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Abstract In this paper I discuss the relationship between model, theories, and laws 
in the practice of experimental scale modeling. 
The methodology of experimental scale modeling, also known as physical similarity, differs 
markedly from that of other kinds of models in ways that are important to issues in philoso- 
phy of science. In this paper, I examine how scale models are used in making inferences. The 
main question I address is "How are fundamental laws involved in the construction of and 
inferences drawn from, experimental scale models?" I propose there is a refreshing alter- 
native to the mainstream view that models can serve only as intermediaries between theory 
and exPeriment. Using the methodology of scale models, one can use observations on one 
piece of the worm to make inferences about another piece of the world, without involving an 
intermediate abstract model about which one reasons. 
The philosophical significance of thatpoint to philosophy of science is that the method of phys- 
ical similarity, which provides the basis for inferences based upon scale models, is a qualita- 
tively different way in which fundamental laws can be used in analogical reasoning that is 
truly informative. Finally, as this method provides a formal basis for case-based reasoning, it 
may be helpful in formalizing methods used in some of the so-called "special sciences". 
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1. Introduction 

In this paper, I will address a rather specific question that is seldom asked: "How 
are fundamental laws involved in the practice of scale modeling?" The reason this 
specific question deserves our interest, however, arises from what it has to do with 
the more general question of how laws and models can be related to each other: The 
answer to the specific question of how fundamental laws are involved in the prac- 
tice of scale modeling is very different from answers usually given to the more gen- 
eral question. 

The point of difference, we shall see, is this: the answer to the general question 
"How are fundamental laws involved in reasoning that uses models?" is often some- 
thing to the effect that the only way for fundamental laws to apply to the real world 
in model-based reasoning is for them to be applied to - or, sometimes, to be identi- 
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fied with features of - abstract or idealized models. In contrast, this view does not 
cover scale models, which are concrete. Although the answer to the more general 
question is often regarded as comprehensive, i.e., meant to cover all model-based 
approaches, some of the authors who have provided proper foundations for these 
claims have realized that they must explicitly exclude scale models from their 
accounts of how models and laws are related (e.g., Hesse 1967, Boltzmann 1904). 

Many different varieties of models are recognized in philosophy of science, but 
there is something they tend to have in common: on most views of scientific infer- 
ence that involves models, the model is thought to act as some sort of intermediary 
between the actual world and something abstract, such as a principle, theory, or law. 
Sometimes the model itself is taken to be abstract. Here's an example of the sort typ- 
ically given to illustrate the function of a model: suppose one has a theory or set of 
equations describing how electricity flows in a network. The theory may be a set of 
statements or it may be something even more abstract (e.g., on the semantic view, 
set-theoretic objects and relations between them). To apply a theory or a set of equa- 
tions to an actual network, one might proceed by making an idealized model of a 
particular network. On the common view, after the idealized model of the network 
has been formulated, one then uses formal rules about how to draw inferences from 
the theory, equations, or statements describing the laws governing the behavior of 
electricity in networks to infer the behavior of the model network. 

It is not going to be important to making my point whether the formal methods 
one uses in describing or making predictions about the model are geometrical, 
graphical, statistical, set theoretic, or logical. What is important to my point is that, 
on the common view, (i) the involvement of the formal methods is that they are used 
to infer features of, or the behavior of, the model network; and (ii) there is one fur- 
ther step: mapping the results drawn for the model onto some piece of the world: 
e.g., an expected observation, an action to be taken, and so on. The reason that I have 
not here made anything important depend upon whether one tends to use a "syntac- 
tic" or "semantic" view of theories is that, for the point I will be making in this paper 
regarding models, the difference does not matter: on either view, when it comes 
down to using the theory in explaining or predicting phenomena in our experience, 
the notion of model in play is that the model is abstract and needs to be mapped onto 
"the world" in some way. 

That these features of models are common to so many different accounts of what 
a theory is reflects, I think, that these features of models are somewhat ingrained in 
pure science, philosophy of science, cognitive science, and artificial intelligence: so 
much so, that it doesn't seem as though this general notion of model could be 
excluding anything - it seems to be comprehensive. However, it is not comprehen- 
sive. The alternative to it I discuss here is valuable in that it illustrates something 
that may not occur using the ingrained notion of model I 've alluded to above. It 
illustrates how laws can be involved in model-based reasoning which does not treat 
models as mediators between the real world and our formal methods - in which the 
models are in the world. 

