic process (e.g., strategy or heuris-
tic) that is performed to tackle the problem, and the implementation level specifies how 
the algorithmic process is realized by the physical hardware of the system (e.g., neurons 
or circuits). These levels can be illustrated using the salad bar example: (i) the compu-
tational level specifies the number of ingredients, value functions (e.g., tastiness of indi-
vidual ingredients or combinations of ingredients), and desired output (maximally tasty 
salad); (ii) the algorithmic level describes the problem-solving process (such as Φ ); (iii) 
the implementation level describes the way a brain or machine implements the problem-
solving process physically. Each of these levels of a system can be analyzed independently. 
For instance, since one and the same computational problem can be solved by a range of 
different algorithmic procedures, we can describe a cognitive system at the computational 
level independently of the algorithmic level, and thus have a computational-level theory 
of the computational system. Likewise, since an algorithm can be physically realized in a 
range of different systems—e.g., silicon or carbon—we might have an algorithmic-level 
theory of a cognitive system that does not require us to explain how it is physically imple-
mented. Nevertheless, Marr argued that it is easier to elucidate the workings of a cognitive 
system through the top-down lens, i.e., by starting from the problem it solves as opposed to 
the precise mechanisms it uses to solve it (Marr 1977, 1981).13 The reason is that higher-
level explanations make commitments about the lower-levels, which in turn forms a hier-
archy of underdetermination. For instance, if we conjecture that a cognitive system solves 
problem P at the computational level, we might be uncertain or agnostic with regards to the 
specific algorithm it employs to compute P. However, if our conjecture should carry any 
explanatory value beyond the computational level, we must commit to the idea that at least 
some algorithm can compute P. If it can be proven that no such algorithm exists, then our 
problem is undecidable. Similarly, if we believe that a system solves P using algorithm A, 
we commit to the idea that some physical system can realize A.

13 To clarify, this particular notion of “top-down”, from computation (top), to algorithm, to implementation 
(bottom), is distinct from the common use in cognitive psychology, where “bottom-up” processing starts 
from the sensory input, and “top-down” processes centers around interpreting the incoming information 
based on knowledge, experience, and expectations.
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3.1.1  Level 1: computational problem

How do we fit ethical problems into Marr’s scheme? More precisely, what is the algorith-
mic level and what is the computational level of ethical problems posed by normative the-
ory (NT)? First, we note that normative ethics blurs the line between Marr’s first two lev-
els. In particular, its prescriptive component is intimately linked with its action-guidance, 
i.e., by answering what is good (e.g., adherence to moral duties), it tells you how to do 
good (e.g., only perform actions that adhere to moral duties).14 In turn, this opens up a 
range of possible interpretations, and we will address three:

(1) NT as algorithmic-level solution to generalized morality In the most general sense, if 
the computational-level problem is phrased as “do what is moral”, we might interpret 
an NT as an algorithmic-level solution to the computational problem “how to be moral 
in general”. This interpretation would capture the generality ambition of NTs in human 
contexts (or at least in philosophical discourse on NT); that an NT should provide gen-
eral answers or standards regarding right and wrong that are applicable to a range of 
particular instances. An agent that is committed to NT1 would only be moral insofar as 
it adheres to NT1 in its general behavior.15 Nevertheless, it is hard to see how one could 
feasibly frame such a broad interpretation in the formalism required by a computational 
complexity analysis; it would entail some form of general-purpose algorithm—e.g., 
in terms of a value, principle, or maxim—that provides solutions to all possible moral 
dilemmas.16

(2) NT as algorithmic-level solutions to specific moral problems A similar but more nar-
row interpretation is that NTs provide algorithmic-level strategies that can be used to 
solve specific moral problems. This interpretation seems to, at least prima facie, cap-
ture everyday usage of the term “moral dilemma”, i.e., a decision problem that arises 
as a conflict between two or more NTs (where “NTs” might as well be replaced with 
values, duties, virtues, or norms). We could, for instance, specify the computational-
level problem as the trolley problem in order to draw attention to the conflict between 
action- and outcome-based NTs: is it morally right to save 5 people even if it involves 
actions that are intrinsically bad (e.g., murder)? Note, however, that the moral complex-
ity (or undecidability) of such a problem does not reside in the computational-level 
problem itself, but rather in how the conflict between algorithmic-level solutions should 
be resolved [e.g., through the doctrine of double effect (Foot 1967)]. Regardless, the 
interpretation is still consistent with the view that different NTs could be employed 
to solve different problems, depending on the nature of the problem and the available 
resources. This seems to resonate with experimental studies that shows that humans are 
flexible with regard to the moral strategies they employ in different contexts (Capraro 
and Rand 2018; Conway and Gawronski 2013; Greene et al. 2008). Intuitively, facing 

14 Normative theories that put less emphasis on actions might present an interesting exception; for instance, 
versions of virtue ethics that emphasize being rather than doing. However, rather than resolving the distinc-
tion, it only pushes it to the blur between flourishing and the character traits that enable an agent to flourish. 
Furthermore, the idea that virtue ethics cannot offer action-guidance have also been criticized; see e.g., 
Hursthouse (1999) for a virtue theoretic take on action-guidance.
15 Or at least, the agent uses NT1 as its main criterion to evaluate whether an action is moral.
16 The Golden Rule or Kant’s categorical imperative (Kant 1785) might be paradigmatic examples of such 
general-purpose algorithms, which we will discuss in Sect. 5.
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some ethical problem E1 , you might be reluctant to perform a certain action because 
you find the act immoral in itself (according to NT1 ), while facing some other ethical 
problem E2 , no action seem immoral in itself, yet some actions lead to outcomes that 
seem more preferable than others (according to another theory, NT2 ). That is, if no 
conflict arises between NT1 and NT2 , you simply pick the one that is best suited for the 
computational-level problem at hand. Under this interpretation it would be possible to, 
at least in principle, assess whether some NT is more computationally efficient than 
another with regard to the same computational-level problem.17 However, could we 
ask whether it is more successful, morally speaking? It seems unlikely that an answer 
can be provided without resolving further meta-theoretical issues.18 Perhaps more 
problematically, the interpretation seems to posit that ethical problems are, in some 
meaningful way, distinctly invariant from the ways they could be solved. To the con-
trary, the algorithmic solution (NT) seems to depend on the nature of the computational 
problem itself, and how it affords an algorithmic solution via some NT; affordances that 
are already embedded at the computational level. If a specific problem is only decidable 
or tractable for a particular NT, it thus seems more fair to treat it as a computational-
level problem in its own right. For instance, we could imagine an ethical problem 
space which only contains information about obligations, and no information regarding 
outcomes; it is thus decidable for obligation-based NTs while being undecidable for 
outcome-based NTs. This naturally leads to an even more narrow interpretation, and 
the one we will primarily focus on in our analysis:

(3)  Specific moral problems posed by NT as computational-level problems Instead of plac-
ing NTs at the algorithmic level, we could define specific computational-level problems 
as they are framed by a specific NT. In turn, this allows us to be agnostic about the pre-
cise procedure that is carried out at the algorithmic-level: we only have to assume that 
such a procedure exists. As such, (3) provides a number of conveniences for machine 
ethicists, including (i) answers regarding what is moral, or what is morally good to 
do (as prescribed by the modeled theory), (ii) blueprints for action-guidance that can 
assist algorithmic design and choice of computational method(s), and (iii) means of 
evaluating performance (e.g., an apt deontological agent successfully adheres to moral 
duties and rules). Importantly, the narrowness of (3) allows one to ignore theoretical 
issues that plague (1) and (2): in contrast to (3), it does not have any generality ambi-
tion (and could thus be adopted to specific contexts or domains); in contrast to (2), 
the relevant action-guiding aspects of the modeled NT are already embedded at the 
computational-level problem description. I.e., while (3) accommodates the fact that dif-
ferent ethical problems—e.g., the information provided in a certain environment—give 
rise to different affordances with regard to ethical behavior, (2) does not. Perhaps most 
importantly, (3) allows us to analyze the algorithmic level of ethical problems, while 
(2) treats the normative theory as the algorithm itself, which potentially obscures the 
analysis of how such a procedure is actually carried out.

17 Similarly, even if we believed that only one NT is correct, that does not necessarily mean that we cannot 
find an alternative theory useful due to its computational efficiency (even if we generally dislike the theory 
from a moral standpoint).
18 For instance, it is plausible that, while a solution provided by NT1 could be the most computation-
ally efficient, it could also violate some principle from NT2 , yet, no efficient solution exists for NT2 (e.g., 
requires exponential time). The issue is thus: what is the most successful NT if we assume that the agent 
believes that NT2 is morally superior to NT1?
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  Another principal strength with (3), with respect to a complexity analysis, is that 
it constitutes an essential yet the least complex aspect of ethical computing, in the 
sense that both (1) and (2) presuppose that an agent can perform computations of type 
(3). In other words, since interpretation (1) is a generalization of (2), which, in turn, 
depends on specific instantiations of (3), they form a hierarchy of ethical computations 
(illustrated in Fig. 1). That is, to solve the generalized moral problem (interpretation 
1) following some normative theory, e.g., NT1 , it requires that an agent can also apply 
NT1 to specific moral problems (interpretation 2); to apply NT1 in the particular (inter-
pretation 2), it requires that an agent can apply NT1 in the very way it is framed by NT1 
(interpretation 3). Thus, if some specific (3)-type computation is undecidable, it would 
follow that it is undecidable for type (1) and (2) computations of the same problem; it 
is undecidable for the NT in the specific case (2) and thus in the general case (1). The 
difference between the interpretations is further illustrated in Table 1.

3.1.2  Level 2: algorithm

Thus, we believe that a natural way to analyze the computational complexity of ethics is 
to focus on problems posed by normative theory (computational level), that are solved 
through a variety of computational methods (algorithmic level), by a deterministic Turing 
Machine (implementation level). Of course, this still leaves a rather vast interpretative lee-
way regarding what goes on at the algorithmic and implementation level. To find the most 
effective algorithmic solution to a well-defined problem is often an empirical question, and 
answers are continuously revised in light of new advancements in programming techniques 
(e.g., breaking down a problem into simpler sub-problems through dynamic programming) 
or heuristics (e.g., exploiting regularities in the problem). More importantly, it also depends 
on what we accept as a solution. If we believe that the NT strictly dictates that the system 
should find the optimal solution to a problem, it entails that the algorithmic level should 
follow some procedure that is guaranteed to produce an optimal solution; a so-called exact 
algorithm.19 A less strict interpretation is to accept solutions that are “close enough” to 
the optimal; so-called approximate algorithms. Although approximate algorithms are not 
guaranteed to find an optimal solution, they guarantee that the solution is within some fixed 
distance to the optimal one (i.e., there is a provable bound on the ratio between the optimal 
and approximated solution). The difference between approximate and exact makes all the 
difference with regard to tractability, since many problems that have intractable exact solu-
tions can be approximated in polynomial time (Williamson and Shmoys 2011).

We will mainly focus on exact solutions for two interrelated reasons: (i) it is prescribed 
by the normative ideal (following the strict interpretation), and (ii) it allows us to focus on 
problems as opposed to algorithms. The first reason can be supported by the following con-
sideration: if approximate solutions are acceptable, how can we motivate that a solution is 
within an acceptable distance to the optimal? Note that, although an approximation yields 
a provable guarantee of the distance, this distance can still be arbitrarily large.20 It seems 
as if we then need to also define what an acceptable distance is, which might vary greatly 
from case to case. Furthermore, many real-world problems exhibit no identifiable structure 

19 For instance, this is analogous to the way Φ produces an optimal (albeit intractable) solution to the salad 
problem following the CPG.
20 We can, for instance, imagine a dilemma where the optimal solution has a moral value of 100, but the 
best approximation only yields a value of 50.
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that can be exploited, and as such, they yield no efficient approximation algorithms (Niev-
ergelt et  al. 1995). This naturally leads to the second reason, which is simply that it is 
easier to compare exact as opposed to approximate solutions, as we do not need to define 
the conditions under which an approximation is sufficiently close.

Of course, moral theorists might rightfully point out that we should not be interested 
in exact or optimal solutions to moral problems, but rather, we should understand them 
in terms of what is “permissible” or “impermissible”. For instance, an action might be 
permissible even if it is suboptimal, and morality does not require us to do anything more 
than what is permissible, as long as we avoid what is impermissible. This line of reason-
ing might, in turn, serve to justify the use of suboptimal approximations. However, this 
would obscure the difference between optimality as a mathematical concept and as a moral 
concept. Moral permissibility could, for instance, be construed as the mathematical opti-
mal; i.e., some fixed point or metric to evaluate behavior against. Alternatively, moral 

Fig. 1  Hierarchy of ethical computations. Arrows indicate dependency (i.e., A → B means that solutions to 
A depends on solutions to B). The dotted ellipses capture the computational (top) and algorithmic (bottom) 
level of the three interpretations (1)–(3)
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permissibility could be construed as a mathematical approximation of some fixed notion 
of moral optimality. But then, again, we are led back to the same dilemma we wanted to 
avoid: in each case, we need to justify how a given approximation is acceptable given a 
certain threshold of moral permissibility. It is important to note, though, that this does not 
exclude the possibility that such approximations can be justified in relation to permissibil-
ity in particular contexts, but rather that such an analysis is beyond the scope of this paper.

3.1.3  Level 3: implementation

On the level of implementation, we will adopt the most widely used model of computation: 
the Turing Machine (TM) (Turing 1936). More specifically, since a TM is a mathemati-
cal model of computation, it denotes any physical system that can realize a TM (i.e., it is 
Turing complete). Turing claimed that every function that can be computed by an algo-
rithm can be computed by a TM. The thesis gained credence when Turing showed how his 
notion of computability was equivalent to the independently suggested proposal by Church 
(1936). This forms the basis for the Church–Turing thesis, which in turn has been shown 
to be equivalent to many other forms of computation (Herken 1995). Simply put, it means 
that any general-purpose system (e.g., computer or computer language) can simulate the 
computational aspects of any other general-purpose system. We will also assume that P 
≠ NP (discussed in Sect. 2). Like the Church–Turing thesis, it is another widely accepted 
conjecture among computer scientists, even if it remains to be proven.21

Importantly, if we can show that a problem is NP-hard, it means that we cannot expect 
to find an efficient solution to it, where “efficient” means “solvable in polynomial time 
for a deterministic TM” (P-tractability).22 Therefore, if ethical problems solved by com-
putational methods are NP-hard, we cannot expect computational systems to solve them 
efficiently, and as such, it would yield direct consequences for the feasibility of moral 
machines. However, even if P ≠ NP and the Church–Turing thesis have near-universal 
acceptance, it is crucial to address a few caveats regarding the limitations and relevance 
for the notion of P-tractability. For instance, P-intractability is of no major concern if it 
is guaranteed that the input size remains sufficiently small (e.g., a salad bar with 5 ingre-
dients only yields 32 possible combinations). Importantly, simply because a problem is 
P-intractable, it does not mean that it cannot be solved effectively under other reasonable 
conceptions of tractability. In fact, many NP-hard problems can be solved by algorithms 
whose runtime is superpolynomial in only some part of its input (input parameter), while 
the runtime is polynomial in the overall input size.23 Conversely, large constants in poly-
nomial functions, e.g., n100 , are P-tractable even if they might fail to capture any intuitive 

21 Note that the Church–Turing thesis is not a conjecture in the mathematical sense, but rather a hypothesis 
about the nature of computation; it cannot be proven since its notion of effective calculability is defined 
informally. With that said, the fact that every attempt to define the concept of “effective calculability” has 
picked out the same class of functions (namely those computable by a TM) is often taken as strong support 
for the thesis (Copeland 2020).
22 P ≠ NP entails that we cannot expect to find effective solutions to NP-complete problems, and NP-hard 
problems which can be translated to NP-complete decision variants. Note that many NP-hard problems 
would still remain intractable even if P = NP, e.g., if they are complete for complexity classes that are 
believed to encompass NP (e.g., PSPACE or EXPTIME).
23 It is this very observation that has motivated the development of parameterized complexity (Downey 
and Fellows 2012), and the class of fixed-parameter tractable problems (FPT). See also Fellows (2002) and 
Niedermeier (2006).
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notion of “effective”. Furthermore, time consumption might also be significantly reduced 
with alternative models of computation, e.g., utilizing parallelization, random access mem-
ory, or quantum computing. While the Invariance Thesis—along with the closely related 
extended Church–Turing thesis (Kaye et  al. 2006; Bernstein and Vazirani 1997)—states 
that no machine can be super-polynomially faster than a deterministic TM.24 it remains to 
be seen whether and to what extent it can be falsified in light of future advancements in 
computing.25 The main point is that, although P-tractability constitutes an indispensable 
tool for the formal study of effective computing in theory and practice, it should not be 
interpreted as drawing a definitive line, across the board, between what is tractable and 
what is not. And while P-tractability has direct consequences for moral machines, a related 
yet even more convoluted question is whether it could provide any relevant insight into the 
moral cognition of humans (a question we will return to in Sect. 7).

To divide our problem space, we will focus on three types of moral machines: causal 
engines (Sect. 4), rule-followers (Sect. 5), and moral learners (Sect. 6). The main reason is 
that nearly all implementations in machine ethics take one of these approaches (Tolmeijer 
et al. 2020). Another reason is that these types each correspond to a prominent normative 
framework: consequentialism is about predicting future events (causal engines), deontol-
ogy is about adhering to rules or duties, and virtue ethics emphasizes learning.26

In order to be subject to a complexity analysis, we will also assume that ethical prob-
lems can be cast as well-defined computational problems (of the kind discussed in Sect. 2). 
This means that they have clearly defined initial conditions and goals (e.g., in terms of 
specific input and output conditions) which can be formally represented by mathematical 
concepts—e.g., numbers, functions, sets, lists, graphs—and be solved by algorithms. For 
instance, a set of possible actions (e.g., taken as inputs) may be represented by the indices 
of a list (a number of ordered values) or the nodes in a directed graph (a set of vertices and 
edges), and morally relevant measures and values (e.g., the benefit of an outcome) may be 
represented as a numerical value (e.g., a real or integer number such as 6.54 or 3). While 
these simplifying conditions might do little justice to the vastly rich and potentially ill-
defined ethical problems agents might face in the real world, it can be motivated by the fact 
that real-world ethical problems, given that they are decidable at all, are at least as rich in 
information as their simplified computational counterpart. In technical terms, we assume 
that well-defined computational problems represent a reasonable lower-bound on the infor-
mation-theoretic nature of ethical problems in real-world environments. Finally, we will 
mainly focus on time rather than space complexity for the simple reason that accessing and 
storing memory consumes time, which means that memory consumption is often upper-
bounded by time consumption (Garey and Johnson 1979).

24 Note that it is generally believed that the Invariance Thesis applies to both parallel and serial models of 
computation, see, e.g., Frixione (2001), Parberry et al. (1994) and Tsotsos (1990).
25 E.g., it is not unlikely that some future computer could at least solve some problems in polynomial time 
that are currently intractable.
26 Of course, as we will see later on, in many cases the line between these theories and types become 
blurry.
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4  Consequentialism and causal engines

Consequentialism is a family of normative theories that puts outcomes at the center of 
moral evaluation. While all consequentialists agree on the moral importance of outcomes, 
they might disagree on what a good outcome is, or alternatively, what makes an outcome 
good. For instance, utilitarianism—arguably the most influential branch of consequentialist 
theories—prescribes actions that maximize utility, where utility can be understood as the 
overall well-being of the individuals affected (Bentham 1789; Mill 1861), satisfaction of 
their preferences (Singer 2011), reduction of their suffering (Smart 1956), or the well-fare 
of their state (Sen 1979). There are also many nuances regarding the way outcomes are 
morally important, e.g., whether intended consequences matter (as opposed to only actual 
consequences), whether they depend on the perspective of the acting agent (i.e., agent-rela-
tive as opposed to agent-neutral), whether indirect consequences matter (as opposed to the 
direct consequences of the act itself), for whom they matter (e.g., a limited set of individu-
als or all sentient beings on earth), and for how long (e.g., only immediate outcomes or for 
all eternity) (Sinnott-Armstrong 2021). Nevertheless, what is common to all forms is the 
commitment to the moral value of future events. Therefore, any agent—artificial or bio-
logical—committed to consequentialism must be able to make predictions about the future, 
insofar as they are committed to carrying out the prescriptions of the theory in practice. 
This is why successful consequentialist agents rely on so called “causal engines”, a term 
we use to broadly refer to the information processing that supports causal cognition.

Note that, in some way or another, most biological organisms care about the conse-
quences of their actions, as it greatly increases their chance of survival. Intuitively, causal 
cognition appears to be critical for many essential capabilities such as avoiding harm, prob-
lem-solving, and planning. Experimental results indicate that human children, as young as 
eight months, can make inferences based on cause and effect (Sobel and Kirkham 2006). 
This might suggest that some form of pre-reflective capacity for causal inference could be 
deeply engraved in our very biological being, reflecting the predictive processing that many 
believe to be the central function of nervous systems (Friston 2010; Hohwy 2013; Keller 
and Mrsic-Flogel 2018). However, unlike biological organisms, machines did not develop 
causal engines through an evolutionary process. Instead, an artificial system’s ability to fol-
low consequentialism relies on computational techniques, often stemming from the fami-
lies of statistical, Bayesian, and Markovian modeling (Casella and Berger 2021). It is also 
common to view machine learning methods as a form of “predictive analytics” in the sense 
that algorithms learn to make better predictions based on experience; e.g., in supervised 
learning via human-generated data, in reinforcement learning through an interactive pro-
cess of trial-and-error. But consequentialism is not solely about making predictions about 
the future. It is also about evaluating, from the set of possible outcomes, what outcomes are 
morally preferable over others. That is, even if a consequentialist agent could predict the 
outcomes of all possible actions with godlike accuracy and speed, it does not necessarily 
mean that it can easily decide, with the same speed, which the optimal outcome is.

In light of these considerations, this section will explore the computational complex-
ity of three general types of consequentialist problems: combinatorics of determining the 
optimal outcome (Sect.  4.1), causal inference (Sect.  4.2), and decisions in dynamic and 
partially observable environments under different time horizons (Sect.  4.3). The section 
is written so as to incrementally introduce uninitiated readers to time complexity analy-
sis, probability theory (Bayesian Networks), and stochastic methods (Markov Decision 
Processes).
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4.1  The combinatorics of outcomes

In the most simplified case, we could think of the problem a consequentialist face when 
they compare the moral value of different outcomes, given that the agent can already deter-
mine what these outcomes are. In this way, we can ignore the complexity of the causal 
inference itself so as to isolate the problem of optimal outcome evaluation. In complexity 
theoretical terms, we assume that the agent has access to a so-called oracle machine, which 
is able to provide answers regarding causal events in a single operation. For instance, if the 
agent asks “what happens if I perform action a?”, the oracle gives an answer of the type 
“action a yields an outcome with a moral value of v”.27 The most trivial computational 
problem of this kind can be formalized in the following way:

c1: optimal outcome following consequentialism

Input: An environment as a set E = {a1, a2,… , an} of n possible actions and a value 
function v that assigns an outcome value to each action a ∈ E.
Output: An action a ∈ E such that v(a) is maximized over all possible actions in E.

An optimal solution can be guaranteed by the following generic exhaustive-search 
algorithm:

Algorithm 1  Exhaustive search with causal oracle

In short, the algorithm initializes default values for outcomes (step 1) and the index of 
actions (step 2). It then loops through each action in the environment (step 3), calls the 
oracle (step 4), checks if the outcome of that action is higher than the current highest (step 
5), and if so, updates the highest outcome value (step 6) and its index (step 7). Finally, it 
halts after returning the index of the highest outcome (step 10). If we assume that each 
instruction requires an equal amount of time (1) to be executed, we can count the precise 
number of machine operations the algorithm needs to solve c1 in the following way: lines 
1, 2, and 10 needs to be executed just once (3), lines 3–7 needs to be executed n times each 
(5n), and 8 and 9 can be ignored (as they are flow control statements), which yields a total 

27 To encompass many versions of utilitarianism, we will remain agnostic about the exact nature of the util-
ity that ought to be maximized; the only important thing is that it can be represented as a numerical value.
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of 3 + 5n . In Big O, this collapses into O(n). In other words, the time complexity grows 
linearly (O(n)) to the size of the input. Importantly, regardless of how fast a machine can 
execute the other instructions, to ensure optimality, it must ask a number of questions to the 
oracle which is at least equal to the number of possible actions. I.e., if there are 10 actions, 
the agents must make, at minimum, 10 calls to the oracle.

What happens if we allow for multiple values? For instance, we could assume that the 
agent has a set of two or more outcome values that needs to be checked for each action-
outcome (e.g., pleasure, fairness, trust, etc.). This yields the following problem:

c2: optimal combination of values

Input: Same as c1 with the addition of a set of outcome value functions 
V = {v1, v2,⋯ , vi} assigned to each a ∈ E.
Output: An action a such that v(a) is maximized over all v ∈ V  and a ∈ E.

If we posit that the values interact trivially, in the sense that values can be summarized 
v1(a) + v2(a) +… + vi(a) to yield a single total value V(a) (i.e., obeying the law of additiv-
ity), the optimal action a∗ can be formally expressed as:

If the agent needs to make distinct calls to the oracle for each value, the time complexity is 
the product of n (number of actions) and i (number of values), yielding O(ni). If i is equal 
to the number of actions, the runtime grows quadratically in relation to n, which still yields 
the polynomial O(n2).28

We have so far only been focusing on the moral evaluation of a single action. But in 
ethical decision problems of the real world, it is possible to perform multiple actions. How-
ever, as illustrated in the salad example, the possibility of combining actions can present 
tractability issues that are inherent to permutations of combinatorial structures. To show 
how this affects the computational complexity of consequentialism,29 we define an action 
plan � = {a1, a2,… , an} as a distinct non-empty set of n actions presented by the environ-
ment such that 𝜑 ⊆ E . We then augment c1 to describe the following problem:

c3: optimal plan of up to two distinct actions

Input: An environment as a set E = {a1, a2,… , an} of n possible actions and a func-
tion v that assigns an outcome value to each action plan 𝜑 ⊆ E.
Output: An action plan � such that v(�) is maximized over all 𝜑 ⊆ E , no a ∈ � is 
identical to itself (i.e., the same action cannot be performed more than once), and 
|�| ≤ 2.

