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Relations between units and relations between quantities 
 

by S G Sterrett 

 

Abstract 

The proposed revision to the International System of Units contains two features that are bound 

to be of special interest to those concerned with foundational questions in philosophy of science.  

These are that the proposed system of international units ("New SI") can be defined (i) without 

drawing a distinction between base units and derived units, and (ii) without restricting (or, even, 

specifying) the means by which the value of the quantities associated with the units are to be 

established.  In this paper, I address the question of the role of base units in light of the New SI:  

Do the "base units" of the SI play any essential role anymore, if they are neither at the bottom of a 

hierarchy of definitions themselves, nor the only units that figure in the statements fixing the 

numerical values of the "defining constants" ?   The answer I develop and present (a qualified yes 

and no) also shows why it is important to retain the distinction between dimensions and 

quantities.  I argue for an appreciation of the role of dimensions in understanding issues related to 

systems of units.   

 

 

Keywords:  Coherent system of units, Dimensional Homogeneity, Dimensions, Quantities, 

International System of Units, Units 

 
 

[Note:  There are four tables to be inserted and published with this paper.  These are [. . 
.] appended at the end of this paper.  They are numbered in order of appearance in the text, 
as requested in the JGPS guidelines for authors. ]   
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1.  Introduction  

 

1.1 Background 

 

It is expected that sometime soon, perhaps as early as 2018, we will finally have an international 

system of units in place in which all the units of the SI (Systeme International d'Unites) are 

defined in terms of "well-recognized fundamental constants of nature." [BIPM (2014a), BIPM 

(2011b), Quinn (2016) this issue, Borde (2016) this issue, Mills et al. (2011) ]  The specific 

change most discussed so far has been that the definition of the unit for the quantity mass, i.e., 

the kilogram, is to change, and that it is to change in such a way that it will no longer be defined in 

terms of a physical artefact.  [e.g., Riordan 2015, Quinn 2016 this issue]   

 

Changing the definition of the kilogram in this way also changes the network of interrelations 

amongst the definitions of the base SI units.  After the proposed change, the definition of the 

kilogram, which is currently not dependent on the definition of any of the other base SI units, 

becomes dependent on, or interrelated with, the definitions for some of the other SI units.   The 

kilogram is not the only unit whose definition will be changed by the proposed change to the SI, 

though:  four of the base units of the SI will be redefined in terms of "constants of nature."   These 

changes in how the base units are defined have been discussed, too; many such discussions  

focus on how units in the SI are related to the "constants of nature" in terms of which they are 

defined.  I will be more interested here in how the proposed changes to the definitions of SI units 

impact the relations between units of the SI.   

 

1.2  Definitions of Units in the SI  

 

There are other differences between the proposed SI and the current SI that are even more 

fundamental, in that they have to do with the means by which the units are defined, i.e., the way 

in which the definitions are formulated (as is also mentioned in the papers by Quinn and Borde  

introducing this special issue).  For completeness, I provide in this paper three tables showing the 

definitions of units in the current SI (Table 1) and in the proposed "New SI" (Tables 2 and 3), for 

reference in the discussion below.   

 

The change in how the units are defined in the New SI touches on the very notion of the role of 

the base units in the SI.  For, after the proposed change, there will be two alternative formulations 

of the definition of SI units, as follows: 
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1.2.1 Definition of the New SI without Base Units  

 

In the first formulation of the definition of the proposed system of SI units (Table 3), in an 

unprecedented move, no distinction is drawn between base units and derived units among all the 

SI units mentioned in the formulation:  the "system of SI units" is defined in terms of a collection of 

SI units that includes not only the seven base units of the current SI (length, mass, time, electric 

current, thermodynamic temperature, amount of substance, and luminous intensity), but also the 

hertz, joule, coulomb, lumen and watt.   The system of units is defined as a whole, in terms of 

seven constants of nature to be referred to as "the defining constants."   The BIPM document 

describing the proposed change to the SI system is quite clear about there being no distinction 

between base and derived units in this formulation; as pointed out in the Draft 9th SI Brochure 

[BIPM 2013]:   

 

"The use of seven defining constants is the simplest and most fundamental way to define the 

SI . . . In this way no distinction is made between base units and derived units; all units 

[mentioned in the definition] are simply described as SI units.  This also effectively decouples 

the definition and practical realization of the units."        

  

To explain what "practical realization of the units" means, I quote from the relevant BIPM 

document prepared to orient readers to the fundamental change associated with the realization of 

units in the "New SI": 

 

"In general, the term “to realize a unit” is interpreted to mean the establishment of the value 

and associated uncertainty of a quantity of the same kind as the unit that is consistent with 

the definition of the unit. It is important to recognize that any method consistent with the laws 

of physics and the SI base unit definitions can be used to realize any SI unit, base or derived.  

[BIPM (n.d.) CCE-09-05]    

 

Although the BIPM indicates it will provide specific methods for realizing the units of the New SI, 

the role of the methods for realizing units provided by the BIPM in the New SI is different than in 

previous SI systems:  ". . . the list of methods given is not meant to be an exhaustive list of all 

possibilities, but rather a list of those methods that are easiest to implement and/or that provide 

the smallest uncertainties. "   [BIPM (n.d.) CCE-09-05]   The result of this "decoupling" of the 

definition of the units from the practical realization of the units is thus that "While the definitions 

may remain unchanged over a long period of time, the practical realizations can be established 
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by many different experiments, including totally new experiments not yet devised." [BIPM 2013, p. 

9-10]   

 

Thus the proposed system of international units ("New SI") can be defined (i) without drawing a 

distinction between base units and derived units, and (ii) without restricting (or, even, specifying)  

the means by which the value of the quantity associated with the unit is to be established.  Both 

these are striking changes; many in philosophy of science will find it surprising that it is possible 

to specify a system of units without distinguishing base units from derived ones, and without 

specifying how the unit is to be established.  (Or, at least, they will find it thought-provoking to 

consider how this might be done.)  In order to provide a definition of the New SI in a more familiar 

formulation, an alternative definition has also been provided.  The alternative (second) formulation 

does specify base units.  

 

1.2.2  Definition of the New SI with Base Units  

 

In the second formulation of the definition of the "New SI":  

 

"[The SI is] defined by statements that explicitly define seven individual base units: the 

second, metre, kilogram, ampere, kelvin, mole, and candela. These correspond to the seven 

base quantities time, length, mass, electric current, thermodynamic temperature, amount of 

substance, and luminous intensity. All other units are then obtained as products of powers of 

the seven base units, which involve no numerical factors; these are called coherent derived 

units."   [http://www.bipm.org/en/measurement-units/new-si/ ]   

 

The definitions of the seven base units in this formulation of the definition of the proposed revision 

to the SI, or "New SI", are shown in Table 2.  On this second, alternative, definition of the New SI, 

each of these seven definitions of an individual base unit is called an "explicit-constant 

formulation."  Unlike in the first formulation of the definition of the "new SI" (shown in Table 3), 

each of the "explicit constant" definitions of a base SI unit identifies a quantity (e.g., time, length, 

mass, etc.) with which the unit is uniquely associated (Table 2).  [BIPM (2011b)]   For example, 

the metre is the unit of length; the second is the unit of time; the ampere is the unit of electric 

current, and so on for the seven base units and the associated seven quantities.  Each of the 

units is then defined in terms of setting its magnitude "by fixing the numerical value of" a certain 

constant of nature.   
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While it is not unprecedented to define a unit by fixing the value of a constant of nature for a 

particular unit (e.g., metre) it is unprecedented to do so for the entire system of units.  Those 

unfamiliar with the background leading up to the decision to take this approach who wish further 

explanation may find it in the papers in this special issue devoted to presenting the New SI. 