That such an alternative exists is significant to many views in philosophy of sci- 
ence. One example is the topic of scientific realism. For if it were true that laws can 
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apply only via the use of models, and if, as many believe, the only way that laws 
can be involved in model-based reasoning is indirectly, by applying to a model, 
those who conclude that scientific laws can't be about the actual world we experi- 
ence (but only about models) might have a point. I want to allow that their point 
might be well taken if it were true that fundamental scientific laws are only applic- 
able to abstract models, but I want to show that in fact we c a n  employ fundamen- 
tal scientific laws in a way that is not restricted in application to idealized or 
abstract models. The methodology upon which scale modeling is based illustrates 
that the following is possible: a method that involves using basic fundamental laws 
along with models to predict behavior in a very specific, very complex, actual 
physical situation, even in cases in which the laws relied upon do not necessarily 
provide a way to describe behavior in either the model employed, or in the target 
situation. 

To give a preview of the contrasts I want to illustrate: 

- First, a contrast regarding the way models are used to draw inferences: on the 
standard view of models, inferences are drawn based upon models that func- 
tion as intermediaries between something abstract & something concrete, 
whereas, on the method of physical similarity, inferences are drawn based 
upon models that are concrete, that is, the inference is drawn from a concrete 
situation (model) to a concrete situation (the thing modeled). 

- Second, a contrast regarding the way that models and fundamental laws are 
related: on the standard view of models, the laws describe and/or predict what 
happens in the model, whereas, on the method of physical similarity, the laws 
do not necessarily provide a means of predicting what happens in the model, 
but are used only to establish similarity of concrete situations. 

2. S o m e  c o m m o n  n o t i o n s  in p h i l o s o p h y  o f  sc i ence  

To see why these two contrasts - one of which is associated with the ways mod- 
els are employed when they are used in drawing inferences, the other with the way 
in which fundamental laws are involved in the use of models - are of significance 
to questions in philosophy of science, it will be helpful if I identify what I consider 
basic to many different approaches to inference in philosophy of  science. This is 
depicted in Figure 1 (see the next page). 

Basically, the sketch shows scientific reasoning proceeding using representation 
(in the most general sense - i.e., even neural networks with sensors take as their 
inputs a pattern; even statistical methods work on data). Models may be representa- 
tions that have more structure than these other kinds of representations, but, on the 
view that models are abstract and that they represent, they fit this very general 
sketch. 

My intent is to first present this picture, which I believe describes many accounts 
of scientific reasoning, including many accounts of model-based reasoning, in such 
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Fig. 1: General sketch of most views of scientific inference. 

a way that we can see why it seems plausible that it is a comprehensive account - but 
then to describe a kind of model which cannot be accommodated by this picture. My 
purpose in presenting the method this way is to pinpoint the difference between the 
notion of models implicit in commonly-held views and the notion of models appro- 
priate to describe the use of the methodology of applying the principles of physical 
similarity when using scale models to draw inferences. 

Now, the principle of physical similarity is applied by building a model that is 
(by design) similar to another physical situation in certain respects, and inferring 
features about the latter physical situation, by using the principle of physical simi- 
larity to justify the conclusion that the two situations are similar in certain other 
respects. Thus it is a species of inference by analogy. In general, we might ask, how 
well do accounts of scientific analogical inference fit into the picture of scientific 
reasoning sketched in Figure 1 ? 

A standard and general account of analogical reasoning goes as follows. The 
premises of the argument are that two objects (where object is to be construed in the 
most general way, to include situations, phenomena, processes, and so on) are com- 
pared. From the fact that object 1 (S1) and object 2 ($2) both have properties A, B, 
and C, and the fact that object 1 (S1) also has property D, it is inferred that object 2 
($2) also has property D. There are different accounts of what makes an analogical 
inference strong; in general, some account must be given to support the similarity of 
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S1 and $2. Generally the fact that $1 and $2 both have properties A, B, and C is not 
the only basis upon which the inference is based. Sometimes there is additional 
information supporting the claim that property D is causally related to properties A, 
B, and C. Sometimes we have some reason for thinking that S1 and $2 are struc- 
turally similar (e.g., model organisms and humans). 

On this characterization of analogical inference, do analogical inferences fit into 
the general sketch of scientific inference given in Figure 1, or do they present a 
problem for that sketch? 

Two objects/situations/models 

81, 82, are known to be 
similar in some respects Infer 

f 

Sl is also 

similar to S 2 
in other respects 

Different accounts of analogical reasoning provide different accounts 
of what makes an analogy strong. 

J 

Fig. 2: General form of reasoning by analogy. 

