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Abstract: If the computational theory of mind is right, then minds are realized by 
machines.  There is an ordered complexity hierarchy of machines.  Some finite machines 
realize finitely complex minds; some Turing machines realize potentially infinitely 
complex minds.  There are many logically possible machines whose powers exceed the 
Church-Turing limit (e.g. accelerating Turing machines).  Some of these supermachines 
realize superminds.  Superminds perform cognitive supertasks.  Their thoughts are 
formed in infinitary languages.  They perceive and manipulate the infinite detail of fractal 
objects.  They have infinitely complex bodies.  Transfinite games anchor their social 
relations. 
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1. Introduction 
 
1.1. Complexity Hierarchies 
 
 Once upon a time every living thing had some degree of cognitive power.  The 
classical story of cognition — the story told from Plato up to but not including Descartes 
— said that plants, animals, humans, and stars all have souls of different kinds and 
different degrees of power.  The classical story of cognition painted a picture of an 
ordered complexity hierarchy.  The "great chain of being" (Lovejoy, 1936) rises link by 
link from the lifeless and mindless through rank upon rank of living thinking things — a 
towering city of minds.  Plants had nutritive souls.  Animals add perceptive and 
locomotive souls.  Humans add rational souls with various intellectual powers.  Stars 
were thought to engage in more perfect forms of cognition.  Above them there were 
hierarchies of angels engaged in increasingly powerful kinds of thought.  The classical 
story tells us that above all created minds there is an uncreated Absolute Mind, the mind 
of God.1  God is omniscient; better, God's mind has that cognitive power than which no 
greater is possible.   
 I doubt the reality of the classical complexity hierarchy.  I don't doubt the reality of 
the modern complexity hierarchy.  It's a hierarchy of ever more complex logically 
possible objects.  Some of these objects are computing machines with cognitive powers.  
The finite levels of this hierarchy are familiar.  All known artifacts and organisms — 
even human animals — are likely to be finite state machines (digital computers with 
finite memory).  But finite state machines are less powerful than Turing machines (TMs).  
TMs are digital computers with infinite memory.  Some writers say that human animals 
are TMs (though that does not seem biologically plausible).  The physical actuality of 
TMs is controversial.  They are nevertheless physically possible.  They are at least 
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concrete objects in other physically possible universes.  And while the cognitive powers 
of TMs are greater than those of finite machines, they are not the most powerful 
machines. 
 There are many discussions of machines far more powerful than TMs.  These are the 
supermachines.  Supermachines can perform computational supertasks — actually 
infinite calculations.  It is doubtful that these are actual physical things.  If they exist, 
they inhabit physically possible universes far more complicated than ours.  I want to talk 
about the cognitive powers of supermachines.  Most of the supermachines I discuss are 
infinitely complex physical things.  If they are too complex to be physical in any ordinary 
sense, I think of them in terms of analogical extensions of physical categories into the 
infinite.  If they are too complex to be physical in any sense, then they are purely 
mathematical objects.  If infinitely complex machines exist, and if minds really are 
computational, then some of these machines realize infinitely powerful minds.  These 
infinitely powerful minds are the superminds.  They are minds that perform cognitive 
supertasks — actually infinite mental operations.  I aim in what follows to sketch a theory 
of superminds.   
 
 
1.2 The Plan of the Argument 
 
 Any attempt to talk both about minds and about the infinite is bound to be difficult.  
My discussion proceeds through 13 sections.  Section 2 describes the modern complexity 
hierarchy.  Sections 3 through 6 deal with the finite.  Section 3 discusses finite state 
machines (FSMs) and defines finitary universes (finite networks of FSMs) and finitary 
games.  Section 4 argues that cells are FSMs so that organisms are also FSMs.  Section 5 
deals with cognitive and moral psychology in game-theoretic terms.  Section 6 discusses 
the hierarchy of finite minds from bacteria through humans.  Sections 7 through 12 deal 
with infinite complexity.   Section 7 describes infinite state machines (ISMs).  These are 
the supermachines.  It defines infinitary universes (infinite networks of ISMs) and 
infinitary games.  Section 8 talks about infinitary organisms.  Section 9 starts the 
discussion of superminds.  It deals with cognitive supertasks and it analyzes super-
intentionality in terms of infinitary logical languages.  Section 10 looks at the psychology 
of superminds in terms of super-perception, super-thought, and super-will.  Section 11 
looks at the farther reaches of the hierarchy of superminds.  Section 12 speculates on the 
existence and nature of Absolute Minds — minds than which no more cognitively 
powerful are possible.  I relate these to various conceptions of God.  Section 13 
concludes with analogies between the classical story of cognition and the modern 
computational story.  I argue that both stories posit transfinitely endless hierarchies of 
machines, organisms, and minds. 
 