The only way to solve c3 is to make a number of calls to the oracle which is equal to the 
number of possible action plans (with a maximum of two actions). This number will grow 
triangularly ( n(n+1)

2
)—i.e., half of a square—with the number of actions.30 This tractable 

(1)a∗ ∶= argmax
a∈E

V(a) ∶= {a ∈ E ∶

i∑

m=1

vm(á) ≤

i∑

m=1

vm(a) for all á ∈ E}

28 To show this result in an algorithmic procedure, we can simply extend the exhaustive search (Algo-
rithm 1) to iterate n actions over i values, e.g., by adding one additional for-loop for each i, or as a nested 
loop over values 1 to i within the loop over actions 1 to n.
29 See Lindner et al. (2020) for a similar analysis of action plans based on the SAS+ formalism.
30 As the famous story goes, Carl Friedrich Gauss quickly identified the formula for this series at a young 
age when asked by his teacher to add all the numbers between 1 and 100.
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procedure would satisfy the Combinatorial Principle of Actions (CPO), i.e., that action 
plans yield outcome values that does not necessarily correspond to the sum of its individ-
ual actions if performed in isolation. It would, however, violate a fundamental principle of 
causality: that the resulting outcome of two causal events, action x and action y, depends on 
the order in which x and y occurs. We can call this the Principle of Causal Order (PCO). In 
order to satisfy PCO when solving c3, the consequentialist must make an additional trian-
gle of calls to the oracle, which completes the quadratic growth of n(n − 1) . In asymptotic 
Big O, however, solving c3 in either way results in a time complexity of O(n2) , which is 
still comfortably within tractable bounds.

The computational complexity of action-outcomes becomes an issue for the consequen-
tialist when we generalize problems of type c3, e.g., to account for n number of actions:

c4: optimal plan of up to n distinct actions

Input: Same as c3. Output: An action plan � such that v(�) is maximized over all 
𝜑 ⊆ E , no a ∈ � is identical to itself, and |�| ≤ n.

The time complexity of an exact algorithm that solves c4 while adhering to the CPO is 
O(2n) . In other words, there is no polynomial-time tractable procedure for consequential-
ists who try to solve problems of type c4.31 Worse still, if the consequentialist should also 
adhere to the PCO, an exact algorithm would yield the factorial growth of O(n!) (Sloane 
2022).32 More broadly, it is well-known that many planning tasks are PSPACE-complete 
(Bylander 1991, 1994; Littman et al. 1998).33

Note that, while this intractability might not constitute a detrimental issue in practice—
e.g., for small inputs, say, four possible actions, solving c4 following CPO requires 15 
calls, whereas following CPO and PCO requires 64—c4 still presupposes a large set of 
other non-trivial assumptions that might not hold in real-world situations. For instance, it 
assumes that agents cannot perform the same action more than once, and that the problem 
space remains static while the agent computes the solution. By contrast, real-world envi-
ronments might present a potentially infinite set of possible actions in a state space which 
is only partially observable and changes in continuous time (which we will return to in 
Sect. 4.3). Above all, the agent cannot make any calls to a causal oracle but needs to rely 
on its own causal engine; which leads us to the complexity of causal inference.

4.2  Causal inference

As soon as we enter the realm of uncertainty, we cannot guarantee that the performance 
of any system will be optimal. Instead, the best we can hope for is optimal according to 
our “best guesses”, i.e., in virtue of what we believe or know (Bayesian optimality). This 
is part of the reason why many versions of utilitarianism are revised so as to stress the 
maximization of “expected” as opposed to actual utility (Broome 1987). It also forms the 
basis for the expected utility hypothesis (Von  Neumann and Morgenstern 1947), which 
is widely used in decision theory and economics to model rational choice, preferences, 

31 This is analogous to the salad problem following Φ (where the CPO is exchanged for the equivalent 
CPG).
32 This series is called “the number of permutations of nonempty subsets of {1,… , n} ” (Sloane 2022), and 
can be expressed as the floor function of en! − 1 , where e denotes Euler’s number.
33 See also Bäckström and Nebel (1995) for some tractable results for SAS+ planning.
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and risk appetite (i.e., openness and aversion to risk) when payoffs are unknown.34 Note, 
however, that different ways to model probability leaves room for interpretations that carry 
moral weight, in the sense that different normative principles can guide how decisions 
under uncertainty should be tackled.

This is illustrated in the following problem, represented as a directed acyclic graph 
(Fig. 2). The graph shows an environment with three actions, each with a probability of 
yielding one out of two possible outcome values. If we simply want to maximize expected 
utility regardless of risk, we can simply add the product of each outcome value with their 
respective probability—e.g., 0.2(−2) + 0.8(4) for a1—and select the action with the high-
est expected utility. Alternatively, a more risk averse option would be to select the action 
with the best worst-case outcome (a decision rule called “minmax”, i.e., maximizing the 
minimum gain). While these two decision procedures make little difference with regards 
to runtime—like our solution to c2, both take O(no) time, where o refers to the number of 
outcomes for each action—they make a significant moral difference.

However, like c1–c4, c5 still assumes some sort of Bayesian oracle, which is able to 
infer the exact posterior probabilities that certain events (outcomes) will occur given cer-
tain causes (actions). More broadly, causal inference can be understood as the ability to 
identify what causes what, e.g., “what is the cause (or causes) of phenomenon X?”, “what 
is the effect (or effects) of Y?”, and “what is the causal relationship between X and Y?”. 
None of these questions are trivial; indeed, scientific endeavors are to a large extent driven 
by answering causal question through a combination of carefully collected data, a vast 
set of statistical modeling techniques, and causal reasoning capacities such as deductive 
(deducing from given premises), inductive (inferring from observations), and abductive 
reasoning (inference to the best explanation).

One essential aspect of causal inference is to determine posterior probabilities based on 
prior knowledge, i.e., to the determine the likelyhood of A given evidence or belief B. In 
statistical modeling, the Bayesian interpretation of probability offers a popular response to 
this challenge. Bayesian methods—e.g., Bayesian inference, networks, and statistics—are 
all based on Thomas Bayes’ theorem, which states that the probability of A given B is pro-
vided by the equation Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)
.35 Bayesian modeling have been used to address 

Fig. 2  A directed acyclic graph 
(DAG), representing a decision 
problem under uncertainty

34 Specifically, the hypothesis states that an agent chooses between alternatives by comparing expected util-
ity values, which is commonly calculated as the weighted sum of utility values U multiplied by their prob-
abilities P, in the sense that 

∑
U(xi)Pi.

35 Applying Bayes’ rule to determine the likelyhood of some causal event A given B is a trivial procedure 
given that we have (i) some prior probability that A (before B) P(A), (ii) some estimated evidence for the 
probability that P(B) without A (and P(B) ≠ 0 ), and (iii) an estimate of the converse likelihood that B hap-
pens given that A.
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and model a vast range of cognitive phenomena, such as motor control (Körding and Wolp-
ert 2006), symbolic reasoning (Oaksford and Chater 2001), animal learning (Courville 
et al. 2006), causal learning and inference (Steyvers et al. 2003; Griffiths and Tenenbaum 
2005), inductive learning (Tenenbaum et al. 2006), goal inference (Baker et al. 2007), and 
consciousness (Lau 2007).

Among the most powerful and widely used extensions of Bayes theorem is the con-
struction of graphical models, called Bayesian networks (BNs) (Pearl 1985), which can 
succinctly represent a large set of variables and their conditional dependencies as a single 
DAG (Fig. 3). BNs have been particularly useful in addressing the learning of causal rela-
tionships in humans (Griffiths et al. 2008). While the nodes of a BN represent Bayesian 
variables of interest—e.g., hypotheses, observable quantities, occurences of events, fea-
tures of objects—the links (or edges) represent conditional dependencies between the vari-
ables. Each node has a probability function that returns a variable depending on its parent 
variables (following Bayes’ theorem), and nodes that are not connected are conditionally 
independent of each other. For instance, the BN illustrated in Fig. 3 describes the causal 
relationships between eight variables: whether it is a public holiday ( x1 ), whether it is rain-
ing ( x2 ), whether two or more train operators are currently working at the train station ( x3 ), 
whether the operators are stressed ( x4 ), whether there is a runaway trolley ( x5 ), whether 
a lever is pulled ( x6 ), and whether the trolley is on course to collide with 5 ( x7 ) or 1 ( x8 ) 
people. Since BNs supports the inference of probabilities for any possible subset of vari-
ables (i.e., on the basis of evidence about those subsets), it can be used to support causal 
reasoning processes in any direction of the network. Using the chain rule of probability,36 
the joint probability—i.e., the probability distribution on all possible combinations of val-
ues—is given by:

where �i denotes the values for the parent nodes of xi . The joint distribution for the net-
work in Fig. 3 is therefore: P(x1,… , x8) =

We can now describe a range of Bayesian inference problems for consequentialism, such 
as:

c6: bayesian trolley problems

(a) Likelihood—what is the probability P that x7 is true? (given full, partial, or no evidence 
about its parent variables)

(b) Conditional probability—what is the probability that x7 is true given evidence that it 
is a public holiday ( x1 = true)?

(c) Causal reasoning—e.g., what effect does pulling the lever ( x6 = true ) have on x7 or x8
?

(d) Most probable explanation (MPE)—what is the most probable configuration of a set 
of variables given full evidence about the complement of that set?

(2)P(x1,… , xn =
∏

i

P(xi|�i)

(3)P(x1)P(x2)P(x3|x1)P(x4|x1, x2, x3)P(x5|x3, x4)P(x6|x5)P(x7|x6)P(x8|x6)

36 The chain rule allows one to compute the joint distribution of a set of variables solely using conditional 
probabilities, in the sense that P(A ∩ B) = P(B|A)P(A).
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(e) Maximum a posteriori hypothesis (MAP)—what is the most probable configuration of 
a set of variables given partial evidence about the complementing set?37

BNs are perfectly suited to answer such causal inquiries, using algorithms such as vari-
able elimination (Zhang and Poole 1996) and message-passing (Pearl 2022) for exact 
inference, and random sampling (Pearl 1987) for approximate inference. However, even if 
questions like c6 (a)–(e) can be solved in reasonable time for constrained networks, it has 
been proven that most inference problems for Bayesian Networks are intractable in general. 
More specifically, exact inference on arbitrary graphs is NP-hard (Cooper 1990),38 which 
means that inferring the exact probability of some event (or that a propositional expression 
is true) is at least as hard as the hardest problems in class NP. Furthermore, the decision 
variant of finding the most probable explanation (MPE) is NP-complete (Shimony 1994), 
while the related maximum a posteriori hypothesis (partial MAP) is NPPP-complete (Park 
and Darwiche 2004).39 Perhaps more intriguing is the results that approximations of these 
problems are also intractable: approximating exact inference (Dagum and Luby 1993), 
MPE (Abdelbar and Hedetniemi 1998), and partial MAP (Park and Darwiche 2004) are all 
NP-hard.40

One important lesson from these results is that the complexity of Bayesian inference 
depends on the structure of the network: while constrained graphs yield a bound on the 
number of conditional dependencies and parent variables for each node, unconstrained 
graphs cannot be exploited for effective computation. For instance, for chain-like graphs of 
the type x1 → x2 → x3 → x4 → x5 , an elimination algorithm can determine the exact infer-
ence of P(x5) by a step-wise elimination of the parent variables, which can be computed in 
the polynomial time O(nv2) , where n is the number of variables and v denotes the number 
of possible values the variables can take. However, as the number of variables depending 
on other variables grows, inference in BNs starts to mirror the problem of determining 

Fig. 3  A Bayesian network rep-
resenting the causal relationships 
of eight Boolean variables for the 
Bayesian Trolley Problem (c6). 
Since their introduction in the 
1980s, Bayesian networks have 
facilitated evidence-based predic-
tion in complex domains such as 
medical diagnosis (Lucas et al. 
2000) and weather forecasting 
(Cofıno et al. 2002)

37 MAP (sometimes called Partial or Marginal MAP) can be viewed as the generalization of MPE in the 
sense that it might require a marginalization of the variables that are not observed nor explained. Further-
more, note also that both MPE and MAP has many variants in the literature on Bayesian networks: see 
(Kwisthout 2011) for a clarification.
38 More precisely, exact inference is #P-complete (Roth 1996), where #P is the class of counting problems 
associated with NP.
39 PP is the class of problems decidable by Probabilistic TM with an error probability of less than 1/2 (Gill 
1977), and NPPP is the class of problems solvable by a non-deterministic TM with access to an oracle for 
problems in PP.
40 See Kwisthout (2011) and de Campos (2020) for summaries of complexity results for the many variants 
of the MPE and MAP problems.
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whether an arbitrary Boolean formula can be satisfied (SAT): the first known NP-complete 
problem.41

In summary, if a consequentialist agent were to solve causal inference problems 
using Bayesian networks, we cannot expect that any tractable procedure could yield pre-
cise or even approximate solutions for arbitrary graphs. The same intractability results 
have pestered Bayesian modeling in cognitive science, as Bayesian planning (Körd-
ing and Wolpert 2006), learning (Kemp and Tenenbaum 2008), and decision-making 
(Vul et al. 2014) all presume NP-hard computations. As a potential remedy, we might 
instead identify the constraining conditions that enable tractable solutions (Kwisthout 
et al. 2011). For instance, the bounded-variance algorithm (Dagum and Luby 1997) can 
generate approximations of inferences in polynomial time if extreme conditional prob-
abilities are excluded (i.e., values near 0). Similarly, it has been shown that MPE is 
tractable when either the treewidth of the underlying graph is low,42 or the probabil-
ity of the most probable explanation is high (and partial MAP is tractable when both 
conditions are true) (Kwisthout 2011). However, this introduces another uncomfortable 
trade-off: there is no guarantee that such constraining conditions capture reality. For 
machines, this means that a constrained graph could potentially fail to model the cor-
rect causal relationships. With regard to Bayesian modeling of human cognition—e.g., 
of ethical decision-making under uncertainty—it also means that one must ask whether 
the constraints are reasonable with respect to the modeled phenomenon. And for the 
consequentialist philosopher, it poses the question: what are the constraining conditions 
under which causal inference should be expected to be successful for an agent following 
consequentialism?

4.3  Decisions in dynamic and partially observable environments

We have thus far only investigated problems where the entire state space of a problem is 
taken as an input, e.g., as elements of sets or nodes of graphs. But ethical problems of 
the real-world presents a range of additional challenges that might curb a consequentialists 
ability to produce the best outcome, including (i) partial information and observability, (ii) 
dynamic and continuous environments that constantly change, (iii) limited time horizons 
to make decisions and execute actions (e.g., emergency situations), (iv) a potentially infi-
nitely long time horizon to evaluate outcomes against, and (v) a potentially infinite set of 
possible actions (e.g., movement in dimensions higher than one). Each challenge reflects 
well-known epistemological issues for the consequentialist (Lenman 2000), such as, what 
is the smallest amount of information needed to make a reasonably informed ethical deci-
sion (given that information can never be complete)? Or what is the time horizon for which 
the outcome of an action should be considered (i.e., how long is the future we need to 
predict)?43 Time alone might introduce chaotic unpredictability. As meteorologist and 

41 It should be no surprise that SAT has been instrumental in deriving complexity results for BNs.
42 Treewidth is a graph theoretical concept which can informally be understood as a measure of how much 
‘wider’ a given graph is than a simple tree (in which any two vertices are connected by exactly one path), 
and more formally as the size of the largest vertex set in a tree decomposition of the graph (Bodlaender 
1994).
43 However, note that both contemporary and classic and consequentialists—e.g., Bentham (1789), Mill 
(1861), and Sidgwick (1907)—do not assert their principle as a strict decision procedure, but rather as a 
criterion or standard. See Bales (1971).
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mathematician Edvard Norton Lorenz famously noted: a butterfly flapping its wings could 
result in a tornado a few weeks later.44

Nevertheless, a number of mathematical tools have been developed to successfully 
tackle such issues. In the absence of analytical solutions or evidence, stochastic methods 
allow us to explore complex phenomena by throwing dice (e.g., Monte Carlo methods), 
or by viewing them as memoryless chains of events (Markov process). A Markov process 
is any process that satisfies the Markov property, which means that the likelihood of a 
certain future state only depends on the present state (i.e., it is “memoryless”).45 From a 
complexity theoretic point of view, the appeal of studying processes in Markovian terms 
is that it allows otherwise intractable or undecidable stochastic modeling to be tractable 
(Vanmarcke 2010). Monte Carlo methods denotes another general class of algorithms that 
are based on repeated random samplings, e.g., by drawing a number of pseudo-random 
variables within a certain distribution or interval.46 In turn, these rather simple ideas have 
matured into an umbrella of stochastic approaches that have been successfully applied to a 
vast range of scientific problems, e.g., in statistical physics (Binder et al. 1993), engineer-
ing (Hajek 2015), and Bayesian statistics (Gelman et al. 2013).

One fruitful application of stochastic methods in the realm of automated decision-mak-
ing is reinforcement learning (RL). The idea behind reinforcement learning is simple: an 
agent learns from interacting with an environment by updating its behavior—e.g., strategy 
or action-policy—in light of the reward it receives. An RL agent is often formalized as a 
Markov Decision Process (MDP), the 5-tuple ⟨S,A,R,P, �⟩ , where:

• S is a set of states (called state space)
• A is a set of actions (called action space)
• Ra(s, s

�) is the reward the agent obtains by transitioning from state s to s′ by performing 
action a

• Pa(s, s
�) = Pr(s� ∣ s, a) is the probability of transitioning from s ∈ S to s� ∈ S given that 

the agent performs a ∈ A

• � is the discount factor ( 0 ≤ � ≤ 1 ) that specifies whether the agent prefers long- or 
short-term rewards.

The goal of an RL agent is to maximize reward (R) over some specified time horizon. In 
order to do so, it needs to find an policy, i.e., a function �(s, a) which decides what action a 
to execute given a certain state s. If the goal is to maximize the expected discounted reward 
arbitrarily into the future (called the infinite-horizon objective), the optimal policy �∗ can 
be formalized as:

(4)�∗ ∶= argmax
�

E

[
∞∑

t=0

� tR(st, at)
|||||
�

]

44 In chaos theory, the “butterfly effect” is the observation that tiny changes in one state of a non-linear 
deterministic system can produce massive differences in later stages (Lorenz 1963).
45 As such, Markov processes constitute a broad class of both continuous and discrete stochastic processes; 
for instance, Poisson, Wiener or Brownian motion, and random walks can all be formulated as special vari-
ants of a Markov process.
46 As the story goes, the modern version of the Monte Carlo method was invented by Stanislaw Ulam while 
working with the Manhattan Project in Los Almos; in fact, the method were instrumental for deriving the 
simulations required for the project’s success (Haigh et al. 2014).
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RL—in combination with Monte Carlo, deep neural networks, and other techniques—have 
yielded super-human performance in complex game environments such as Dota 2 and 
Go (Berner et  al., 2019; Silver et  al., 2018), or, more recently, to notable advancements 
in the control of nuclear fusion plasma (Degrave et al. 2022). More broadly, it has been 
argued that reward is enough to drive all forms of behavior that are associated with nat-
ural and artificial intelligence, such as learning, knowledge, perception, language, social 
intelligence, and generalization (Silver et al. 2021). Due to its general applicability, it has 
been suggested that RL provides the appropriate framework to theorize about an ideal ethi-
cal artificial agent (Abel et al. 2016), or for the construction of artificial virtuous agents 
(Stenseke 2021).

Importantly, RL is able to address many of the factors that might curb ethical agents’ 
decision-making: continuous dynamics (Serfozo 1979), partial observability (Cassandra 
et al. 1994), and objectives over different time horizon.47 One key challenge in RL is the 
trade-off between exploration and exploitation. I.e., when we do not have perfect informa-
tion, should we decide on the basis of what we already know (exploit), or take the risk of 
investigating options that would potentially be even better (explore)? In theory, the explore-
exploit dilemma could be solved through the notion of partial observability, which offers a 
way to model what is and what is not directly observable by the agent. A partially observ-
able Markov decision process (POMDP)48 augments the MDP 5-tuple by adding two addi-
tional terms: a set of observations ( Ω ) and a set of conditional probabilities (O), which 
represent the likelihood of observing � ∈ Ω if the agent performs a and the environment 
transitions to hidden state s′ , in the sense that O = Pr(� ∣ s�, a) . In short, solving POMPDs 
centers around computing probability distributions over the possible states the agent could 
be in (belief states), where an optimal policy maximizes expected reward in virtue of map-
ping actions to observation histories. In principle, since an optimal solution to a POMDP 
incorporates the instrumental value an action has from an information-theoretic point of 
view—and how the information can be used to make better future decisions—it offers a 
solution the explore-exploit dilemma.

Unfortunately, finding optimal solutions to POMDPs is undecidable for infinite hori-
zons (Madani et al. 2003). Furthermore, while solutions to finite MDPs and POMDPs are 
decidable, they are generally not tractable. The results by Papadimitriou and Tsitsiklis 
(1987) show that finite POMDPs are PSPACE-complete, while the results by (Mundhenk 
et al. 2000) prove that various MDP problems range from being complete for probabilistic 
logarithmic space (PL) to being EXPSPACE-complete.49 Other complexity results in RL 
indicate a similar trend: reaching a goal state might require, in the worst-case, a number 
of actions that is exponential in the size of the state space (Whitehead 1991). Intuitively, 
when no a priori knowledge of the state space can be exploited, unbiased search can lead to 
excessive exploration. However, worst-case time complexity results alone are insufficient 
to assess the theoretical viability of RL as a framework for sequential decision-making 
under uncertainty, as it depends on a number of factors, such as task representation [e.g., 
number of states and actions (Koenig and Simmons 1993)], the sort of feedback provided 
by the environment (e.g., observability), policy types [e.g., stationary or history-dependent 

47 E.g., a discount factor � of 0 only considers short-term rewards, while � = 1 without a terminal state con-
siders rewards over infinite time.
48 The POMDP framework for control under uncertainty was first developed by Åström (1965) and later 
adapted to problems in AI by Cassandra et al. (1994).
49 See also Littman (1996) for a detailed survey of the complexity of MDP and POMDPs.
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(Mundhenk et al. 2000)], or restrictions on the agent’s resources.50 Similar to the results 
of Bayesian inference, while there is no sound theoretical guarantee of the success of RL, 
its practical viability can be significantly improved by simplifying the task representa-
tion (given that a simplified representation is achievable), improving the observability of 
rewards, and by exploiting a priori knowledge. It should be no surprise that RL have been 
particularly successful in game environments which often affords a simple representation 
of the state space (e.g., 2-dimensional grids of Chess and Go) and discernible rewards 
(e.g., Dota or Starcraft).

But there are other issues with RL which might obstruct its applicability for consequen-
tialism. For instance, even if an agent has found an action-policy which maximizes its util-
ity in an environment inhabited by other agents, the policies or preferred utility of the other 
agents might result in conflicts. Such game theoretic considerations are challenging, espe-
cially in combination with partial observability and imperfect information regarding the 
other agent’s strategies and goals (we will return to this issue in Sect. 5.1). Other issues 
pertains the notion of sample complexity, i.e., the number of training samples a learning 
algorithm needs to learn a target function (or within some error of the optimal function). 
However, as we will discuss in Sect. 6, sample complexity is not only plagued by the exist-
ence of arbitrarily ‘bad’ distributions of training data, but it also raises deeper philosophi-
cal issues concerning induction.

Perhaps most critically, RL—and stochastic methods at large—presupposes trial-and-
error. While this might not be a major issue in simulated games, it presents a challenge for 
real-world environments which does not necessarily afford the same stochastic exploration; 
particularly if some actions could have catastrophic consequences. Furthermore, given the 
stochastic nature of the process, a RL agent might find a way to increase its incentivized 
reward in a way that conflicts with the very intention of its human designer [called “reward 
hacking” in Safe AI research (Amodei et al. 2016)].51

In a similar vein, the multi-armed bandit problem has generated a rich body of work that 
investigates the explore-exploit-dilemma under various conditions (Slivkins 2019). In its 
most basic form, it asks: given n possible actions (arms) which yields some reward drawn 
randomly from a fixed (but a priori unknown) distribution, how do you maximize the 
expected gain? Instead of reward maximization, many versions of the multi-armed bandit 
looks at the learning problem in terms of regret minimization, measured as the difference 
between the performed action and the optimal action (e.g., given hindsight). The goal is 
to find strategies that balance exploration and exploitation while minimizing regret. Vari-
ations include regret minimization with incomplete information (Zinkevich et  al. 2007), 
contextual bandits where agents receive some contextual information which relates to the 
rewards (Bouneffouf and Rish 2019; Langford and Zhang 2007), the problem of identify-
ing the best arms (Bubeck et  al. 2013), or finding arms whose mean is above a certain 
threshold (Locatelli et  al. 2016). Solutions to multi-armed bandits are typically investi-
gated under one of two assumptions: (i) stochastic—the reward distribution for each arm 
is unknown but fixed, or (ii) adversarial—the rewards are chosen by an adversary with 
unbounded computational resources (Auer et al. 1995) (e.g., gambling in a rigged casino). 
In its most general form, both assumptions are relaxed, which leads to the restless ban-
dit problem (Whittle 1988). This means that the payoffs can vary over time even when 

50 For instance, see Chatterjee et al. (2016) for a more recent summary of decidable solutions for POMDPs 
given finite-memory strategies.
51 See also Garcıa and Fernández (2015) for a survey of literature in Safe RL.
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the arms are not played. For instance, imagine that you are the manager of a kindergarten 
with n children and m babysitters, and m < n . Since the children outnumber the babysitters, 
the task is to allocate the babysitters’ attention in a way that minimizes mischief. While a 
child is attended to, information about its position, activity, and mood is gained. If it is not 
attended to, information is lost, and the child might be up to some mischief (they are, in a 
literal sense, restless).52 While many tractable solutions exist for different variants of the 
bandit problem, the restless bandit is proven to be intractable to even approximate. The 
proof provided by Papadimitriou and Tsitsiklis (1994) shows that for n arms and deter-
ministic transitions for both unattended and actively played arms (i.e., all transition values 
for attended arms and unattended arms are either 0 or 1), finding the optimal policy is 
PSPACE-hard.53 Furthermore, since the proof also shows that it is PSPACE-hard to deter-
mine whether the optimal reward is non-zero, it rules out approximate solutions.54

Of course, while it is little to no surprise that there are no effective solutions to prob-
lems like the restless bandit, it shows that there is no algorithmic way to ensure optimal 
performance (or minimize regret) in sequential decision-making under uncertainty, unless 
the nature of the problem space (environment) itself affords exploitation. The intractabil-
ity results for the restless bandits elegantly illustrate this with respect to making decisions 
in a changing world. More generally, while Markov chains and Monte Carlo dice-rolls 
can help to model and mine statistical tendencies of complex spaces, its success presup-
poses that such tendencies exist. This, however, might say more about the complexity of 
dynamic real-world processes than it does of the computational limitations of agents. Or 
as Hofstadter observed: Deep Blue’s win against Garri Kasparov says more about chess 
than it says about human intelligence (Hofstadter 2002). Brożek and Janik (2019) have 
recently made the analogous remark with regard to moral theory: “the fact that a machine 
may be a better homo Kantianus or homo Benthamus than any homo sapiens says little 
about human morality, and much about the idealised nature of philosophical conceptions 
of moral agency” (p. 103). But the complexity results discussed in this section imply some-
thing even stronger: while we might expect AI methods to perform better than humans in a 
range of tasks related to ethical decision-making, they are also bounded by the complexity 
of the world, which inevitably curtails any attempt to construct a perfect moral machine.