(Quinn 2016, Borde 2016)  To further aid the reader here and for reference at later points in the 

paper, I provide, in Table 4,  a selection from the BIPM's answers to FAQ's (Frequently Asked 

Questions) that I consider especially relevant to the logic of defining units via setting the values of 

constants of nature.   

 

Even though each of the seven unit definitions in the second, "explicit-constant" formulation of the 

New SI contains just one of the seven "defining constants",  it is not the case that each base unit 

of the SI is considered uniquely associated with one of the "defining constants."   This is clear to 

see, by inspecting the definitions in Table 2:  it can easily be seen that most of the definitions of a 

base unit involve other units, so that often several SI units are jointly involved in using a  defining 

constant to define a unit.  Thus, on either definition of the proposed SI system of units, or New SI, 

the relation between the individual units being defined and the seven "defining constants" is a 

matter of a collection of SI units being jointly defined by a collection of seven constants 

considered invariants of nature.   

 

In the sections that follow, I discuss aspects of the two fundamental changes to the proposed 

"New SI" pointed out as (i) and (ii) above that relate to philosophy of science, especially to the 

topic of units, quantities, and relations between them.  I then address the question of whether the 

distinction between base units and derived units is actually still needed after the proposed change 

to the SI is adopted as an international standard.  My answer to this question also explains why 

we need to retain another distinction in that has been questioned in metrology and ignored in 

much of philosophy of science:  the distinction between quantities and dimensions (in the sense 

of kinds of quantities).   I will argue that there is actually a central role for dimensions in the 

formulation of the SI system, even though they do not appear prominently in the final formulation.  

 

2.  What happened to the "base units"? 

 

Consider the form of the first definition of the New SI system of units,  shown in Table 3 of this 

paper (and provided by BIPM to the public in "Draft 9th SI Brochure" [BIPM 2013]).  There are no 

base units designated.  However,  if we chose, we could, hypothetically, identify seven quantities 

as especially selected to be the units defined by the seven "defining constants" of the SI. For 



Sterrett SI Special Issue Revise & Resubmit Version  January 17, 2016                    7	
  

example, Hz and m/s are SI units1 defined by the "defining constant" associated with the 

hyperfine splitting of Cs, and m/s is an SI unit defined by the speed of light in vacuum. (BIPM 

2013, p. 12/29).  However, neither of these is a "base" SI unit, in either the current or proposed SI 

systems.    

 

There are still units designated as the "base units" in the "new SI", though:  in terms of proper 

names, they are the same seven base units of the current SI:  metre, kilogram, second, ampere, 

kelvin, mole and candela.  In the first definition of the new SI, they are distinguished in a 

somewhat indirect, or implicit, way, in that the SI units hertz, joule, coulomb, lumen and watt are 

related to them (Table 3).  Whether using the "explicit-constant" formulation for the seven base 

units (Table 2), or the more implicit "defining constant" formulation (Table 3), the base units will 

be defined in terms of the exact numerical values that fundamental constants take on when they 

are expressed in certain of the (newly defined) SI units.   

 

Thus, what is at the base of either of the definitions of the New SI system of units are seven 

selected fundamental constants chosen in part for their stability and, thus, their capability to serve 

as invariant constants of nature.  Their numerical values will have zero uncertainty.  The reason 

that the numerical values of the fundamental constants will be exact in the new SI, rather than 

being the result of measurements containing some uncertainty, is that, in the "new SI", the 

uncertainty of the constants of nature chosen to define the SI units is zero as a consequence of 

fixing their numerical values with respect to the SI units.  That is, when expressed in the specified 

new SI units, their numerical value is a certain fixed number.  The setting of the numerical value 

of these constants when expressed in certain SI units effectively defines the SI units.  The 

concisely worded FAQs on the subject developed by the BIPM in [ BIPM 2011a] provide more 

explanation; some selected excerpts are provided in Table 4 of this paper.   

 

This approach involves an unprecedented change in the general organization of units:  in terms of 

logical priority, the setting of the numerical value of the fundamental constants is logically prior to 

the definition of the new, redefined SI units, since the newly defined SI units are defined in terms 

of them. The new SI units and the previous SI units will coincide in value at the moment the 

change is made, but there is no expectation that their values according to the current and 

proposed definitions will continue to coincide after the change, nor that they would have coincided 

prior to the change.  Another subtle detail, which is bound to require some adjustment in 

pedagogy and in the formulation of investigations about measurement in philosophy of science is 
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  The quantity velocity is measured in m/s, which is identified as one of the SI derived units without a 
special name.  (Other derived SI units without a special name are m3 ,  m2 , and  m/s2 )     
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that, in the definitions of the new SI, the SI units in which the fundamental constants are 

expressed when their numerical values are fixed are not limited to the seven base units of the 

current SI with which so many are so familiar (although it is still the case that one can express 

any SI unit in terms of the seven base SI units alone).   

 

What role do the "base units" of the SI play, then, if they are neither at the base of a hierarchy of 

definitions, nor the only units that figure in the statements fixing the numerical values of the 

"defining constants" that are at the base of the definitions?   

 

 

3.   Base units in the New SI International System of Units 

 

As explained above, the New SI is striking in that it is the first to propose a definition of the SI 

system of units that is does not distinguish between base SI units and derived SI units.  It does, 

however, as noted above, include an (alternative) definition of the New SI system of units in terms 

of base units, too, and makes the claim that the two formulations are equivalent.  This raises the 

question of whether the notion of base units is required. [Stock & Witt 2006, p. 586]   One thing is 

not in question:  which seven units are selected as the base units is not uniquely determined; 

there is an element of arbitrariness involved.  [Sterrett 2009, p. 813; Mohr 2008, p. 132]  

However, the point about arbitrariness is distinct from the question of whether the notion of base 

units can be dispensed with.  Mohr has raised the question of the need for the distinction between 

base units and derived units at all, in support of a proposal that one of the definitions of the 

proposed SI system not make the distinction. [Mohr 2008, p. 133]   

 

We need to ask, then:  if the distinction between base and derived SI units is not essential to 

providing a definition of the SI system, what are the base units used for, other than organizing the 

definition of the SI?  One answer is that, since the inception of the SI, it seems, the concept of a 

"coherent system of units" has been characterized in terms of base units.  When Burdun (1960) 

explicitly listed the provision of a "coherent system of units" as a requirement of a system of units, 

he clarified what he meant, and did so in terms of "basic units" and "derived units":   "In selecting 

the basic units of the system it is necessary: 1) to provide a coherent system of units, i.e., to 

select basic units which would produce derived units by multiplication or division without 

introducing numerical coefficients; . . ."  [Burdun, p. 913-914]  Thus, if base units were not 

specified, this account of the coherence of the SI system of units could not be applied to produce 

a coherent system of units, or to verify that a certain system of units was coherent.   
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Yet one of the points celebrated about the new SI is that the definition of the SI can now be made 

without mentioning base units or derived units at all.  [Borde 2005, Mohr 2008]  The way I see to 

make sense of this is as follows:  the "more fundamental" definition of the SI, the one made in 

terms of the seven "defining constants" without mentioning base units (Table 3), is one way to 

define the SI, and that definition can be used to identify specific quantities for the SI units (some 

base, some derived) that are mentioned in that definition.  This is just what the definitions 

referring to artefacts such as the standard meter and the standard kilogram did for the base SI 

units (as Mohr also points out in [Mohr 2008, p. 133] ) but this definition does so without 

mentioning any artefacts.  This more fundamental definition also ties all the SI units that it does 

mention to the units that happen to be the units previously identified as SI base units, thus 

allowing the question of which units are coherent SI units to be answered in the same way as 

before.   Thus the question of coherence of units of the "new SI" is answered, without having to 

be addressed anew.   