 
2. The Ontological Background 
 
2.1 The Mathematical Complexity Hierarchy 
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 I want a unified logical account of machines and their minds.  Such an account 
requires the definition of an ordered complexity hierarchy in which all machines are 
located and in which they all have ranks.  One way to obtain such a hierarchy is to posit 
an endless series of increasingly complex physically possible universes.  However: (1) it 
is difficult to rank such universes relative to one another; (2) some machines are so 
complex they do not seem to be physical in any sense.  So I need a more uniform and 
extensive hierarchy. 
 Modern mathematics — like classical philosophy — depicts reality as an ordered 
complexity hierarchy.  The bottom level V0 of the mathematical hierarchy contains one 
simple concrete object ∅.  Nature abounds with cases in which a single object forms a 
more complex object.  One proton P composes the hydrogen nucleus {P}; one flourine 
atom F composes the flourine molecule {F}; one amoeba cell A composes the organism 
{A}.  So the object ∅ composes the more complex object {∅}. Since {∅} is more 
complex than ∅, we put {∅} on the next higher level V1.  Any comprehensive study of 
complexity has to consider all logically possible combinations of simpler objects into 
complexes.  For every level Vn, there exists a higher level Vn+1 that contains all the 
logically possible combinations of all the objects on the lower levels.  So V2 contains 
{{∅}} and {∅, {∅}}.  Complexity accumulates as the levels rise higher.   
 For every endless series of levels of the hierarchy, there exists a limit level above 
them all that contains every object on any level of the series.  Since V0, V1, V2, and so on 
form an endless series of levels, there is a limit level above them that contains all finitely 
complex objects (for "finitely complex", I'll just say "finitary").  If we let ω be a limit 
number that is greater than every finite number,2 then the first limit level is Vω.  The level 
above it is Vω+1.  Vω+1 is the first level that contains infinitely complex objects (for 
"infinitely complex", I'll just say "infinitary").  The levels of the hierarchy rise endlessly.  
The name for the whole hierarchy is V.  V contains all the objects on all levels.3  V is an 
absolutely infinite World that contains all logically possible structures.  The objects in V 
are known as pure sets (aka pure classes).  V is the iterative hierarchy of sets. 
 
 
2.2 Physical Things in the Mathematical Hierarchy 
 
 I like to think of the sets in V as the ultimate theoretical entities of deep science.  One 
very good reading of physical science says that physical things just are sets (Quine 1969, 
p. 147 - 152; 1976; 1978; 1981, p. 15 - 18).  You can find the standard mathematical 
constructions of physical objects in the physics books.  Physics books say our space-time 
is R4 where R is the real numbers.  Since I'm a scientific realist, and since I read scientific 
language literally (following Tarski), I accept the equation of space-time with R4.  The 
points in R4 are sets.  Some sets in V stand in  spatio-temporal relations to one another.  
So long as space-time is geometric, and so long as geometry can be done algebraically, 
and so long as algebra can be done set-theoretically, space-time is ultimately just a set. 
 A space-time more generally is a pair (P, d) where P is a set of points and d is a 
distance relation.  The distance relation is a set of ordered pairs of points.  The ordered 
pairs are sets.  One good way to define points is to identify them with their coordinate 
tuples.  For a 4-dimensional space-time, a point is a tuple (x, y, z, t) whose components 
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are the positions of the point on the 4 coordinate axes.  Given a space-time you can define 
functions that link its points to scalars (e.g. mass-densities), vectors (e.g. electromagnetic 
forces), matrices (e.g. local gravitational curvatures), or operators (e.g. that say how the 
values of fields change along the time axis).  Unified field theory is clearly consistent 
with set-theoretic ontology.  Smart (1972, p. 510) says: "if a unified field theory is 
successful, our ontology may consist simply of point-instants, classes of them, classes of 
classes of them, and so on, and physical objects will be definable in terms of all of these".  
An event is just a vector consisting of a point's coordinates plus all its field values.  One 
set of events causes another set of events.  A pool table is a space-time R4 with mass-
density field that assigns masses of 0 or 1 to points.  A ball is a set of points whose mass-
densities are all 1, whose space-shape is round, and whose time-shape is linear.  The balls 
X and Y are 4D space-time worms.  Their paths converge, collide, diverge.  Their 
convergent paths are two 4D worms early-X and early-Y.  They form the set {early-X, 
early-Y}.  Their divergent paths are two 4D worms late-X and late-Y.  They form the set 
{late-X, late-Y}.  If you think of causality mechanically, then the set {early-X, late-X} 
causes the set {late-X, late-Y}.  So some sets stand in causal relations to one another.  
 As the complexity of sets in V increases, all possible physical objects and structures 
emerge.  All discrete spatio-temporal-causal systems inhabit the finite levels of V.  There 
we find cellular automata whose space-times are finite and whose points are finite state 
machines.  All possible finitary physical universes (with finitary organisms and minds) 
occupy the finite levels of V.  As we pass beyond the limit level Vω into the transfinite, 
infinitary physical universes (with finitary organisms and minds) appear.  All dense and 
continuous spatio-temporal-causal systems appear in the lower infinitary levels of V.  
There we find cellular automata whose space-times are infinitely divided and whose 
points are infinite state machines.  So our actual universe (whether finitary or infinitary) 
occurs low down in V.  All possible physical universes occur in V (Rucker, 1995, p. 200 
- 2).  The order of V stratifies these into a hierarchy of all possible physical universes.  
As the complexity of the sets in V increases, we ascend to levels whose objects cease to 
be physical in any ordinary sense.   We must analogically extend the notions of space, 
time, and causality into these high levels.  As physicality fades away we rise to the 
extremely complex levels of V.  Many writers say these levels are inhabited by machines 
(and organisms and minds) of extraordinary power.  At the upper limits of the World (of 
the hierarchy of sets) we find the Absolute Machines and Absolute Minds. 
 