To sum up, we have explored three sources of complexity that presents tractability 
issues for computational consequentialist agents. This could imply that any computational 
agent bounded by polynomial Turing-tractability will fail to adhere to the prescriptions of 
the normative ideal in practice. As a corollary, it indicates that consequentialism might 
be better suited as a theoretical ideal, as opposed to a viable decision-strategy that could 
inform ethical decisions. But what is the point of moral theorizing if it cannot inform moral 
decision-making in practice? More pragmatically, one might look for the constraining fac-
tors—e.g., in the space of possible actions, action-combinations, conditional probabilities, 
time horizons, task representations, and approximations—under which consequentialist 
decision-making becomes tractable, and determine, in each case, how closely those deci-
sions approximates the optimal; or some fixed point of moral value.

52 See Whittle (1988) for several other intuitive examples.
53 Note that PSPACE-hardness entails something stronger than NP-hardness, as PSPACE-hard problems 
remains intractable regardless of whether P = NP.
54 However, approximation guarantees are possible if the problem is relaxed to allow for linear program-
ming, in the sense that one arm is played per time step on average (Guha et al. 2010).
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5  Deontology and rule‑followers

While consequentialism centers around outcomes, deontological ethics focuses on actions 
themselves: whether an action is moral depends on whether the action is obeys a set of 
moral rules, obligations, or duties. But what justifies a rule in the first place? And how can 
one ensure that a given interpretation of a rule stands up to the principle it was justified 
upon? According to divine command theory, the legitimacy and universal validity of moral 
rules is grounded on the authority of God. The Christian Ten Commandments provides 
canonical examples of such rules, e.g., “thou shalt not kill” or “thou shalt not steal”, given 
to Moses at Mount Sinai by God. By contrast, in Immanuel Kant’s deontological ethics, 
rational beings are bound to moral law by their own autonomous will, and the fundamental 
principle for our moral duties is captured in the categorical imperative: “Act only accord-
ing to that maxim by which you can at the same time will that it should become a univer-
sal law” (Kant 1785). This means that, as rational beings, people have a duty to only act 
according to maxims that a community of rational agents would accept as laws.

It should be stressed that rules and systems of rules are already deeply embedded in 
most human societies; generated and enforced by social institutions as law. In fact, moral-
ity and law share a complex and complementary relationship, as they are both normative 
systems that seek to regulate human behavior, e.g., in order to foster social harmony and 
stability of communities. On the one hand, law may compensate for the functional frailty 
of morality, since the latter lacks the mechanisms to enforce its own prescriptions. On the 
other hand, morality can serve the coordination of social expectations where law is difficult 
to apply, e.g., through notions of responsibility, solidarity, and fairness. Furthermore, many 
legal thinkers believe that, to succeed in its function of regulating behavior, law must reso-
nate with the moral norms and sentiments of its subjects.55

Given the rule-based nature of deontology in conjunction with the view that machines 
are essentially systems of automated rule-following, one might conclude that deontology 
provides an excellent recipe for moral machines. After all, deontological rules elegantly 
corresponds to the conditional statements pervading in machine code: e.g., “If input X → 
do action Y”. In popular culture, this view has most famously been explored (and prob-
lematized) in Isaac Asimov’s novels as “Laws of Robotics” (Asimov 1942). The appeal 
of computational deontology is also well reflected in the machine ethics literature; in fact, 
Tolmeijer et al. (2020) survey shows that 22 out of 50 implementations in machine ethics 
incorporate some elements from deontological ethics. Part of the appeal is the common-
held view that deontology is, computationally speaking, less complex than its alternatives 
(Brundage 2014; Wiegel and van  den Berg 2009; Powers 2006; Tolmeijer et  al. 2020). 
There is a technical, psychological, and philosophical dimension to this view:

(1) From a technical perspective, it is intuitively true that it is easier to follow hard-
coded rules than to compute consequences (e.g., considering the complexity discussed in 
Sect.  4). As an example, in their study of the moral evaluation of action plans, Lindner 
et al. (2020) found that deciding whether a plan is morally permissible according to act and 
goal-deontology is computable in linear time. By contrast, they also found utilitarianism to 
be PSPACE-complete by the same metric, and that principles based on harm avoidance are 
co-NP-complete.

55 Of course, this question divides legal positivists and non-positivists; the former view holds that law can 
be valid even if it is morally unjust, whereas the latter holds that law is only valid if it is consistent with 
moral norms (Moka-Mubelo 2017).
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(2) Second, following the work on the psychology of decision-making by Kahne-
man (2011) comes the influential theory that posits the existence of two distinct aspects 
of human reasoning: “system 1” which is fast and intuitive, and “system 2” which slow 
and deliberate. In moral psychology, this has led to the development of the dual process 
theory of moral cognition (Greene 2007), which postulates that moral judgment rely on 
both conscious-controlled processes (corresponding to typically utilitarian judgements), 
and automatic-emotional processes (corresponding to typically deontological judgments). 
Empirical findings based on the theory has showed, among other things, that an increase 
in cognitive load (by imposing an additional control-demanding task) leads to an increase 
in reaction time for utilitarian judgments, while it does not increase reaction time for non-
utilitarian judgments (Greene et al. 2008). Another study demonstrated that cognitive load 
may increase the frequency of deontological judgment, and that utilitarian responses are 
less likely if the subjects were reminded of their own mortality (Trémolière et al. 2012). 
Although this does not prove that deontology as a normative theory is more computation-
ally efficient than utilitarianism per se, it suggests that conscious-controlled processes in 
human moral judgments, in contrast to automatic processes (which may be described as 
characteristically deontological judgments), are more cognitively demanding and suscepti-
ble to cognitive load manipulation.

(3) The idea that rules can serve to alleviate the cognitive burden of moral judgments is 
also widely represented in moral theory; in particular as a move to save consequentialism 
as a decision procedure in light of the challenges that classic utilitarianism face (Brandt 
1979). For instance, modern versions of consequentialism differentiate between acts which 
would produce the most good (act utilitarianism) and rules which, if they were followed, 
would produce the most good (rule utilitarianism). Since the former, if it were to be used as 
a decision procedure, puts unrealistic demands on agents—e.g., susceptible to biases, lack-
ing complete information about the consequences of actions, or lacking time to make the 
correct judgments—many consequentialists adopt some version of rule utilitarianism as a 
decision procedure (Hooker 2016).56

Nevertheless, there are computational aspects of deontology—and moral rule-following 
more broadly—that are relatively ignored in the machine ethics literature. While machine 
executions of the type “If input X → do action Y” might seem trivial, they rest on the condi-
tions that:

(a)  X is really X, e.g., the agent has the appropriate understanding that an input (e.g., a 
situation) has certain properties [or alternatively, a “semantic grounding” of X (Harnad 
1990)] and

(b)  performing Y is an appropriate response to X in every possible instance of X (or alter-
natively, Y is intrinsically good).

56 As an intuitive example: we stop at a red light because we might believe that this particular traffic rule 
produces the most overall good (e.g., for society), and not because the act itself in this particular instance 
yields the most overall good. Note that this does not necessarily mean that act and rule utilitarianism are in 
conflict: act utilitarianism might still be the standard used to evaluate the consequences of rule-adherence 
prescribed by rules utilitarianism.
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  If both conditions are satisfied, a deontological agent would be able to act morally in 
constant time O(1), given that we store the appropriate action-rules for every possible 
input (which instead puts demand on the space complexity).57

In practice, however, conditions (a) and (b) are immensely hard to satisfy: (a) assumes 
perfect knowledge of any possible state space, and (b) relies on some general ability to 
understand that an action is an adequate response to a particular state.58 Against this back-
ground, this section will explore the complexity of deontology by discussing the generality 
of rules (Sect.  5.1), the complexity of logic and semantics (Sect.  5.2), and the prospect 
of consequentialist-deontological hybrids (Sect. 5.1.3). Additionally, section (Sect. 5.1.2) 
covers the complexity of strategic dynamics based on algorithmic game theory. We will 
argue that the moral power of rules lie in their general applicability, general justification, 
and computational simplicity. However, to be computational efficient at run-time, it pre-
supposes that one has already collected the vast knowledge required for such generalities to 
hold in practice.

5.1  The generality of rules

The generality of moral rules can be understood in several ways. We will first make a dis-
tinction between two important dimensions, namely application and justification. The first 
refers to the general ability to decide, given any possible input, whether a certain action is 
appropriate or inappropriate according to a set of rules. Alternatively put, a general abil-
ity to decide whether an action successfully adheres to the rule, principle or obligation it 
was justified upon. For an agent to successfully follow “do not harm others” in general, it 
means that it never acts in a way which directly harms another agent. While rules of this 
type may seem trivial for humans, they are more difficult to approach from a computa-
tional perspective. For instance, it is apparent that they presuppose sophisticated abilities 
to interpret whether actions (or more likely, chains of actions) actually obey the rule: e.g., 
knowing what another agent is; being aware of the set of possible actions (and sequences of 
actions) in a dynamic environment that could cause harm to other agents; etc. Here, there 
is an extreme variance of rule-application with regard to context: a self-driving vehicle will 
likely cause harm to other agents if it collides with them at high speeds (i.e., “do not harm 
others” easily translates into collision-avoidance), whereas a social robot in a classroom 
might be oblivious to the potentially infinite set of actions and causes that could cause 
harm.

57 For instance, we can imagine that every input is an index which immediately executes an action from a 
list of actions. Alternatively, we might use moral duties for deontological action-evaluation, e.g., in terms of 
constraint satisfaction: given an input X, we simply enumerate over a list of actions and check whether they 
violate any moral duty (this would be analogous to problem C2 in Sect. 4.1).
58 As we will discuss later, this may also involve an ability to understand whether an action stands up to 
the normative principle upon it is justified. Alternatively, to satisfy (b), we might demand that an action Y 
is intrinsically good, regardless of context (or that certain input-action-pairs are intrinsically good). As a 
thought-experiment, we could imagine a machine that was hard-coded with exclusively intrinsically good 
actions, and simply have it repeatedly executing a loop of good actions. Given that the actions were in fact 
intrinsically good, the machine would be a perfect moral machine. This seems to work for simple machines 
such as toasters. But in dynamic and partially observable environments, this seems to presuppose God-like 
omniscience.
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The second dimension is whether a rule itself is generally justified. For divine command 
theorists, rules may be universally justified on the basis of divine authority. In machine 
ethics, this has inspired the development of divine-command logic, where human input 
is interpreted as divine command for the machine (Bringsjord and Taylor 2012). For con-
tractualists stemming from Kantian thought, justified principles require instead that they 
are agreed upon by everyone (Rawls 1980), or that no-one could reasonably reject them 
(Scanlon 2000). Contractualism puts emphasis on the rationality of agents, which, follow-
ing Kant’s moral rationalism, requires that we respect others in the sense that principles 
must be justified to each person. By contrast, contractarians stemming from Hobbesian 
thought—e.g., Gauthier (1987) and Narveson (2001)—puts emphasis on the self-interests 
of agents, in the sense that moral rules ought to maximize the joint interest. Thus, for con-
tractarianism, adherence to moral norms or rules are justified on the basis of an agent’s 
self-interest; and altruism occurs when the agent recognizes that the best way to maximize 
their self-interest is to cooperate with others.

5.1.1  Human rule‑following in legal and liberal contexts

A first step in analyzing the computational complexity of rules stemming from these two 
notions of generality is to look at rule-following in human practices. One observation is 
that legislative practices are informed by the principle of ignorantia juris non excusat 
(“ignorance of the law is no excuse”) in the sense that laws should be easy to apprehend 
and easy to comply with. If not, willful blindness can be exploited by defendants. It also 
entails that human laws are formulated with regard to human capacities: it would be con-
trary to the purpose of laws if they were formulated so that no human could follow them. 
However, what separates moral from legal rules, is that the latter are backed up by legisla-
tive mechanisms of jurisdiction and may be enforced by the state (e.g., police). Impor-
tantly, if it is hard to decide how a certain law should apply in a specific circumstance, we 
rely on experts (e.g., lawyers, judges, and counselors of various courts) to interpret the 
law, ensure that it is applied in a just way, and possibly generate a new praxis for applica-
tions in the future. In fact, in many legislatures, laws are vaguely formulated by intention in 
order to be continuously infused with meaning as novel situations transpire.59 Thus, in such 
occasions, the normative content of the law is mainly given by its interpretation, and not 
by the law itself.60 In turn, if application falls short in representing the moral sentiments of 
the subjects of which the law applies to, it may constitute a failure of law: and defendants 
might rightfully choose to appeal the verdict. The point is that, while rule-following in 
terms of legal law-obedience might appear to be relatively simple in human contexts, it is 
only against the background of rather complex pre-existing mechanisms that ensures their 
successful implementation. It is therefore hard to make sense of the computational com-
plexity involved in following human laws, as it already presupposes the cognitive capaci-
ties (or certain behavioral standards) that makes up human legal personhood, while allocat-
ing the processes of interpretation and justification to legal practitioners.

Another observation, which is related to the first, is that laws are often articulated as 
positive or negative rules, i.e., “do this” or “do not do that”. From a human perspective, 
negative rules are, at least prima facie, simpler than positive rules: it is easier to remember 

59 For instance, the Court of Justice of the European Union.
60 That is, courts provides the guarantee that a particular application stands up to the principle upon which 
it was normatively justified. This argument is developed at a greater length in Stenseke (2023).
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what one should not do, as opposed to what one should do (in other words, it reduces space 
complexity). This, especially in the context of Western liberal societies, can be reflected 
in “the harm principle”, as found in France’s Declaration of the Rights of Man and of the 
Citizen (1789): “Liberty consists in being able to do anything that does not harm others” 
(Johnson 1990), or in Mill’s On Liberty: “[...] the only purpose for which power can be 
rightfully exercised over any member of a civilised community, against his will, is to pre-
vent harm to others” (Mill 1859). However, the memory-saving aspect of such principles, 
from a computational perspective, only makes sense against the backdrop of autonomous 
citizens within the context of a liberal society, and the potentially infinite set of actions 
they can do. For instance, the best way to follow “do not harm others” for a machine, might 
simply be to do nothing at all: the complexity of adhering to the principle is proportional to 
the set of actions it can do.

5.1.2  General‑purpose rules and their justification

What is common to legal rule-following and moral rules based on divine command is that 
the acting agent does not necessarily have to understand the moral rationale behind the rule 
in order to behave morally; the agent simply follows the rule without reflecting on whether 
the rule is morally justified (it is simply the case that God or law says so). Of course, there 
might be immense disagreement on what the right rules should be. By contrast, for Kan-
tian ethics, contractarians and contractualists, rules may involve justification as part of the 
action itself, in the sense that an act is only moral in so far as it is accepted by the affected 
participants (or members of the moral community of which the contract applies to). This is 
well-reflected in rules that have the ambition of being both generally applicable and gener-
ally justified, such as Kant’s categorical imperative (CI) or the Golden Rule (GR): “treat 
others as you would like others to treat you”.

It is interesting to note that general-purpose rules that involve justification can be ame-
nable to a complexity analysis if the rule itself provides grounds for deciding whether an 
action is moral. To illustrate, following the GR, the query “is action X morally permis-
sible given input Y?” is decidable for an agent A, if it is decidable whether A herself would 
accept X if it were performed by another agent B given input Y. For instance, if X given Y 
causes harm, and A would not want others to cause her harm, the answer is decidedly no. 
Of course, while this sort of analysis ignores the complexity involved in the determining 
the de facto mappings between any possible input, action, and outcome, it gives a general 
structure which can be analyzed:

(GR1) Golden Rule based on one’s own preferences61 For instance, the GR might refer 
to a set of actions and individual preferences of an acting agent A, in the sense that A has 
to check whether the individual actions satisfy her individual preferences: she will treat 
others (act) based on how she likes others to treat her (i.e., how an action, if performed by 
someone else, would affect her own preferences). Given that the agent can quickly check 
how actions affect her preferences, the worst-case time complexity of deciding whether any 

61 Here, we remain agnostic about the precise nature of “preferences”—it might as well refer to duties or 
obligations—in order to encompass many versions of deontology; the only important thing is that it can be 
represented as a numerical or boolean value.
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action is morally permissible is O(np), where n is the number of possible actions and p is 
the number of preferences.62

As a general-purpose rule, GR1 has a great appeal in virtue of its computational effi-
ciency: simply check whether you would accept an action based on your preferences. Prima 
facie, it would also capture many preferences that are commonly shared among self-inter-
ested agents in the natural world, e.g., to increase one’s pleasure and reduce one’s suffer-
ing. As such, it would therefore work to prevent actions that, for instance, directly cause 
harm. However, the major problem with GR1 is that it does not account for differences 
in preferences between agents, and how actions affect the preferences of agents in differ-
ent ways. It is therefore susceptible to counter-examples: e.g., a judge should not send a 
criminal to prison, because the judge himself does not want to go to prison.63 As a remedy, 
Reinikainen (2005) has argued that the universal applicability of GR needs to stand “the 
test of publicity”, which means that an action needs to be “acceptable from the imagined 
perspective of everyone affected” (p. 155). This motivates a second formulation:

(GR2) Golden Rule based on the preferences of others Assuming that the acting agent 
has perfect knowledge of how actions affect the preferences of others, and every agent has 
the same amount of preferences, the worst-case time complexity of deciding whether any 
action is morally permissible is O(npo), where o refers to the number of other agents.64

What becomes clear from comparing formulation GR1 and GR2 is not the relatively 
small increase in time complexity, but the increase in knowledge requirements for GR2 
to work. Perfect knowledge about how actions affect the preferences of others might be 
difficult to attain, even in smaller groups of agents. However, what is missing from GR2 
is that it fails to capture the recursive feature that is essential to most formulations of the 
Golden Rule. It is not that an agent should simply take others’ preferences into account; the 
agent should consider the way in which they would like others to take their preferences into 
account. This may not even involve specific actions or preferences as such, but rather, that 
an agent should generally behave towards others in a manner which they would like others 
to generally behave towards them. This feature of GR has been explored by philosophers 
such as Stace (1937), Wattles (1996), and Singer (2002), whom all make the observation 
that objections against the GR only have force against specific applications by GR, but not 
if we take GR to refer to an agent’s general behavior. Following Wattles (1996), this can 
involve one’s own method of applying the golden rule:

(GR3) Apply the golden rule to your general behavior in a way that you would want 
others to apply the golden rule to their general behavior.

The formulation is self-correcting in the sense that it will consider the potentially infi-
nite ways in which an agent A would like others to consider in their treatment of A; e.g., 
based on preferences, obligations, sensitivity to causal outcomes, integrity, or respect. It 
also reflects aspects of the moral rationalist project of determining universal a priori prin-
ciples for morality (e.g., Kant’s categorical imperative). Nevertheless, there are two main 
problems which distorts a complexity analysis of rules such as GR3. The first is that it 
may presuppose a great variety with regard to the cognitive capacities of agents, the ways 

62 Note that O(np) is also the tight bound of finding the most satisfactory action (e.g., an action which 
maximizes preferences), which is analogous to C2 in Sect. 4.1.
63 This counter-example was famously made by Kant (1785, footnote 12).
64 For instance, if there are two possible actions, five preferences, and 8 billion agents, it would take 80 bil-
lion computations to decide whether any of the two actions satisfies the preferences of the world population 
in 2022.
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such capacities enable features of an agent’s general behavior, and in turn, the cognitive 
capacities and features of general behavior that are shared between agents. The categorical 
imperative, for instance, assumes an idealized form of autonomy, in the sense that agents 
act according to their own self-imposed rules (without any external influence). Similarly, 
as noted in our discussion of “the harm principle”, the complexity of directing one’s gen-
eral behavior is proportional to the space of actions one can do. In the context of liberal 
democracies, it may refer to a cluster of capacities that are more or less shared among 
“generally competent” human adults (e.g., to act with intention, understanding, and with-
out the controlling influence of external factors). In this context, a complexity analysis of 
G3 thus presupposes that we have a computational specification of an adult human being.

The second problem is game-theoretical: there may be great variance with regard to 
what one expects of other agents. Here, the conflict between contractarians (following Hob-
bes) and contractualists (following Rosseau) comes to play, as they differ in their under-
standing of “the original position” and its relation to morality. The former starts from the 
assumption that human nature is primarily driven by self-interests, which makes morality a 
problem of cooperation; it would only be rational to be moral (cooperate) if it increases the 
joint interest. The latter has a more optimistic view, in the sense that it starts from a basis 
of mutual respect: morality are the results of binding agreements from a standpoint that 
recognizes each rational autonomous agent’s equal moral importance. This conflict may 
create a significant variance with regard to computational resources. For instance, if you 
are completely selfish, and you expect everyone else to be completely selfish as well, it 
will make your personal GR relatively simple to implement: you do not help others in need 
because others would not help you. By contrast, if you believe in every autonomous being’s 
equal moral importance, you might help others, not in light of a joint-interest (e.g., direct 
or indirect reciprocity), but due to a reasoning process which led you to conclude that help-
ing others is what free and equal citizens should do.

5.1.3  Moral behavior in strategic games

While it is hard to imagine a complexity analysis of general rules that is able to escape 
the extreme variances of general behavior and behavioral expectations, insights from game 
theory can shed light on some of its aspects. In 1950, mathematician John Nash famously 
proved that for every finite n-player game, there exists at least one fixed strategy profile—a 
Nash equilibrium (NE)—in the sense that no player can benefit from changing their strat-
egy (Nash et al. 1950). In the seven decades that has followed, game theory and its many 
extensions have become a standard tool for mathematical modeling in biology, social sci-
ence, and economics (Smith and Price 1973; Nowak 2006; Holt and Roth 2004). In phi-
losophy, it has been instrumental in theories of social norms as mixed-motive games turned 
into coordination games (Ullmann-Margalit 2015; Bicchieri 2005), and to aid the contrac-
tarian project of deriving morality from self-interest (Gauthier 1987; Skyrms 2004).

From a game-theoretical standpoint, it is interesting to ask: what computational 
resources does an agent need in order to decide how to act? Using the Prisoner’s Dilemma 
(Table 2) as the prototypical case, the most efficient approach would be to follow one of 
two pure strategies:

(S1) Pure defection Always do the selfish action, regardless of whether your own payoff 
(self-interest) would have been higher if you did not.

(S2) Pure cooperation Always do the altruistic action, regardless of your own potential 
loss.
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Assuming that an agent can, in every relevant circumstance, determine what it is to 
cooperate or defect, (S1) and (S2) are equally efficient, O(1). In some sense, (S1) can 
be seen as a naive interpretation of behavior in Hobbes’ state of nature (Hobbes 1651), 
whereas (S2) represents behavior in Kant’s hypothetical Kingdom of Ends (Kant 1785). 
Since an agent’s life in the former is “nasty, brutish, and short”, it lacks the mechanisms 
that enable mutual flourishing.65 In the latter, agents treat each-other as ends (as opposed to 
means), which allows them to prosper. Of course, agents who adopt (S1) will miss out on 
the game-theoretic rationality of morality itself, i.e., when the payoffs for mutual coopera-
tion is larger than mutual defection. Similarly, agents adopting (S2) might perform extreme 
and seemingly unnecessary acts of self-sacrifice (in Kantian terms, violating obligations 
directed to oneself). Furthermore, in mixed populations, cooperative agents will be targeted 
by free-riders who exploit the good-will of others (Fehr and Fischbacher 2004), unless 
there are mechanisms for punishment (Fehr and Gächter 2000). Still, from a machine ethics 
perspective, (S2) deserves attention as it captures aspects of divine command theory and 
legal positivism; i.e., given that humans have gathered exhaustive moral knowledge of a 
certain domain (e.g., determined the actions that support human well-being) and are able to 
implement it as input-action-commands. For instance, if one adopts the view that machines 
are merely tools for human ends, extreme forms of machine-sacrifice or machine-exploita-
tion may be irrelevant.66

While (S2) might have some appeal for the prospect of moral machines, it makes less 
sense from a human perspective. Simply put, people are less likely to cooperate if there are 
no self-directed incentives (even Kant’s Kingdom of Ends assumes some form of obliga-
tions to oneself). The more common strategy, and the most extensively studied strategy in 
economy and behavioral ecology, is to be rational in the sense of maximizing self-interest:

(S3) Mixed rationality Do whatever maximizes self-interest.
The strategy is mixed as opposed to pure, in the sense that it can be represented as a 

probability assignment to each pure strategy. It is a more sophisticated version of (S1), 
since it takes the potential self-interested benefits of cooperation into account (Axelrod 
and Hamilton 1981). However, what constitutes a rational choice, following (S3), is ulti-
mately dictated by features of the game. In a one-shot prisoner’s dilemma (played only 
once), if both players know that they will never play again, the dominant strategy and only 
possible NE is to defect. No matter of what Player 2 player does, Player 1 will be better 
off defecting, and vice versa: since neither can retaliate against the other, none of them 
have anything to lose by defecting. By induction, the same holds for the iterated prisoner’s 
dilemma, given that it is commonly known that the game is played precisely n times (Luce 

Table 2  Canonical payoff matrix 
for the Prisoner’s dilemma, 
where T > R > P > S

Player 2

Cooperate Defect

Player 1
 Cooperate (R, R) (S, T)
 Defect (T, S) (P, P)

65 Based on his idea of the state of nature, Hobbes famously argues that people are better off submitting 
themselves to an absolute political authority, which has the power to protect people from themselves.
66 From this point of view, it also seems absurd to conceive of moral machines driven by self-interest.
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and Raiffa 1989). If the number of rounds are unknown or infinite, however, cooperation 
among rational players can emerge in non-cooperative situations; defection may still be a 
NE, but not a strictly dominating strategy (Aumann 2016). It might seem counter-intuitive 
that merely knowing how many rounds one will play should make such a big difference for 
the choice of action; nor does it reflect what humans do in experimental settings (Heuer 
and Orland 2019). Several solutions to this “paradox” have been proposed. Radner (1986) 
showed that relaxing the strict notion of rationality (e.g., being satisfied by a ‘close enough’ 
payoff) allows for longer periods of cooperation. Kreps et al. (1982) demonstrated similar 
results on the basis that agents have incomplete information about the options, motivations, 
or behaviors of other players. A more interesting solution from a complexity perspective 
was provided by Neyman (1985), who showed that cooperation becomes an equilibrium 
if the players have sufficiently small memories. More specifically, if agents are modeled 
as finite automata with a fixed size s, and play n number of games, mutual cooperation 
becomes a fixed point if 2 ≤ s < n.67 Intuitively, since players do not have the memory 
needed to enumerate to n, they in effect treat is as an infinite game.

