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ABSTRACT

This paper presents REAL, a Real-Valued Attribute
Classification Tree Learning Algorithm. Several of úe
algorithm's unique features are explained by úe users'
demands for a decision support tool to be used for
evaluating financial operations stategies. Compared to
competing algorithms, in our applications, REAL
presents maj or advantages :

l. The REAL classification trees usually have smaller
error rates.

2. A single conviction (or trust) measure at each leaf is
more convenient than the raditional (probability,

confidence-level) pair.

3. No need for an external pruning criterion.

Keywords: Learning, Classification Tree, Decision

Support, Finance, Operation Strategy.

l.INTRODUCTION

This paper presents úe REAL Machine Learning

Algoriúm, for automatic consfiuction of classification

trees with real-valued attributes [2], [8], [10]. The REAL

project started as an application to be used at úe
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Brazilian stock market, trying to provide a good
algorithm for predicting the adequacy of operation
strategies. In this context, úe success or failure of a
given operation strategy corresponds to different classes,
and úe attributes are real-valued market indicators. The
users'demands for a decision support tool also explain
several of úe algoriúm's unique features.

The project began testing several Machine Learning tools
presented at the ESPRIT-Staúog project [6]; The
TDIDT - Top Down Induction Decision Tree - software
CAL5 [7] proved to be specially usefirl for the
application we had in mind. The CAL5 algorithm had a
stong influence on our project, and we use it as our main
performance benchmark. In our applications úe REAL
algorithm presented some major advantages:

Usually úe classification Fees have a smaller error
rate.

The single conviction (or trust) measure at each
leave is more convenient, than the traditional
(probability, confi dence) pair.

REAL interval partition procedure stops naturally,
eliminating the need of an additional pruning
procedure.
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2. PROBLEM FORMULATION

The classification problems are stated as an n x(m+l)

matrix Á. Each row, A(i,:) , represents a different

example, and each column, A(:,fl, a different attribute.

The first rz columns in each row zìre real-valued
attributes, and the last column, A(i,m+I) is úe

example's class. Part of úese samples, úe training set, is
used by the algorithm to generate a classification Eee,
which is úen tested with úe remaining examples. The
error rate in úe classification of the examples in the test

set is a simple way of evaluating the classification tree.

3. TREE CONSTRUCTION

Each main iteration of úe REAL algorithm corresponds
to the branching of a terminal node in the tree. The
examples at that node'are classified according to the
value ofa selected atfibute, and new branches generated
to each specific interval. The partition of a real-valued
attribute's domain in adjacent non-overlapping (sub)
intervals is úe discretization process. Each main iteration
of REAL includes:

l. The discretization of each attribute, and its
evaluation by a loss function.

2. Selecting the best attribute, and branching úe node
accordingly.

3. Merging adjacent intervals úat fail to reach a
minimum conviction threshold.

4. COI\IYICTION AND LOSS FUNCTIONS

Given a node of a given class wiú n examples, k of
which are misclassified and (n - k) of which are

correctly classified, we needed a single scalar parameter,

*crn,Ío measure the probability of misclassification and its
'confidence level. Such a simplified conviction (or rus$
measure was a demand of REAL users operating at the
stock market.

Let qbe úe misclassification probability for an example
at a given node, let p = (1- Ò Ae the probability of

correct classification, and assume we have a Bayesian
distribution for q, namely

D(c) = Pr(4 < c) = Pr(P 2 l- c)

We define the conviction measuÍe: 100*(l-cm)Vo,

where

c m = m i n  c l  P r ( q  í c )  à  ( 1 - C ( c ) )

and g( ) is a monotonically increasing bijection of [41]
onto itself. From our experience in the stock market
application we learned to be extra cautious about
making strong statements, so we make g( ) a convex
function.

In this paper D(c) is úe posterior distribution for a

sample taken from the Bernoulli distribution, with a
uniform prior for q:

B(n,k,q) = comb(n,k)x nk x On- 
k

D(c,n,k) = betainc(c,k +I,n- k +l)

c l

= ln6,*,q1 t ln6,Lq1
4=0 4=0

Also in this paper, we focus our attention on

g @ ) = g ( c , r ) = c r , r 2 l . 0

we call r the convexity parameter.