 
3. Finite Physical Complexity 
 
3.1 Finite State Machines 
 
 A finite state machine (FSM) has a finite set I of possible inputs, a finite set S of 
possible states, a finite set O of possible outputs, and a finite set R of possible values for a 
random variable.  A feature of an FSM is any whole whose ultimate parts are in its states, 
inputs, or outputs.  An FSM has a transition function F that maps its current (input, state, 
random) configuration onto its next state and a transition function G that maps its current 
(input, state, random) configuration onto its output.   So the list (I, S, R, O, F, G) specifies 
an FSM type of which concrete FSMs are tokens.  The system of possible histories of an 
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FSM is a tree whose branches are series of configurations.  An FSM is deterministic iff F 
and G are the same for all values of the random variable.  An FSM is non-deterministic 
otherwise.  Table 1 displays the operation of an FSM that dispenses sodas (Doyle, 1991, 
p. 51).  The coin is a random variable. 
 
 

Current  
State 
 

Input Coin  
Toss 

Next  
State 

Output 

S0 
 

nickel heads S5 none 

S0 
 

nickel tails S5 none 

S0 
 

dime heads S0 output soda; say "thanks" 

S0 
 

dime tails S0 output soda; say "enjoy" 

S5 
 

nickel heads S0 output soda; say "thanks" 

S5 
 

nickel tails S0 output soda; say "enjoy" 

S5 
 

dime heads S0 output soda and nickel; 
say "thanks" 
 

S5 
 

dime tails S0 output soda and nickel; 
say "enjoy" 

 
Table 1. Operations of a soda-dispensing FSM. 

 
 
3.2 Finite Networks of Finite State Machines 
 
 A network of FSMs is closed iff every FSM in that network gets input from and gives 
output to an FSM in that network.  A network of FSMs is open otherwise.  A finitary 
universe is a closed finite network of FSMs.  Finitary universes inhabit the finitary levels 
of V.  If U is some finitary universe, then the FSMs in U are the points of U; the states of 
these FSMs carry field values (e.g. values of mass-density or force fields); their input-
output relations realize the geometry of space-time; their transition functions realize 
causal laws.  Examples of finite networks of FSMs include cellular automata like the 
game of life (Poundstone, 1985) and lattice gas automata (Wolf-Gladrow, 2000). 
 Let U be some finitely complex universe.  Split U into two open subnetworks.  Call 
one the agent (A) and the other the environment (E).  The interaction between A and E is 
a finitary game.  They interact like this: (1) E produces an output event which it sends to 
A; (2) A receives the event as input, changes its state, and produces an output event 
which it sends to E; (3) E receives the event as input, changes its state, and produces an 
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output event which it sends to A.  The cycle repeats until either A or E enter a halting 
state (in which either one fails to produce any further changes or outputs).  If A and E are 
non-deterministic, many changes are possible at any time.  So A and E are embedded in a 
game tree of branching histories.  Each linear path in the tree is a possible game over U.  
Let W be the set of all possible games over U.  A proposition over U is any set of 
possible games of U. So the collection P of propositions over U is the power set of W. 
 For example: A and E are both chess playing machines.  Each takes a chess move as 
input and produces a chess move as output.  States are possible legal chess boards  (a 
board is an arrangement of chess pieces on an 8 by 8 grid).  The values of the random 
variable encode the preferences of the player whenever the board permits the player to 
make many legal moves.  Function F maps each (move, board, random) configuration 
onto a new board.  Function G maps each (move, board, random) pair onto a next legal 
move.  G is a strategy function.  Each player works like this: (1) it gets an input move; (2) 
it applies its F to the move and its current board to produce a new board; (3) it applies its 
strategy function G to the move and its current board to produce an output move.  A 
chess game is any series of interactions that (1) starts from the initial board; (2) alternates 
A and E moves; (3) ends with checkmate or stalemate.  The game tree for these chess 
players is a network whose nodes are boards and whose links are legal moves.  Each 
linear path from the initial board to an ending board is chess game.  Any set of chess 
games is a chess proposition. 
 