This generates an insight which is contrary to the complexity results discussed thus far. 
While the results in Sect. 4 indicate that an agent cannot do what is morally optimal due to 
their own computational constraints, these game-theoretic considerations demonstrate how 
agents behave morally (cooperate) due to a lack of certain computational resources: e.g., by 
restricting space complexity Neyman (1985), information Kreps et al. (1982), or rationality 
Radner (1986). This may suggest another role for normative theory which contradicts what 
was argued in Sect. 3.1.2: the purpose of NT is not to produce moral optimality as such, 
but rather to provide action-guidance in novel and complex situations. The results may be 
suboptimal, either from a rational or moral perspective, but they do work, given the con-
strained resources of agents. This idea has been extensively explored by Alexander (2007), 
who claims that moral principles have emerged to provide ‘fast and frugal heuristics’ which 
enables agents with bounded cognitive abilities to coordinate on suboptimal outcomes.

Nevertheless, it is also an optimistic form of question-begging: it already assumes that 
the moral norms and principles that foster cooperation leads to some non-trivial joint ben-
efit (e.g., contractarian perspective), while the agents themselves might lack the cognitive 
abilities to verify the benefit. Consequentially, the joint benefit becomes its own optimis-
tic fixed point unless it is compared to some other alternative (or the de facto optimal). 
Like divine command, legal positivism, or natural law, it might ask agents to blindly follow 
rules because “they are good”, while offering no proof of why those rules are better than 
other alternatives. Of course, from an evolutionary perspective, it may provide informa-
tive post-hoc solutions to the problem of altruism: how is it that many organisms exhibit 
altruistic behaviors—increasing other agents’ reproductive potential by reducing their 
own—given that natural selection favors the survival of the fittest? By observing coopera-
tive behavior in various organisms, one might conclude that altruistic behaviors could not 
preserve unless they offered some alternative reproductive benefit [e.g., kin and selection, 
direct, indirect, and network reciprocity (Nowak 2006)]. In the same vein, one might justify 
“fast and intuitive” moral behaviors because they compress moral wisdom from evolution-
ary or cultural history. However, this view relies on an optimistic conservatism: that there 

67 See Aaronson (2013) for an interesting discussion of this paradox in the context of computational com-
plexity.



 J. Stenseke 

1 3

  105  Page 38 of 90

are good reasons why things are as they are, even if we may not know these reason to a full 
extent (we will return to this issue in Sect. 5.3).68

5.1.4  Moral behavior in strategic games with incomplete information

Instead of finding computational constrains that enable cooperation, one can investigate 
the factors that hinders the maximization of rational self-interest in more realistic game-
theoretic settings. For instance, through the work on Bayesian games by Harsanyi (1967), 
we can model scenarios with incomplete information:

(S4) Bayesian rationality Do whatever maximizes expected self-interest.
Bayesian games relax the underlying assumption in classic game theory: that features 

of the game, e.g., the actions and payoff functions for every player, are known by all play-
ers. For instance, in the original formulation of NE, it is assumed that each player knows 
the equilibrium strategies of the other players. In a Bayesian game, players instead have 
beliefs about the features of the game, which may involve beliefs about others’ beliefs of 
features of the game. This naturally leads to infinite hierarchies of higher-order beliefs 
(beliefs about beliefs about beliefs ad infinitum), which are cumbersome to approach math-
ematically. Harsanyi’s model of Bayesian games partly solves this through the notion of 
type, which summarizes a player’s beliefs about the nature of the game (and her infinite 
hierarchy of beliefs).69 If it is assumed that the private elements of players are drawn from 
a commonly known distribution, the infinite regress is resolved, which enables a Bayesian 
equilibrium analysis; a specification of the behavior of each player that is a best-response 
to what the player believes is the behavior of the other player (i.e., a best-response to the 
other players’ strategies given the players own type).

In practice, however, Harsanyi’s setting is unfeasible to model in multi-agent systems 
where agents interact with unknown agents. How can we be sure that a stranger draws from 
the same known probability pool as ourselves? In autonomous agents and multi-agent sys-
tems research, nested beliefs are instead investigated through the concept of recursive rea-
soning.70 Methods for recursive reasoning typically approximate nested beliefs down to a 
predetermined recursion depth. For instance, if A is trying to predict the behavior of B, A 
predicts B’s next action by simulating B’s decision based on what A beliefs about B. This, 
in turn, requires a prediction of A’s behavior from the perspective of B, based on what A 
thinks B believes about A, etc. Recursion is then terminated at a fixed depth by drawing 
the action prediction from some probability distribution (e.g., a uniform distribution). The 
bottom-level prediction at 0 is then passed up to the higher level ( 0 + 1 ), where the optimal 
action is chosen, and then passed recursively up to the highest level (l) where A makes it 
de facto choice.71 One prominent version of the aforementioned process is the Interactive 
POMDP (I-POMDP), which extends a POMDP (discussed in Sect. 4.3) by adding models 
of other agents into the state space (Gmytrasiewicz and Doshi 2005). In short, for agent A 
to pick the optimal action, A has to solve the I-POMDP of B for each model of B, which 

68 As an interesting thought-experiment, if Thomas Hobbes were alive in the 21st century, would he still 
try to convince democratic societies to submit their power to a sovereignty?
69 See Mertens and Zamir (1985) and Brandenburger and Dekel (1993) for two complementary construc-
tions of Harsanyi’s model of infinite hierarchies of beliefs.
70 See section 4.5 in Albrecht and Stone (2018) for a recent survey on recursive reasoning methods.
71 In fact, the famous minmax algorithm for zero-sum games is a special variation of this method, where 
the opponent B’s evaluation function is taken to be the inverse of player A (Campbell and Marsland 1983).
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involves solving the I-POMDP for each model B has of A, all the way down to the 0th 
level, where models of other agents are standard POMDPs (i.e., they are “noise” drawn 
from some probability distribution).

While several exact and approximate solutions for I-POMDPs have been offered,72 they 
are, for obvious reasons, hard to compute. Since the 0th level constitutes POMDPs which 
the agent can recursively use to solve POMDPs for the higher levels, the complexity of 
solving an I-POMDP is equal to solving O(Nl) POMPDs, where N is a bound on the num-
ber of models the agent considers at each level, and l is the recursion depth (Gmytrasiewicz 
and Doshi 2005). For instance, for an I-POMDP containing 4 agent models and 4 levels, 
this will amount to solving 256 POMDPs, which, individually, are PSPACE-complete for 
finite time horizons (Papadimitriou and Tsitsiklis 1987). More broadly, Bernstein et  al. 
(2002) studied a number of decentralized control problems—where multiple agents coop-
erate to control a process, each with possibly different information about the state—and 
proved that both decentralized MDPs and POMDPs are NEXP-hard; i.e., at least as hard 
as the hardest problems that are solvable in non-deterministic exponential time. More spe-
cifically, while POMDPs and I-POMDPs are equally targeted by the “curse of history”—in 
the sense that the space of policies is proportional to the number of possible future beliefs 
given by the time horizon—since I-POMDPs may involve a greater number of (potentially 
nested) beliefs, they are further impeded by the “curse of dimensionality”, as the complex-
ity of belief representation is proportional to the dimensions of the belief structure.

But history and dimensionality are not the only curses in strategic interaction. For 
instance, if players are uncertain about other players’ payoff function, there is an inher-
ent tension between prediction and rationality. Foster and Young (2001) demonstrated that 
there are situations in which it is impossible for rational players to play optimally with 
respect to their beliefs, while simultaneously having correct beliefs. The reasoning is sim-
ple: if A tries to predict the action of B at t2 , and A must take an action at t1 which B can 
observe, B’s observation might invalidate A’s prediction of B’s behavior at t2 . Furthermore, 
in certain settings, higher-order reasoning may not provide any additional benefits. In fact, 
the studies by de Weerd et al. (2013, 2017) demonstrates settings—e.g., sequential negotia-
tion and rock-paper-scissors—where reasoning levels higher than 2 do not offer any nota-
ble advantages for computational agents.

Nevertheless, while the intractability results for recursive reasoning have a direct impact 
for computational systems, it remains an open question how humans reason in similar 
problems, and consequently, how machines should interact with humans in a robust way. 
These questions have been extensively explored in the experimental psychology on stra-
tegic interpersonal situations, often in combination with the notion of “theory of mind” 
(Yoshida et al. 2008). For instance, in two experiments with human participants, Hedden 
and Zhang (2002) showed that participants employ a short-sighted “default model” about 
the other players minds, which were dynamically adjusted in light of new evidence. In 
addition, the “cognitive hierarchy” model proposed by Camerer et al. (2004) suggests that 
players presume that their own strategy is the most sophisticated, in the sense that they use 
the best-response at recursion level l to predict the behavior of players at level l − 1 (i.e., 
one step ‘higher’ in the level of nested beliefs). By fitting their model with a large corpus 

72 E.g., using methods like Monte Carlo sampling (Doshi and Gmytrasiewicz 2009) or model equivalence 
(Rathnasabapathy et al. 2006).
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of empirical data from a variety of games, they found that humans, on average, reason at 
recursion depth 1.5.73

Given the many conflicting dimensions of the subject matter, it seems difficult to arrive 
at any general conclusions about whether and to what extent computational constrains 
affect strategic interactions in moral contexts. However, it tentatively indicates a trend, 
namely that optimality is traded for efficiency (or mere feasibility) in light of information 
availability (about the state space and of other players), bounded rationality (e.g., memory 
and recursion level), and game setting (e.g., one-shot or iterated, stochastic or determin-
istic). Intuitively, the complexity results could support the appeal of pure strategies such 
as S1 and S2: in complicated situations, it is easier to simply believe that everyone is of 
a certain type (e.g., selfish or altruistic). It could also explain why it is easier to cooper-
ate “locally” (e.g., in smaller groups of friends), where features of the games are common 
knowledge; a mutually shared goal (e.g., maximization of joint interest), and shared mech-
anisms for detecting and punishing free-loading.74 Similarly, it also shows the inverse: why 
it is difficult to achieve cooperation in bigger populations, where game features are not 
shared, and agents do not know what to expect from each-other.

5.1.5  Computing moral equilibria

Perhaps the most interesting part of game theory from a moral computational perspective 
is not to ask about the resources an agent needs in order to decide how to act, but rather, 
to find strategies that maximize the interest of everyone (e.g., given that everyone were to 
follow the same strategy). This is interesting for two reasons. First, from a moral point of 
view, it would roughly correspond to the general-purpose rules discussed in Sect.  5.1.2, 
e.g., GR and CI. That is, if some action-rule (or strategy profile) is a consistent best-
response to every other action and leads to some non-trivial mutual benefits, it would be 
attractive for a moral community to find those rules. Second, these general-purpose rules 
would in turn correspond to the typical solution concepts used in game theory—namely 
Nash equilibria—with properties that are attractive from a moral standpoint (e.g., maxi-
mizing joint interest).

It is thus natural to ask: how difficult is it to compute a Nash equilibrium? Already 
v.  Neumann (1928) provided the Minmax Theorem, which entails that equilibrium in 
2-player zero-sum games can be computed in polynomial time by linear programming 
(Khachiyan 1979). For non-zero sum games of at least two players, however, the problem 
is proven to be PPAD-complete (Chen et  al. 2009). PPAD, introduced by Papadimitriou 
(1994), is the class of function problems solvable by a non-deterministic TM in polynomial 
time where a solution is guaranteed to exist on the basis of the parity argument on directed 
graphs (“PPAD”). The parity argument is based on the graph-theoretical insight that the 
number of nodes that touch an odd number of edges is even in all finite undirected graphs 
(this defines the PPA class, which contains PPAD). A similar insight holds for directed 
graphs: given a directed graph and a source (a node without predecessors), there must be 

73 However, the view that human recursive reasoning is “pessimistic”—i.e., at a relatively low level of 
recursion, and based on underestimating one’s opponent—has been contested by Goodie et al. (2012), who 
found settings where all participants engaged in the highest available level of reasoning in both competitive 
and simple settings.
74 In turn, cooperative groups may benefit from the “wisdom of the crowd” phenomenon (Yi et al. 2012), 
where aggregations of multiple solutions performs better than individual solutions.
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a node at “the end of the line” which lacks successors.75 What is special about the PPAD 
complexity class is that it reflects what is special about NE: since there always exist a NE 
(Nash 1951), the answer to the decision problem “does there exist a NE for this game?” is 
always yes, and therefore, it cannot be NP-hard. Similarly, it also reflects what is special 
about Brouwer’s fixed-point theorem: for any continuous function f that maps a compact 
and convex Euclidean space to itself, there exists at least one point x∗ such that f (x∗) = x∗ . 
By analogy: if you are standing in a region and unfold a map of the same region, assum-
ing that there are no holes in the map, at least one point of the map will correspond to your 
location. But simply knowing that such a point exists, does not necessarily make it easy to 
find it. If we assume that one can efficiently check whether a certain point on the map is in 
fact one’s location, the localization problem can be solved in non-deterministic polynomial 
time (NP membership). By the same reasoning, if one can efficiently verify whether a strat-
egy profile is a best-response or not, the problem of finding a NE is in NP (which, in turn, 
contains the PPAD class).

However, if the NE should have any special properties—e.g., such that it maximizes the 
sum of the player’s utility, or everyone obtains an expected payoff of at least some num-
ber—the problem becomes NP-complete (Gilboa and Zemel 1989).76 Conitzer and Sand-
holm (2008) strengthened these results and proved that the egalitarian optimization prob-
lem (e.g., maximizing mutual payoff) is inapproximable; i.e., it is impossible to find an NE 
that approximates the maximum joint payoff in polynomial time. In fact, optimal NE is one 
of many known NP-hard problems related to NE that are also hard to approximate (Austrin 
et al. 2013): e.g., computing whether there is more than one NE, or finding NE with mini-
mal support.77 More precisely, while a linear-time algorithm can obtain 1/2-approxima-
tions of the optimal NE (Daskalakis et al. 2006), achieving approximations better than 1/2 
is as hard as the planted clique problem, which in turn may be solved in quasi-polynomial 
time (Lipton et al. 2003).78

Naturally, in situations with incomplete information or stochastic dynamics, things may 
get even harder. While it remains PPAD-hard to find mixed-strategy equilibrium in Bayes-
ian games due to the fact that normal-form games are special cases of Bayesian games, 
Conitzer and Sandholm (2008) showed that, even in symmetric 2-player Bayesian games, 
it is NP-hard to determine whether the game has a pure-strategy Bayesian equilibrium. 
By contrast, one can determine the existence of pure-strategy NE in normal-form games 
in polynomial time by simply checking whether any combination of pure strategies is a 
NE. However, this procedure is unpractical in Bayesian games, since the space of strate-
gies grows exponentially with the number of types, which contains the private informa-
tion of players preferences. In addition, Conitzer and Sandholm (2008) also demonstrated 
PSPACE-hardness for checking whether there exists pure-strategy NE in repeated games 
with probabilistic state transitions—also called “Markov games”, as they extend MDPs to 
include multiple decision-makers—and that the problem remains NP-hard in finite games.

75 The “end-of-the-line” problem is a paradigmatic PPAD-complete problem.
76 This can be proved by reducing it to the problem of finding a clique of size k in an undirected graph (Gil-
boa and Zemel 1989). For instance, finding a clique of size 3 means finding 3 nodes that all are connected 
to each-other.
77 The minimal support problem asks: for a number k ≤ 1 , is there a NE in which players use at most k 
strategies with a positive probability?
78 Here, the planted clique problem is used as a hardness assumption, as it is conjectured that no polyno-
mial time algorithm can, better than chance, distinguish planted cliques from random graphs (Hazan and 
Krauthgamer 2011).
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Although NE constitutes the most extensively studied solution concept in game theory, 
it is not the only one that is useful from a moral perspective. A prominent alternative is the 
correlated equilibrium (CE) introduced by Aumann (1974, 1987). In simple terms, CE can 
be seen as a result of a commonly shared Bayesian rationality: it is simply a maximization 
of utility given the player’s information. In contrast to NE rationality, CE does not assume 
that players know that other players play their action as it is dictated by the NE, nor that 
each player know the strategies of others. Instead, an equilibrium is simply that no player, 
based on what they know (privately or commonly), can expect a higher return if they devi-
ate from their strategy. A useful analogy is to imagine a situation where players choose an 
action by observing a random event: in mixed strategy settings, the event is assumed to be 
independent for each player, while in correlated settings, they may not be. For instance, 
player A and B might privately observe a correlated signal—e.g., two traffic lights—which 
recommends A to wait and B to go. If the signals are drawn from a correlated distribution, 
neither A nor B would want to violate the signal’s recommendations (as running a red light 
might cause them to collide). As such, CE is a general distribution over strategy profiles, 
whereas mixed strategy NE is a distribution over the space of “uncorrelated” strategies 
(independently distributed over each player). Since every mixed NE can be defined as the 
product of the player’s mixed strategies, it follows that NE is in fact a special case of CE; 
and that every game has a correlated equilibrium.

Apart from being guaranteed to always exist, CE is attractive for multiple reasons. It 
seems to emerge in natural settings where NE does not (Hart and Mas-Colell 2000).79 
Unlike NE, it is more apt to accommodate the role of external factors that are decisive 
for the outcome, e.g., by following the recommendations of trusted sources. From a moral 
perspective, CE captures many situations—e.g., in moral or legal rule-following—where 
it is clearly incentivized to not deviate from the prescribed action (e.g., following traffic 
rules). Last but not least, CE are easier to compute than NE. Since correlated equilibria 
can be defined by a set of linear inequalities (Hart and Schmeidler 1989)—and does not 
have to be based on Nash’s result—the problem of finding an CE can be solved by linear 
programming, and is therefore computable in polynomial time for games with any num-
ber of players (Gilboa and Zemel 1989). Papadimitriou and Roughgarden (2008) demon-
strated that there are polynomial-time algorithms for computing an arbitrary CE for many 
natural classes of succinctly representable multiplayer games, including polymatrix games, 
graphical and hypergraphical games, and scheduling games. Unfortunately, while any CE 
seems easy, Papadimitriou and Roughgarden (2008) also show that in nearly every class 
of succinct games, it remains NP-hard to compute a CE that maximizes the expected joint 
payoffs.

Besides these intractability results, one might also question the relevance of computing 
morally good equilibrium. Of course, at system-level, they provide indispensable analytical 
tools for modeling and measuring intricate behavioral dynamics. For instance, the price of 
anarchy measures how the joint welfare of a system degrades due to selfishness by divid-
ing the welfare value for the “worst-case” decentralized equilibrium with the welfare at its 
optimal centralized configuration (Koutsoupias and Papadimitriou 2009).80 But these tools 
might be of less use from the perspective of individual agents. We can imagine that an 
agent has managed to compute a “golden rule” strategy profile (e.g., a set of action-rules) 

79 See also chapter 7 in Cesa-Bianchi and Lugosi (2006).
80 Conversely, the price of stability gives a ratio of the difference between “best possible” decentralized 
equilibrium and the optimal centralized solution.
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which for any possible interaction, maximizes the joint benefit of her society. Still, her 
society would only flourish given that the other agents in the society followed the strategy 
profiles as fixated by her equilibrium computation. She might try to convince other agents 
to follow her lead by an appeal to her extraordinary computational powers81; she might, as 
Kant, argue that it is imperative for the will of rational beings; that it is, following Hobbes, 
imperative for the maximization of expected self-interested; or she might simply hope that 
everyone else—e.g., in virtue of shared rational capacities and correlated distributions—
computes the corresponding set of strategy profiles. Given the adequate means, she might 
enforce the fixation of the equilibrium, e.g., by punishing everyone who did not follow 
their strategy profile. At the most extreme, we could imagine a super-intelligent Leviathan 
that has—even adjusting for any potential welfare losses due to the restrictions of freedom 
and the punishment of dissidents—computed that the joint welfare would still be optimal if 
strategy profiles were enforced by force.

The main point is that solutions to decentralized cooperation problems require, in some 
non-trivial sense, centralized features to work in practice. While shared cognitive capaci-
ties, rationality, communication (Crawford and Sobel 1982), and information (e.g., from 
correlated distributions), can certainly make it easier for agent’s to collectively arrive at 
morally attractive equilibria, the complexity of cooperation is distorted by a vast range of 
features in the local and agent-specific context; e.g., more or less overt power-dynamics 
(e.g., via legal, political, and religious institutions), psychological heuristics (such as trust, 
shame, and guilt), and conflicts between in-group/out-group preferences. Additionally, fol-
lowing results from social choice theory, there may be situations in which it is impossible 
to translate individual preferences into community-preferences without violating some sig-
nificant fairness criteria.82

Furthermore, in the real-world, it is often not clear what kind of game we are playing, 
or, whether we are even playing a game at all. Games can be cooperative or non-cooper-
ative, discrete or continuous, one-shot or repeated (e.g., played with strangers or friends), 
simultaneous or sequential, zero or non-zero sum, symmetric or asymmetric, have vary-
ing degrees of imperfect and incomplete information, have varying population sizes, all 
while allowing for a potentially infinite set of different strategies (e.g., specific action-com-
binations in sequential Markov processes of unknown length). In other words, even if we 
assume “centralized features” (such as shared cognition, memory, and views on rational-
ity), game-theoretic models—and thus, the applicability of equilibria solutions—are heav-
ily underdetermined by data. While small and isolated groups might tend towards cooper-
ation—e.g., by easily recognizing the maximization of a joint interest; having mechanisms 
for detecting free-loading; knowing that others share the same information about the game; 
etc—it might take millennia for larger societies to become egalitarian, e.g., as agents 

81 Following a recent proposal from Cummings et al. (2016), coordination complexity can be measured as 
the minimum information a centralized coordinator with complete knowledge of the game needs to publicly 
signal in order to coordinate players towards a nearly optimal solution.
82 A famous example is Arrow’s impossibility theorem, which states that in a ranked voting with at least 
three options, there is no electoral system that can produce a unique and complete ranking while simultane-
ously satisfying unanimity (i.e., if every voter prefers A over B, then the community ranking prefers A over 
B), non-dictatorship (i.e., no single voter can alone determine the community’s preference), and independ-
ence of irrelevant alternatives (i.e., the preference for choosing A over B do not change if C is added to the 
alternatives) (Arrow 1950).
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cannot agree on the nature of the coordination games they are playing (for instance, due to 
conflicts between in-group preferences).83

5.1.6  Algorithmic moral mechanism design

The strong indeterminacy of game-theoretic models, along with the hardness of computing 
good equilibria in such models, suggests that it may be easier to foster collective welfare 
by design; i.e., constructing systems where tractable and morally praiseworthy equilibria 
naturally arise (as opposed to finding good equilibria in arbitrary settings). This intuitively 
reflects the relationship between legality and morality. Although agents may follow rules 
due to moral reasons (e.g., they lead to a joint benefit if everyone followed them), they 
may be further incentivized to do so if there are mechanisms for blame, responsibility, 
and punishment. Similarly, institutionalized moral rules (e.g., “do not harm others”), may 
by design reflect natural strategy profiles that are easy to understand, morally justify, and 
apply in practice. Similarly, in economics, the aim of mechanism design (or “reverse game 
theory”) is to design decentralized economic mechanisms that achieve desired objectives, 
e.g., to optimize social welfare (Hurwicz and Reiter 2006). In other words: design or alter 
the mechanisms of our interactions in a way that promotes moral values (e.g., mutually 
beneficial outcomes). A simple example is the “I cut, you choose”-procedure for fair divi-
sion (e.g., when two parties share a cake), which guarantees that both players receive a pay-
off that is at least as valuable as the other payoff, regardless of what the other player does. 
Another example is democracy, where citizens are incentivized to participate in political 
decisions that affect their own lives. In algorithmic game theory, this has further motivated 
the field of algorithmic mechanism design, which seeks to design games that combine fea-
tures that are attractive from a computational and game-theoretical perspective, with the 
prime example being games with good worst-case equilibria (i.e., a low price of anarchy) 
that can be computed in polynomial time (Nisan and Ronen 1999). Some notable examples 
of algorithmic mechanism design include traffic routing (Roughgarden 2005; Roughgar-
den and Tardos 2002), auction design (Cai and Papadimitriou 2014), and internet problems 
(Feigenbaum and Shenker 2004). Essentially, since it is difficult for agents who are con-
strained by tractability to find and follow moral equilibria in open-ended environments, 
complexity considerations can help to inform the design of decentralized systems that are 
morally attractive.

However, algorithmic mechanism design is not without its grand challenges. One chal-
lenge is to design and implement systems in a way that ensures that the mechanisms—e.g., 
behavioral rules—and desired outcomes are widely endorsed among those who participate 
in the system. Thus, while the design process in ideal circumstances could itself be par-
ticipatory (Kensing and Blomberg 1998), implementing a system may in principle be as 
difficult as establishing a particular form of political governance or moral theory. A related 
challenge is to work out the uncomfortable trade-offs between different values that the 
mechanism might introduce: e.g., between freedom and welfare.84 And similar to politics, 

83 To be clear with terminology, coordination games conventionally refer to games where it is optimal for 
players to cooperate, e.g., as in Stag Hunt or Battle of the Sexes. As such, they differ from anti-coordination 
games like Hawk-Dove (chicken), where it is optimal for players to play different strategies.
84 Considering the Leviathan example discussed in Sect. 5.1.5, a centralized solution that optimizes some 
joint welfare may be inconsistent with freedom, as it comes at the cost of forcing agents to act in certain 
ways.
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a reoccurring threat is that those in power to design and implement a particular mechanism 
may opt for one that only promotes their own interests, or further cements their own power 
over the political process.