 

It seems to me the new SI raises, in turn, however, a foundational question about coherence of a 

system of units.  We have seen that there is a practical value in having the distinction between 

base units and derived units in place when it comes to specifying which units of the SI are 

coherent SI units: doing so makes it fairly simple to define a coherent SI unit, and, accordingly, 

simplifies confirming that a unit is a coherent SI unit.  Does coherence of a system of units require 

the distinction, though?  Raising this question leads in turn to the question as to what coherence 

of a system of units consists in, and why it is considered essential to a system of units.   

 

 

4.  Coherence of a System of Units 

 

In a previous article I used a different characterization of the coherence of a system of units than 

Burdun gives, and one I think not uncommon, i.e.,  that "[a] system of units is coherent if the 

relations between the units used for the quantities is the same as the relation between the 

quantities in the fundamental equations of the science"  [Sterrett 2009, p. 806];  the title of this 

paper comes from that characterization.  In laying out the topic there, I found it important to 

discuss not only units and quantities, but also 'dimensions' (sometimes called "kinds of 

quantities.")  Although in that article I referred only to the SI system and associated documents in 

place at that time (the current SI), many of the major points are still relevant, since the New SI 

likewise uses dimensions in its formulation of the distinction between base units and derived units 

[Draft 9th SI Brochure, section 1.3].    
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The usefulness and necessity of the concept of dimension has been questioned [e.g., Emerson  

2005 ].  However, I will argue, the points that have been raised as reasons for questioning the 

need for the concept of dimension are mistaken, largely because they do not take into 

consideration the significance of the distinction between quantities and dimensions.  In 

addressing the topic of whether the distinction between base units and derived units is needed, 

we shall see how important and useful the concept of dimension is, once we get clear about the 

distinction between 'quantity' and 'dimension' (a distinction which is made in both the current SI 

and the New SI).   

 

More recently, another relevant article about the coherence of a system of units has appeared [de 

Courtenay 2015].   The two articles (my "Similarity and Dimensional Analysis" [Sterrett 2009] and 

de Courtenay's "The Double Interpretation of the Equations of Physics and the Quest for 

Common Meanings" [de Courtenay 2015] )  are concerned with different aspects of the topic, but 

are complementary.  Put briefly, whereas I was concerned with drawing out the consequences of 

what is built into a system of units that meets the constraint of being a coherent system of units, 

de Courtenay's article explains how that constraint is actually achieved.  She also discusses why 

the constraint has been so important to modern science, what it conceals, and the situation we 

are left in even after it has been achieved.  In the discussion below I thus refer to some points 

made by De Courtenay in "The Double Interpretation of the Equations of Physics and the Quest 

for Common Meanings", [de Courtenay 2015]  as well as those I have made in my "Similarity and 

Dimensional Analysis."  [Sterrett 2009]   

 

4.1  Units, Quantities and Dimensions 

 

I will use the characterization that a system of units is coherent if the relations between the units 

used for the quantities are the same as the relations between the quantities in the fundamental 

equations of the science.  [Sterrett 2009, p. 806]  It follows from this that if one is concerned with 

making sure that a certain system of units being formulated is to be coherent, then, they would 

need to know the relations between quantities prior to formulating a system of units.  This would 

require being able to write the fundamental equations of science in a way that is independent of a 

system of units.   One might well ask if this is indeed possible?   

 

The answer is that, yes, it is possible to write the fundamental equations of science in a way that 

is independent of a system of units, if the fundamental equations are regarded as quantity 

equations.  In [Sterrett 2009], I discussed quantity equations, contrasting Lodge's recognition of 

the fundamental equations of mechanics and physics as quantity equations with James Clerk  
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Maxwell's view of equations.  On Maxwell's view of equations, a physical quantity appearing in a 

physical equation must be measureable, which means that the value of a quantity consists of two 

parts:  a numerical part, and a unit with which all quantities of that kind can be compared.  As I 

noted there:   

 

"Maxwell explicitly discussed this conception of a quantity, while recognizing ambiguities in 

the notation of physical quantities as used in equations in scientific practice.  He noted that 

symbols used as variables in equations of physics lent themselves to two different 

interpretations:  (i) as denoting the lines, masses, times, and so on themselves, and (ii) 'as 

denoting only the numerical value of the corresponding quantity, the concrete unit to which it 

is referred being tacitly understood.'  [Maxwell 1890, p. 241] 

     Each of these interpretations presents a problem, though . . .The first interpretation doesn't 

really apply during the process of performing the numerical calculations.  . . . The second 

interpretation doesn't satisfy the requirement that 'every term [of an equation of physics] has 

to be interpreted in a physical sense.'  Maxwell's way of resolving the ambiguity he identified 

was to take a sort of hybrid approach.  . . . [Sterrett 2009, p. 804] " 

 

Alfred Lodge's approach aimed to avoid the ambiguity that Maxwell identified (what de Courtenay 

[2015] calls "the double interpretation of the equations of physics") by regarding the equations of 

mechanics and physics as equations that "express relations among quantities" [Lodge 1888, pp. 

281 - 283] , i.e., as quantity equations.   This is the approach I took in [Sterrett 2009], in which I 

identified the feature of coherence of a system of units as the key to understanding why it is 

possible to use dimensionless parameters to establish similarity of physically similar systems.  

For my purposes in that paper, I, too, could avoid the ambiguity in the equations of physics that 

Maxwell identified, as Lodge did, by regarding the fundamental equations of mechanics and 

physics as quantity equations.  Lodge pointed out that, understood as quantity equations, the 

fundamental equations of a science 'are independent of the mode of measurement of such 

quantities; much as one may say that two lengths are equal without inquiring whether they are 

going to be measured in feet or metres; and, indeed, even though one may be measured in feet 

and the other in metres."  [A. Lodge 1888, p. 281 - 283]    

 

Guggenheim, a student of Lodge's, wrote a piece intended as a reference for others on the topic 

called "Units and Dimensions." [Guggenheim 1942]  Guggenheim there states his view that  "we 

are entitled to multiply together any two entities, provided our definition of multiplication is self-

consistent and obeys the associative and distributive laws."   He argues that it is "perfectly 

legitimate to multiply together any two physical entities, such as a length and a force.  If the 



Sterrett SI Special Issue Revise & Resubmit Version  January 17, 2016                    12	
  

reader naively asks:  'What, then, is the product of a foot and a pound? ' I reply a 'foot-pound.' " 

[Guggenheim 1942]   That view is now fairly well accepted.  [de Boer 1994/5;  VIM  3rd edition 

2012 ]  The VIM (Vocabulary of International Metrology) includes the term "quantity equation", 

giving the meaning as "mathematical relation between quantities in a given system of quantities, 

independent of measurement units." (VIM 1.22  at http://jcgm.bipm.org/vim/en/1.22.html )  de 

Boer explains the significance of a relation between quantities that is independent of 

measurement units, following up on Maxwell's arguments:   

 

"Expressing the results of physics in terms of physical quantities has the advantage of giving 

a representation which does not depend on the choice of unit.  When a particular length L is 

expressed in two different units [L]' and [L]'' by the two expressions  L = {L}'x[L]'  and L =  

{L}''x[L]'' . . .  the physical quantity L itself is an invariant [as Maxwell argued.]  This is an 

important argument and an essential reason in favour of using quantities and not numerical 

values in the theoretical description of physical phenomena; Using physical quantities gives a 

representation which is invariant with respect to the choice of units."  [de Boer 1995, p. 406] 

 

This approach was used in discussions about the transition from CGS units to the Giorgi/SI units.  