 
4. Finitely Complex Organisms 
 
 An organism is a living physical system.4  All known organisms are networks of cells.  
The best scientific evidence implies that cells are only finitely complex (Lodish et al., 
1995).5  Every cell is an FSM.  Since a finite network of FSMs is an FSM, and since an 
organism is a finite network of cells, every organism is an FSM.   
 At any instant, any cell takes in only finitely many physical quanta (photons, atoms, 
molecules) as input and produces only finitely many physical quanta as output.  I focus 
on the molecular inputs and outputs to cells (though I don't mean to exclude energetic 
inputs or outputs).  There are only finitely many distinct possible finite sets of molecular 
inputs or outputs to any cell at any time.  So, the set of all possible inputs to some cell is 
I; the set of all possible outputs is O; both I and O are finite sets of molecules.   
 The internal states of cells are connect-the-dots networks whose dots are atoms and 
whose lines are chemical bonds or interactions.  Every cell contains only finitely many 
atoms.  Its atoms form molecules that fall into finitely many discrete chemical (e.g. 
conformal) states.  They have definite thresholds of binding (they are activated or not).  
Molecules interact as locks and keys which either fit or do not fit.  Although a key may 
take on infinitely many positions within a lock, when it is turned it either opens or fails to 
open the lock.  The lock-key nature of biochemical interactions makes them discrete 
(Bhalla & Iyengar, 1999).  So at any time any cell is in one of finitely many possible 
finitary cytoplasmic states.  The finite set of all cytoplasmic states of some cell is S.  
 When a cell in some cytoplasmic state gets some input molecules (they cross its 
membrane), its internal molecular regulatory network (its MRN) determines both its next 
cytoplasmic state and the molecules it produces.  The MRN is made of genes, RNAs, and 
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proteins.  At any time, the cell's MRN associates each (input, state) pair with some next 
state and with some next output.  The set of possible transformations of the MRN 
determines the two functions F and G.  The MRN is the cell's computer (Bray, 1995; 
Scott & Pawson, 2000; Steinhart, 2001).  It is a (non-deterministic) digital machine.  The 
MRN of any cell is only finitely complex.  The functions F and G of any cell are finitary.   
 Since every cell has finitely many finite inputs, outputs, and states, and since it can 
perform only finitely many molecular transformations of (input, state) pairs into next 
states and next outputs, every cell instantiates some FSM type.  Since thermal noise and 
fluid turbulence may operate as finitary random variables in cells, cells are likely to be 
non-deterministic FSMs.  Theories of cells as FSMs are increasingly standard in biology 
(Yockey, 1992; McAdams & Shapiro, 1995; Cuthbertson et al., 1996; Somogy & 
Sniegoski, 1996; Yuh et al., 1998).  Any network of FSMs is also an FSM.  Organisms 
are networks of cells.  If this biological reasoning is right, then every organism is a non-
deterministic FSM.  Organisms (natural or artificial) are living machines.   
 
 
5. Finitely Complex Minds 
 
5.1 Finite Degrees of Intelligence 
 
 A finitary universe divides into an agent A and environment E.  Let A* be all the 
features of A.  Let E* be all the features of E.  The features in E* are environmental 
contexts.  Let P be all propositions over the universe composed of A and E.  Let R be a 
set of intentional relations.  Such relations include: perceives, believes, wills. 
 An intention function is a table with four columns.  The first column holds features 
from A*.  The second column holds features from E*.  The third holds intentional 
relations from R.  The column holds propositions from P.  So any row in such a table is a 
list (agent feature, environmental context, intentional relation, proposition).   Example: q 
is a retinal-neural feature of an agent; g is a normal context and b is an abnormal context; 
p is a proposition; so: (q, g) is a perception that p while (q, b) is a hallucination that p.  If 
a mind sees that P we need not add that it perceives that P.  Such redundancies are 
removable.  Any (agent feature, environmental context) pair is associated with at most 
one (intentional relation, proposition) pair.  Precisely: an intention function is any map ƒ 
from A* × E* onto R × P. The science of such functions is psychosemantics.6   A 
psychosemantically sound intention function satisfies the requirements of some true 
psychosemantic theory.  Say that A is intelligent in E with respect to the intentional 
relations R iff there is exactly one psychosemantically sound intention function ƒ from 
A* × E* onto R × P.   Analysis of the intention function for some agent leads to the 
replacement of its features with sentences in some language of thought (Fodor, 1975).  
The signs in these sentences are mapped onto parts of the World by (intensional) model-
theoretic semantics. 
 An FSM is intelligent iff it is in some environment in which it is intelligent.  Any 
intelligent FSM has some finite degree of intelligence and is a finite mind.  There are 
many ways to rank the degrees of intelligence of finite minds.  One way is to rank the 
intelligence of finite minds in terms of their intention functions: mind x is at least as 
intelligent as mind y iff the intention function of x includes that of y.  Another way 
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(Dennett, 1996, p. ch 4) is to divide finite minds into four genera of increasing cognitive 
power: (1) Darwinian minds; (2) Skinnerian minds; (3) Popperian minds; and (4) 
Gregorian minds.  More generally: x is at least as intelligent as y iff x is able to make 
every inference that y can make.   A third way is to rank the intelligences of minds in 
terms of the expressive powers of their languages of thought.  Suppose the expressive 
powers of logical languages are ranked like this: (1) any propositional calculus; (2) any 
propositional calculus plus temporal operators; (3) any predicate calculus (with times); 
(4) any predicate calculus with modal operators; (5) any predicate calculus with modal 
and attitude operators.  Minds whose languages of thought are more powerful are more 
intelligent.  All languages of thought of finite minds are finitary languages. Technically: 
they are L(ω, ω) languages.7  The more powerful languages of thought of superminds are 
infinitary languages.  
 