In summary, our investigation into the generality of moral rules (Sect. 5.1) found that:

(1) Although moral rule-following in human contexts might appear to be computationally 
simple, they rely on shared cognitive capacities and agreements between “generally 
competent” human agents (often along with the institutions that ensure their just appli-
cation). While rules such as “do not X” might reduce space complexity, it is only by 
restricting a potentially infinite space of actions that autonomous agents can do.

(2)  If computational agents should follow general moral rules in a way that ensures their 
own normative justification—e.g., being sensitive to other beings via rational agree-
ment or by maximizing joint interest—results from algorithmic game theory indicates 
that it requires solutions to intractable problems (with a few noteworthy exceptions). 
Note that these intractability results hold for salient games, in the sense that agents are 
assumed to have a model of the game they are (supposedly) playing, even if informa-
tion about aspects of the game may be incomplete. In many real-world situations, the 
validity of such models, given that they are obtainable at all, might still be severely 
underdetermined by data (i.e., the model might fail to capture the essential real-world 
dynamics). In other words, if we assume that moral rule-following can be mathemati-
cally modeled as following strategies in games, the solution to such games may be 
decidable (e.g., by computing equilibria), although in general not polynomial-time 
tractable. It is also important to stress that these challenges are far from unique to deon-
tology, but affects any moral theory with generality ambitions that seeks to account for 
multi-agent dynamics. Thus, it naturally targets consequentialism (as it centers on how 
outcomes affect others), but not theories such as divine command and legal positivism.

(3) Given the hardness of finding good equilibrium, the problem of computing the beliefs 
of others’ (e.g., nested beliefs), the indeterminacy of game models, and the fact that 
cooperation may emerge due to a lack of certain computational resources (e.g., infor-
mation, memory, or self-interest), the investigation also suggests that moral rules and 
principles might better serve as ‘fast and frugal heuristics’ that guide agents with 
bounded cognition in open-ended environments towards suboptimal but feasible results. 
Somewhat ironically, this might in turn make “naive” moral strategies (e.g., “when 
in doubt, be altruistic”) viable or even necessary from a computational perspective; 
although without offering any game-theoretic explanation as to why they are viable 
from a self-interested perspective.85 Furthermore, instead of computing moral equilib-
ria in complex environments, one promising alternative approach is to use complexity 
constraints and equilibrium measures to guide the design of decentralized systems 
which are attractive from a moral perspective.

85 To illustrate this point, we can imagine two populations—A and B—that have converged on the same set 
of cooperative behaviors that yield optimal joint welfare. In population A, the equilibrium was a result of 
repeated interactions between self-interested individuals over several thousands of iterations. In population 
B, the equilibrium was already fixed at start, as agents were told by their mothers to “always be kind”. The 
point is that while agents in A understand the self-interested rationale behind cooperation, they are never-
theless equally well-off as agents in B, who are oblivious to the same rationale.
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5.2  The complexity of moral logic and semantics

Another way to analyze the computational complexity of deontology is to look at the syn-
tax and semantics of formal languages that aim to capture moral reasoning and rule-fol-
lowing. For instance, we might note that moral rules expressed in natural language have 
certain logical characteristics, such as “given fact a, action b is obligatory”. Consequently, 
we might imagine that it is possible to construct a machine that has a number of norms 
(x, y) stored in memory which relate facts (x) to obligations or permissions (y). The ques-
tion is, are there any complexity considerations that might curtail such a machine’s practi-
cal success for reasoning about norms (this will be the topic of Sect. 5.2.2)? More broadly, 
how does the expressive power of a logic used for moral reasoning relate to complexity 
classes, e.g., in terms of the problems it can describe (the topic of Sect. 5.2.1)? In this sec-
tion, we will discuss such problems along with some more fundamental issues in semantics 
(Sect. 5.2.3).

5.2.1  Decidability and descriptive complexity

Any discussion of the complexity of logic would be incomplete without reiterating the clas-
sic results that make up the very foundations of computability. In 1929, Kurt Gödel’s com-
pleteness theorem establishes that in first order logic (FOL), semantic truth corresponds 
with syntactic provability; i.e., there are complete, sound, and effective deductive systems 
for FOL (Gödel 1930). Two years later, Gödel gave his two celebrated incompleteness the-
orems (Gödel 1931), which shows that any consistent formal system capable of carrying 
out elementary arithmetic—e.g., using natural numbers, addition, and multiplication—is 
incomplete (first theorem),86 and that such a system cannot prove its own consistency (sec-
ond theorem).87 Inspired by Gödel’s theorems, Turing (1936) and Church (1936) indepen-
dently provided negative answers to the “Decision problem” (Entscheidungsproblem) for 
FOL; Church’s proof utilizes the undecidability of checking the equivalence of two expres-
sions in the �-calculus, whereas Turing constructs the halting problem for Turing machines. 
Their results establish that no decision procedure exists that can decide whether arbitrary 
FOL formulas are logically valid.88 On the other hand, propositional logic (PL)—which, 
unlike FOL, excludes relations and quantifiers—is decidable. For instance, the satisfiability 
problem for propositional logic (SAT) was the first decision problem proven to be NP-
complete (Cook 1971), and has since remained at the center of computational complexity 
theory. Using Cook’s results from SAT, Karp (1972) proved NP-completeness of 21 further 
problems, which not only demonstrated the intuitive appeal of the NP-class, but also that 
many natural computational problems are intractable.

However, instead of determining the resources needed to check whether some input 
satisfies some property X, we can ask, what is the complexity of expressing X? The lat-
ter question is central for the field of descriptive complexity theory, which defines com-
plexity classes in terms of the type of logic required to express the languages in them. 

86 A system—or rather, a theory in the mathematical logical sense, i.e., a set of sentences in a formal lan-
guage—is consistent if it does not lead to contradictions. An axiomatic system is complete if any statement 
in the systems language is provable from the axioms. Incompleteness thus entails that there are statements 
which cannot be proved nor disproved in the system.
87 The theorems were further refined by Rosser (1936), who proved them without assuming �-consistency.
88 Validity means that true premises guarantee the truth of an argument’s conclusion.
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In fact, due to a wealth of results from descriptive complexity, it turns out that express-
ing and checking are intimately related.89 The first major result in the field was Fagin’s 
theorem (Fagin 1974), which established that NP is exactly the set of properties that can 
be expressed in existential second-order logic (SO∃ ), which unlike FOL, has the power 
to existentially quantify over properties and relations. In other words, every query that is 
computable in NP (including NP-complete problems) is equivalent to a query in SO∃.90 
Furthermore, since the complement of an existential formula (quantifying over some mem-
bers of a domain) is a universal formula (quantifying over all members of a domain),91 it 
follows directly that co-NP is captured by SO∀ , and unrestricted second-order logic (SOL), 
which allows for both universal and existential quantification, is equal to the union of all 
classes in the polynomial hierarchy (PH). Other notable results include the fact that FOL 
corresponds to the logarithmic time hierarchy (LH) as well as the circuit complexity class 
AC0 , linearly ordered FOL systems with a least fixed-point operator yields P (Immerman 
1982; Vardi 1982),92 SOL with a transitive closure gives PSPACE (Immerman 1989), and 
SOL with a least fixed-point corresponds to EXPTIME (Immerman 1998; Abiteboul et al. 
1997).

These results generate the wisdom that the expressiveness of a language is directly 
correlated to the problems it can describe. However, it should be noted that, while com-
putational and descriptive complexity are intimately related, they also have some crucial 
differences. For instance, one key incongruity is that, whereas descriptive complexity 
studies finite mathematical structures, computational systems operate on ordered encod-
ings of problems and are thus able to enumerate objects which may be logically unordered. 
As an example, from a logical perspective, we might see a set of nodes in an graph as 
undordered, but as soon as it is transferred to the tape of a Turing Machine, it inevitably 
becomes ordered (and thus exploitable for various forms of operations).93 Nevertheless, the 
fact that complexity can be characterized in terms of expressibility—without reference to 
some abstract machine—further establishes the natural appeal of the complexity classes. 
And for computational moral rule-followers—e.g., systems performing queries over data-
bases containing moral norms—the consequences are profound yet somewhat clouded by 
its mere generality. For instance, languages describable in FOL corresponds to AC0 (poly-
nomial-size circuits of bounded depth), which allows one to perform integer addition and 
subtraction but not multiplication. Adding an operator which can compute the transitive 
closures of binary relations, on the other hand, makes it possible to produce structures 
that can answer reachability queries (e.g., is it possible to go from node A to node Z in n 
steps?). Perhaps most interesting is the intractability of expressing queries which involve 
different forms of quantification over properties and relations (and not just objects, as in 
FOL), which is seemingly intuitive in natural language. For instance, even trivial moral 
queries of the type “For all observable facts, possible actions, and obligations, is there 
some action which does not violate any moral obligations?”, might, in the worst-case, only 

89 See Immerman (1998) for the definite introduction to descriptive complexity.
90 See chapter 7.1. in Immerman (1998) for a detailed proof.
91 This follows from the fact that ∃x¬P(x) is equavalent to ¬∀xP(x).
92 In short, fixed-point logics extend FOL with an operator which can construct fixed points of relational 
variables. For instance, if we view formulas with free relational variables as if they are determining maps 
on the relation space, the operator can define fixed points on this map.
93 However, this incongruity does not hold for Fagin’s theorem, since SO∃ can be used to declare the exist-
ence of some desired order.
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be expressible in intractable complexity classes (e.g., if we assume that obligations are a 
relation between facts and actions). The point is, while quantification over properties and 
relations, transitive closure, and fixed points offer substantial expressive powers to well-
studied collections of formal systems, it also raises intractability concerns; simply because 
language helps us to succinctly represent and communicate queries for moral rule-follow-
ers, it does not necessarily make such queries easy to compute.94

5.2.2  The complexity of modal and deontic logic

One of the most widely used fragments of FOL is modal logic; the go-to logic for repre-
senting necessity ( □ ) and possibility ( ◊).95 From the mid 20th-century and onward, the 
standard semantics for modal logic is the possible world approach,96 where □P means 
that P is true in all possible worlds, and ◊P means that P is true in some possible worlds 
(assuming that these worlds are accessible). One attractive feature of modal logic is that it, 
contrary to FOL, is robustly decidable.97 However, although it is decidable, typical prob-
lems for modal logic are in general not tractable. For instance, while the model-checking 
problem, which asks whether a given formula is true with regards to a given state of a given 
Kripke structure98 is solvable in linear time, the validity problem, which asks whether a 
formula is true in all states of all Kripke structures is PSPACE-complete (Ladner 1977). 
More precisely, Ladner (1977) demonstrates that the validity problem for modal logic is 
PSPACE-complete for the systems K, T, and S4, whereas it is NP-complete for S5.99 These 
results where extended by Halpern and Moses (1992), who proved that the validity prob-
lem is PSPACE-complete for multi-agent versions of K, T, S4, and S5 (i.e., a “join” of the 
logics used by at least two agents). The work of Halpern and Moses (1992) also shows that, 
while the addition of a distributed knowledge operator—allowing an “all-knowing” agent 
to combine the knowledge of everyone else—does not alter the complexity, the addition of 
a common knowledge operator—allowing everyone to know P, and that everyone knows 
that everyone knows ...that P holds—makes the problem EXPTIME-complete.100

Naturally, similar intractability concerns plague other popular versions of modal logic. 
For instance, (1993) showed that the PSPACE-completeness of the validity problem car-
ries over to the tense case (temporal logic), i.e., with the addition of operators expressing 
“it will always be the case that...” and “it always was the case that...”. Similarly, Sistla 
and Clarke (1985) demonstrated that satisfiability for Linear Temporal Logic (LTL, 

94 See Aaronson (2013) for an interesting discussion of the related problem of “logical omnicience”, which 
uses complexity considerations to challenge the view that if an agent knows certain facts, it also know every 
logical consequence of those facts.
95 Alternatively, since the main ideas of modal logic long predates FOL—e.g., Aristotle’s modal syllo-
gisms—it is arguably more accurate to describe modal logic as an expansion of propositional logic.
96 The approach was originally suggested by Carnap (1947), and later developed to its modern day form by 
Kripke (1963).
97 For an in-depth exposition see Vardi’s report “Why is modal logic so robustly decidable?” (Vardi 1997).
98 A Kripke structure is a graph that represents reachable states as nodes, state transitions as edges, and a 
labelling function that keeps track of the properties that hold in each state.
99 For readers unfamiliar with modal logic, K, T, S4, and S5 refer to the choice of axioms and rules 
that are added to the systems; e.g., K—the weakest version—only includes the necessitation rule (i.e., 
(⊧ P) ⟹ (⊧ □P) ) and the distribution axiom ( □(P → Q) → (□P → □Q)); T includes the reflexivity 
axiom ( □P → P ) in addition to K; S4 and S5 includes T along with iteration axioms 4 ( □P → □□P ) and 
5 ( ◊P → □◊P ), respectively.
100 See also Spaan (2016) for an exhaustive treatment of the complexity of modal logics.
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introduced by Pnueli (1977), with operators for “next” and “until” (excluding the past), is 
either PSPACE-complete or NP-complete depending on the operators used.101 In general, 
PSPACE-completeness also holds for the model-checking problem for several versions of 
LTL (Schnoebelen 2002).

Perhaps more interesting for the prospect of moral machines is the complexity results 
for variants of modal logics such as dynamic logic (DL, introduced by Pratt 1976) and 
deontic logic. DL adds the additional modal operators [a] and ⟨a⟩ , which makes it able to 
capture properties of program behavior; e.g., [a]P means that after performing action a, it 
is necessary that P is true (i.e., a brings about P), and ⟨a⟩P means that it is possible that P 
holds after a is performed (i.e., a might bring about P). Note that a might refer to an entire 
program, which allows dynamic logic to formalize dynamics—e.g., transitions, sequences, 
and results—of complex algorithmic systems of multiple programs. In turn, Propositional 
Dynamic Logic (PDL, introduced by Fischer and Ladner 1979) was developed to describe 
correctness, termination, and equivalence of computer programs on the basis of PL [instead 
of FOL, which was the basis of the first version of DL (Pratt 1976)]. Interestingly, the 
decidability of checking whether a formula F of PDL is satisfiable can be secured by hav-
ing two sub-procedures running in parallel: one which enumerates all deducible formulas 
(R1), another which enumerates the finite models of PDL and tests whether they satisfy the 
formulas (R2). In this way, if F is satisfiable, a model which satisfy F must eventually be 
found. If F is satisfiable, R2 will at some point answer “yes”, if not, R1 will at some point 
answer “no” (and the procedure halts when either sub-process gives an answer). Never-
theless, although PDL is attractive for formal verification of program behavior, it is less 
attractive for computational moral agents bounded by polynomial time, as SAT for PDL is 
EXPTIME-complete (Fischer and Ladner 1979; Pratt 1980).102

Deontic logic (introduced by Von Wright 1951), on the other hand, aims to capture the 
logical features of moral concepts such as permissions (typically denoted by operator P) 
and obligations (typically denoted by O). For instance, the axiom O(A → B) → (OA → OB) 
states that “if it is obligatory that A implies B, then B is obligatory if A is obligatory”. Like-
wise, Kant’s “ought implies can” can be expressed by OA → ◊A . It should thus be no sur-
prise that deontic logic has been a popular framework for implementations in machine eth-
ics, e.g., for automatized ethical reasoning (Arkoudas et al. 2005; Wiegel and van den Berg 
2009; Furbach et  al. 2014; Malle et  al. 2017b). However, compared to other versions of 
modal logic, the computational complexity of deontic logic is relatively unexplored. One 
reason is that the inherent complexity of (and relationship between) normative concepts—
e.g., of agency, right, responsibility, and commitment—may be drawn to arbitrary levels of 
detail103 Another reason is the problem of agreeing on the appropriate semantics for norms, 
e.g., whether they are based on possible worlds, axiomatic constructions, or operational 
executions. A more fundamental challenge for the semantics of deontic logic is captured 
in “Jørgensen’s dilemma” (Jørgensen 1937), which asks whether arguments that contain 
norms (e.g., imperatives) express a truth or not. In standard conceptions of logical entail-
ment, it is essential that true conclusions follow from true premises; i.e., conclusions and 

101 See Vollmer et  al. (2009) for a more detailed study of the complexity of temporal and propositional 
operators in LTL.
102 A more practical algorithm for PDL-SAT—although still EXPTIME-complete in the worst-case—has 
been offered by De Giacomo and Massacci (2000).
103 See Sergot (1998) for an exposition, which also appears in the handbook on deontic logic by Gabbay 
et al. (2013).
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premises can be true or false. However, since imperatives are—supposedly—neither true 
or false, they cannot play any meaningful role in the validity of arguments, and as a results, 
we cannot justify imperatives on the basis of logical reasoning. At the same time, reason-
ing with imperatives seems to be logically valid in cases where the premises and conclu-
sions are imperatives (Jørgensen 1937, p. 290):

(P1) Love your neighbor as yourself
(P2) Love yourself
(C) Love your neighbour

Thus, the dilemma entails that we either have to accept that normative statements cannot 
have truth values, or deny that the premises and conclusions of our argument have truth-
values. In turn, these considerations have given rise to several families of deontic logics, 
which can be roughly divided into two camps: the possible-world approach—e.g., stand-
ard deontic logic, “Seeing To It That” (STIT) logic (Horty 2001) and dynamic deontic 
logic (Meyer et al. 1988; Van Der Meyden 1996)—and approaches that are not based on 
possible-worlds, such as input/output logic (Makinson and Van Der Torre 2000), impera-
tive logic (Hansen 2008), defeasible deontic logic (Governatori et al. 2013), and prioritized 
default logic (Horty 2012).

With regards to complexity, the first path entails that one has to deal with the PSPACE-
completeness that often plague possible-worlds semantics (Halpern and Moses 1992), or 
the EXPTIME-completeness of dynamic logic (Fischer and Ladner 1979). In fact, it is 
shown that the satisfiability problem for a fragment of STIT, which is used to construct 
deontic STIT, is undecidable (Schwarzentruber and Semmling 2014).104 As an alternative 
to possible worlds, Sun and Robaldo (2017) has investigated the complexity of input/output 
logic on the basis of a ‘norm-based’ operational semantics. In this view, declarative state-
ments can be true or false whereas norms cannot: they are simply violated or complied. 
More precisely, norms are ordered pairs (x,  y) that corresponds to deductive operations 
of the input/output-system, taking a fact (x) as input, and producing an obligation (y) as 
output. However, their investigation finds that decision problems of input/output logic are 
shown to be NP/co-NP-hard and in the 2 nd level of the polynomial hierarchy (i.e., NPNP 
and co-NPNP ). By contrast, Governatori et al. (2013) has demonstrated the computational 
tractability of a deafeasible deontic logic able to compute ‘weak’ (allowed unless explicitly 
prohibited) and ’strong’ permission (only allowed if explicitly permitted). However, the 
constructed object logic has a rather constrained expressibility, as it only includes propo-
sitional symbols and their corresponding negations, and only modal literals are allowed 
(obtained by applying modal operators for obligation and permissibility to propositional 
literals).

In summary, the surveyed results support the conclusion that using modal logic—e.g., 
temporal logic, dynamic logic, deontic logic—to represent or automatize moral reason-
ing generally introduces computational intractability. Naturally, in order to capture the 
rich intricacy of ethical life, normative notions in logical form must be able to account for 
knowledge, time, agency, program behavior, and multi-agent dynamics, which inevitably 
adds complexity. However, it must be noted that while these results might appear to indi-
cate something deeply problematic for the prospect of moral machines constrained by poly-
nomial time, they are also immensely productive for other practical purposes. For instance, 

104 See also Balbiani et al. (2008), Herzig and Schwarzentruber (2008), Xu (1998) for other results on the 
complexity and decidability of STIT.
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knowing that a problem is provably in PSPACE may allow it be related to a vast set of 
other PSPACE-problems, along with the algorithms, approximization techniques, and heu-
ristics that have been developed to tackle them. The fact that the satisfiability problem for 
dynamic logic is EXPTIME-complete does not stop it from being useful in formal verifica-
tions of program behavior. More broadly, from a design perspective, the complexity results 
may be of great help to inform ones choice of formal system—its expressivity, operators, 
syntax, and semantics—for the practical purpose at hand.

5.2.3  The problem of moral semantics

The problem of semantics comes in various variants, some of which have been subject to 
extensive philosophical treatment for centuries. Earlier in this section, we noted that, if an 
agent should follow a rule of the type “‘If input X → do action Y”, we assume that the agent 
has some non-trivial understanding of what X and Y means. In the semantics of proposi-
tional logic, we simply say that the terms are either true or false with respect to some model 
(or in modal logic, with respect to possible worlds), and provide rules (e.g., a truth table) 
for determining the truth value of sentences made up of those terms and logical connectives 
(e.g., ¬,∧,∨,→,⇔ ). Similarly, semantics in programming languages might simply define 
the process of how valid strings in the syntax (instructions) will induce (interpretation) cer-
tain state transitions (execution), e.g., by manipulating some data structure. In such cases, 
semantics may be viewed as a purely mechanistic operations, and the job of establishing 
the link between model and reality—e.g., how any valid sentence that can be expressed by 
the language corresponds to some real-world state of affairs—is circumvented.

Nevertheless, human moral discourse—e.g., of virtues, principles and judgments—
is abundant with descriptions and concepts that are semantically so-called ‘thick’. For 
instance, moral talk involve ‘thick descriptions’ that embed subjectivity as part of their 
meaning, e.g., by explaining individuals’ behavior in light of internal motivations (Geertz 
et al. 1973). That is, when we describe an agent as being courageous or fair, we naturally 
assume that the agent has some subjective characteristics (e.g., psychological dispositions 
and experience) that exemplifies courage and fairness. In turn, these subjective character-
istics might only make sense for an agent, given that the agent also understands how they 
relate to her own subjectivity (e.g., sensori-motor experience, beliefs, desires, and inten-
tions). Moral talk also involve paradigmatic examples of ‘thick concepts’ that are both 
descriptive and evaluative (Blackburn 1998); e.g., terms like generous and selfish can refer 
to descriptions of certain behaviors (acts of sharing or not sharing one’s food), while simul-
taneously denoting an evaluative quality (being good respectively bad).

Unfortunately, thick concepts and descriptions invoke issues that remain at the center 
of long-standing metaphysical and meta-ethical debates. To explicate the meaning of thick 
descriptions, in so far as they depend on subjectivity, one might in turn require satisfying 
answers to other fundamental challenges, such as the symbol grounding problem (Harnad 
1990), the hard problem of consciousness (Chalmers 1997), and the meta-ethical problems 
of determining the meaning of “meaning” and truth with regard to moral terms. The first 
problem is relevant for any system that make use of symbols—e.g., to communicate or 
reason—as it concerns how symbols ground their meaning. For over four decades, Searle’s 
Chinese Room experiment (Searle 1980) has provided a venue for philosophical discus-
sions about the limits of whether and to what extent computational systems can “under-
stand”. Searle famously argues that a computer program that is able to convince a human 
Chinese speaker that it understands Chinese, does not literally “understand” Chinese, as 
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it is merely following syntactic rules. But even if we oppose to Searle’s broad rejection 
of computationalism,105 we still need to give some account of how thick moral terms get 
their meaning, or more pragmatically, what they ‘do’ for our moral practices. However, it 
very much remains an open question to what extent the grounding of symbols rely on, e.g., 
intentionality (Brentano 1874), perceptual experience (Barsalou 1999), or certain sensori-
motor capacities (Taddeo and Floridi 2005), and yet another open question whether such 
capacities can be carried out by a computational system.106 Similarly, to explicate thick 
concepts, one naturally has to assume that it is possible to disentangle their evaluative and 
descriptive components.107

So how do these deeper problem of semantics relate to computational complexity? Of 
course, it ultimately depends on how we position ourselves with respect to these debates, 
as they would determine our view of moral semantics, and the role moral terms play in 
moral behavior. On the one hand, if we hold—following meta-ethical cognitivism—that 
the meaning of moral terms can be properly disentangled and defined as truth-bearing enti-
ties, problems expressed in any ‘thick’ moral language would in principle be computed 
in the ways discussed in Sect. 5.2.2 (e.g., the checking validity with respect to a given or 
all possible Kripke structures). As such, moral semantics would not yield any additional 
complexity baggage that does not already follow from the moral languages’ expressive-
ness. However, while cognitivists hold that moral terms can express mind-independent 
facts about the world, it does not mean that we have found them; like divine command 
theory, the approach presupposes that one has collected exhaustive knowledge of all moral 
terms—e.g., via access to Platonic reality—and managed to encode them along with all 

105 Computationalism is the family of views that hold that the human mind—including consciousness and 
cognition—is some form of computation.
106 Aaronson (2013) has framed a technical version of the related “Waterfall argument” in light of com-
plexity considerations, which supplements the Chinese Room by claiming that meaning is always relative 
to some external observer (Searle 1992). The argument starts from the observation that any physical system 
with a sufficiently large state space could in principle implement the semantics of any other system; e.g., 
for some mapping M from a waterfall’s initial states I to final states F, there is a way of labeling any given 
permutation P from I and F such that M implements P, and P may thus represent any “semantics” we like, 
such as a chess playing program. However, if we actually tried to use a waterfall to compute chess moves, 
we would need to find a reduction from the chess program to the waterfall, e.g., by showing how chess 
positions and chess moves can be efficiently tracked to the waterfall’s initial and final states. From this, 
Aaronson conjectures that, for any given chess program with access to a waterfall oracle, there is another 
chess program with equally good performance and similar resource requirements that does not access the 
waterfall oracle. In other words, it seems highly probable that any reduction algorithm from chess to water-
falls would simply solve chess problems, and not use the waterfall in any meaningful way. For Aaronon, 
this mirrors the more substantive notion of completeness: the class that a problem is reduced to cannot 
itself be sufficient to solve the same problem. I.e., while NP-problem X1 can be solved in polynomial time 
with access to an oracle for X1 , problems in P cannot be reduced to problems in P (as this would imply that 
every problem in P is P-complete). The presumed equivalence between waterfall and chess computation 
thus carry little substance, unless the equivalence can be demonstrated in a model of computation that itself 
isn’t capable of solving waterfall or chess problems.
107 This would, somewhat coarsely, be the position of Blackburn (1992) and Hare (1952). In contrast, 
thinkers like Putnam (2004) and Williams (2006) see thick concepts as indivisible blends of fact and value. 
For instance, Putnam states that ‘thick’ ethical concepts “simply ignores the supposed fact/value dichotomy 
and cheerfully allows itself to be used sometimes for a normative purpose and sometimes as a descriptive 
term” (Putnam, 2004, p. 35).
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their semantic relationships.108 At present, nevertheless, there is strong disagreement about 
what moral terms mean.109

A skeptical alternative would be to bite the bullet of undecidability. For instance, Rice’s 
theorem states that all non-trivial semantic properties of a language recognized by a TM 
are undecidable, where semantic properties are about a programs behavior, and non-triv-
ial properties are neither true for all partially computable functions, nor false for all par-
tially computable functions.110 To illustrate, we can imagine a moral language ML as a 
set of TM descriptions, and the criteria for TMs to be in ML is that their language L(TM) 
accepts at most three strings (|L(TM)| ≤ 3). If a language M1 belongs to ML ( M

1
∈ML), it 

means that M1 satisfies the property ML. That ML is a property of TM languages can be 
shown by the fact that two machines with the same language, M1 and M2 , are either both 
in ML or neither in ML; since they have the same language, they have the same number of 
strings. To show that ML is non-trivial, we let M3 be a machine that accepts every string, 
and M4 be a machine that rejects every string. Since M3 ∉ ML (accepting more than three 
strings), and M4 ∈ ML (0 is ≤ 3), it follows from Rice’s theorem that ML is undecidable. 
Of course, we can let ML denote a great number of things, and given the vast generality of 
Rice’s theorem, we can demonstrate undecidability for a large set of problems pertaining 
machine behavior.111 Analogously, we can draw a skeptical conclusion about the prospect 
of moral languages; as long as there are some disagreement about the meaning of moral 
terms (e.g., different agents computing different outputs), there can never be a decidable 
moral language.