Cornelius remarked in 1964 that using quantity equations led to a dispute as to whether the 

difference between the two systems lay in different units or different quantities.  The answer, of 

course, was that the 'radical' change was a change in the form of the equations -- which led to a 

change in the coherence of units.  [Cornelius et al., 1964, p. 1446]  The terms "quantity calculus" 

and "quantity equation" are still used.  Very recently, in discussing the possible roles the 

international prototype of the kilogram might still play after the proposed revisions to the SI are 

adopted, Davis likewise found it useful to do so [Davis 2011] , citing de Boer's "On the History of 

the Quantity Calculus and the International System"  [de Boer 1995 ]   

 

De Courtenay, in contrast, faces the ambiguity head-on, rather than avoiding it.  She shows 

Maxwell's view on equations to be something that is "now taken for granted by every student of 

physics when solving a problem and sliding from the algebraical solution to its numerical 

application." [de Courtenay 2015, p. 145-146]   Maxwell's view of the equations of physics serves 

as the starting point of her inquiry into the double interpretation of equations; she proceeds to 

discuss how terminology has since evolved, and explains why in fact it is now appropriate to 

regard the "double interpretation" view as cogent: 

 

"The smooth passage between the two interpretations was achieved by the construction of a 

coherent system of units which ensured that the equations had exactly the same expression 
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under both interpretations.  The coherent system of units, which was to be disseminated 

worldwide by the metrological international organizations, reconciled the two formerly 

conflicting points of view within a framework that warranted, at last, the double interpretation 

of the equations of physics propounded by Maxwell . . . [de Courtenay 2015, p. 146] 

 

The process involved in establishing a coherent system of units that proceeds starting from 

relations that are invariant under a change of units is laid out in de Courtenay 2015 [pp 146 -147].  

These are "accepted physical relationships that can be stated in relations of proportions", and 

choices at this initial stage "determine the structure of the system."  [p. 146]  de Courtenay's 

account of what goes into producing a coherent system of units provides valuable background for 

a better understanding of the point in my previous paper.   I had emphasized that coherence of a 

system of units is relative to the quantity equations one chooses to use, but I did so based upon 

looking at an historical episode, rather than providing a logical analysis of the process:  

 

"At one time, the CGS system provided a coherent set of units for Newtonian mechanics, yet 

it was not clear what to say at that time about a coherent set of units for electromagnetism.  

There was a CGS system for Newtonian mechanics, a CGS-M system of units for magnetism, 

and a CGS-E system of units for electrical phenomena.  It was shown in 1901 by Giorgi that 

the CGS system could be amended in alternate ways to provide a coherent set of units for the 

quantities in the equations describing electromagnetic phenomena, so that a choice had to be 

made.  The decision made by the committees governing the SI system was to include a base 

unit for the physical quantity of electrical current; the SI system now provides a coherent set 

of units with respect to Maxwell's equations as well as for Newton's.  When used for 

electromagnetism, the SI system (which follows Giorgi) and the older CGS systems are really 

different systems of units; for electromagnetic phenomena, unlike for mechanics, switching 

from one of these systems to the other involves more than a simple change of units, for there 

will be some equations whose form differs depending on which system one is using. Thus, 

some of the units for the older CGS systems are referred to as non-SI units. " [Sterrett 2009, 

p. 809] 

 

The question being investigated there was:  what underlies inferences based upon dimensionless 

parameters, or more precisely, based upon the identity of the values of dimensionless parameters 

between two different systems?  The answer was that, once a coherent system of units is in 

place, the fact that one is using a coherent system of units is relied upon (whether or not it is 

explicitly recognized), when using the numerical values that dimensionless parameters take on to 

establish similarity of physical systems. [Sterrett 2009; Sterrett 2016a, 2016b]  That a ratio of 
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quantities is dimensionless is significant, because it says something about the relations between 

the quantities in it.  The underlying logic involves dimensions as well as quantities and units, and 

further examination will reveal a role for dimensions in drawing a distinction between base units 

and derived units.  

 

Dimensions are to be distinguished from units and from quantities, although they are frequently 

confused with both of them, in print as well as in discussion, sometimes even in textbooks.  

Dimensions have to do with a constraint on equations, a constraint which we know the equations 

of physics, if we've gotten them right, must be subject to.  Dimensions can be used to formulate a 

necessary and sufficient criterion for an equation to be homogeneous -- even an equation 

containing undetermined quantities.  The requirement that an equation be homogeneous is like 

the requirement that a sentence be grammatically correct;  just as a sentence is not a proper 

sentence unless it is grammatically correct, so an equation is not a physical equation unless it is 

dimensionally homogeneous.  Now, the question often arises as to whether one might just as well 

appeal to units for this purpose, and hence, whether it is possible to regard dimensions as 

superfluous (i.e., whether it is possible to hold that dimensions can be dispensed with, or, 

alternatively, to hold that dimensions just are units).  Although this is often done, we shall see that 

things are not so easy, and that a lack of clarity about both units and dimensions is very 

lamentable and may have contributed to an ill-advised disregard for an appreciation of the role of  

dimensions.   

 

Dimensions appear in the new SI (SI Brochure 9th edition, draft) just as they do in the current SI 

(SI Brochure 8th edition, 2014 update); they are referred to as "dimensions of quantities."  Each 

SI base unit has a unique dimension associated with it; the dimensions of other quantities are 

constructed from products of powers of these dimensions.  The SI brochure indicates as a 

rationale for providing dimensions only that  "By convention physical quantities are organised in a 

system of dimensions."   [BIPM 2013 section 1.2, p.3] This does not help much in understanding 

what dimensions are, nor in determining whether the fact that each base unit is associated with a 

unique dimension means that defining some units as base units is essential in the SI system.  In 

order to understand what dimensions are, we go back to historical roots of the concept.  I find 

Fourier's comments on dimensions clearer and more reliable than Maxwell's.  And, since Maxwell 

credits Fourier as the first to state the theory of the dimensions of physical quantities, I take it that 

Maxwell means to be endorsing the points about dimension found in Fourier's Analytical Theory 

of Heat.  How Fourier speaks about dimensions, and what he says about them, is helpful in 

clarifying the distinctions between dimensions, quantities, and units, and will lead us to the topic 

of base units.  
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Fourier speaks in terms of exponents of dimension, and he speaks of the dimension of (what we 

would call) a variable in the equation with respect to a unit, i.e., "the dimension of x with respect 

to the unit of length."   For instance, a number representing a surface has dimension 2 [with 

respect to the unit of length], and one representing a solid has dimension 3 [with respect to the 

unit of length].  His discussion focuses on equations; an equation expresses a relation between 

magnitudes.  He notes two things:  (i) the terms of an equation can not be compared unless they 

have the same exponent of dimension; and (ii) "every undetermined magnitude or constant has 

one dimension proper to itself." (Fourier 1878:  Section 160; p. 129)  The idea in (ii) is that one 

can deduce the dimensions of an undetermined magnitude occurring in an equation from these 

two principles.  That is, the equation expresses how the magnitudes and constants occurring in it 

are related to each other; and the dimensions of each magnitude or constant indicate how each of 

them is related to each of the units (for each "kind of unit").  Then, the requirement of 

homogeneity puts a collective constraint on the dimensions of the magnitudes and constants that 

occur in the equation.   

 

Fourier identifies three units as being relevant in his analysis of equations in the theory of heat: 

length, duration, and temperature; these are independent of each other.  (That they are 

independent on Fourier's account is clear from a table he presents in which he shows that the 

dimension of the magnitude he calls x with respect to length is 1, with respect to duration is 0, 

and with respect to temperature is 0.  If we express this by saying that the dimension of l (length) 

is 1,0,0, we can express the situation with the others by saying that the dimension of t (duration) 

is 0,1,0; and that of v (temperature) is 0,0,1) Thus this collective constraint on the dimensions of 

the magnitudes and constants that occur in an equation in the theory of heat is actually the 

conjunction of three separate constraints on the equation:  the dimension of every term of the 

equation with respect to the unit of length must be equal,  and the dimension of every term of the 

equation with respect to unit of duration must be equal, and the dimension of every term of the 

equation with respect to the unit of temperature must be equal.     