With these choices, the posterior is the easily computed
incomplete beta function, and cln is the root of úe
monotonically decreasing function:

c m ( n , k , r ) = c l Í G ) = 0 '

f  G )=  l - s ( c )  -D (c ,n , k )

.  
=  1 -  c r  -be ta inc(c ,k+ l ,n -È+ l )

Finally, 
"ve 

want a loss function for the discretizations,
based on the conviction meÍÌsure. In this paper we use
úe overall sum of each example classification
conviction, that is, the sum over all intervals of the
interval's conviction meÍÌsure times the number of
examples in the interval:
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5. DISCRETIZATION PROCEDURB

Given an attribute, the first step of the discretization
procedure is to order the examples in the node by the
attribute's value, and then to join together the
neighboring examples of the same class. So, at the end of
this first step, we have the best ordered discretization for
the selected attribute with uniform class clusters.

In úe subsequent steps, we join intervals togeúer, in
order to decrease the overall loss function of the
discretization. The gain of joining J adjacent intervals,
1 1a1 , 1 p2,. . . , /;,*_7 , is the relative decrease in the loss

function

. ,  s ,gain(h, j) = 
/loss(ni,k j,r) *loss(n,k,r)

j

where n =}ini and k counts the minorities' examples

in úe new cluster (at the second step kj = 0, because

we begin with uniform class clusters).

At each step we perform the cluster joining operation
with maximum gain. The discretization procedure stops
when there :Ìre no more joining operaúons úú positive
gain.

The next examples show some clusters that would be
joined togeúer at the first step of the discretization
procedure. The notation (n,k,m,r,+) means t}tat we

have two uniform clusters of the same class, of size n

and m, separated by a uniform cluster of size k of a
different class; r is the convexity parameter, and + (-)

means we would (not) join úe clusters together.

\2,1,2,2,+)

(6,2,7,2,-) (6,2,8,2,+) (6,2,23,2,+) (6,2,24,-)

(7,2,6,2,-) (7,2,7,2,+) (7,2,42,2,+) (7,2,43,2,-)

(23,3,23,2,-) (23,3,43,2,-) (23,3,44,2,+)

(11,3,13,3, - )  ( l  1 ,3,14,3,+)  (11,3,39,3,+)  (11,3,40,3, - )

(12,3,12, 3,-) (12,3,13,3,+) (L2,3,54, 3,+) (12,3,55,3,-)

In these examples we see úat it takes extreme clusters of
not only large but also balanced size, n and m, to
"absorb" úe noise or impurity in the middle cluster of
size È. A larger convexity parameter, r, implies a larger
loss at small clusters, and úerefore makes it easier for
sparse impurities to be absorbed.

6. BRANCIilNG AND MERGING

For each terminal node in úe tree, we

I. perform úe discretization procedure for each
available attribute,

2. measure the loss function of the final discretization.

3. select the minimum loss attribute, and

4. branch the node according úis attribute
discretization.

If no attribute discretization decreases the loss function
by a numerical precision threshold €)0, no branching
takes place.

A premature discretization by a parameter selected at a
given level may preclude furúer improvement of úe
classification tree by the branching process. For this
reason we establish a conviction threshold, ct, and after
each branching step we merge all adjacent intervals that
do not achieve cm< ct. To prevent an infinite loop, the
loss function value assigned to the merged interval is the
sum of the losses of the merging intervals. At the final
leaves, this merging is undone. The conviction threshold
naturally stops the branching process, so there is no need
for an external pruning procedure, like in most TDIDT
algorithms.

7. COMPUTER IMPLEMENTATION

For the numerical tests, presented in section 9, we use a
straightforward implementation of REAL. This
implementation takes about I minute to train and test úe
classification tree for each of úose problems, on a
Pentium-20OIBM-PC.

lsss =\ry* cmi
i
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REAL was implemented as a portâble code in C++, and
the final application uses a Microsoft VB-4.0 graphical
user interface. In úe straightforward implementation,
REAL spends most of the execution time computing the
function cm(n,k,r). We can greatly accelerate the
algorithm by using precomputed tables of cm(n,k,r)
values for small n, and precomputed tables of
cm(n,k,r) polynomial interpolation coefficients for
larger n. To speed up the algorithm we can also restrict
úe search forjoin operations at the discretization step to
small neighborhoods, i.e. to join only 3< J < JnÀx
clusters: Doing so will expedite úe algoriúm wiúout
any noticeable consistent degradation.

8. MARKET OPERATTON STRATEGIES

A market operation strategy is a predefined set of rules
determining an operator's acúons in úe market. The
strategy shall have a predeÍined criterion for classifying a
strategy application as failure or success [9].