Actually, the account of analogical reasoning just given will fit nicely into the 
sketch in Figure 1, subject to some qualifications, namely: (i) that one can represent 
in some manner the premise that S1 and $2 are similar, and (ii) that the method of 
inferring the additional ways in which S1 and $2 are similar (i.e., in inferring that 
S2 also has property D) can be accomplished by the thinker or computational device. 
So, whether or not a particular kind of analogical reasoning can be accommodated 
by the comprehensive sketch of scientific inference depicted in Figure 1 depends on 
whether or not these two conditions hold. Thus, we cannot make a blanket statement 
that all forms of analogical reasoning can be accommodated within the sketch in 
Figure 1. All we can say is that some kinds of analogical inference can be accom- 
modated within the sketch in Figure 1; when it comes to a particular kind of ana- 
logical reasoning, however, we will need to examine whether these two conditions 
hold for the particular methodology under consideration. 

Finally, let's examine how the general case of model-based reasoning might fit 
into the sketch in Figure 1, just as we did for analogical reasoning. In Figure 3, I 've 
summarized what I take to be a fairly common presumption about models that cov- 
ers many views. I will be challenging it later, but, for now, let's consider how the 
notion of models indicated in Figure 3 fits into the general sketch of scientific infer- 
ence I 've given in Figure 1. 

The idea behind the view I've shown in Figure 3 is basically that the model M is 
something that we can treat with the analytical tools we have at hand. These tools 
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might be a theory, or some other method, such as a geometrical or computational 
algorithm, or a combination of them: the key thing is that we have a means of, a 
methodology for, making predictions about behavior in the model M. The sketch in 
Figure 3 is meant to be neutral with respect to syntactic or semantic views of  theo- 
ries and models. 

/' tx : at J i7 
M is simpler; 
may by physical 
(billiard balls) 
or abstract 
(point masses) 

Laws (or methods) known to aDply 
to M can be used to predict 
behavior in M and hence in S 

Model M is an intermediary between a complex situation 
in the world and something else 
(e.g. law, abstract reasoning process, theory, etc.) 

Fig. 3: Standard view of models. 

I think you can see that, in this sketch, the role of the model is like the role of a 
representation: the model is easier to handle than what it represents and it is repre- 
sentative of something. As I explained above, my purpose in laying out this sketch 
is to clarify the common presumptions of most views of model-based reasoning, for 
I will be presenting a model-based methodology that I believe is not easily accom- 
modated by such a sketch: the method of scale models, which are a special case of 
physical models. 

3. The method of physical models 

The key idea in making scale models was illustrated in the text of a glossy, 
multi-page automobile advertisement that appeared in magazines a few years ago. 
There was very little text; just this: 

Whispers in the wind tunnel ... screams on the Autobahn. 
(Audi advertisement) 
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The In'st part of the text appeared on a page showing a car body inside a wind 
tunnel, as the air streamed smoothly over the body of the automobile. The second 
part of the text showed the actual automobile being driven on the highway. 

This expresses the method of scientific inference used in scale modeling. Unlike 
the common view on which laws or other analytical methods apply to or within a 
model, what the method of physical similarity, which underpins the use of scale 
models, tells us is this: 

"If  it whispers in the wind tunnel, 
then it will scream (go fast) on the autobahn (a highway with no 
speed limits)" 

The inference is from physical situation to physical situation. 

I don't  have sufficient space here to fully present the method, or the arguments 
for its validity, but I will attempt to describe the methodology sufficiently to clar- 
ify why it is significantly different from the standard view of models. There are of 
course some rather straightforward uses of scale modeling, such as the use of geo- 
metrical scale models in the architectural layout process, where the only purpose 
of the model is to represent spatial relationships. These are such special cases of 
scale modeling that they hide the extremely interesting and sophisticated methods 
involved in more general cases of scale modeling, in which fluid phenomena, 
mechanical phenomena that depend upon stress-strain or other material properties, 
and heat transfer phenomena are modeled by small objects whose behavior can be 
used to predict the behavior of larger machines and situations. The basic ideas 
behind the method are not totally absent from mainstream general science curric- 
ula, but they are seldom emphasized if indeed they are pointed out at all, A high 
school physics text may mention in passing Galileo's point that the partial knowl- 
edge that the period of a pendulum is independent of the mass but varies as the 
square root of the length can be used to infer the period of a very large pendulum 
merely by making measurements on a scale model and multiplying the result by 
the square root of the size ratio between the model pendulum and the full-size pen- 
dulum, but the more general point that there is a methodology of physical similar- 
ity to be appreciated and formalized is generally not made. The focus still tends to 
be on the specific equations or conservation laws which can be used to compute 
quantifies such as the period from values of other quantities, and not on how one 
could answer questions about one pendulum by building another that is a scale 
model of  it. 