There are, of course, many other palpable reasons to be skeptical about the decidability 
of moral semantics. For instance, both computability and theories of meaning finds a com-
mon nemesis in the self-referential Liar Paradox: “this sentence is false”. It plays a central 
role in Gödel’s first incompleteness theorem—by replacing “false” with “not provable”—
as no consistent system of mathematics can prove truths about itself. Similarly, Turing’s 
Halting problem demonstrates that it is undecidable whether a computer program halts, as 
for any program P that can decide “Yes” for halting can be countered by another program 
that uses P as input in order to produce the opposite “No”.112 On the side of theories of 
meaning, Alfred Tarski found that the Liar Paradox only appears in “semantically closed” 
languages, i.e., a language that can express the truth of its own sentences (Tarski 1944). 
Tarski’s own solution—to separate the referring meta-language from the referred object 
language in a constructed hierarchy—was in turn found to be incomplete by Kripke (1976), 
who, among other things, employed self-referential tricks to produce statements that break 
the hierarchy.113 Of course, Kripke’s solution—which utilizes partially defined truth predi-
cates (“undefined”)—can in turn be targeted by a strengthened liar paradox: “this sentence 

108 Of course, this is not unfeasible for extremely limited state spaces. For instance, we can imagine a 
toaster that uses sensors to read whether a toast is under-baked, baked, or burnt, and understand how evalu-
ative sentences “this toast is bad!” express certain facts about about the toast’s states.
109 Recalling Jørgensen’s dilemma from the previous section, we also note that there are profound disagree-
ments about valid inference in deontic logic.
110 Conversely, a partial function is trivial if it is true for all partial computable functions or for none.
111 For instance, whether a given TM computes a constant function, a total function, the identity function, 
add two natural numbers, or a computable function can easily be shown to be undecidable using Rice’s 
theorem.
112 In turn, the more general Rice’s theorem can be proven by reduction from the Halting problem.
113 Kripke gives the following example, expressed by Jones and Nixon: (J) “Most (i.e., a majority) of Nix-
on’s assertions about Watergate are false”, (N) “Everything Jones says about Watergate is true” (Kripke, 
1976, 691). In the Tarskian hierarchy, N needs to be on a higher level than everything that Jones says, and J 
needs to be on a level higher than what everything Nixon says.
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is either false or undefined”. Ultimately, as any solution seems to produce new self-refer-
ential problems that applies to the new solution, any semantic theory centering on truth is 
haunted by a paradox out for revenge (Beall 2007). Moreover, as demonstrated by Dahl 
(2022), the Liar Paradox is not content with semantic theories based on truth, but extends 
to all theories that seeks a unified explanation of meaning for any language. In short, since 
any unified theory of meaning requires a language that is expressive enough to assert its 
own meaning, and no language can coherently assign meaning to itself while articulating 
the unified theory, it follows that a universal theory of meaning is impossible.

A more pragmatic route is to deny that moral terms can be true or false, and instead say, 
following Wittgenstein (2010), that “meaning is use”. Besides purifying moral semantics 
from Platonism and paradoxes, it would potentially bring moral talk closer to the eclectic 
social practices from which it stems, where occasional quarrel, misunderstanding and dis-
sent is inevitable. In this view, moral expressions should not be understood in virtue of any 
formal account of meaning, but rather how they, in more or less satisfactory ways, serve 
our moral practices. Presumably, this could even circumvent the undecidability of non-triv-
ial semantics and halting, if we accept that it is no problem that arbitrary programs either 
do ‘this or that’; pragmatically, they either work well, or they do not. In place of truth-
conditions, we could adopt one or several of the prominent non-cognitivist approaches to 
moral language, e.g., that moral statements function to express emotion and elicit emotion 
in others (Stevenson 1937); to assert prescriptive judgements (Hare 1952); or convey atti-
tudes (Schroeder 2010).114 However, while such theories may be credible for emotional, 
judgemental, and affective humans, they are less suitable for a complexity analysis, as they 
often presuppose a human-specific psychology.

Nonetheless, one way to analyze the complexity of potentially ‘mindless’ agents’ use of 
moral terms is to look to modern Wittgensteinans such as David Lewis and Robert Bran-
dom. Before his work on counterfactuals, Lewis provided an early game-theoretic analy-
sis of social conventions (Lewis 1969). In this view, following the footsteps of Schelling 
(1960), linguistic as well as moral conventions can be viewed as self-perpetuating solu-
tions to reoccurring coordination problems, where it is mutually beneficial for self-inter-
ested agents to coordinate their actions. Linguistic meaning, more particularly, have subse-
quently been explored within the paradigm of signaling games. In a simple signaling game, 
a messenger seeks to convince receivers that they are of a certain type—e.g., that they are 
competent—where the actual type is only known to the messenger. Intuitively, no hon-
est messenger benefits from being misunderstood (e.g., conveying false information about 
their type), just as it is beneficial for incompetent players to lie, and players receive payoffs 
depending the receivers’ responding action (e.g., hire agent a or b). Given its explanatory 
power, signaling games have been used to model the development of communication and 
linguistic meaning (Skyrms 2010; Huttegger 2007).

Since signalling games are typically modeled as sequential Bayesian games, their equi-
libria solutions are plagued by the intractability concerns discussed in Sect. 5.1.5; in par-
ticular the NP-hardness of checking whether a Bayesian game has a pure-strategy Bayesian 
equilibrium, and the PSPACE-hardness of computing a pure-strategy NE in Markov Games 
(Conitzer and Sandholm 2008). However, Lewis’ own equilibrium concept, called coordi-
nation equilibria, has the property that every player also prefers that every other player 
conform to some regularity R, on the condition that at least all but one player conform. 
Naturally, this presupposes some concept of common knowledge, which was subsequently 

114 It should be noted that these non-cognitivist positions should not be equated with a Wittgensteinian out-
look on meaning per se, but rather that they reject the belief that moral terms are truth-apt.
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generalized by Aumann’s correlated equilibrium (Aumann 1974). As discussed in 
Sect. 5.1.5, CE is computationally attractive, as they can be found in polynomial time for 
games with any number of players (Gilboa and Zemel 1989).115 In Lewis’ original defini-
tion, however, conventions are necessarily arbitrary, in the sense that there is a conflicting 
regularity R′ , which could have become the stable convention (and R and R′ are mutually 
exclusive). Of course, the concept of arbitrariness certainly has explanatory value: while 
it is not arbitrary that a mutually beneficial solution to a coordination problem becomes 
convention (e.g., cars driving on opposite side of the roads), it is arbitrary that a particular 
solution was chosen over another (e.g., right-hand traffic as opposed to left-hand traffic). 
Still, the arbitrariness criteria does not exclude the possibility that a conflicting regularity 
could result in an even greater joint benefit. Thus, since stable conventions become self-
perpetuating, their potential moral value relies on the same optimistic conservatism that 
permeates post-hoc evolutionary explanations of altruism and social contracts; that there 
are good reasons why conventions are as they are. By contrast, it is possible for a conven-
tion to have an exceptionally high price of anarchy (i.e., a terrible worst-case equilibrium), 
while the stability of the convention ensures that no one believes that anyone would ben-
efit from going against the grain. However, evaluating the convention against alternatives, 
e.g., by computing a CE that maximizes the expected joint benefits, invites NP-hardness 
(Papadimitriou and Roughgarden 2008).

On a more optimistic note, these computational difficulties may be mitigated by coop-
erative principles for communication, e.g., following the work of Grice (1975). This strat-
egy can be reflected in Lewis’ refined analysis of convention (Lewis 1975), which includes 
preferences with regard to one’s own beliefs: “The expectation of conformity ordinarily 
gives everyone a good reason why he himself should conform” (Lewis 1975, p. 8). Simi-
larly, Lewis writes that “a language L is used by a population P if and only if there prevails 
in P a convention of truthfulness and trust in L, sustained by an interest in communication” 
(p. 10). For Lewis, along with other Griceans such as Schiffer (1972) and Bennett (1976), 
meaning ultimately stems from a coordination between speakers communicative intentions 
and receivers communicative expectations. In turn, these intentions and expectations may 
as well encompass cooperative conventions.

A related yet distinct account of “meaning is use” that is apt for explaining moral lan-
guage has been provided by Brandom (1994). Brandom gives a theory of sapience—the 
type of rationality that humans possess—based on the notion of discursive practice, which 
can be summarized as “the game of giving and asking for reasons” (p. 6). Participants of 
discursive practices take on entitlements and commitments, which can be seen as carrying 
the normative force of permissions and obligations, respectively. At the core of discursive 
practices are inferential relations, which preserves commitments and entitlements to other 
statements. I.e., sentences only carry content in terms of their function, which is inferred 
in relation to other sentences. What is interesting with regards to moral discourse, is that 
linguistic performances are characterized by their ability to alter the normative status of the 
members of a discursive practice. This takes the form of a conversational “scorekeeping”, 
where the participants keep track of commitments and entitlements within the conversa-
tional context, e.g., by making, acknowledging, contesting, or withdrawing assertions.116 

115 See also the work of Urbano and Vila (2002), which demonstrates how correlated equilibrium can be 
achieved by imposing computational restrictions on the unmediated communication.
116 The idea of scorekeeping in the context of conversations was first introduced by Lewis (1979), who 
acted as a supervisor for Brandon’s doctoral thesis in the 1970s.



 J. Stenseke 

1 3

  105  Page 56 of 90

In essence, the normative pragmatics of linguistic performances determine the inferential 
aspects of semantics, and not the other way around. However, while Brandom’s inferential 
semantics may help to illuminate the normative commitments of speech acts, we can only 
speculate about the computational aspect that underpins the ability to successfully partici-
pate in a discursive practice, and similarly, whether and to what extent it alleviates or adds 
computational demands. On the one hand, the game of reason-giving and reason-asking 
seems tailored to effectively foster cooperative communication in normative life. On the 
other hand, Brandon’s conception of sapience seems profoundly human, which, in addition 
to the sentience shared with non-verbal animals, involves an understanding of conceptual 
contents, which in turn may encompass intentional states, beliefs, and desires of oneself 
and others. In turn, a sapient game of reasons might more or less correspond to a Kantian 
conception of moral rationalist discourse (Brandom 2006), which presupposes sophisti-
cated and idealized capacities for moral autonomy and freedom; capacities which—at least 
presently—cannot be construed in computational models.

The main lesson seems to be that, while game-theoretic concerns—of computational 
intractability and threats of repugnant equilibria—may be alleviated by communication, 
the challenge is to not only give an account of how communication works, but why it works 
so well. For Lewis, the success seems to rely on communicative intentions and expecta-
tions of speakers, and the cooperative conventions that results from it. For Brandon, it cent-
ers on the sapient game of “giving and asking for reasons”. Unfortunately, this renders 
both approaches rather computationally opaque: as they aim to explain human communi-
cation, they can, just like non-cognitivist theories, resort to uniquely human features that 
remain more or less impenetrable from a computational perspective. Still, such theories 
might potentially yield significant value by enclosing the gap between, on the one hand, 
cognitive-psychological resources—e.g., reasons, trust, and communication—that fosters 
efficient cooperation, and on the other hand, the computational architectures that would 
potentially enable them. In turn, complexity considerations might help to illuminate the 
rich interrelationship between game-theoretic dynamics, social-psychological capacities, 
and normative theory in everyday moral interactions.

In summary, this section has discussed more profound issues for moral semantics that, 
although relatively ignored in machine ethics, remain at the center stage of meta-ethical 
and meta-semantical debates, as well as in theories of communication. Of course, a simple 
move would be to cling on to some metaphysical argument against “strong AI” (Searle 
1980), some advanced requirements for symbolic grounding (Taddeo and Floridi 2005), 
or some uniquely human psychology of emotions, and conclude that “machines can never 
genuinely understand moral language”. But even given that one decided to ignore such 
problems, many complex problems remains for computational moral semantics.

5.3  Consequentialist‑deontological hybrids

Having investigated a range of computational aspects of both consequentialism and deon-
tology, we are now in a position to say something more substantial about their difference 
and potential combination. First, it should be concluded that the claim “deontology is, 
computationally speaking, less complex than its alternatives” cannot be given a straightfor-
ward answer; and in many cases, it is simply false. Based on the material discussed in this 
section, we can outline a more nuanced answer:
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(1) As argued in Sect. 5.1.1, it is a mistake to view rule-following in legal and liberal 
contexts as computationally simple. While legal rules may efficiently compress volumi-
nous moral wisdom, it is only against the backdrop of a complex relationship between the 
mechanisms that incentivizes their adherence (e.g., police and punishment), ensures their 
just interpretation (e.g., courts), along with the moral sentiments of the subjects the laws 
apply to. For instance, the complexity of “do no harm”-principles in liberal contexts can 
only be meaningfully analyzed in relation to the capacities of fully autonomous citizens.

(2) On the other hand, deontological rules may be significantly more efficient than alter-
natives if they are justified on the basis of divine command or legal positivism. However, 
unless in extremely simplified cases, the knowledge-requirements for such approaches to 
work in practice remains unfathomably vast, while the knowledge itself may be highly 
contentious.

(3) As an alternative, deontological rule-following may include justification as a part of 
the moral computation, e.g., by considering how rule-following behaviors affect others. As 
discussed in Sect. 5.1.2, this can range from considerations of (i) one’s own preferences (“I 
treat you based on what I personally prefer”), (ii) preferences of others (“I treat you based 
on what I know of what you prefer”), to (iii) general behavior (“I generally treat you in the 
way that I would want others to generally treat me”). While weaker versions—e.g., (i) and 
(ii)—may be relatively simple from a complexity perspective, they also lead to a range of 
other problems. By contrast, stronger versions—e.g., contractarian or contractualist ver-
sions of (iii) are obfuscated by extreme variances with regard to behavioral expectations 
and the capacities that makes up conceptions of general behavior.

(4) Any general-purpose normative theory that seeks to account for multi-agent dynam-
ics face game-theoretic concerns. This includes issues of rationality (Sect. 5.1.3), incom-
plete information and recursive reasoning (Sect. 5.1.4), and the intractability of computing 
morally attractive Nash Equilibria (Sect. 5.1.5).

(5) Any computational system that employ formal logic, e.g., for deontological rule-
following, moral reasoning, or communication are subject to expressibility (sect.  5.2.1), 
intractability (Sect. 5.2.2), and decidability (Sect. 5.2.3) issues that permeate the syntactics 
and semantics of logic.

(6) Finally, it should be acknowledged that deontology is a family that encompasses a 
range of ethical theories that may in turn emphasize a range of different cognitive abilities 
and computational resources. It can be a moral rationalist project of finding universally 
justifiable and applicable rules on the basis of a shared autonomy and rationality. It can be 
a contractarian project of finding mutually beneficial action-rules based on self-interest. In 
the simplest case, rules can act as merely ‘fast and frugal’ heuristics that support agents 
with bounded cognition to produce any action in complex or novel situations, even if there 
is no way to evaluate whether the performed action is appropriate in the specific situation; 
it may simply be an automatic ‘default’ action, or rely on optimistic conservatism (“it has 
worked well before, so it might also work well in the future”). In more ambitious cases, 
deontological rule-following might ask one to compute morally attractive equilibria for 
large-scale coordination problems with incomplete information.

Based on these considerations, it may be misleading to compare the complexity of 
deontology and consequentialism, as any comparison relies on a particular conception of 
what the theories dictate. For instance, both theories are equally targeted by game-theo-
retic intractability (Sect.  5.1.3) insofar as they take other agents into account. Similarly, 
many of the deeper problems of moral semantics that plague logical systems (Sect. 5.2.3) 
can also be construed for consequentialist agents: e.g., what is it for a computational sys-
tem to “understand” what a certain utility really is? Another reason is that deontology and 
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consequentialism may converge on their solutions, for instance, in cases where the deon-
tological moral right also produces the optimal outcome. Thus, a reasonable alternative is 
to view them as complementary theories, which emphasize different cognitive capacities, 
computational resources, or aspects of ethical life.

To that end, it is no surprise that hybrid accounts, which combine aspects of consequen-
tialism and deontology, are well-reflected in moral philosophy (Brandt 1979; Hare 1981), 
moral psychology (Kahneman 2011; Greene 2007) and machine ethics (Bauer 2020; Arkin 
2007; Dehghani et  al. 2008a; Stenseke and Balkenius 2022; Pontier and Hoorn 2012; 
Azad-Manjiri 2014; Tufiş and Ganascia 2015; Govindarajulu and Bringsjord 2017; Pereira 
and Saptawijaya 2009). However, it should be noted that in almost every case, deontology 
takes on a rather narrow role in these architectures—often within a broader consequen-
tialist framework—which does not reflect its rich tradition in ethical theory. For instance, 
deontology might act as a priori constraints which prevent certain intrinsically bad actions 
(Pereira and Saptawijaya 2009; Dehghani et al. 2008a). Another option is to use deonto-
logical rules to foster run-time efficiency, e.g., by turning consequentialist computation or 
exploration into exploitable rules (Stenseke and Balkenius 2022).117 Similarly, in the dual 
process theory of moral cognition (Greene 2007), deontological judgements are construed 
as fast and instinctive responses, whereas consequentialist judgements denote slow and 
reflective reasoning processes.

With regards to complexity, the emerging trend is that moral rule-following can either 
(i) be used to prevent intrinsically bad actions, (ii) reduce the run-time complexity of (often 
consequentialist) moral computations, or (iii) act as a ‘principles first’ or ‘defeasible’ 
default mode in situations where the agent has nothing else to base their decision on. From 
a moral-psychological perspective, (ii) and (iii) can be supported by the idea that automatic 
moral judgements compress moral wisdom, e.g., on the basis of evolutionary adaptations 
promoting cooperation, culture-specific norms fostering collective well-fare (e.g., sali-
ent correlated equilibria), or the moral lessons an individual learns to internalize through 
experience. For machine ethicists, consequentialist-deontology architectures thus offer an 
attractive smorgasbord of context-specific modularity; from top-down a priori constraints 
based on preexisting moral knowledge (divine command) to bottom-up a posteriori turned 
into new top-down constrains (e.g., learning efficient rules through experience). However, 
this image is not without its flaws, as any reduction in run-time complexity implies one or 
many of the following problems:

The problem of optimistic conservatism In essence, ‘fast and intuitive’ moral behavior 
cannot be guaranteed to produce good moral results, unless it is evaluated against alterna-
tives (e.g., on the basis of experience or moral reasoning). As such, the moral value of 
intuitions rely on an optimistic conservatism, as the efficiency of following an intuitive 
deontological (or rule-consequentialist) rule may come at the expense of losing out on a 
potentially better outcome that was only attainable via further reflection. Following Hare 
(1981), this is the challenge of knowing when to think like a ‘prole’ (using moral intuition) 
or an ‘archangel’ (using critical reflection). From a computational perspective, it reflects 
the well-studied explore-exploit dilemma (Sect. 4.3). It also echoes the problematic post-
hoc rationale of norms and conventions. As discussed in (Sects. 5.1.3 and 5.2.3): even if 
we believe that a certain moral convention—or rule, norm, principle—emerged because it 
helped agents with bounded cognition to coordinate towards mutually beneficial goals, the 

117 Since consequences motivates the use of certain rules, it is more suitable to view this solution as a form 
of two-level utilitarianism (Hare 1981).



On the computational complexity of ethics: moral tractability…

1 3

Page 59 of 90   105 

stability of the convention may rely on an optimistic conservatism about the convention 
itself, even if there are alternative conventions that might have been even better. Similarly, 
just because some moral intuitions may be a result of adaptations that yielded reproductive 
success for our evolutionary ancestors, it does not automatically make those intuitions mor-
ally right today (Greene 2014).

The problem of speed vs performance A related problem is the choice between moral 
speed and moral performance. For instance, even if we, like Hare (1981) and Greene 
(2014), believe that slow utilitarian deliberation should take normative and epistemological 
priority over ‘fast’ intuitions, there is still an open-ended conflict between moral speed and 
moral performance. In what circumstances do we opt for a fast—e.g., feasible, suboptimal, 
or satisficing—option in favor of a slower but potentially better option?

The problem of reasoning and learning‘Fast and intuitive’ moral intuitions may foster 
run-time efficiency, but only by ignoring the complexity of the process that gave rise to the 
moral intuition itself. On the one hand, this can refer to the complexity of the process char-
acterized by Hare (1981) as the “critical level” of moral thinking (which governs the prin-
ciples of the “intuitive layer”). On the other hand, we might think of it purely in terms of a 
learning-process: e.g., how many learning examples and how much training-time does an 
agent need to successfully internalize a moral intuition that allows it to effectively solve a 
given moral problem at run-time? In principle, since artificial neural networks can be used 
to approximate any function (Scarselli and Tsoi 1998), machine learning systems should be 
able to achieve great run-time performance in moral problems given the right kind of learn-
ing. However, as we will see in Sect. 6, this will instead put increasing demands on sample 
and training-time complexity, while introducing other problems related to induction.

The problem of knowledge Instead of reasoning or learning, efficient moral intuitions 
may be secured on the basis of moral knowledge. For instance, an alternative that is avail-
able for moral realists and meta-ethical cognitivists—who believe that moral intuitions can 
denote true propositions that reflect subject-independent features of the world—is to col-
lect and write down the dicta of objective moral reality. Of course, as already noted several 
times throughout this paper, such a project seems, for a variety of reasons, deeply problem-
atic. With that said, it does not exclude the possibility that there are some moral intuitions 
that have universal (or near-universal) consensus, or some—following Asimov (1942)—
that are particularly attractive for computational agents.

In summary, if we view deontology simply as ‘rule-following’, it is clear that it yields 
efficient decision procedures from a bounded rationality point-of-view. Nevertheless, while 
it may lead to attractive run-time performance, the moral value of such efficiency is either 
based on optimistic conservatism, the results of some other complex process (reasoning 
or learning), or the collection of vast moral knowledge. Essentially, the moral power of 
rules—their general applicability, general justification, and computational simplicity—can 
only be secured in complex ways. After all, the simplicity of moral rules should not prevent 
one from questioning their authority; rather, it should help one remember that they—like 
logical systems—merely represent idealized facets of byzantine phenomena.

6  Virtue ethics and moral machine learning

As deontology centers on actions and consequentialism on results, they can be naturally 
construed as moral decision procedures. By contrast, virtue ethics is about being rather 
than doing: instead of focusing on what the right action is, or what action yields the best 
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outcome, it asks us to foster our moral character and the internal dispositions—virtues of 
courage, fairness, and temperance—that enables us to be morally virtuous. More broadly, 
virtue ethics denote a vast family of ethical traditions that emphasize the role of our moral 
character, and the theory can find its diverse origin in thinkers such as Confucius and Men-
cius in the East, and Plato and Aristotle in the West (Crisp and Slote 1997). In contem-
porary times, it has earned its spot as a central normative theory in Anglophone moral 
philosophy through the contributions of Anscombe (1958), Nussbaum (1988), Hursthouse 
(1999), and Annas (2011).

In machine ethics, virtue ethics has several times been proposed as an appropriate blue-
print for the creation of artificial moral agents, as it emphasizes aspects of ethical life that 
are relatively ignored in other theories (Coleman 2001; Wallach and Allen 2008; How-
ard and Muntean 2017; Stenseke 2021).118 Taking the character as the central object of 
moral evaluation—which encompasses both rational deliberation and psychological dispo-
sitions—it paints a more holistic picture of what it is to be moral; capturing not only what 
we ideally ought to do, but what motivates us to act in morally praiseworthy ways. One key 
aspect of this picture is the notion of phronesis (“practical wisdom”), which can be con-
strued as the moral wisdom or skill an agent learns from practice and experience (Annas 
2011). The focus on development and learning has in turn inspired machine ethicists to 
unify virtue ethics with connectionism; both in terms of modern machine learning meth-
ods, and as a broader theory of cognition (Casebeer 2003; Wallach and Allen 2008; How-
ard and Muntean 2017; Berberich and Diepold 2018). Optimistically, with the ability to 
constantly learn from experience, be sensitive to contexts and adaptable to changes, a vir-
tuous machine might thus be able to apprehend the intricacies of human norms in dynamic 
environments where mere utility-maximization or rule-following fails.