As a simple example, let us define the strategy
buysell(t,d,l,u,c) :

o Ar time r buy a given assetÁ, at its price p(l) .

o Sell Á as soon as:
i .  t ' = t + d , o Í
2. p(t ' )  = p(t)  *( l+ u /  100),  or
3. p(t ' )  = p(t)*  ( l -  I  /  rcq .

o The strategy application is successful if

100*(p(r ' )  |  p(t)  - l )>c

The parameters u, l, c and d can be interpreted as úe
desired and worst accepted returns (low and upper
bound), the strategy application cost, and a time limit.
Figure I displays buysell(t,d,l,z,c) applications.

Technical Indicators

Market analysts use several tools to forecast asset prices,

including tools based on accounting records, input-
output, macro-economic analysis, etc; These are known
as fundamentalist analysis tools. Other frequently used
tools are "technical indicators". A technical indicator is

function of one or more observed market variables.

Several providers distribute day and "inüaday" data for
most of úe stock, commodities and derivative markets.
At BOVESPA, úe São Paulo Stock Exchange, available
daily data include, H(t) , L(t) ,o(t) ,c(t) , M(t) and
V(r), respectively, the asset highest, lowest, opening,
closing and mean price, and the asset transaction volume
at day t. An example of technical indicator is an asset
opening price relative to its highest price in úe previous
r days:

oHr(t) = o(t) / maxlH(t),H(t -l),...,H(t * r)l

Figure l: buysell(t,d, l,u, c) strategy
' application examples

Technical indicators are traditional and widely used
market analysis tools [4]. The familiarity of market
operators with technical indicators explains why úey feel
confident wiú decision support systems providing
logical decision rules based on úem. The rules and
attributes being used for a given classification can be

3 i 8



easily understood (and accepted or dismissed). This

confidence hanslates in a more expedite and effective

use of úe system. In fact, basing úe TDIDT system on

technical indicators was a client request.

The core of úe trading decision support system is a

TDID strategy classification procedure based on the
REAL algorithm. Let us consider bwysell(t,d,l,u,c)

strategy classification examples. In our problems úe

example at time r has as attributes úe technical indicators

values at time t - I , and its class is the strategy

application at time t success or failure based on the

information available at time t + d . The examples are

taken from non overlapping segments of historical time

series.

Objective Functions

A classification procedure, applied to a given test set of

examples, give us a classification matrix, also known as

confusion matrix, like the matrix in table l, where nl1

and n22 are the number of correctly classified successful

and failed applications of the stategy, nl2 are the

successful applications misclassified as failures, and nZl

the opposite misclassifications. A market operator

expects from úe decision support system advice to help

him detect almost all good opportunities to apply the

súategy. \Vhen advised to apply the strategy úe operator

expects it to rarely fail. So our objectives are to,

respectively, maximize and minimize úe yield and

application failure rates, ry and rf

r! = nll I (nll+ nl2)

ancl

rf = nZll (nll+n2l) '

To conciliate úese conflicting multiple objectives we

define a merit function that can be interpreted as a

conservative estimate of the cumulative gain for úe

buysell(t,d, l, r, c) strategy:

i *  
*e i t  = c*n l l -  I *n21 '

ActuaUAttributed Success Failure
Success nll nIZ
Failure n21 n./.2

9. NUMERICAL TESTS

We tested the classification procedures of úe previous
sections on buysell(t,d,l,u,c) wiú d =5 days , I =l7o ,
c = lVo and a = 3Vo , on non overlapping time series
segments of two of úe most liquid (traded) stocks at
BOVESPA: Telebras-PN (TEI-4), with aprox. 300
examples 457o successful, and Petrobras-PN (PET4),
wiú aprox. 400 examples 40Vo successful. We divided
our examples in 10 subsets. At each run the algorithm
generated a tree using the data in 9 of the subsets, the
learning-set, and tested it in úe remaining subset, the
test-set. The procedure was repeated for the algorithm's
parameters in a discrete grid:

REAL: (r, ct) e {1.0, 15,...,4.0} x {0.1, 0.15, 0.2,...,0.45} .

CaIS: (S, a) e {0.05, 0.10,..., 0.90} x {0O5, 0.10,..., 0.90}.

NewID: S e l0%o,2%o,47o,...,28Vo,3OVo|.

We also included in úe benchmark NewID, a classic
TDIDT algorithm, primarily developed for categorical
classification, but also capable ofhandling real attributes

[U. At tables 2 and 3 we show the parameters optimizing
the merit funcüon mean, wiú úe corresponding mean
values for rÍ arrd ry.

For a sensitivity analysis we show similar results in
a neighborhood of the optimal parameters in tables
4 and 5.