Scale modeling that is based on the principle of physical similarity is a method 
for predicting the behavior of certain quantifies in a specific, complex, situation S1. 
Different foundations for the method have been developed and refined over the past 
half-century. Here I ignore subtleties arising from those differences, and describe the 
method in terms of the most common foundation given, which is based on dimen- 
sional analysis, i.e., on an analysis of the dimensions of the quantities upon which 
the phenomenon of interest depends. 
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Using consistency of dimensions and the knowledge of the dimensions of the 
quantities that are relevant, for all the quantities that are (i.e., one must know which 
quantities the phenomenon of interest depends upon), one can: 

- Build (i.e., construct) a physical situation $2 that is similar to S1 in the rele- 
vant respects, 

- Develop the rules for transforming the values of quantifies in $2 to values of 
quantities in S1. 

Once the model ($2) is constructed, one measures the quantities in/observes the 
behavior of the physical situation $2 :$2  is the scale model, or experimental model. 

Then, from one's observations or measurements on $2 (the scale model), one 
infers the quantities of interest in S1 (the situation modeled). 

Now, let's reflect on the method. 

First, is this method of reasoning analogical? It is, and in fact it is quite natu- 
rally accommodated by the account of reasoning by analogy given above and illus- 
trated in Figure 2: the model and the thing modeled can be considered two objects 
or situations S1 and $2 known to be similar in some respects (the respects in which 
you kept $2 the same as S1 when you built $2 in such a way that it would be (in a 
sense that can be made rigorous) physically similar to S1) are taken to be similar 
in other respects (the feature of S1 which you inferred based upon your observa- 
tions of $2 (the scale model)). To avoid any misunderstanding about the inferred 
feature: we do need to take care in how we specify the feature of  S1 to be inferred, 
so that the description of that feature (e.g., period of oscillation) allows one to infer 
the corresponding feature of S1; the inference is from the value of a quantity in $2 
(the scale model) to the corresponding, or transformed, value of the quantity in S1. 
However, this subtlety occurs in many kinds of analogical reasoning and is not spe- 
cial to scale modeling. When the analogy involves a mapping from two very dif- 
ferent domains this point is obvious. I mention it here only for clarification: as the 
kind of quantity is the same in both S l  and $2, we need to keep in mind that we 
must apply a multiplicative factor (which can be different for different quantities) 
to the value of a quantity in $2 in order to obtain the value of the corresponding 
quantity in S1. 

Secondly, suppose we consider this method of reasoning "model-based", inas- 
much as it employs $2 as a model (albeit a concrete one) to draw inferences about 
S1. Is the notion of model involved in this method accommodated by the account of 
models given above and summarized in Figure 3? 

I think the answer to this is "No". For, the way in which scientific laws are 
involved in scale modeling is not as described in Figure 3. Why not? Well, first of 
all, because, even on a very permissive notion of law, the laws and equations 
involved are not used to describe or predict behavior of the model. Nor can the 
method of scale modeling be reformulated so as to be redescribed or reduced to 
another of the form shown in Figure 3, for this reason: in the general case, the laws 
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can't be used to predict what happens in the model M because the method only 
requires partial knowledge to supplement the use of the model. By partial knowledge, 
I mean that the information used in conjunction with the model is not enough infor- 
mation to determine the value of the quantity inferred without the use of the model. 

The method requires a lot less than that required by any method that fits Figure 3. 
In Figure 3, we establish that the model behaves like the thing to be modeled on the 
basis of some governing equation that could, at least in principle, be used to deter- 
mine what happens in the object or situation modeled. Let me emphasize this point 
about the method of physical similarity: we need not be in possession of laws or 
equations that, even in principle, would be sufficient to predict what happens in 
either the model M ($2) or the object modeled (S1). This is why I say that the notion 
of scale models is significantly different from the notion of model illustrated in 
Figure 3, and that the methodology of physical similarity is not well-accommodat- 
ed within the sketch of scientific inference illustrated in Figure 1. 

4. Physical similarity versus geometrical similarity 

This point - that the use of scale models (sometimes called analogue models) is 
qualitatively different from the use of abstract models - is often presented as a neg- 
ative sort of point. 