 

Now, in saying that (on Fourier's account) the dimensions of a certain magnitude or constant 

indicate how that magnitude or constant is related to each of the units he identifies, I do not mean 

that in order to carry out the dimensional analysis, one must refer to, or assume, any particular 

unit or system of units.   Fourier's starting point is an equation relating magnitudes and constants, 

and, as he repeatedly emphasizes, such an equation is the same no matter what units one is 

using.  The kind of equation he is talking about is in fact invariant with respect to changes of units, 

but the kind of changes he means are only changes that are a matter of size of the unit.  Fourier 
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works out an example to illustrate that, although individual magnitudes in the equation will change 

to accommodate a change in (the size of) units, they will change in unison in such a way that the 

equation itself holds without modification.  (Fourier 1878; p. 128 - 130)   Thus the constraint of 

dimensional homogeneity on the equation involves reference to the existence of some units, but 

not any particular units, and the constraint itself is put in terms of exponents that refer to units 

very generally, i.e., as "unit of length", "unit of duration", and "unit of temperature."  

 

To get clear on the respective roles of units and dimensions:  on Fourier's account, the notion of 

dimension draws on the rather minimal assumption of the existence of a system of units in which 

the magnitudes and constants in the equation can be measured (or, perhaps just the possibility of 

the existence of one), but not on the existence of any particular choice of units.   What features of 

a system of units is he relying on, though?  As mentioned above, the three units Fourier uses in 

analyzing his equation (one unit each for length, duration, and temperature) are independent of 

each other.  Does his analysis assume that any systems of units one might use has the feature 

that there is a set of independent units, too?   What role do dimensions have in his reasoning? 

 

As I'll show, in Fourier's analysis (as in the SI brochures for both the current SI and the New SI ), 

dimensions are not the same thing as units.  We can see that there is an intimate relation 

between them, though, in spite of the fact that they are not the same thing, by reflecting upon 

Fourier's analysis of (dimensional) homogeneity of equations.  Recall that Fourier speaks of the 

dimension of a magnitude with respect to a unit of a certain quantity for a particular magnitude.  

Thus, dimensions cannot be the same thing as units, because dimensions stay the same 

throughout many changes in size of units.  For example, in Fourier's analysis, as he exhibits in 

the form of a table, the dimension of the quantity "surface conducibility h " with respect to length is 

-2  [Fourier 1878, section 161;  p. 130], and the exponent of the dimension will stay the same for 

any size of unit for length one chooses.  The exponent of dimension of a given magnitude with 

respect to the unit of length thus implicitly assumes the possibility of a unit for length and 

indicates how each of the magnitudes involved in an equation is related to the unit for length.   

 

Yet, in general, it is not a requirement of a system of units that it contain a unit for length, nor for 

any particular quantity.  Fourier's analysis is thus not an analysis of the most general case, for it 

assumes a system of units with some special features, i.e., that the system contains units for the 

magnitudes of length, duration, and temperature. [He mentioned that a total of five were needed 

for physics.]  Perhaps that assumption was not inappropriate for his purposes.  However, we are 

interested here in a  more general question.  Fourier's formulation is very useful in that it lends 

itself to generalization: he spoke of the exponents of the dimensions of the unit for length, for 
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duration, and for temperature.  This way of speaking does allow us to generalize away from a 

specific set of units, by talking about "unit for length", "unit for duration" and "unit for temperature."  

What are the things that we wish to generalize over (length, duration, temperature) called then, if 

not units?  They might be called kinds of quantities or magnitudes, but they are distinguished 

among other quantities in that they are selected as belonging to a small group of kinds of 

quantities or magnitudes that are of some special relevance to the kind of equation being 

analyzed.  We already saw that for Fourier, they are independent of each other.   

 

As Fourier lays out his analysis of the equations of the theory of heat in terms of the exponents of 

the dimension of each of three selected magnitudes, the formalization he uses provides a 

canonical format for associating exponents of dimensions with each magnitude or constant that 

might occur in an equation in the theory of heat.  Using the term dimension to generalize, we 

would then say that Fourier used the three dimensions for length, duration and temperature in his 

analysis, and assumed that units for each of the three quantities of length, duration and 

temperature could be identified, although he did not refer to any specific system of units.  Such a 

formulation permits generalizing from those three specific dimensions.   We might put it this way:  

the role that the dimensions for units of length, duration, and temperature have is to provide a 

logical tool for implementing the grammatical constraint of dimensional homogeneity on the 

equation, independently of reference to a system of units.  A dimensional equation consists of 

sums of products of dimensions with exponents; it is independent of the choice of units one uses, 

and so is invariant with respect to changes in (sizes of) units.   It is very easy to blur things here 

and conflate dimensions with units or quantities.  Many have identified dimensions with either 

units or quantities, as a matter of convenience.  It may be there are some contexts in which that 

does no harm.  However, I will argue for the importance of distinguishing dimension from either 

units or quantities in foundational or methodological investigations.  

 

Since the dimensions of a quantity do not always determine which quantity it is, dimensions are 

not quantities.  Lodge made a point of this, too, noting that work and moment of force are not the 

same quantity, but they have the same dimensions of quantity.  The point bears emphasis:  there 

are quantities we consider distinct which, when subjected to the kind of analysis Fourier 

described, yield the same exponents of dimension.  This is not a reductio of the notion of 

dimension, however, as Emerson's comments appear to imply.  [Emerson 2005]  Rather, these 

examples merely illustrate the basic fact that dimensions are not the same thing as quantities; 

they show nothing regarding the uselessness of dimensions.  Dimensions have an essential role 

to play in formulating the constraint of dimensional homogeneity on equations.  For this purpose, 

a few quantities determined to be independent are designated as base dimensions.  The set of 
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independent base dimensions selected for the analysis then provides a canonical format for 

expressing the exponent of dimensions for any quantity, just as a set of selected vectors provides 

a canonical format for expressing every vector, or factorization by prime numbers provides a 

canonical format for expressing every positive integer.  If by analogy with base (or basis) vectors,  

we call this set of independent dimensions the base dimensions, it is then straightforward to write 

an equation for a given dimension that expresses the constraint that all the terms in the equation 

have the same exponent of (that particular) dimension.  We can write such an equation for each 

of the dimensions.  A dimension is thus associated with a quantity:  for each dimension,  a certain 

quantity is selected to serve the role that length, duration, and temperature (which Fourier called 

a "kind of unit") served in Fourier's analysis when he spoke of the exponents of dimensions of 

magnitudes and constants with respect to length, duration, and temperature.  It is true that, as 

Fourier puts it, each magnitude or constant in an equation [of the theory of heat] has  "one 

dimension proper to itself", a fact that he regards as derived from "primary notions" about 

quantity.  (Fourier 1878; p. 128)  But, as we've seen, this does not mean that there is a single 

quantity associated with each dimension; that point is entirely consistent with the existence of two 

different quantities that have the same dimensions.  [Sterrett 2009; Lodge 1888].   As I have 

written on an earlier occasion:  

 

"One of the principles used for the [current] SI System is that the dimension of every 

quantity, whether base or derived, is unique; that is, there is only one such dimension of 

canonical form associated with each quantity Q.  Since the number of derived quantities is 

unlimited, and the number of dimensions of canonical form is unlimited [as well], one may 

ask whether there is a unique quantity associated with each dimension of canonical form.  