In despite of these promises, virtue ethics remain relatively elusive from a computa-
tional perspective. One reason is that virtue ethics is founded on a deeply human view of 
what constitutes a moral life—of flourishing, reasoning, emotions—against a rich backdrop 
of culture and tradition. For obvious reasons, this makes virtue ethics hard to analyze from 
a complexity perspective, as it would require a comprehensive computational description 
of what a human being is, along with all her history and culture-specific flavors. Neverthe-
less, it is possible to isolate and analyze one necessary aspect of any virtuous agent: its 
ability to learn. In principle, any of the problems discussed thus far can be re-framed as 
a learning problem. Instead of asking “can I solve problem X effectively?”, we ask “can 
I learn how to solve X effectively?”. If the answer is yes, the de facto run-time complex-
ity might be trivially low given the appropriate training. Intuitively, if a specific problem 
has already been solved—e.g., having discovered the optimal action-combination for a 
certain situation (Sect. 4.1), an optimal reinforcement learning policy for an environment 
(Sect.  4.3), or an action-rule in a strategic setting (Sect.  5)—the same solution may be 
applied in constant time O(1) to future cases given that the very same problem re-occurs. 
And even if the exact same problem never re-occurs, there might be patterns or trends to 
extrapolate from situations that are sufficiently similar. Through repeated encounters with 
salad bars (Sect. 2), we might learn about good combinations of ingredients. Seeing the 
same ingredients appearing in other salad bars, we can make use of our previous experi-
ence to efficiently put together a tasty salad. Following the virtue-theoretic emphasis on 
moral learning, the same should hold for moral behavior. In the words of Aristotle (NE, 

118 See Stenseke (2022a) for a recent survey on computational implementations of virtue ethics.



On the computational complexity of ethics: moral tractability…

1 3

Page 61 of 90   105 

book IV, chapter 8): “[...] though the young become proficient in geometry and mathemat-
ics, and wise in matters like these, they do not seem to become practically wise. The reason 
is that practical wisdom is concerned also with particular facts, and particulars come to be 
known from experience; and a young person is not experienced, since experience takes a 
long time to produce” (Aristotle 2000, p. 111).

In turn, learning a machine is the business of machine learning, which, due to a wealth 
of recent advancements, has come to dominate the field of AI in the 21st century. The rel-
evant question for our investigation—and the topic of this section—is: are there any com-
putational complexity considerations that might constrain a computational agents ability to 
learn in the moral domain?

6.1  The complexity of learning

As with any mature field of mathematical analysis, there are many relevant variants, set-
tings, and measures that can be used to formally analyze the complexity of learning.119 
First, we might differentiate run-time complexity (the number of state transitions an algo-
rithm needs to perform at run-time to solve problem X), from training-time complexity (the 
number of steps required to train the algorithm to solve X) and sample complexity (the 
number of data points needed to learn how to solve X). Nonetheless, in practice, the distinc-
tion between these types may break down; for instance, if one sample represents one point 
in time, our sample complexity would be equal to our training-time complexity; similarly, 
we might understand training-time complexity as the run-time complexity of a learning 
algorithm. What is important to note, however, is that the three types are intimately linked. 
In a completely known environment (say, Chess), simulation (e.g., using Monte Carlo 
methods) may be an effective way to get experience, e.g., by trying out the value of many 
different possible decisions. In this case, sample complexity measures how much simula-
tion is required to find a good chess move. If the sample complexity is low, it means that it 
can be learned effectively, as it gives a lower bound on the total computational complexity 
(Kakade 2003). In other situations, there might be an abundance of data and plenty of time 
to train our model, while the task itself may refer to some general ability—e.g., evaluated 
using a Turing test—as opposed to how the system solves some specific decision-problem. 
Large Language Models (LLMs) like GPT-3 (Brown et al. 2020), which uses significant 
parts of the internet as training-data in order to produce new text, constitute suitable exam-
ples of this. In the most extreme case—e.g., an on-line reinforcement learning setting—if 
an agent have no information about the environment and no access to a simulation of it, 
trial-and-error exploration might be the only path to learning.

Our choice of complexity resource ultimately depends on the setting for our learning 
agent, and each setting has their own range of specific sub-types and relevant measures. 
To that end, it is common to differentiate between three broad classes of machine learning 
settings: (i) supervised learning (SL), where the aim is to learn from pre-labeled data, (ii) 
unsupervised learning (UL), where the training data lacks labels, and (iii) reinforcement 
learning, where learning is based on feedback. For an SL agent, the relevant question may 
be: how many labeled pictures of cats do I need to see in order to, within some margin of 
error, accurately classify new pictures as portraying cats or not? In a virtue-theoretic view, 

119 See Vapnik (1999) for the definite introduction to statistical learning theory, along with an exhaustive 
account of its rich history.
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this could be rephrased as: how many labeled examples of “courage” (e.g., acts of coura-
geous behavior) do I need to observe in order to classify unobserved actions as courageous 
in the future? In this case, we might only be interested in how sample complexity—number 
of pictures depicting courage in the training set—reduces the agents prediction error in the 
classification task (e.g., empirical risk minimization). For an RL agent, the question might 
instead be: how much do I need to observe the overall behavior of a moral exemplar (e.g., 
a virtuous human) in order to approximate their reward function,120 Here, it could also be 
important to consider the potential risk of detrimental mistakes during an agent’s learning 
phase. As discussed in Sect. 4.3, if trial-and-error exploration is the only option the goal 
for an RL agent may not be to merely maximize the cumulative reward, but to minimize 
regret relative to the optimal solution.

Before we can ask whether something can be learned effectively, we first need to deter-
mine whether it can be learned at all. For instance, we let X be a set of points, Y a set 
of labels (e.g., 0 and 1), and H a set of hypotheses h (e.g., binary classifiers) that takes 
an x ∈ X and outputs a label y ∈ Y  . The goal for our learning algorithm L is to, given 
a sequence of labeled training samples (x,  y) drawn randomly from some distribution � 
over X, infer a hypothesis h ∈ H that is able to correctly classify future instances of x ∈ X 
given some accuracy � and failure probability � . In turn, we say that a hypotheses space 
H is learnable if there exists a learning algorithm which, given a finite number of training 
samples (x, y)n , can map inputs to outputs within � of the optimal with a probability of at 
least 1 − �.121 If so, sample complexity can be defined as n(�, �, �) , which says that we need 
n training samples to learn a target function with respect to distribution � , error rate � and 
failure probability �.

6.1.1  Weak and strong sample complexity

Based on these definitions, we may also differentiate between weak and strong variants 
of sample complexity, e.g., by asking how many samples we need to learn a target for 
some specific input–output distribution � over X (weak), and how many we need to learn 
it for any possible distribution (strong). Following the strong approach, the impossibility 
results commonly known as the No Free Lunch Theorem (NFL) establishes that there will 
always be unfortunate distributions for which the sample complexity is arbitrarily large 
(Wolpert 1992, 1996; Schaffer 1994). As an intuitive example, we can imagine a learning 
algorithm whose goal is to predict the weather—in this case limited to sunny (S) or rainy 
(R)—based on the weather on previous days. Collecting data for three days, we have 23 
possible weather-histories (i.e., SSS, SSR, SRR, SRS, ...). We then measure the learning 
algorithm’s error � as the ratio of incorrect predictions (e.g., predicting S for a day of rain). 
Then, we can demonstrate that every learning algorithm achieves a perfect � = 0 in exactly 
one weather history, a maximally bad � = 1 in another, a mixed result of 2/3 in three histo-
ries, and � = 1∕3 in the three remaining histories. NFL establishes that, for each possible � , 
every learning algorithm achieves � for the equal amount of possible weather-histories. For 
instance, if we assign the same probability to each possible weather history (i.e., a uniform 

120 This particular method is called inverse reinforcement learning introduced by Ng and Russell (2000), 
and suggested as a path towards artificial virtuous agents by Berberich and Diepold (2018).
121 For instance, following empirical risk minimization, we might define the optimal h ∗ as the hypothesis 
among H for which the risk of misclassification is minimal.
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probability distribution), NFL entails that every learning algorithm has the same expected 
� of 1/2.

NFL results have subsequently been extended to optimization (Wolpert and Mac-
ready 1997), supervised learning (Wolpert 2002), statistical learning (Von  Luxburg and 
Schölkopf 2011), meta-learning (Giraud-Carrier and Provost 2005), and data privacy 
(Kifer and Machanavajjhala 2011).122 Essentially, it means that there exists no learning 
algorithm that can perform well on every learning task having trained upon a dataset of 
a fixed size. Thus, for every learning algorithm, there exists a task on which it fails, as no 
learning algorithm can generalize to all possible realities while having only observed some 
instances of the realities. To that end, NFL has also been discussed in relation to more fun-
damental problems in the philosophy of induction, e.g., in connection to Hume’s problem 
of induction (Sterkenburg and Grünwald 2021; Schurz 2017) or Occham’s razor (Lattimore 
and Hutter 2013). Hume famously advanced skepticism against the very justification of 
induction, arguing that deductive reasoning alone cannot secure the validity of inductive 
inference; and neither can induction, due to circularity, provide non-deductive grounds for 
itself (Hume 1739).

Of course, it may not be fair to advance the fundamental issues of induction against the 
feasibility of moral learning systems. While they may obstruct the prospects of a perfect 
universal moral learner, it does not stop us from pursuing weaker yet reasonable alterna-
tives that are practically viable. Instead of seeking a global and model-independent justifi-
cation for why inductive inference seems to work, we can opt for local and model-relative 
justifications in order to explain why some learning algorithms work better than others 
(Sterkenburg and Grünwald 2021). However, it should be stressed that any such alternative 
would inevitably entail some form of inductive bias; assumptions that we exploit to enable 
and foster learnability. One strategy to alleviate the curse of arbitrarily large sample com-
plexity is to constrain the space of probability distributions, e.g., by making assumptions 
about the structure of the distribution from which the data-points are drawn (called “para-
metric” procedures in statistics). The most straight-forward parametric assumption can be 
found in the Central Limit Theorem, which states that when we sum up randomly drawn 
independent variables, they tend towards a normal distribution.123 In fact, most advance-
ments in machine learning rely on some form of parametric assumptions, e.g., using linear 
and logistic regression, and the parameters of artificial neural networks.124

Another alternative is to constrain the space of hypotheses. In the philosophy of induc-
tion, this can be motivated on the basis of Occam’s razor, which roughly states that simpler 
hypotheses are generally more better than complex alternatives. But what does “simpler” 
mean? And how many samples do we need to infer a simple hypothesis that is able to pre-
dict well? In computational learning theory, such questions can be effectively addressed by 
the Probably Approximately Correct (PAC) model of learning, introduced by Leslie Val-
iant (1984). Following the formalism described earlier, we consider a learning algorithm 
L that wants to learn a Boolean function f ∶ X → {0, 1} in a finite set of hypotheses H , on 
the basis of samples (x) drawn independently from distribution � over sample space X. We 

122 See Adam et al. (2019) for a systematic review of NFL theorems.
123 Philosophically, this means that one accepts that the world tends towards a normal distribution.
124 It should be note that deep neural networks with sufficiently many parameters can be viewed as non-
parametric; e.g., Lee et al. (2017) demonstrates that an infinitely wide deep network is equivalent to a non-
parametric Gaussian process.
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call a hypothesis h infered by L good if it can approximate f within some error 𝜖 > 0 , in the 
sense that:

Then, we say that L is “probably approximately correct” if it can make good approxima-
tions with probability 1 − � , for any choice of � and all failure probabilities � and error 
rates 𝜖 > 0 . Finally, we say that a function f is PAC-learnable if there exists an L that can 
make “probably approximately correct” predictions with a sample size n that is a polyno-
mial function of 1∕� and 1∕� . In other words, PAC learning formalizes the idea that, if a 
function is learnable, it means that there exists a learning algorithm that with a reasonable 
likelihood can get reasonable generalization errors if it trains on randomly selected data, all 
while the number of samples are upper-bounded by a polynomial.

What is interesting from a computational complexity perspective is that PAC-learning 
yields a bound on sample complexity. If a target function is PAC-learnable, then the num-
ber of samples n required to learn the function can be derived by:

Particularly, equation (6) illustrates the intimate relationships between prediction error, 
confidence, samples, and the space of hypotheses, and their computational trade-offs. For 
instance, it captures the intuition that error rate � and generalization error � can be reduced 
(although never to 0) by increasing the number of samples. It also shows that successful 
learning from a limited number of samples n requires us to constrain the cardinality of the 
hypothesis space H ; e.g., either by reducing the number of individual hypotheses, or by 
reducing their descriptive complexity.125 By contrast, a larger H may lead to overfitting, 
i.e., when the hypothesis closely mirrors a particular set of samples and fails to generalize 
to additional observations.

From a philosophical perspective, PAC-learning is interesting since it, regardless 
of Hume’s skepticism, defines a rich class of instances where induction is guaranteed to 
work (at least probably approximately). However, one significant trade-off with the model 
is that it only applies to finite classes of hypotheses, which inevitably entails a compro-
mise between approximation accuracy and the learning algorithms capacity. For instance, a 
hypothesis containing continuous parameters may need to be turned into discrete parame-
ters. The question is, how finely do we divide the infinite continuum? This conundrum can 
be addressed by VC theory (developed by Vapnik and Chervonenkis 1974, 2015). Impor-
tantly, as opposed to hypotheses space, VC theory brings the richer concept of VC dimen-
sions (VCD), which measures a learning algorithm’s expressive capacity by the cardinality 
of the largest set of points the learner can shatter. For instance, given three points in a two-
dimensional space, we can ask whether a linear classifier LC can correctly separate nega-
tive (labeled −) and positive points (labeled + ). Particularly, we ask, for all possible ways 
of labeling the three points 23 = 8 , is there a way we can draw a straight line that separates 
positive from negative points? After discovering that it is possible—i.e., LC shatters the 
set containing the three points—we try to do the same for four points. Since no set of four 

(5)Pr
x∼�

[h(x) ≠ f (x)] ≤ �

(6)n =
1

�
ln

|H|
�

125 Aaronson (2013) has interpreted this aspect of PAC-learning as an mathematical justification for why 
Occam’s Razor works.
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points can be shattered by a straight line,126 we conclude that the VCD of LC is 3. Simi-
larly, a class of hypotheses H shatters the points {x1,… , xm} ⊆ X if there is a hypothesis 
h ∈ H which agrees with all 2m possible configurations of h(x1),… , h(xm) . The VCD of H 
is then the cardinality of the largest m where there is a subset {x1,… , xm} ⊆ X that is shat-
tered by H . In turn, due to the work of Blumer et al. (1989), VCD has been unified with 
PAC-learnability through the fundamental insight that finite VC dimensions provides the 
necessary and sufficient condition for distribution-free learnability. In other words, if a set 
of hypotheses is PAC-learnable, its VCD is finite. Of course, while it does not alleviate the 
fundamental problems of induction, it yields a framework for describing when induction 
is feasible, a rich measure of expressive capacity (VCD), as well as a substantive notion of 
simplicity (i.e., smallest amount of VCDs). With regards to complexity, it has recently been 
proven by Hanneke (2016) that the optimal sample complexity127 of PAC-learnability for 
class H is:

Nevertheless, theories for feasible learnability face the same problem as Nash equilibrium: 
just knowing that there exists a hypothesis h in H that is consistent with the data does not 
necessarily mean that it is easy to find. As such, PAC-learnability ignores the vast compu-
tations that are potentially required to actually find a good hypothesis. To that end, a large 
set of hardness results have been proven for PAC. In the proper setting, where the learner 
is required to output h ∈ H , Pitt and Valiant (1988) proved that representation classes such 
as disjunctions of two monomials (a polynomial with only one term), Boolean threshold 
functions, and Boolean formulae where each variable occurs at most once, cannot be effi-
ciently learned, as they can be reduced to known NP-complete problems. Based on widely 
used cryptographic assumptions—e.g., the Rivest-Shamir-Adleman system and Blum inte-
gers—Kearns and Valiant (1994) proves representation-independent hardness results in the 
improper setting (where the learner can output any h ∉ H ) for a range of representation 
classes, including polynomial-size Boolean formulae, constant-depth threshold circuits, 
and acyclic deterministic finite automata.128 In addition, while the hardness of improper 
learning rely on cryptographic assumptions, Applebaum et al. (2008) shows that a proof 
would either “collapse” the polynomial hierarchy129 or imply that any average-case hard 
problem in NP can be transformed into a one-way function (which would yield an out-
standing break-through in cryptography).

Another important distinction in learning theory besides proper and improper, is the one 
between realizable (or “noise-free”) and agnostic (“noisy”) learning. In the realizable case, 
it is assumed that there exists an optimal hypothesis h ∗ in the space of hypotheses H in 
the sense that its � = 0 . In agnostic learning (Kearns et al. 1992), no assumptions are made 

(7)n(�, �) = O

(
VCD(H) + ln

1

�

�

)

126 This is a consequence of Radon’s theorem, which can be used to infer the VCD of linear separations of 
d-dimensional points.
127 Here, optimal means that the upper bound matches known lower bounds (Ehrenfeucht et  al. 1989; 
Blumer et al. 1989) up to numerical constant factors.
128 In the improper context, representation-independent hardness means that learning remains hard regard-
less of the form the algorithm represents its hypothesis, on the basis that the hypothesis can evaluated in 
polynomial time.
129 This means that if NP = co-NP, then it follows that PH = NP. It is widely believed that a collapse of the 
PH is implausible.
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about the target function; we simply want to find the best possible h from some distribu-
tion.130 Paradigmatic problems in statistical machine learning includes the learning of half-
spaces (or linear threshold function),131 monomials, and decision lists. While learning a 
halfspace in the proper realizable case can be done in polynomial time via linear program-
ming, its NP-hardness in the proper agnostic case have been proven in various ways.132

As discussed in  Sect.  4.3, similar computational hardness prevail in reinforcement 
learning (Mundhenk et al. 2000; Papadimitriou and Tsitsiklis 1987). In fact, there are many 
reasons to believe that reinforcement learning is significantly harder than the supervised 
setting: the learner may not receive a training sets from the environment; the learner’s may 
only receive ‘noisy’ immediate rewards (which can deceive the agent into learning policies 
that does not maximize the long-term future rewards); exploiting comes at the expense of 
losing out on exploring (and vice versa); and there may even be detrimental consequences 
to consider (minimize regret).133

6.1.2  Machine learning theory versus practice

It is important to stress that the theoretical considerations discussed here might have lim-
ited relevance for the practical viability of machine learning in various domains. Clever 
uses of inductive biases—e.g., task representation and parametric tools—along with vast 
amounts of training data and computational power continue to defy what might have 
appeared to be impossible only a decade ago. For instance, the performance of deep learn-
ing models in the field of natural language processing has recently been accelerated via 
the transformer architecture (Vaswani et al. 2017), which utilizes attention mechanisms to 
process tokens from any position in the input sequence; leading to improved context sen-
sitivity through efficient use of parallelization. Similarly, advances in deep reinforcement 
learning has showed that only small sets of demonstration samples can significantly accel-
erate the learning process (Hester et al. 2018). Another advancement in value alignment 
techniques—in particular for LLMs—is Reinforcement Learning from Human Feedback 
(RLHF), which consists of training a reward model based on human feedback—e.g., a pref-
erence ranking of the outputs generated by the system—which is then used to fine-tune the 
model (Ziegler et al. 2019). In fact, what is surprising is not the general trend that shows 
that learning is computationally hard: it is rather that we lack rigorous explanations for 
why some learning systems seem to generalize well in practice. This is known as the “para-
dox of deep learning”, which centers around understanding the empirical success of deep 
learning despite the absence of theoretical explanations (Kawaguchi et al. 2017; Neyshabur 
et al. 2017; Arpit et al. 2017; Zhang et al. 2021).

In turn, this generates a range of convoluted issues that are more or less unique to 
machine learning. For instance, what does it mean that a LLM—having trained on large 
parts of the internet—is ethical, when we know that the data itself is deeply imbued by 

131 Formally, a halfspace is a Boolean function of the form f (x) = sign (w1x1 +… ,wnxn − − − �) , where 
wi are “weights”, � is the “threshold”, and w1 … ,wn, � ∈ ℝ . The sign function returns 1 on arguments ≥ 0 , 
otherwise −1.
132 See, among others, Angluin and Laird (1988), Amaldi and Kann (1998), Håstad (2001), Ben-David 
et al. (2003) and Feldman et al. (2012) for a more recent overview. See also Daniely et al. (2014) for the 
improper case.
133 See Kakade (2003) for a detailed investigation of sample complexity in reinforcement learning.

130 See Hopkins et al. (2022) for an exposition of the deeper relationship between agnostic and realizable 
learning.
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Table 3  Summary of the surveyed complexity results

Problem Results

Combinatorics (Sect. 4.1)
Optimal plan of n unordered actions Θ(2n)

Optimal plan of n ordered actions Θ(n!)

STRIPS and propositional planning PSPACE-complete (Bylander 1991, 1994)
Bayesian inference (Sect. 4.2)
Exact inference #P-complete (Roth 1996)
Most probable explanation (MPE) NP-complete (Shimony 1994)
Maximum a posteriori hypothesis (MAP) NPPP-complete (Park and Darwiche 2004)
Approximate exact inference NP-hard (Dagum and Luby 1993)
Approximate MPE NP-hard (Abdelbar and Hedetniemi 1998)
Partial MAP NP-hard (Park and Darwiche 2004)
Sequential decision-making (Sect. 4.3)
Finite MDP From PL to EXPSPACE-complete (Mundhenk et al. 2000)
Finite POMDP PSPACE-complete (Papadimitriou and Tsitsiklis 1987)
Infinite POMDP Undecidable (Madani et al. 2003)
Restless bandit PSPACE-hard (Papadimitriou and Tsitsiklis 1994)
Strategic dynamics (Sect. 5.1)
Finite I-POMDP PSPACE-complete (Papadimitriou and Tsitsiklis 1987)
Decentralized MDP NEXP-hard (Bernstein et al. 2002)
2-player Nash equilibrium (NE) PPAD-complete (Chen et al. 2009)
Maximum egalitarian NE (Max NE) NP-complete (Gilboa and Zemel 1989)
Approximate max NE NP-complete (Conitzer and Sandholm 2008)
Pure strategy Bayesian NE NP-hard (Conitzer and Sandholm 2008)
Pure NE infinite Markov games PSPACE-hard (Conitzer and Sandholm 2008)
Pure NE finite Markov games NP-hard (Conitzer and Sandholm 2008)
Correlated equilibrium (CE) P (Gilboa and Zemel 1989)
Max CE NP-hard (Papadimitriou and Roughgarden 2008)
Logic (Sect. 5.2)
SAT-FOL Undecidable (Turing 1936; Church 1936)
SAT-PL NP-complete (Cook 1971)
Validity for modal logic PSPACE-complete (K, T, S4), NP-complete (S5) (Ladner 1977)
Multi-agent modal logic (MAML) PSPACE-complete (Halpern and Moses 1992)
MAML + common knowledge EXPTIME-complete (Halpern and Moses 1992)
Validity for temporal logic PSPACE-complete (Sistla and Clarke 1985; Spaan 1993)
SAT-propositional dynamic logic EXPTIME-complete (Fischer and Ladner 1979; Pratt 1980)
SAT-deontic STIT logic Undecidable (Schwarzentruber and Semmling 2014)
Deontic input/output logic NP/co-NP-hard (Sun and Robaldo 2017)
Descriptive complexity (Sect. 5.2.1)
FOL LH & AC0 (Immerman 1998)
Least fixed-point FOL P (Immerman 1982; Vardi 1982)
SO∃ , SO∀ & SOL NP, co-NP, and PH, respectively (Fagin 1974)
SOL with transitive closure PSPACE (Immerman 1989)
Least fixed-point SOL EXPTIME (Abiteboul et al. 1997)
Learning (Sect. 6) No free lunch (Wolpert 1992, 1996; Schaffer 1994)
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biases?134 This presents an uncomfortable compromise between helpfulness and harmful-
ness: while massive amounts of unlabeled training data—hundreds of billions of byte-pair-
encoded tokens (Brown et al. 2020)—may be required to support the helpful general-pur-
pose text-processing capacities of a LLM, it inevitably includes undesirable behaviors and 
biases that can at best be inhibited (Wolf et al. 2023). Another issue is: how do we under-
stand requirements of transparency, explainability, robustness, safety, and fairness of suf-
ficiently advanced “black box” systems (Gunning et al. 2019; Amodei et al. 2016; Gabriel 
2020; Berk et al. 2021)135 in areas that range from medical diagnosis (Mykhailov 2021) to 
art (Dare et al. 2020)?

In sum, while the computational hardness of moral machine learning may be over-
come—or distorted—by practice (using massive amounts of training time and data), 
this practice raises a host of other complicated issues that deserve attention in their 
own right. However, there is a key lesson that follows from our analysis: namely, the 
role of inductive biases and their moral justification. In some strong sense, the suc-
cess of learning systems—e.g., training efficiency and predictive accuracy—seems 
inversely proportional to the inductive assumptions they exploit, as well as the prob-
lems of induction they introduce. I.e., for moral learning to work, we need to have a 
relatively clear idea of the performance measure—e.g., in terms of some predefined 
score, goal, or objective function—of the moral problem we want the learning system 
to tackle, or the morally virtuous trait we want it to exhibit. Alternatively, we may—as 
in the case of LLMs—hope that it already exist in the vast statistical ocean of the train-
ing data. As such, one might question whether existing moral learning systems can 
generate any “new” or “genuine” moral insight or reasoning, as they merely train on 
some given data filtered through some given inductive biases. Similar to divine com-
mand and legal positivism, it presupposes that we have an answer to the questions we 
seek. Thus, the problem of moral machine learning does not reside in the computa-
tional complexity of learning as such, but rather, in justifying the moral assumptions 
we need to exploit in order for induction to work. As elegantly put by Karl Popper 
(1962):

In constructing an induction machine we, the architects of the machine, must 
decide a priori what constitutes its ‘world’; what things are to be taken as similar 

Table 3  (continued)

Problem Results

Sample complexity for PAC-learnability
O
( VCD(H)+ln

1

�

�

)
(Hanneke 2016)

Proper realizable PAC From P to NP-hard (Pitt and Valiant 1988)
Improper PAC NP-hard (cryptographic assumptions) (Kearns and Valiant 

1994)
Proper agnostic PAC NP-hard (Feldman et al. 2012)

135 Recent work in algorithmic fairness indicates that there are inevitable trade-offs between, on the one 
hand, different concepts of fairness, and on the other, between fairness and accuracy (Berk et al. 2021).