 
5.2 Value Theories in terms of Games 
 
 A game tree is a set of possible histories of the interactions between players A and E.  
Each player has a utility table with two columns.  The first column is a list of the fixed-
points (the final or limit stages of any play) in the histories of the game tree.  The second 
is the utility of that fixed-point for the player.  Example: for a chess game the fixed-
points are the checkmates and stalemates.  The utility table for White associates fixed-
point S with +1 if White mates (wins); it associates S with -1 if White is mated (loses); it 
associates S with 0 if S is stalemate.  The utility table for Black is the inverse of that for 
White.   
 Positive utilities are pleasurable (good).  Negative utilities are painful (bad).  The 
moral, social, and emotional modalities of minds can be defined in terms of the utilities.  
The agent A values (loves, desires) positive utilities and disvalues (hates, avoids) 
negative utilities.  Players A and E cooperate insofar as they have shared utilities and 
compete insofar as they have opposed utilities.  Players fear outcomes with negative 
utilities and hope for outcomes with positive utilities (these outcomes are goals).  The 
utility tables facilitate belief-desire psychologies: the white player wants to move his 
pawn to the back row because he believes it will defeat the black player.  The 
computational theory of emotions developed by Ortony et al. (1990) can be used to 
extend this analysis.  Axelrod (1984) and Danielson (1992) develop moral theories in the 
context of games played by machines.  Theories of virtues and vices may be developed in 
terms of strategies, preferences, and utilities. 
 A game typically involves many players.  It is social.  A universe can be divided into 
agents and environments in many ways: me and my environment; you and your 
environment Games enable us to think about the social experiences of players along with 
their those moral qualities involving other agents.  Game theory is an important part of 
economics and politics.  We use moral-political verbs in games: the rook threatens the 
queen; the bishop defends the king; the White player sacrifices his knight; the Black 
player moves her queen very aggressively.  I will not presently discuss the emotional, 
moral, social, or political aspects of minds or superminds.  Since transfinite value theory 
seems in its infancy (Sorensen, 1994),  I leave these topics for future work. 
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6. The Hierarchy of Finite Minds 
 
6.1 Finite Minds from Bacteria to Humans 
 
 There are increasingly complex FSM networks in nature.8  The level of complexity at 
which intelligence first emerges in natural FSM networks is hardly clear.  Doyle (1991, p. 
69) argues that "Possible minds may be as simple as a soda machine, or as complex as 
Lev Tolstoy."  But I doubt that rocks or soda machines are intelligent.  On my reading of 
the scientific literature, it seems most reasonable to say that intelligence emerges within 
the MRNs of living or almost-living things (Steinhart, 2001).  Viruses (like the lambda 
phage) have MRNs that guide their activity after they infect cells (Ptashne, 1996).  
Bacteria have MRNs that exhibit minimal intelligence (Koshland, 1980).  An intelligent 
FSM network is at least as complex as a living or almost-living thing.  More generally: it 
is as complex as an adaptive autonomous agent (Russell & Norvig, 1995; Maes, 1995).   
 If single cells have non-zero intelligence, then increasingly complex networks of cells 
have increasing intelligence.  Intelligence adds up.  I believe the best available scientific 
evidence implies that natural human intelligence is only finite.  No natural part or process 
of any human animal is infinitely complex.  Every human animal contains only finitely 
many cells.  If cells are FSMs (as I have argued), then human animals are FSMs.  So 
human animals are finite minds.  We are not as powerful as any machine with potentially 
or actually infinite complexity.  I find no dishonor in earthly finitude — but others seem 
to find it offensive.  On the basis of present scientific evidence, we are at most FSMs.9  
The intelligence of human animals is finite.10  If this evidence changes, I'm happy to 
change my view.11  It's better to be promoted than demoted.  My discussion of the 
complexity hierarchy of minds does not depend on where human animals are located in 
that hierarchy.  As the complexity of artificial FSMs (whether alive or not) reaches that of 
living systems, we may expect to see a parallel emergence of intelligence. 
 