The answer is no:  more than one quantity may have a given dimension associated with it, 

just as more than one quantity may have the same units (heat capacity and entropy are 

considered physically distinct quantities, though they are both measured in joule/Kelvin; 

electric current and magnetomotive force are both measured in amperes. ) 

   Thus, one cannot infer from a dimension, the quantity with which that dimension is 

associated, for the quantity is not uniquely determined."  [Sterrett 2009; p. 813]   

 

To summarize: the concept of dimension is important to preserve, because of the role it has in the 

criterion for the homogeneity of equations in physics.  Whereas, the concept of quantity is 

important because of the role that quantities have in the quantity equations expressing the 

fundamental laws of science.   
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4.2  Quantity Equations and Dimensional Equations 

 

On Lodge's approach (as with the approach I took in [Sterrett 2009] ), quantity equations express 

the fundamental laws of physics as relations between quantities.  Quantity equations must be 

dimensionally homogeneous, but  the constraint of dimensional homogeneity on an equation is 

like a grammatical constraint on a statement; just as there is much more to a statement than its 

grammatical structure, so there is much more to an equation of physics than homogeneity of 

dimensions.  Another way to put this is to point out that the dimensional equation one would write 

to show that the quantity equation is dimensionally homogenous is not necessarily as informative 

as the quantity equation itself is.   For example, consider the equation s = a t2   where s is a 

distance, a is an acceleration, and t is a time, considered as a quantity equation.  The 

dimensional equation is  [L] = [L] [T]2/[T]2 or [L] = [L].   

 

Where do dimensional equations fit in the logical scheme of developing a system of units?  They 

are not the beginning point, for dimensional equations are relative to the quantity equations 

expressing the fundamental laws of the science one is concerned with.  (We saw that, even in 

Fourier's presentation of how to determine the exponents of dimensions of the units for various 

quantities, a necessary prior step was identifying the three quantities with respect to which the 

exponents of dimension were to be determined.)   Dimensional equations are also relative to the 

selection of which of the quantities in those quantity equations is designated for use as a base 

dimension in the dimensional analysis.  

 

Thus, in a rational reconstruction of dimensional equations, the logical order of things seems to 

be:  1.  identifying the quantity equations expressing relations between quantities;  2. showing 

that there can be a system of units for the quantities associated with those quantity equations;  3.  

selecting the quantities upon which the dimensional analysis yielding the dimensional equation is 

to be based, and  4. writing the dimensional equations that result from performing a dimensional 

analysis of a quantity equation one is interested in.  The specific dimensional equation that results 

will depend upon the choices in 1 and 3.    

 

4.3  Constructing Systems of Units 

 

Now, the rational reconstruction of dimensional equations just discussed does not include actually 

developing a coherent system of units.  There is another step, the one de Courtenay calls the 

final and most crucial step:   
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" Only in the end do the units of the base magnitudes, called base units, get selected.  The 

units of the derived magnitudes are then fixed as derived units expressed in terms of the 

base units through the structure, or the other equations, without introducing any numerical 

coefficient (i.e., by setting all the coefficients equal to one).  It is this last step that is all 

important: it established the bridge between the two interpretations and at the same time 

conceals the gap between them because it ensures that the equations interpreted in terms of 

magnitudes and in terms of measures have exactly the same expression."  [de Courtenay 

2015, p. 146-147] 

 

However, in later sections of the paper, she points out that the gap still exists, in that "the 

mathematical equations of physics, in their theoretical use, are primarily to be understood as 

equations between magnitudes" which is very much like understanding them as quantity 

equations.  Her explanation makes it clear that achieving the goal of a coherent system of units 

involves activities prior to this last step: identifying the quantity equations (from observation, 

experiment and analysis),  and choosing which magnitudes to designate as base magnitudes.  

This is meant to describe the current and past SI systems.  These reflections reinforce the value 

of  "thinking in terms of requirements placed on a system of units, rather than in terms of 

requirements placed on the units chosen for each kind of quantity individually", which was also  

helpful in understanding the historical case of the change from CGS units to the Giorgi/SI units I 

discussed in [Sterrett 2009].  In that case, which was a revision of a system rather than the 

construction of a new one from scratch, thinking in terms of coherence of a system of units rather 

than about the change to individual units led to understanding that a change in the form of the 

quantity equations could bring about a change in the coherence of units. [Sterrett 2009, p. 809]    

 

For any coherent system of units, then, the establishment of the system of units, including the 

definitions of the units, is a holistic affair that starts with the quantity equations.  Since it is part 

and parcel of the international system of units that it be a coherent system of units, really, the 

units in most earlier versions of the SI are in some sense collectively defined.   Yet there is a 

difference between the New SI and its predecessors due to the definitions no longer including any 

artefacts in the New SI:  now that no base unit is defined in terms of an artefact, that reason for 

defining base units is gone.  The other important change effected by the New SI, the decoupling 

of the definition and the "practical realization" of the units, removed another reason one might 

need to designate some of the SI units as base units.  There was another objective that did call 

for designating some of the units as base units, and that reason did not go away -- however, it is 

parasitic on the fact that the previous systems employed a distinction between base units and 
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derived units:  the objective of keeping the values of the base quantities continuous at the 

moment of transition from the use of the current SI to the use of the New SI.   

 

However, referring to de Courtenay's description of what is involved in establishing a coherent set 

of units, we see that even though the designation of base units does not occur until the last step, 

the designation of base magnitudes occurs in a previous step.  The 'last step' of the process 

taken to conceal the gap between what she calls magnitude equations and measure equations 

does not involve a free choice as to which units to designate as base units.  Rather, on her 

account, the designation of base units is determined by the prior choice of which magnitudes 

were selected to be base magnitudes,  since base units are "the units of the base magnitudes."  

[de Courtenay 2015, p 147].   Thus, the "magnitude equations" and choice of base magnitudes 

are really what organize the base units.  Then, the relation between the derived and base units is 

structured as needed to accord with the magnitude equations.    

 

As I employ Lodge's idea of quantity equations rather than Maxwell's "double interpretation", my 

discussion is slightly different, but its bottom line is analogous: prior to the selection of base units,  

one possible designation of which units to call the base units is already available, due to the 

choice of base dimensions, which is logically prior.  I do not see, however, that the choice of base 

units is actually constrained by this. (According to the draft SI brochure  "The choice of the base 

units was never unique." [BIPM 2013, sec 1.3] )  By selecting the units of the base dimensions to 

be the base units, though, the rest of the process is made much easier than by making any other 

selection for the base units.  The dimensions help organize the units by providing a formalism in 

which relations between quantities, with respect to a set of quantity equations expressing the 

fundamental relations of a science,  can be more perspicuously studied.  Dimensions, however, 

do not appear prominently in the formulation of the system of units, once it has been constructed.   

 

5.  Conclusion  

 

We are now ready to address the question of whether there is a need for the distinction between 

base quantities and derived quantities in a system of coherent units, as opposed to abandoning 

the distinction.  The answer is both a qualified yes and a qualified no.   

 

The answer to the question of whether the distinction is needed is (a qualified) yes.  Obviously it 

is possible to construct a definition of the SI that does not designate any units as base units, as 

evidenced by the "defining constants", or "single scaling statement" formulation of the new SI.  

Hence it may seem unequivocal that it is possible to define a coherent system of units without 
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designating some of them as base units.  However, it seems to me that some distinction between 

base and derived units necessarily occurs in the logical underpinnings of a coherent system of 

units, in that a choice of base units, even if only a provisional one, has to be made in the steps 

taken prior to the definition of units.   This is because the formalism developed to understand how 

quantities are related to each other -- the concept of exponents of dimension, or dimensional 

analysis -- does involve the notion of base units. (Recall that Fourier used "the unit for length", 

"the unit for duration" and "the unit for temperature" as base units in performing a dimensional 

analysis.)  This choice of base units, which is needed to carry out the dimensional analysis of 

quantity equations in order to determine the dimensions of quantities, is logically prior to defining 

the (value of the) units.  There is some freedom of choice in selecting which dimensions to 

designate as base dimensions and, from a logical standpoint, one need not designate any 

particular dimension as a base dimension. In fact, in the new SI, on the "definitional constants", or 

"single scaling statement" definition there does not even seem to be a logical constraint anymore 

that would prevent someone from choosing to designate one set of units as base units when 

using the new SI for one application, and then to designate another set of base units for another 

problem or situation.  There are, of course, often practical constraints and disadvantages 

associated with doing so. 