For instance, people are often concerned to point out that one can't make certain 
kinds of inferences based on scale models - for example, if "scale model" is taken 
to mean simply built out of the same materials but to a different geometrical scale, 
people point out that there's no guarantee that the behavior of the model will be sim- 
ilar to the behavior of the full-size geometrically similar version. But there are two 
sides to this: we can become interested in how scale modeling works, when it does 
work, or we can set scale models aside as misfits that do not belong under the notion 
of model we want to use in philosophy of science. The point that scale models use 
a methodology that is significantly different from most other kinds of model-based 
reasoning, put in this negative way, as a warning, has been made on occasion by a 
number of philosophers writing about models. The response has been to set scale 
models off to the side. These philosophers, although correct in the negative aspect 
of the point (be wary of thinking scale models can be treated according to whatev- 
er account is being proffered), have seldom even noticed that there's a positive 
aspect to the point as well - a very fruitful one, in fact! 

The positive aspect of the point is this: the methodology of scale modeling can 
be used to draw inferences from scale models, though 'scale model' does not mean 
simply built to the same geometrical proportions but on a different size scale. 
Though a number of philosophers do respect that there is something substantially 
different going on in scale modeling, few take the time to give an account of h o w  

- oi" w h y  - it works! 
That such a methodology existed was mentioned early on by those writing about 

mental models, a topic of great interest around the turn of the century. Here's a 
remark from Ludwig Boltzmann's entry for "Model" in the E n c y c l o p e d i a  B r i t a n n i c a .  
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(Boltzmann (1904)) First, he describes models used "in the mathematical, physical, 
and mechanical sciences," especially the view on which "thoughts stand to things in 
the same relation as models to the things they represent." Then, he remarks: 

A distinction must be observed between the models which have been 
described and those experimental models which present on a small scale 
a machine that is subsequently to be completed on a larger, so as to afford 
a trial of its capabilities. 
(Boltzmann 1904, p. 218) 

Now, the view that Boltzmann had just presented in the discussion he gave pre- 
ceding this remark included mechanisms, both naturally occurring and constructed 
by man, of which his account was: 

... it is perfectly clear that these models of wood, metal, and cardboard 
are really a continuation and integration of our process of thought; for, 
according to the view in question, physical theory is merely a mental con- 
struction of mechanical models, the working of which we make plain to 
ourselves by the analogy of mechanisms we hold in our hands, and which 
have so much in common with natural phenomena as to help our com- 
prehension of the latter. 
(Boltzmann 1904, p. 218) 

That is the account of models he gives in his essay, but which, he says, does not 
fit scale models of machines. Why not? 

Well, he says - and rightly so - that, with experimental models: 

A mere alteration in dimensions is often sufficient to cause a material 
alteration in the action, since the various capabilities depend in various 
ways on the linear dimensions. 
(Boltzmann 1904, p. 220) 

He recognizes, however, the very significant point that such variation reflects 
physical laws: 

Thus the weight varies as the cube of the linear dimensions, the surface of 
any single part and the phenomena that depend on such surfaces are pro- 
portionate to the square, while other effects - such as friction, expansion, 
and condition of heat, etc., vary according to other laws. Hence a flying 
machine, which when made on a small scale is able to support its own 
weight, loses its power when its dimensions are increased. 
(Boltzmann 1904, p. 220) 

But he discusses only the negative point that the ratios of volume to length are 
not invariant under geometrically similar transformations of a model, and does not 
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address what would lead to the positive aspect of the point, namely the question: 
"How do scale models inform us?" 

More recently, other writers such as Mary Hesse, Patrick Suppes, and Rom 
Harre, to name a few, have repeated this recognition of the negative point, while 
neglecting to develop the positive point. For instance, in her survey article in The 
Encyclopedia of  Philosophy, Mary Hesse remarks on the distinction between scale 
models (also known as 'analogue machines') and logical models of formal theories; 
she warns that analogue machines are constructed in just those cases where "the 
explicit drawing of deductive consequences is impossible or impracticable," and 
that, in such complex cases, "it is dangerous to attempt to apply to scientific mod- 
els those arguments that are valid in connection with logical models of formal sys- 
tems," but she does not go on to give a positive account of how one would build an 
analogue machine for such a case. She doesn't discuss, so far as I can see, any other 
role for a formal theory in her account of physical models, than that of defining a 
formal relation that a model can be said to satisfy, or fail to satisfy. Examining the 
positive point in the practice of scale modeling will show us that there is another role 
that formal methods can play in reasoning that uses models. 

We actually got a hint of the positive point in Boltzmann's explanation of why 
scale models weren't like the other models he discussed: there, he referred to the 
relation of the ratios of volume to length: it follows a rule; volume grows by the 
third power of the linear dimensions. 