 
6.2 Superhuman Minds and their Bodies 
 
 It is surely possible for there to be organisms or artifacts far more intelligent than 
human animals.  Whether or not human minds lie within the class of finitely complex 
minds, it would be absurd to argue that the cognitive power of the human animal exceeds 
every degree of complexity.  There is some degree of cognitive and computational 
complexity that serves as an upper bound for minds realized by human bodies.  Doyle 
(1991, p. 41 - 4) argues that "Human beings and Turing-equivalent machines need not 
exhaust the range of entities in which to realize psychologies".  Moravec (1988, 2000) 
argues for the possible existence of machines far more intelligent than human animals.  
He speculates (1988, p. 74) that machines may evolve intellects 1030 times more 
powerful than human minds.  While Moravec's claims may be overly dramatic, the 
cognitive power of human flesh is hardly the upper bound for computational or cognitive 
complexity. 
 It is likely that a superhuman organism would have a superhuman body.  One sort of 
superhuman body extrapolates the growth pattern of the human flesh.  This growth 
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pattern is recursive.  It is algorithmic.  The human body consists of a central stick S0; on 
this central stick are mounted four other swiveling sticks at level S1 (arms and legs); on 
each of the sticks in S1 there are five swiveling sticks at level S2 (fingers and toes).  It is 
apparent that we could have fingers on our fingers.  Our limbs could be further 
articulated.   Moravec (1988, p. 102 - 108; 2000, p. 150 - 154) describes robot bushes that 
have many levels of branching limbs.  I prefer to think of them as animal bushes (super-
intelligent versions of basket starfish bodies).  Their ultimate fingers (at level Sn for some 
large n) are sufficiently small and precisely coordinated to perform highly detailed 
physical tasks.  They are equipped with tiny detectors so that each finger is a sense organ.   
 
 
7. Transfinite Physical Complexity 
 
7.1 Countably Infinite State Machines 
 
 An infinite state machine (ISM) has a set I of possible inputs, an set S of possible 
states, a set of random values R, and a set O of possible outputs.  Its input, random, and 
output sets may be finite or infinite.  Its set of possible states is infinite.12  An ISM has a 
function F that maps its current (input, state, random) triple onto its next state and a 
function G that maps its current (input, state, random) triple onto its next output.  So the 
list (I, S, R, O, F, G) specifies an ISM type of which concrete ISMs are tokens.   
 A good introduction to ISMs is an infinitary game in which two infinite state 
machines compete by forming an infinitely long series of digits (Hamilton, 1982: 189).  
The two players are the agent (A) and environment (E).   Their inputs and ouputs are the 
digits 0 to 9.  Their states are series of digits of any finite length.  Since there are ω many 
finite series of digits, each player has ω many states.   The next state function F maps 
each (input digit d, series s) pair onto the series made by appending d to the end of s.  F is 
realized by means of a memory register M of length ω.  The output function G maps each 
(digit, series) pair onto an output digit.  G encodes the machine's strategy.   Each player 
operates as follows: (1) it gets an input d; (2) it looks up (M, d) in its strategy table to 
produce an output digit; (3) it appends d to the end of its memory M to make the series 
Md; (4) it sends its output to the other player.  Game trees, possible histories, and 
propositions are defined for these players by analogy with the finite case.  
 Each appending or look-up operation involves only finitely many operations.  
However: there is no finite upper bound to the length of these operations.  For any n, each 
ISM has to look up a series of length n in its strategy table.  If we want each machine to 
complete its operation in one unit of time (one clock tick), then we need to make each 
machine accelerate.  Acceleration involves the Zeno compression of ω acts into 
continuous but finitely extended time.  Let [0,1] be some continuous unit period of time 
(e.g. 1 second).  The first act is done in 1/2 second. The next act is done in 1/4 second so 
that 2 acts have been done in 3/4 seconds.  Generally: the n-th act is done in 1/2n seconds 
so that n acts have been completed in (2n - 1) / 2n seconds.  Example: if agent A finds 
digit dn in 1/2n seconds, then within 1 second A can find the entry for any series in its 
strategy table. Although these ISMs accelerate, they never take limits.  They are only 
countably complex.  Each player applies its functions F and G in one time unit (one clock 
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tick).  It makes its move in one clock tick.  Each move generates a digit.  If the n-th clock 
tick is an even number, then A produces digit dn; if it is odd, then E produces digit dn.   
The result in ω clock ticks is an infinite series of digits (it is a real number 0.d1d2d3d4 . . . 
).13  If you want the game to be over in finite time, then just make the clock accelerate.   
 