 

It is worthwhile reflecting on why this "yes" answer is so.  Because the starting point for 

formulating a coherent system of units is a collection of quantity equations that expresses 

relations between quantities, the relations between any quantity included in these equations and 

the selected base quantities will be available, even if not explicitly stated.  The quantity equations 

are actually discussed in the SI Brochure, which says that "The system of quantities used with the 

SI, including the equations relating the quantities, is just the set of quantities and equations that 

are familiar to all scientists, technologists, and engineers.  They are listed in many textbooks and 

in many references, but any such list can only be a selection of the possible quantities and 

equations, which is without limit."  There are various international standards cited, but there is 

now a single standard comprising them:  "the ISO/IEC 80000 Standards, Quantities and Units, in 

which the corresponding quantities and equations are described as the International System of 

Quantities."   A telling detail is found in a footnote: "In these equations the electric constant ε0 (the 

permittivity of vacuum) and the magnetic constant µ0 (the permeability of vacuum) have 

dimensions and values such that  ε0µ0 = 1/c
2, where c is the speed of light in a vacuum.  Note that 

the electromagnetic equations in the CGS-EMU, CGS-ESU and Gaussian systems are based on 

a different set of quantities and equations in which the magnetic constant  and electrical constant  

have different dimensions, and may be dimensionless."  [BIPM 2013, p. 2]   This note illustrates 

an important point about the history of the SI:  the quantity equations and system of quantities 
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developed for these standards already incorporate a concern for being suitable for use in 

developing a coherent a system of units.  This just reflects the fact that the development of 

coherent systems of units was a holistic affair that included the quantity equations; sometimes the 

logical order of things even ran backwards, from an already established unit in use to 

reformulation of quantity equations to accommodate using it.  Using the quantity equations that 

have been developed in these standards, no matter what units are designated as base units, the 

relations between any SI unit and the selected base units will be deducible;  the relations between 

the base units and derived SI units do not have to be created by another statement of definition 

that stipulates how they are related.  The theory of dimensions can be used to articulate what 

those relations are.  A remark in the SI brochure puts things slightly differently, though I think it 

reflects the same point: "The dimension of a derived quantity provides the same information 

about the relation of that quantity to the base quantities as is provided by the SI unit of the derived 

quantity as a product of powers of the SI base units."  [BIPM 2013, p. 2] 

 

The answer to the question (as to whether there is a need for the distinction between base 

quantities and derived quantities in a system of coherent units) is a qualified no in the following 

sense:  a definition of the units of the SI that distinguishes some of the units as base units is no 

longer needed, in the sense of requiring an additional step of selecting base units, defining them, 

and stating the relations between SI units and the base units.    

 

This is how the issue appears to me, for the reasons stated in this paper.  More importantly, the 

two striking features of the new SI that I identified near the outset of this paper as features I 

expect many philosophers of science to find surprising present an opportunity.  These features 

were that "the proposed system of international units ("New SI") can be defined (i) without 

drawing a distinction between base units and derived units, and (ii) without restricting (or, even, 

specifying)  the means by which the value of the quantity associated with the unit is to be 

established."   These challenge naive notions about measurement, such as that values of units 

are tied to artefacts, or that definitions of quantities are tied to specifically defined processes, 

which one often finds in philosophical discussions of measurement.  On the one hand, as many 

have noted, the new SI is the realization of a vision that physicists of the nineteenth century had 

outlined, and so, in some sense, it is not new.  On the other hand, however, this is the first time 

we have a system of units realizing that vision.  It is an occasion for philosophers of science to re-

examine presumptions about measurement and the logic of the equations of physics.  I also hope 

that my study in this paper will encourage an appreciation of what I feel is an essential part of the 

language of science:  the theory of dimensions.   
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Tab. 1. Base quantities and base units used in the (current) SI  
Ref: "A concise summary of the International System of Units, the SI"   

published by the BIPM, dated March 2006  www.bipm.org 
 
Base quantity   Base unit  Symbol   Definition of unit  
     for unit       
-------------------------------------------------------------------------------------------------------------------------------- 
length   metre      m  The metre is the length of the path  
       travelled by light in vacuum during a  
       time interval of 1/299 792 458 of a  
       second.  
-------------------------------------------------------------------------------------------------------------------------------- 
mass   kilogram     kg  The kilogram is the unit of mass;  
       it is equal to the mass of the   
       international prototype of the kilogram. 
--------------------------------------------------------------------------------------------------------------------------------- 
time, duration  second          s  The second is the duration of 9 192 631  
       770 periods of the radiation   
       corresponding to the transition between  
       the two hyperfine levels of the ground  
       state of the caesium 133 atom. 
--------------------------------------------------------------------------------------------------------------------------------- 
electric current  ampere          A  The ampere is that constant current  
       which, if maintained in two straight  
       parallel conductors of infinite length, of  
       negligible circular cross-section, and  
       placed 1 m apart in vacuum, would  
       produce between these conductors a  
       force equal to 2 x 10–7 newton per metre 
       of length. 
--------------------------------------------------------------------------------------------------------------------------------- 
thermodynamic  kelvin      K   The kelvin, unit of thermodynamic 
temperature      temperature, is the fraction 1/273.16 of  
       the thermodynamic temperature of the  
       triple point of water. 
--------------------------------------------------------------------------------------------------------------------------------- 
amount of   mole      mol  1.  The mole is the amount of substance 
substance        of a system which contains as many  
       elementary entities as there are atoms  
       in 0.012 kilograms of carbon 12.  
       2.  When the mole is used, the   
       elementary entities must be specified,  
       and may be atoms, molecules, ions,  
       electrons, other particles, or specified  
       groups of such particles.  
-------------------------------------------------------------------------------------------------------------------------------- 
luminous intensity  candela          cd  The candela is the luminous intensity, in  
       a given direction, of a source that emits  
       monochromatic radiation of frequency  
       540 x 1012 hertz and that has a radiant  
       intensity in that direction of 1/683 watt  
       per steradian. 
-------------------------------------------------------------------------------------------------------------------------------- 
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Tab. 2.  Definition of "new SI" in terms of seven "defining constants" 

[Ref: Draft 9th SI Document, 16 December 2013] 
 
The international system of units, the SI, is the system of units in which  
the unperturbed ground state hyperfine splitting frequency of the caesium 133 atom 
(133Cs)hfs is exactly 9 192 631 770 hertz,  

the speed of light in vacuum c is exactly 299 792 458 metre per second,  

the Planck constant h is exactly 6.626 069 57 x10-34   joule second,  

the elementary charge e is exactly 1.602 176 565 x10-19   coulomb,  

the Boltzmann constant k is exactly 1.380 648 8 x10-23-   joule per kelvin,  

the Avogadro constant NA is exactly 6.022 141 29 x1023 reciprocal mole,  

the luminous efficacy Kcd of monochromatic radiation of frequency 540x1012 hertz is 
exactly 683 lumen per watt,  
 
where the hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, lm, and W, 
respectively, are related to the units second, metre, kilogram, ampere, kelvin, mole, and candela, 
with unit symbols s, m, kg, A, K, mol, and cd, respectively, according to the relations Hz = s-1 (for 
periodic phenomena), J = kg m2 s-2, C = A s, lm = cd sr, and W = kg m2 s-3. The steradian, symbol 
sr, is the SI unit of solid angle and is a special name and symbol for the number 1, so that sr = m2 
m-2 = 1.  
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Tab. 3. Base quantities and base units - proposed revision to the SI  
Definition of "new SI" in "explicit-constant" formulation 