This is significant, for we can use this to draw inferences from small scale mod- 
els to larger objects. To take an example of a rather straightforward case where the 
phenomenon I care about is simply a matter of volume - for instance, suppose that 
I want to know the volume of material (wax, or plaster, or bronze, or whatever) that 
will be required to fill a certain mold. I can figure this out by using a geometrically 
similar scale model - i.e., a smaller size object in which all the ratios of the linear 
dimensions in the small object are the same as the ratios in the large object about 
which I want to make inferences - IF I account for the fact that the volume increas- 
es or decreases as the cube of the linear dimension. 

So, I can do the following: I make a scale model of a mold that is one tenth the 
size of the mold of some object X - if it's some complicated shape, such as a dol- 
phin, or the shape of someone's head, I can get an artist to fashion a small version 
having the same proportions. Then, 1 see (experimentally determine) how much 
fluid it takes to fill the scale model, and multiply that volume by the cube of the ratio 
I used in making the scale model. For instance, if I used a scale of 1:10 in building 
the model, then I will multiply the amount of fluid it takes to fill the scale model by 
10xl0xl0,  or 1000, to infer the amount of fluid it will take to fill the mold for a 
(full-size) object X. 

Notice that I can do this even if  I have no formula at all by which to determine 
the volume or shape of  the mold. 

You can see that this would be an effective method for determining the volume 
of a large statue without doing any volume calculations or estimations at all, so long 
as an artist could use his or her sense of proportion to fashion a smaller version. Nor 
is there idealization involved: we are not approximating the complicated shape of 
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the statue by some more geometrically tractable shapes. That is, this process is not 
like the process of approximating a circle by a polygon so that you can handle the 
circular shape using methods you have developed that apply only to figures with 
sides that are straight lines. The example of determining the volume of a statue is a 
very simple example, in that the only scaling involved was scaling of lengths. 
Nevertheless, the example illustrates the basic steps of the process. 

The key things required to use the method are just this: 

(i) Keep the relevant dimensionless ratios the same in the model as in the thing 
modeled. In our example, the relevant ratios were ratios of linear dimensions 
(i.e., lengths); for other phenomena, such as heat transfer, different quantities 
would be important, and the relevant ratios we'd need to keep the same 
between the model and the object of interest would be different ones. 

(ii)Know how the quantity of  interest - in this case, volume - varies due to 
changes in linear dimension. Boltzmann assumes volume varies as the cube 
of the linear dimension. What knowledge is that based upon? Only that the 
space is taken to be Euclidean. The point here is that the kind of information 
is very fundamental, not that it is universally applicable or exceptionless. 

Of course there are some phenomena for which we would not want to regard 
Euclidean geometry as fundamental, but there are plenty where we do. The impor- 
tant point here is that we can use such very fundamental assumptions to achieve so 
much in situations of partial knowledge. The kind of information used has to do with 
the nature of space, and not with specifics about the situation being modeled. 

The basis for the inferences we can make is the principle of physical similarity. 
Now, similarity of physical situations is not an absolute matter; similarity will be 
with respect to a certain phenomenon or kind of phenomenon, and will be deter- 
mined in the more general case by dimensionless ratios of various sorts. For the 
example above, the dimensionless ratio that was relevant was a ratio of lengths. For 
some other kinds of phenomena, the relevant dimensionless ratio for determining 
similarity is Mach number, which is the ratio of the velocity of an object to the 
velocity of mechanical waves in the medium with respect to which it is moving 
(here the velocity of mechanical waves depends upon the temperature and pressure 
of the medium). Another famous one is Reynolds number, which is a product of  den- 
sity, velocity, and length, divided by viscosity. The details of the ratio are not impor- 
tant for us right now; what is important here is that having the same Reynolds num- 
ber indicates similarity of flow regime and many other important hydrodynamical 
behaviors. If one wants to know whether an incoming flow (say an underground 
stream flowing into a lake) is going to mix with the fluid in the larger body, or will 
instead remain separated and essentially flow as a stream within the lake, the rele- 
vant dimensionless ratio is Richardson number. There are dozens of such important 
dimensionless ratios in hydro- and aero- dynamics. 

The strategy used in building aerodynamic and hydraulic models is to build a 
model with the same important (i.e., important for the phenomena being investigat- 
ed) dimensionless ratios; this results in models that are similar to the situation of 
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interest with respect to the particular kinds of aerodynamic and hydraulic phenom- 
ena being investigated. 