134 See, e.g. Wellner (2021) for the topic of gender biases, and Liang et al. (2022) for a “holistic” evalua-
tion of LLMs using multiple metrics and test cases.
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or equal; and what kind of ‘laws’ we wish the machine to be able to ‘discover’ in 
its ‘world’. In other words we must build into the machine a framework determin-
ing what is relevant or interesting in its world: the machine will have its ‘inborn’ 
selection principles. The problems of similarity will have been solved for it by its 
makers who thus have interpreted the ‘world’ for the machine. (p. 48)

7  Moral tractability for minds and machines

First, we offered three possible interpretations of how to analyze the complexity of eth-
ics based on Marr’s three levels of analysis. We then proceeded to analyze a range of 
ethical problems for causal engines, rule-followers, and learners. The results are sum-
marized in Table 3. Based on the surveyed results, what can computational complexity 
teach us about morality? In this section, we will discuss the consequences for moral 
machines (Sect. 7.1) and human morality (Sect. 7.2), the explanatory prospects of the 
Moral Tractability Thesis (Sect. 7.3), along with limitations (Sect. 7.4) and venues for 
future work (Sect. 7.5).

7.1  Consequences for the prospects of moral machines

What consequences do intractability results have for the prospects of moral machines? 
First and foremost, due to the intractability (and undecidability) stemming from combi-
natorics of action plans (Sect. 4.1), probabilistic causal inference (Sect. 4.2), dynamic 
and partially observable environments (Sect.  4.3, general rules (Sect.  5.1), strategic 
dynamics (Sect. 5.1.3), logic (Sect. 5.2), semantics (Sect. 5.2.3) and learning (Sect. 6.1), 
we can firmly conclude that perfect moral machines are impossible (i.e., given that the 
Extended Church–Turing Thesis is false and P ≠ NP is true). In many cases, subopti-
mal approximations of solutions are also intractable. Instead, the developers of moral 
machines should strive for “best possible” on the basis of constrained resources. Similar 
conclusions have been made—although not as formally—by Brundage (2014), Mabaso 
(2021), Hew (2014), Hagendorff and Danks (2022), and should be no surprise to schol-
ars familiar with bounded rationality (Simon 1955, 1990; Rubinstein 1998; Russell and 
Subramanian 1994) or bounded ethicality (Bazerman and Tenbrunsel 2011; Tenbrun-
sel and Messick 2004). Nevertheless, the presented work should also be helpful in pin-
pointing the type of complexity that bounded computational agent’s face in the realm of 
ethical decision-making, and the relevant trade-offs between optimality and feasibility it 
presents. It should therefore be informative for debates on artificial moral agents, as it 
draws the question of whether artificial moral agents are practically feasible or norma-
tively desirable closer to the de facto dimensions of AI methods; as opposed to center-
ing on the uniquely human capacities that existing AI systems lack (Stenseke 2023).

In a similar vein, the results should also be illuminating for the further development 
of artificial systems implemented in moral domains. In particular, the complexity of 
ethical problems highlights the intimate relationship between the cognitive capacities 
of agents and moral resources such as time, memory, knowledge, communication, learn-
ing, and heuristics. However, it also presents a strong implementation-variance with 
regard to moral resources, which potentially obfuscates any general notion of practical 
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moral competence. I.e., while it may be possible to identify the available resources 
for a particular agent in a given context, and how the resources can be effectively uti-
lized and combined to yield competent ethical behavior, it is difficult to generalize such 
insights to any agent in any context. For instance, what may be considered a compe-
tent ethical decision for a social robot in a classroom differs significantly from the ethi-
cal competence required in high-speed traffic situations. The implementation-variance 
can be interpreted negatively: it shows that no general benchmarks can be established 
so as to assess the ethical performance of computational systems. More optimistically, 
it can also convey areas where domain- or problem-specific moral benchmarks can be 
established in terms of resource-dependency (e.g., given limited time or information). 
More directly, it points to venues where relevant benchmarks already exist: e.g., to find 
morally attractive equilibria in complex coordination games, minimize regret in multi-
armed bandit settings, constructing tractable logics for moral reasoning, or efficient 
algorithms for Bayesian inference.

It also shows that a lot of work remains to be done on the moral end of machine eth-
ics. In almost every instance, there is an uncomfortable trade-off between optimality and 
feasibility, and performance and efficiency; trade-offs which themselves may need nor-
mative justification. However, while computer science may have shifted towards becom-
ing an empirical science in the advent of machine learning, our moral theories remain 
deeply rooted in theoretical ideals of right and wrong, which may presuppose unrealistic 
access to oracles of rationality. This brings out the open-ended tension between norma-
tive theory as standards of “ideal good”, and normative theory as action-guiding heu-
ristics to get suboptimal but feasible results. For instance, if our moral theories assume 
unrealistic computations, how can we provide a solid footing for their justification in 
practice? Similarly, if the tension remains unresolved, we cannot clearly determine 
cases whether a harmful action was due to a failure of competence, or whether it was 
a moral wrongdoing. It also presents challenges for moral theories: e.g., an agent that 
evaluates her actions according to NT1 might be better off (according to NT1 ) by fol-
lowing the action-decisions provided by an alternative theory NT2.136 Thus, the critical 
question is: upon what standards should we potentially revise our moral theories so as 
to be feasible as decision procedures with regard to the bounded and implementation-
variant resources of agents? In machine contexts, we believe such open-ended issues 
can be fruitfully investigated under the lens of computational complexity, as it provides 
analytical means to measure how resources relate to formal notions of performance. 
More practically, it provides a venue to address what machines ought to do based on 
what they can do at all—and what they can do effectively—which in turn can convey the 
domains where computational systems can be successfully applied to make competent 
ethical decisions.

7.2  Consequences for human morality

More broadly, what consequences do these results have for our understanding of human 
morality? This ultimately depends on what one believes about the human mind, and 

136 The typical example of such a “self-effacing” theory is act utilitarianism (Parfit 1984, Sections 9 and 
17), as an agent would produce more overall good by not following the prescriptions of act utilitarianism in 
practice.
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more particularly, whether and to what extent it is computational in nature. The ones 
who view humans as primarily cultural, social, and spiritual beings may find the com-
putational perspective completely irrelevant for understanding human morality. Others, 
who attempt to understand human behavior in terms of cognitive capacities, may find 
it fruitful to assume that human cognition has at least some particular characteristics 
and constraints, which can be used to constrain the space of hypothesis. Simply put: 
assumptions about what the human mind can and cannot do should be informative for 
our understanding of the human mind. From this latter view, the step towards embrac-
ing some form of computationalism about the human mind becomes quite attractive, 
as it offers a smorgasbord of additional scientific tools; e.g., the use of computational 
architectures to model, test, and revise theories about cognition and behavior. If we take 
this step, computational complexity becomes an indispensable instrument, as it helps 
us constraint the space of possible computational theories of human cognition. This 
view can be captured in the Tractable Cognition Thesis, which states that computational 
models of cognitive abilities need to be computationally tractable, given some reason-
able conception of tractability (Van Rooij 2008; Van Rooij et al. 2019). Conversely, if 
a computational theory implies intractable computations, it indicates that the theory 
is inadequate. A formal variant of the thesis is the P-cognition Thesis, which asserts 
that cognitive functions are constrained by polynomial time. In cognitive science, the 
P-Cognition thesis has explicitly been advanced as guide for computational-level theo-
ries of human cognition by Cherniak (1986), Tsotsos (1990), Levesque (1989), Frix-
ione (2001), and is implicitly used as a constraining factor by a large group of cognitive 

Fig. 4  The moral tractability thesis (MTT) states that the set of possible moral cognitive functions are 
subject to tractability constraints. More formally, this can be framed as a subset of functions that are 
fixed-parameter tractable for sufficiently small input parameters, which also includes the set of functions 
computable in polynomial time. We believe the MTT can serve (1) as a meta-ethical standard for the action-
guidance of normative theory, in the sense that action-guidance should be feasible with respect to agents’ 
resources, (2) as a guide for normative judgements and responsibility in cases where it is unclear whether 
an agent acted wrongfully due to a failure of cognitive constraints, (3) as an experimental paradigm in stud-
ies of human moral cognition and psychology, and (4) as a remedy to the tension between feasibility and 
performance in moral contexts
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psychologists.137 Furthermore, the observation that many NP-hard problems can in 
fact be efficiently solved for some part of the input parameter has led to the argument 
that P-Cognition Thesis should be replaced with the Fixed-Parameter Tractability the-
sis (Van Rooij 2008), which states that cognitive functions are restricted by polynomial 
time in the overall input size n, while allowing for superpolynomial time in some part 
of its input parameter (Downey and Fellows 2012). A related modeling paradigm is the 
concept of resource-rational cognition (Lieder and Griffiths 2020), which addresses 
cognitive modeling in terms of the optimal use of limited computational resources.

Thus, even if it remains unclear what kind of computer the human mind is (or whether it 
can be meaningfully captured by any model of computation), tractability considerations—
in conjunction with cognitive modeling and experimental data—can work as a hypothesis 
that helps us carve out the space of feasible theories of cognition. Naturally, this would also 
include the functions that make up moral cognition. For instance, if we believe that humans 
perform causal, strategical, or logical reasoning to produce competent moral behavior, 
tractability considerations will directly serve to constrain the space of computational-level 
problems that underpins moral behavior. In addition, if we have reason to believe that 
humans perform these moral inferences in a specific way—e.g., using certain Bayesian, 
decision-theoretical, or logical inference techniques—a complexity analysis will help to 
pinpoint the relevant trade-offs between performance and feasibility; trade-offs which may 
directly relate to the complexity results surveyed in this paper.

7.3  Moral tractability thesis

The role of tractability in theories about moral behavior and cognition can be formulated 
as the Moral Tractability Thesis (MTT). It is a natural extension of the Tractable Cognition 
Thesis and states that morality—moral behavior, moral problem-solving, and moral cog-
nition—are constrained by computational tractability (see Fig. 4), given some reasonable 
model of human moral cognition.138 The MTT is a hypothesis that points in both normative 
and descriptive directions:

(1) MTT as a meta-ethical standard for normative theory MTT yields a meta-ethi-
cal point that stresses that the computational problems imposed by a moral theory also 
should be tractable with regard to the resources of an agent following the theory; i.e., to 
the extent the theory aims to provide any meaningful action-guidance for the agent.139 
If not, it could suggest that the moral theory imposes unrealistic demands in relation to 
the agent’s resources, and therefore, the theory should be revised so as to constrain the 
space of problems the agent can be expected to solve. As such, it could help to exclude 
the “self-effacing” theories of normative action-guidance from the ones that respects the 
limited capacities of agents. More practically, it can help us to identify the situations and 

138 Here, “reasonable” is intentionally ambiguous, as there is currently no consensus of the specific model 
of computation that reflects the human brain. For a recent proposal, see Blum and Blum (2022).
139 This point is the computational analogue to “ought implies can”-principles that has been proposed in 
moral philosophy with reference to the constraints of human psychology. One prominent example is Owen 
Flanagan’s elaborate defense of the The Principle of Minimal Psychological Realism: “Make sure when 
constructing a moral theory or projecting a moral ideal that the character, decision processing, and behavior 
prescribed are possible, or are perceived to be possible, for creatures like us” (Flanagan 1993, p. 32).

137 See Van Rooij (2008) for a detailed treatment of the Tractable Cognition Thesis and its formal variants.
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contexts in which a certain form action-guidance can be expected to produce better results 
than competing alternatives.

(2) MTT as a guide for normative judgements and responsibility In  situations where 
an agent behaves immorally, MTT can help us to answer the question whether the agent’s 
immoral behavior was due to a failure of morality and rationality. For instance, if the com-
putational demands are fair for some reasonable conception of human moral competence, it 
might point to the lack of a certain moral resource in the situation at hand (e.g., time, mem-
ory, knowledge, learning, or rationality demands). If no such absence can can be identified, 
it can also serve as grounds for holding the agent responsible for their immoral behavior.

(3) MTT as an experimental paradigm In the descriptive direction, MTT can provide a 
delimiting factor for existing paradigms studying human morality; from the computational 
modeling of human moral cognition to experimental studies in moral psychology. More 
precisely, MTT can be used to identify the principles and algorithms that underpin cogni-
tive processes in moral decision-making, reveal relevant trade-offs between feasibility vs 
performance, and further investigate the role of resources in specific moral contexts.

(4) MTT as a remedy to feasibility vs optimality Another feature of MTT is that it can 
help to resolve open-ended tensions between feasibility and performance in moral contexts, 
in the sense that the latter is directly constrained by the former. For instance, if we assume 
that there is a fixed point which yields the optimal moral value, MTT implies that there 
is an action-guiding theory that yields the highest possible moral value with regard to the 
resources of the acting agent.140 The same idea can be articulated for moral communities: 
recipes for action-guidance that produces the highest moral prosperity—e.g., joint well-
fare, or mutually agreed-upon moral values—with regard to the mutually shared resources 
of agents in the moral community. In other words, there may be normative action-guidance 
that provides the morally optimal use of bounded cognitive resources; a resource-rational 
moral theory (Lieder and Griffiths 2020). From a game-theoretic point of view, this can be 
interpreted as the optimal moral equilibrium point (e.g., maximum joint benefit) within the 
space of the agents’ bounded resources (Fig. 4).

7.4  Limitations

There are several of gaps and limitations for the explanatory viability of moral complex-
ity analyses in general and the MTT in particular. We will briefly address some of these 
along three broad questions: (i) How and to what extent is computational complexity rel-
evant for the development and deployment of “morally competent” AI systems in real-
world domains? (ii) What aspects of human morality are not captured by a complexity 
analysis? (iii) What can complexity tell us about the human use of morally informed AI 
systems (e.g., AI systems that are designed and used to extend or augment human moral 
capacities)?

(i) It should be stressed that the computational problems analyzed in this paper may have 
limited relevance for many real-world implementations of AI systems in moral domains. 
For instance, what can computational complexity, if anything, tell us about the moral 
behavior in domains such as autonomous driving, social assistive robotics, and natural lan-
guage processing? While the overarching goal of a self-driving vehicle may be summarized 

140 More moderately, instead of an optimal, we can assume that there is a justified threshold for moral per-
missibility on the basis of some notion of moral value.
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as “drive safely from point A to B”, it encompasses a vast set of smaller sub-tasks and 
goals—e.g., path planning, adhere to traffic rules, crossing this and that intersection—for 
which it utilizes a cluster of distributed capacities—e.g., sensors, motors, maps, simula-
tions—that makes up competent autonomous driving (Badue et al. 2021). Thus, a complex-
ity analysis of an autonomous car’s moral competence offers little insight unless it is based 
on the specific car’s capacities. As noted in Sect. 6, some technical-ethical challenges that 
arise for LLMs may present the inverse problem of constraining a general capacity to pro-
duce text (e.g., so as to adhere to human principles and values). That is, instead of learn-
ing an optimal solution from the largest possible search-space—e.g., by training on vast 
amounts of human-generated text—the task may be to constrain or modify the search via 
some justified inductive bias that aligns with human values (e.g., using RLHF). Similarly, 
the most widely discussed ethical issues that pervade social assistive robotics—e.g., decep-
tion, dignity, trust, and recognition in Human-Robot Interaction (HRI)—are far removed 
from the formal notions of causal, logical, and strategic inference discussed in this work 
(Boada et al. 2021).

The main point is that each domain presents its distinct set of technical and ethical chal-
lenges that need to be addressed with respect to the domain’s unique conditions. In turn, 
these challenges may have little to do with the computation of applied normative ethics, 
but rather, depend on some specific normative requirements that are presupposed by a cer-
tain human practice (Behdadi and Munthe 2020). However, if AI systems are developed 
to behave in accordance with normative ethics, the surveyed complexity results have an 
overarching relevancy for such endeavors, just as they remain central to several prominent 
paradigms for the advancements of computing; e.g., probabilistic inference, knowledge-
systems, and learning. In a more trivial sense, even if the aim is to merely supplement 
AI systems with some capacities needed for some form of ethical decision-making, the 
behavior of such systems would also be constrained by limited computational resources. 
A resource-rational complexity analysis could therefore help to identify the sort of ethical 
problems that can be solved by machines; the ones that can be solved efficiently, where 
there is room for improvement, as well as pinpoint the relevant resources and trade-offs.

(ii) Another important gap that needs to be addressed is the difference between human 
morality and the computational form of applied normative ethics explored in this paper. It 
should be strongly emphasized that, although the surveyed results have direct implications 
for computational systems, any potential consequences for our understanding of human 
morality rest on speculative assumptions. As discussed in  Sect.  3, ethics is an ambigu-
ous and multifaceted concept; what sort of ethical problems humans actually “solve”, how 
they solve them, and what they use to solve them (e.g., emotions, reasoning) are all open 
questions with many possible and elaborate answers. Similarly, while the aim of norma-
tive ethics is to find generally applicable standards of “good” and “bad”, it is but a small 
conversation of the broader landscape that makes up ethical life. Adopting a more skeptical 
view, one could even claim that normative ethics—as theoretically construed in contem-
porary Anglophone analytical philosophy—does not have any bearing on ethical life at all 
(Stocker 1977), or similarly, that the dogmas of instrumental rationality—as captured in the 
mathematical optimization that underpins most AI research—only captures a small facet 
of intelligence (Pasquinelli 2020). To that end, it might be odd to imagine that humans 
put together ethical action-plans (or optimal salads) using exhaustive search methods 
(Sect. 4.1), make causal inferences using (arbitrarily) large Bayesian Networks (Sect. 4.2), 
compute egalitarian Nash equilibria in their strategic interactions (Sect.  5.1.5), or check 
behavioral norm-compliance with regards to possible worlds (Sect.  5.2.2). Humans may 
employ a broad range of resources in their everyday ethical life—e.g., emotions and 
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motivations, guilt and shame, spirituality and ideology, critical reflection and theory of 
mind—that are uncounted for in this analysis. Thus, the presented analysis—from compu-
tation, to algorithm, to implementation—should not stop researchers from pursuing other 
investigatory directions that may be fruitful for understanding the intricate and numerous 
forms of human morality; e.g., the embodied and felt, the shared dependencies and vulner-
abilities of personal relationships, and the norms and institutions of society and culture.

Still, if one believes that cognitive tractability and MTT holds any merit, complexity 
can provide a guiding light into the vast intersection between normative, descriptive, and 
applied ethics. Even if one just accepts that computational limitations have some impor-
tance for some forms of human moral behavior, it suffices as a reason to further investigate 
those limitations. Furthermore, it is not unreasonable to believe that many human beings 
are able to and do—at least occasionally—follow deontological and consequentialist deci-
sion procedures, and, following virtue ethics, learn to foster the psychological dispositions 
that enable them to become better moral persons; although the de facto cognitive proce-
dures that underpin these processes might look different from the ones considered in this 
work. To that end, it would be rather odd to view these normative theories as completely 
separated from the cognitive capacities of humans; for instance, it seems hard to explain 
the practical success or popularity of certain moral heuristics (e.g., principles or theories) 
unless they were applicable—decidable and tractable—for humans in moral communities 
(Alexander 2007). In some cases, it even seems reasonable to believe that some of these 
heuristics are motivated on the basis of their computational efficiency; e.g., the compu-
tational efficiency of adhering to moral rules (Sect.  5.3). Thus, while we should respect 
the vast gap between human and computational forms of morality, it would be unwise to 
exclude the possibility that there are more or less rigorous patterns in the cognitive pro-
cesses that support the former, which in turn are amendable for formal investigation via the 
latter.

(iii) Another large area that is omitted in this paper is the integrative use of AI systems 
in human moral behavior. I.e., we have mainly considered the ethical behavior of com-
putational systems in isolation, without any ‘human-in-the-loop’ (Wellner 2018), or any 
particular domain or context in mind. As such, we have ignored the integrative prospects 
of how AI systems can be utilized to support or augment human ethical decision-making, 
and the complex questions of intentionality and responsibility it opens up (Matthias 2004; 
Johnson and Powers 2005; Mykhailov 2023). Machines are, after all, a large cluster of 
computational methods that are employed to carry out the aims of its human users. In turn, 
this might point to a research area that can also be illuminated by computational complex-
ity: how AI systems can foster and support moral prosperity in human practices in light 
of constrained resources (Vallor 2015; Giubilini and Savulescu 2018). For instance, many 
problems that are intractable for humans may be tractable for machines, and conversely, 
many problems that are intractable for machines may be tractable for machines. The guid-
ing question is thus: on the basis of resource constraints, how can AI be developed and 
used so as to expand rather than constrain the space of moral reasoning (Vallor 2016)?

7.5  Future work

There are a number of interesting venues to further explore moral tractability for minds 
and machines beyond the ones already described. First, it should be stressed that although 
this work has discussed a number of complexity results relevant for moral behavior, it has 
circumvented an even greater amount. For most of the computational problem discussed, 
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there are hundreds of related results that would be relevant to consider under different 
conditions and assumptions. In fact, we have omitted results from entire fields of com-
plexity theory—e.g., parameterized, communication, proof, and circuit complexity—that 
could yield further insights about the limitations of moral computation. Out of the dis-
cussed problems, there are two areas in particular that we believe deserves a more detailed 
investigation: (i) the sample complexity and regret-minimization of (moral) machine learn-
ing, and (ii) algorithmic game theory (in conjunction with algorithmic design theory). The 
reason for pursuing the first is that the complexity of machine learning in moral contexts 
remains relatively poorly understood; especially given issues such as explainability (Gun-
ning et al. 2019), induction (Sterkenburg and Grünwald 2021), and the “paradox of deep 
learning” (Zhang et al. 2021). Another reason is that machine learning is the main vehicle 
behind the modern advancements in AI development. More urgently, learning systems are 
already deployed in a vast range of human practices, including areas that may involve sali-
ent forms of moral decision-making such as health care, autonomous driving, law, polic-
ing, and education.

The reason for pursuing (ii) is that game theory provides a unifying framework for the 
formal study of interactions, which in turn makes interactions amendable for algorithmic 
modeling and analysis. As such, we believe it could provide fertile synergies between 
historically distinct fields such as computer science, moral theory, evolutionary biology, 
behavioral economics, and social science. For instance, if we adopt the view that norma-
tive theories converge more than they disagree,141 a resource-rational algorithmic game-
theoretic analysis could help to identify the conditions under which certain theories are 
more practically viable than others. E.g., what sort of cognitive abilities and computa-
tional resources are required for a certain moral heuristic—e.g. an action-guiding norma-
tive theory—to support the highest possible moral prosperity for a community of agents? 
What sort of moral behaviors can be effectively computed or justified, and what behav-
iors can only be learned? Ideally, such investigations could not only illuminate the specific 
resources a computational agent need in order to be morally competent, but explain the 
very resource-rational rationales that underpin our most prominent ethical theories.

8  Conclusion

We have surveyed a large but far from exhaustive set of complexity results and discussed 
their relevance for minds and machines in the moral realm. On the one hand, it shows 
that being moral is hard. More precisely, if being moral involves planning, causal infer-
ence, sequential decision-making in dynamic and partially observable environments, gen-
eral rules, strategic dynamics, logical reasoning, or learning in a way that is prescribed by 
the three dominant normative frameworks, then being moral is generally computationally 
intractable. On the other hand, it also identifies where we can look for more efficient deci-
sion procedures and action-guidance in the moral realm, just as it may guide us towards 
a better understanding of the relevant resources and trade-offs. Ultimately, we believe 
tractability opens up interesting interdisciplinary spaces between machine ethics, moral 

141 For instance, Parfit (2011) argues that it is erroneous to believe that there are profound disagreements 
between consequentialists, contractualists, and Kantians, writing: “these people are climbing the same 
mountain on different sides” (p. 385).
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philosophy, and moral cognitive psychology, which will hopefully inspire new directions, 
not only in the engineering of moral machines, but in understanding the complex science 
of morality.

Appendix

Complexity classes

AC0—Class of decision problems solvable by a family (one for each possible input-size) 
of constant-depth unlimited-fanin circuits, where the number of gates is bounded by 
some polynomial in the size of the input.
LH—Class of decision problems solvable by an alternating TM with a bounded number 
of alternations in time O(log n) . See Immerman (1998) for a detailed exposition.
PL—Class of decision problems solvable by a probabilistic TM constrained by space 
O(log n) , with an error probability 𝜖 < 1∕2 (“Probabilistic Logarithmic Space”).
P—Class of decision problems solvable by a deterministic TM constrained by time 
O(poly(n)).
PP—Class of decision problems solvable by a probabilistic TM constrained by time 
O(poly(n)), with an error probability 𝜖 < 1∕2.
FTP—Class of decision problems solvable by a deterministic TM constrained by time 
O(f (k)nc) , where f is a function that only depends on the parameter k, and c is a con-
stant. See Downey and Fellows (2012) for the definite introduction to parameterized 
complexity.
NP—Class of decision problems solvable by a non-deterministic TM constrained by 
time O(poly(n)). Alternatively, class of decision problems for which “Yes”-instances 
are verifiable in polynomial time by a deterministic TM.
co-NP—The complement set of NP. Class of decision problems for which “No”-
instances are verifiable in polynomial time by a deterministic TM.
#P—Class of function problems f(x), where f is the number of accepting paths of 
a non-deterministic TM constrained by time O(poly(n)). Informally, it is the set of 
counting problems associated with NP; i.e., where NP decision problems ask “are 
there any”, #P function problems asks “how many”.
NPPP—Class of decision problems solvable by a non-deterministic TM constrained 
by time O(poly(n)) with access to an oracle for problems in PP.
TFNP—Class of function problems solvable by a non-deterministic TM constrained 
by time O(poly(n)) where a solution is guaranteed to exist (“Total Function Non-
deterministic Polynomial”).
PPAD—The subclass of TFNP where functions are guaranteed to be total—i.e., a 
solution is guaranteed to exist—in virtue of the parity argument on directed graphs 
(“Polynomial Parity Arguments on Directed graphs”). See Papadimitriou (1994) for 
a detailed exposition.
PH—The union of classes in the polynomial hierarchy. It can be defined recursively 
using oracle machines: given P = ΔP

0
= ΣP

0
= ΠP

0
 , we define PΣ

P
i = ΔP

i+1
 , NPΣ

P
i = ΣP

i+1
 , 

and co-NPΣ
P
i = ΠP

i+1
 , to express the union: 
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PSPACE—Decision problems solvable by a deterministic TM constrained by space 
O(poly(n)).
EXPTIME—Decision problems solvable by a deterministic TM constrained by time 
O(2poly(n)).
NEXPTIME—Decision problems solvable by a non-deterministic TM constrained 
by time O(2poly(n)) . Often denoted NEXP.
EXPSPACE—Decision problems solvable by a deterministic TM constrained by 
space O(2poly(n)).
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