 
7.2 Uncountably Infinite State Machines 
 
 A supertask is an actually infinite series of operations done in some finite region of 
space-time.  Many supertasks have consistent recursive definitions and converge to well-
defined objects at transfinite limits (Earman & Norton, 1996; Koetsier & Allis, 1996).  
An uncountably complex ISM is one that performs computational supertasks.  It 
generates limits (Steinhart, 2002).  Although there are many different kinds of 
uncountably complex ISMs,14 I focus here on multi-tape accelerating Turing machines 
(MATMs).   
 An MATM is a classical multi-tape Turing machine that can do supertasks 
(Copeland, 1998a; Davies, 2000; Hamkins & Lewis, 2000).  Since it can perform 
computational supertasks, an MATM is more powerful than a classical multi-tape Turing 
machine (Copeland, 1998b).  It can produce an infinite series of configurations and take 
the limit of that series.  An MATM has: (1) some input registers; (2) some internal state 
registers; and (3) several output registers.  Although I won't mention the random 
variables, I'm including non-deterministic MATMs.  Each register is like the tape of a 
classical Turing machine.  It has ω many one bit variables (values 0 or 1).  A register 
configuration is the list of the values of its variables plus the position of its read/write 
head.  The action of an MATM is controlled by an internal FSM just like a classical 
Turing machine.  From one moment to the next, the FSM reads from and writes to the 
various registers and changes its own internal state.  An MATM's configuration is the list 
of its register configurations plus the state of its FSM.  So an MATM has uncountably 
infinitely many configurations.   
 An MATM accelerates to limits.  It starts at time t=0 in its initial configuration S0.  It 
produces its first configuration S1 at time 1/2.  It makes S2 at time 3/4.  Generally: it 
makes Sn at time (2n - 1)/2n.  At the limit time t = 1, an MATM is in its limit 
configuration Sω.  The limit configuration is the list of the limit configurations of its 
registers.  The limit of any register is some function of the entire previous infinite series 
of configurations of that register. There are many ways to define limits for registers.  I 
describe three.  Let Rn be the configuration of register R at time (2n - 1)/2n.  We may let 

Rω be the infinite disjunction of all the Rn.  Formally: Rω = ∨n=1
ω
Rn .  We may let Rω be the 

infinite conjunction of all the Rn.  Formally: Rω = ∧n=1
ω
Rn .  If we think of Rn as a real 

number between 0 and 1, then we may let Rω be the calculus ε-δ limit of all the Rn.  
Formally: Rω = limn→ω

Rn .   
 An input configuration for an MATM is the list of its input register configurations.  
The input set I for an MATM is the set of its possible input configurations.  Analogously, 
the state set S is the set of the MATM's possible internal state configurations and its 
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output set O is the set of its possible output configurations.  An MATM's accelerating 
operations realize functions F and G.  If i is an input in I and s is a state in S, then F maps 
each (i, s) pair onto a next state in S, and G maps each (i, s) onto an output o in O.  Each 
application of F and G is a supertask.  The operations of an MATM apply F and G 
simultaneously.  For any countable ordinal κ, an MATM can perform κ operations in one 
time unit (one clock tick).15   So a group of MATMs can be synchronized by common 
clock. 
 
 
7.3 Infinite Networks of Infinite State Machines 
 
 An infinite network of infinite state machines (ISMs) is the basis for an infinitary 
physical universe.  The network is a space-time whose point-instants are the 
configurations of its ISMs.  The input-output connections among the ISMs determine the 
geometry of space-time.  Their internal state registers carry field values.  Their transition 
functions realize the causal laws.  Example: if the output registers of MATMs are linked 
to the input registers of other MATMs, the result is a network of interacting infinite state 
machines.  Any network of ISMs is a set in the hierarchy V.  Infinitary universes inhabit 
the infinitary levels of V.  They may contain (copies of) finitary universes as 
subnetworks. 
 An infinitary universe U is a closed infinite network of ISMs. Let U be some 
infinitary universe.  Split U into two open subnetworks.  Call one the agent (A) and the 
other the environment (E).  The interaction between A and E is an infinitary game.  They 
interact infinitely many times.  The agent (A) and the environment (E) interact by 
alternating moves.  Each move happens in one clock tick.  Each move is a supertask in 
which the player accepts an input, changes its state, and produces an output.   The output 
of each player is the next input to the other player.  The players generate an infinite series 
of moves.  For infinitary games, any infinite series of moves has a limit.  For example: 
the limit of an infinite series of digit choices is a real number.  The configuration of each 
player at each limit ordinal is the limit of that player's previous configurations.  Game 
trees, possible histories, and propositions are defined by analogy with the finite case.  
 An infinitely complex universe (an infinite network of ISMs) has an infinitely divided 
and infinitely extended space and time.  It also has infinitely divided causality or 
materiality (i.e. fields whose intensity values are rational or real numbers).  If points 
(ISMs) carry the instantaneous values of fields, then infinitely divided space-time suffices 
for the definition of things with infinitely precise detail.  Such things are familiar as 
fractals (Mandelbrot, 1978).  Many supertasks produce fractal things as their end 
products.  I am particularly interested in transfinite machines that can take the limits of 
Lindenmayer systems (L-systems; Prusinkiewicz & Lindenmayer, 1990).  L-systems are 
recursive rules for making drawings or shapes or structures.  Example: (1) start with a Y; 
(2) replace each branch of the Y with a smaller Y.  Figure 1 shows several iterations of 
this L-system.  One standard way to make L-systems is by means of turtle geometry 
(Abelson & diSessa, 1984).  A turtle is a mathematical creature that lives in Euclidean 
space (e.g. on the flat Euclidean plane).  Although classical TM heads move on 1D tapes, 
you can think of turtles as accelerating TM heads that move with infinite precision on 2D 
planes or in 3D volumes.  A TM turtle that moves in many dimensions and that 
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accelerates can make infinitely detailed black and white drawings or carve infinitely 
detailed sculptures. The limits of L-systems are typically fractals (Koch curves and 
islands; dragon curves; etc.).  Since they are infinitely detailed space-time structures, the 
limits of L-systems are appropriate objects of perception, thought, and action for 
superminds.  
 