This is in fact the basis upon which scale models are based, and the methodolo- 
gy is used for constructing things for which being right matters very much, i.e., on 
which human lives and large investments depend: the operation of airplanes and 
ships, and the stability of buildings, bridges, and machinery. As I mentioned above, 
space does not permit a proper presentation and justification of the methodology, 
which by now has been provided with a very formal justification using the methods 
of abstract algebra. However, I want to emphasize two things about the process that 
bear on the philosophy of science: 

- First, the method does not require that you have equations that determine the 
behavior of either the model or the situation being modeled. 

- Secondly, the method does employ fundamental scientific laws. Examples of 
the kind of thing I mean by "fundamental" scientific laws are very general 
principles, such as conservation laws and the second law of thermodynamics. 

One of the earlier uses of engineering scale models was that of modeling a ship 
traveling in a canal. As Boltzmann correctly pointed out, a geometrically similar 
model may behave very differently from its full scale counterpart. In the case of a 
model of a canal that is geometrically similar, the effect of the surface tension of the 
water in the scale model becomes disproportionately salient. So, researchers real- 
ized, one can't simply scale the linear dimensions of the canal by a fixed ratio, keep- 
ing the geometrical ratios the same. Yet, this didn't mean that the method of scale 
models had to be abandoned. It did, however, have to be modified. 

Rather, the same methodology is applied, with some modification, as follows: 
use the method of physical similarity to determine the set of relevant dimensionless 
parameters for the phenomenon of interest - here, the phenomenon of interest is 
wave formation in canals. All that is required to do So is the knowledge (sometimes, 
a well-founded guess) of which quantities the phenomenon depended upon; exact 
equations are not required. Then, one constructs a scale model subject to the con- 
straint that one strives to keep the relevant dimensionless ratios as close as possible 
between the scale model and the thing modeled. What one finds is that the resulting 
scale model of the ship and canal should be built using one scale for the horizontal 
linear dimensions, and another scale for the vertical linear dimensions. This is in fact 
how research on ships traveling in canals was carried out. This involves a compro- 
mise; giving up total geometrical similarity in order to keep other important dimen- 
sionless ratios the same between the model and the canal being modeled. Hence 
some practical judgment is involved in deciding what tradeoffs to make. 

But, this kind of tradeoff is not an approximation of law to reality, nor of law to 
an idealized model. The laws are used to help determine what conditions yield phys- 
ically similar situations (with respect to a certain phenomenon). How are the laws 
used to do this? Well, only very general pieces of information are obtained from 
them. Here, they are not used to predict anything directly, but, rather, to figure out 
what quantities a certain phenomenon depends upon (i.e., viscosity, density, veloci- 
ty, temperature, length, and so on). 
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5. Something from practically nothing? 

But if it isn't necessary to possess an equation or method that enables one to 
compute the quantity of  interest, or to predict model behavior in a specific case, one 
may well wonder how so much can be inferred from so little. The most common 
foundation given for the method is dimensional analysis. (There have been further 
developments in the foundations of the method, but for the sake of simplicity I will 
not discuss such subtleties here.) The author of one of the main texts on the subject 
describes it this way: 

Dimensional analysis is a method by which we deduce information about 
a phenomenon from the single premise that the phenomenon can be 
described by a dimensionally correct equation among certain variables." 
(Langhaar 1951, p. 1) 

The philosopher Brian Ellis addresses the puzzlement many feel over dimen- 
sional analysis: 

The theory of dimensions has always been an enigma to the physical sci- 
entist. For it appears that here is a genuinely a priori method of obtaining 
knowledge. 
(Ellis 1966) 

In response to such puzzlement, Ellis makes two points: 

(i) The information as to which quantities are related, and the information that 
those are the only ones involved, is actually a great deal of information, and 

(ii)The significance of dimensionless ratios in science arises from the demand 
that numerical laws be (measurement) scale-invariant; i.e., that that expres- 
sion of the law be the same no matter what measuring scales are used. 

Ellis is mostly concerned with using dimensional analysis to derive formulae, 
such as the pendulum equation. I am instead concerned with how dimensional 
analysis can be used to tell us how to build a model and use it to draw inferences 
about a situation that may be inaccessible to us by any other means. That is, with 
how it permits us to "use one piece of the worm to tell about another". I agree with 
both of Ellis's points, and would add to them another, which is that what makes the 
fruitfulness of the method of scale modeling less surprising is that there is an actu- 
al slice of the world involved as well: the concrete scale model itself is an essential 
part of the bases upon which the inference is drawn. 