Alsorithm P* merì1 rf ry

REAL r = 3 5 , c t = 0 4 3.8 0.22 0.44

Cal5 S = 0 . 3 . 4 = 0 . 1 3.3 0.35 0.63
NewID Q =67o 2.9 0.25 0.45

Table.2: Optimal pzìrameters for TEL4

Alsorithm P,* merit rf ry
REAL r =2, ct  =0.3 4.3 0.24 0.39
Cal5 S = 0 4 ,  q = 0 . 2 3.8 0.23 0.35

NewID Q =87o 2.9 0.42 0.28

Table 3: Optimal parameters for PET4
Table 1: Classification (confusion) matrix

3 1 9



ct
f

0.35 ct* = 0.40 0.45

3.0
merit =35
f = 0.18
ry = 0.38

merit =35
rf =0.26
ry =0A7

merit =3.7
í =0.30
ry=051

rx=35
merit =35
rÍ = 0-t+
ry =034

merit =3.8
rÍ =0.22
ry =0.44

merit =35
rÍ =0.3t
rY = 051

4.0
merit =3.2

í =0.27

ry = 0.38

merií =35
rf = 0.2q
ry =0.41

merit =3.2
Ú =0.27
ry =0.45

Table 4: REAL - Sensitivity analysis for TEL4

For a sensitivity analysis we
neighborhood of úe optimal
and 8.

show similar results in
pÍÌrÍrmeters in tables 6,

a
7

10. MORE NUMERICAL TESTS

Vy'e also tested REAL and Cal5 using van Cutsem's
"emergency voltage conditions" dataset, where Cal5 had
the previous best published performance I5l. We
optimized ttre parameters over the same grid of úe last
section.
The generated trees are tested in two ways:

1. The standard counting of hits and misses, i.e. corect
and incorrect classifications.

:,2. Eliminating úe test examples that fall ar leaves thar
do not achieve úe targeted conviction (for REAL) or
probability-confidence levels (for CAL5), and also
eliminating the test examples wiú an attribute out-of-
range at a node where it is used in úe classification
tree, and then counting the remaining I/irs and
Misses.

Table 7: REAL - Sensitivity analysis for
van Cutsem's dataset

a
.s 0.10 a* = 0.15 0.20

0.6 hits =237.8 hits =23&3 hits = 239.2

^S* = 0.65 hits =2385 hits =240.6 hits = 239.8

0.7 hits =239.9 hits =238.8 hits =239.6

Table 8: Cd5 - Sensitivity analysis for' van Cutsem's dataset

11. CONCLUSIONS AND
FT]RTIIER RESEARCH

The users wanted a classification tool which gave them
"understandable" classifications based on already
familiar attributes. REAL provided such a tool. The
simplified conviction (or trust) measure of each
classification was greatly appreciated by the users when
taking real time decisions. REAL performed better than
any oúer deçision tree algorithm we had access to, and
proved to be a valuable decision support tool for
evaluating stock market operation stategies, based on
real-valued attributes (technical indicators).

Algorithm P* hit mrss Hit Miss
REAL (r,ct)=(|.5,0.2)241.7 8.3 230.6 4.1
Cal5 (E a)=(0.65,0.15)u.0.6 9.4 236.2 6.9

Table 6: Optimal parÍìmeters for van Cutsem's dataset

ct
r 0 .15 ct* = 0.20 0.25

1 . 0  
'

hits = 2405 hits =239.0 hits =2364

r x = 1 5 hits =240.7 hits = 241.7 hits =240.3

2.0 hits =240.1 hits = 239.7 hits = 239.8

ct
r 0.2s ct* = 0.30 0.35

1.5
merit =2.7
rf = 0'30
rl =0.24

merit =2.2

í  =0.36
ry =0.35

merií =1.8
rf = 0'40
ry =043

r* =2.0
merìt =3.0
rf = 0.35
ry =0.23

merit = 4.3
í  =024

U =0.39

merit =3.I
rf = O'36
U =045

2.5
merit =0.1
rf = 0.9+
ry =0.02

merit = 3.2
rf = 0.36
rl = 0-26

merit =34
rf = 0.26
ry =0.32

Table 5: REAL - Sensitivity analysis for pET4
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From preliminary results in some other test problems we
believe that úe advantage of REAL over CAL5 will be
greater for noisier data, but that statement requires more
extensive numerical testing. Vy'e are currently studying
úe behavior of REAL discretization procedure wiú
alternative loss functions, and also interested in
comparing it to different approaches [3].
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