[Ref:  Section 1.4, Draft 9th SI Brochure] 
 

 
Base quantity   Base unit     Symbol for unit             Definition of unit   
-------------------------------------------------------------------------------------------------------------------------------- 
length   metre      m  The metre, symbol m, is the SI unit of  
       length; its magnitude is set by fixing the  
       numerical value of the speed of light in  
       vacuum to be exactly 299 792 458 when 
       it is expressed in the SI unit for speed   
       ms-1.  
-------------------------------------------------------------------------------------------------------------------------------- 
mass   kilogram     kg  The kilogram, symbol kg, is the SI unit of 
       mass; its magnitude is set by fixing the  
       numerical value of the Planck constant  
       to be exactly 6.626 069 57 10−34 when  
       it is expressed in the SI unit for action     
       J s = kg m2 s−1.  
--------------------------------------------------------------------------------------------------------------------------------- 
time, duration  second          s  The second, symbol s, is the SI unit of  
       time; its magnitude is set by fixing the  
       numerical value of the unperturbed  
       ground state hyperfine splitting   
       frequency of the caesium 133 atom to  
       be exactly 9 192 631 770 when it is  
       expressed in the SI unit s 1, which for  
       periodic phenomena is equal to Hz.  
--------------------------------------------------------------------------------------------------------------------------------- 
electric current  ampere          A  The ampere, symbol A, is the SI unit of  
       electric current; its magnitude is set by  
       fixing the numerical value of the   
       elementary charge to be exactly 1.602  
       176 565 10−19 when it is expressed in  
       the SI unit for electric charge C = A s.  
--------------------------------------------------------------------------------------------------------------------------------- 
thermodynamic  kelvin      K   The kelvin, symbol K, is the SI unit of 
temperature       thermodynamic temperature; its   
       magnitude is set by fixing the numerical  
       value of the Boltzmann constant to be  
       exactly 1.380 648 8 10−23 when it is  
       expressed in the SI unit for energy per  
       thermodynamic temperature  
       J K-1 = kg m2 s2 K-1.  
--------------------------------------------------------------------------------------------------------------------------------- 
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amount of   mole      mol  The mole, symbol mol, is the SI unit of 
substance       amount of substance of a specified  
       elementary entity, which may be an  
       atom, molecule, ion, electron, any other  
       particle or a specified group of such  
       particles; its magnitude is set by fixing  
       the numerical value of the Avogadro  
       constant to be exactly 6.022 141 29  
       1023 when it is expressed in the SI unit  
       mol-1.  
-------------------------------------------------------------------------------------------------------------------------------- 
luminous intensity  candela          cd  The candela, symbol cd, is the unit of  
       luminous intensity in a given direction;  
       its magnitude is set by fixing the  
       numerical value of the luminous efficacy  
       of monochromatic radiation of frequency 
       540 1012 Hz to be exactly 683 when it is 
       expressed in the SI unit  
       kg-1 m-2 s3 cd sr = lm W-1 = cd sr W-1.  
-------------------------------------------------------------------------------------------------------------------- 
Derived units are defined as products of powers of the base units. When this product includes no 
numerical factors other than one, the derived units are called coherent derived units. The base 
and coherent derived units of the SI form a coherent set, designated the set of coherent SI units.   
-------------------------------------------------------------------------------------------------------------------------------- 
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Tab. 4.  Selected Excerpts from BIPM's "FAQs about the New SI" 

                        [Ref:  http://www.bipm.org/en/measurement-units/new-si/faqs.html] 
FAQ Question  Answer 

8 How can you fix the value of a 
fundamental constant like h to 
define the kilogram, and e to 
define the ampere, and so on?  
How do you know what value to 
fix them to?  What if it emerges 
that you have chosen the wrong 
value?  

• We do not fix – or change – the value of any constant 
that we use to define a unit. The values of the 
fundamental constants are constants of nature 
and we only fix the numerical value of each 
constant when expressed in the New SI unit. By 
fixing its numerical value we define the magnitude 
of the unit in which we measure that constant. 

•  
• Example: If c is the value of the speed of light, {c} is its 

numerical value, and [c] is the unit, so that c = 
{c}[c] = 299 792 458 m/s  then the value c is the 
product of the number {c} times the unit [c], and 
the value never changes. However the factors {c} 
and [c] may be chosen in different ways such that 
the product c remains unchanged. 

•  
In 1983 it was decided to fix the number {c} to be exactly 
299 792 458, which then defined the unit of speed [c] = 
m/s. Since the second, s, was already defined, the effect 
was to define the metre, m. The number {c} in the new 
definition was chosen so that the magnitude of the unit m/s 
was unchanged, thereby ensuring continuity between the 
new and old units. 
 

9 OK, you actually only fix the 
numerical value of the constant 
expressed in the new unit. For the 
kilogram, for example, you choose 
to fix the numerical value {h} of 
the Planck constant expressed in 
the new unit [h] = kg m2 s−1. But 
the question remains: suppose a 
new experiment shortly after you 
change the definition suggests 
that you chose a wrong numerical 
value for {h}, what then? 

• After making the change, the mass of the international 
prototype of the kilogram (the IPK), which defines 
the current kilogram, has to be determined by 
experiment. If we have chosen a "wrong value" it 
simply means that the new experiment tells us 
that the mass of the IPK is not exactly 1 kg in the 
New SI. 

•  
• Although this situation might seem to be problematic, it 

would only affect macroscopic mass 
measurements; the masses of atoms and the 
values of other constants related to quantum 
physics would not be affected. But if we were to 
retain the current definition of the kilogram, we 
would be continuing the unsatisfactory practice of 
using a reference constant (i.e. the mass of the 
IPK) that considerable evidence suggests to be 
changing with time compared to a true invariant 
such as the mass of an atom or the Planck 
constant. [. . .] 

•  
The advantage of the new definition would be that we will 
know that the reference constant used to define the 
kilogram is a true invariant. 
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10 Each of the fundamental 
constants used to define a unit 
has an uncertainty; its value is not 
known exactly.  But it is proposed 
to fix its numerical value exactly.  
How can you do that? What has 
happened to the uncertainty?  

• The present definition of the kilogram fixes the mass of 
the IPK to be one kilogram exactly with zero 
uncertainty, ur(mIPK) = 0. The Planck constant is at 
present experimentally determined, and has a 
relative standard uncertainty of 4.4 parts in 108, 
ur(h) = 4.4 × 10−8. 

•  
• In the new definition the value of h would be known 

exactly in the new units, with zero uncertainty, 
ur(h) = 0. But the mass of the IPK would have to 
be experimentally determined, and it would have a 
relative uncertainty of about ur(mIPK) = 4.4 × 10−8. 
Thus the uncertainty is not lost in the new 
definition, but it moves to become the uncertainty 
of the previous reference that is no longer used . . 

•   
11 The unit of the Planck constant is 

equal to the unit of action, Js = kg 
m2 s-1 .  How does fixing the 
numerical value of the Planck 
constant define the kilogram?  

Fixing the numerical value of h actually defines the unit of 
action, J s = kg m2 s−1. But if we have already defined the 
second, s, to fix the numerical value of the caesium 
hyperfine splitting frequency Δv(133Cs)hfs, and the metre, m, 
to fix the numerical value of the speed of light in vacuum, c, 
then fixing the magnitude of the unit kg m2 s−1 has the 
effect of defining the unit kg. 
 

15 Are not the proposed definitions of 
the base units in the New SI 
circular definitions, and therefore 
unsatisfactory? 

No, they are not circular. A circular definition is one that 
makes use of the result of the definition in formulating the 
definition. The words for the individual definitions of the 
base units in the New SI specify the numerical value of 
each chosen reference constant to define the 
corresponding unit, but this does not make use of the result 
to formulate the definition. 

	
  
	
  