6. Conclusion 

Let's return to the general sketch of models with which I opened my paper. My 
claim is that the way fundamental laws are used in the methodology of  scale rood- 
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eling is not as depicted in the sketch. In the sketch given in Figure 1, fundamental 
laws are employed to tell us what will happen in a model; in the methodology of 
scale modeling, they are instead used to tell us: "here's how to tel l" .  They tell us 
what structural features of real situations to look for to identify situations that are 
physically similar with respect to some phenomenon, so that we can examine or 
build one within our practical reach, in order to determine what will happen in 
another situation that is not in our reach. Some examples of objects or situations not 
in our current observational reach include vehicles, machines and large projects such 
as dams, lakes, or canals that are being designed but do not yet exist, as well as 
events that have occurred in the past (e.g., unrecorded geological events) or will 
occur in the future (meteorological predictions). 

Thus models employed in scale modeling are not well-described as mediating 
between a world of abstraction or theory and a world of phenomena: instead, the 
models are pieces of the world, and the methodology allows us to remain in the 
world of phenomena, so to speak, but gives us insight into phenomena so that we 
can tell what will happen in one situation we cannot observe based upon another sit- 
uation we can observe. 

It seems to me that this kind of model also provides an idea for what a basis for 
case-based approaches to problem-solving might look like. To investigate this sug- 
gestion, how would it work for some specific disciplines? 

In Economics, it is quite natural to want to apply what can be learned about one 
specific, unique, economic situation to another. That is, despite the existence of ana- 
lytic approaches that attempt to find principles and equations from which predic- 
tions in a specific situation could be made, it is also of interest to try to learn lessons 
from one unique economic situation or economy and apply them to another eco- 
nomic situation or economy. There are parameters thought to reflect overall struc- 
tural features of an economy, for instance, velocity of money. So, we might ask 
whether we could apply the method of physical similarity, or at least dimensional 
analysis, to determine the relevant dimensionless ratios for certain kinds of eco- 
nomic phenomena. While the approach of building a scale model here would be 
impracticable, not to mention ethically questionable, there are some features of the 
methodology we might employ by using the method in reverse. For instance, even 
if we cannot build a scale model of an economy or economic situation in order to 
answer our questions about the consequences a certain policy (such as a tax break, 
an interest cut, or a tuition voucher program), we might instead work from the con- 
crete cases about which we do have information, and see what kinds of things these 
concrete cases could be models of. If dimensional analysis could give us some 
insight into the dimensionless ratios important to labor or unemployment phenome- 
na, we might attempt to see how they are related to critical economic phenomena. 
We could investigate whether there are critical values of these economic dimen- 
sionless ratios, just as a Mach number below 1.0 means there will not be shock 
waves, and just as Reynolds numbers below a certain number mean the flow will be 
laminar and that there will not be turbulent eddies. This is just a suggestion; I don't 
know the answer, nor whether there are analytical economic methods in use that 
might be described this way. 
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Sociology presents one of the most well known examples of a scale effect, i.e., of 
the phenomenon that an increase in (group) size may result in qualitatively different 
(group) behavior. It's well known that the kind of interaction that occurs in small 
groups does not occur when the group is larger. Just as the effects of surface tension 
become more salient in geometrically similar but smaller-sized models of canals, so 
there do seem to be some effects of social interaction that are proportionately more 
significant in smaller groups. Now, we might speculate: could we follow the path here 
that we took in response to Boltzmann's remarks? That is, instead of giving up on 
modeling social groups by smaller pilot programs, could we instead get more sophis- 
ticated about what a model is, and ask: well, if simple scaling by group size isn't the 
appropriate way to obtain a model that behaves as the thing we want to investigate, 
what kind of  scaling might be helpful? That is, how might a smaller pilot program be 
designed so as to give us insight into the larger situation we want to investigate? We 
might explore whether there are dimensionless parameters associated with social inter- 
actions in groups rather than just paying attention to the number and proportions of  
types of  people in the group: does the way the discussion is structured, the power rela- 
tionships between the group members, the length of  the average verbal contribution, 
the barriers that prevent interruption, how homogenous or disparate the members of  
the group are, matter to the nature of the group interaction? If  so, we might ask: could 
we figure out the relevant dimensionless ratios for some kinds of social phenomena? 

These last suggestions are very speculative, and I leave them so. Due to space lim- 
itations here, I have not been able to fully explain the methodology of scale models, 
nor to address the interesting topic of how this notion of  models complements and 
illuminates work by other philosophers on the relationship of models and laws and 
on the use of  models in scientific discovery. I hope, however, that I have been able to 
convey why I feel it is a rich source of ideas about model-based reasoning. 
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