   
 

Figure 1. Three iterations of a simple L-system. 
 
 
7.4 An Infinitary Game that Makes a Fractal Object 
 
 Let U be an infinite closed network of ISMs split into open subnets A and E.  The 
topology of E is a continuous flat square whose sides have length 1.  Formally this square 
is denoted [0,1]2.  You can think of [0,1]2 as a square piece of infinitely divisible graph 
paper.  Each point in E has coordinates (x, y) where x and y vary between 0 and 1. Each 
ISM in E supports a 1 bit color value so that E supports a black-and-white color field.  If 
we identify each ISM in E with its (x, y) location in E, then any color field over E is some 
function from [0,1]2 to {0,1}.  You can think of each function from [0,1]2 to {0,1} as a 
black-and-white drawing.   For any such function ƒ, the point (x, y) in [0,1]2 is black if 
ƒ(x,y) is 1 and white otherwise.  The agent A has its eye on one side of E and its hand on 
the other side.  On the eye side, the input registers of A are arranged in a flat square like 
an infinite retina.  Each retinal cell of A sees one color bit on E.  On the hand side, the 
output registers of A are arranged in a flat square like an infinite grid of fingertips.  Each 
fingertip of A sends 1 (mark with black ink) or 0 (erase with white ink) to its 
corresponding point in E.  The remaining ISMs in A link A's retina to its fingertips.  
 Let S be the set of all functions from [0,1]2 to {0,1}.  So S is the set of all black and 
white drawings on the paper  [0,1]2.  Let S0 be the drawing made by dividing a blank 
piece of paper in half horizontally and vertically and writing | in the top row of the paper. 
If Sn is any drawing, let Sn+1 be the drawing produced by copying Sn and then dividing 
the bottom row of Sn in half and the right column of Sn in half and writing N| in the top 
half of the blank part of the paper.  Any two drawings are merged by taking their point-
by-point disjunction.16  Any series of drawings has a disjunction.  Let Sω be the 
disjunction of Sn for all finite n.  Suppose that S0 is made in 1/2 unit of time and that if Sn 
was made in any fractional unit of time, then Sn+1 is made twice as fast.  This is a 
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consistent supertask that converges in 1 unit of time to a limit drawing Sω such that | is on 
Sω and if N is on Sω then N| is on Sω.  Sω is the Hilbert Paper.  A simple infinitary game 
between A and E makes Sω.  A's n-th move consists of sending outputs to E that make 
drawing Sn.  In this game, E cooperates.  E's n-th move consists of changing the states of 
its machines so that Sn is made.   The limit of the infinite series of moves is the drawing 
Sω that contains every finite stroke-series.  Figure 2 shows a few iterations of this game. 
 
 

 
 

 

 
 

 

 
 

 

 
 

 
Figure 2. A few iterations towards the Hilbert Paper. 

 
 
8. Transfinitely Complex Organisms 
 
 Since the forms of finitary organisms resemble the finite iterations of L-systems, I 
suppose that the forms of infinitary organisms resemble the limits of L-systems.  For 
example: just as the forms of finite plants are the finite iterations of L-systems, so the 
forms of infinite plants are the limits of L-systems.  Since infinitely complex universes 
contain the limits of all sorts of L-systems, I suppose they contain super-organisms. 
 Transfinite organisms in super-universes are infinitely complex networks of cells.  
These cells may be finitely or infinitely complex.  It's clearly more interesting if the cells 
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| |
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| |

| | |

|

| |
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are infinite state machines (ISMs).  The growth pattern of a super-organism generates an 
infinitely complex fractal system of cells (e.g. the limit of an L-system).  A super-
organism grows through transfinitely many stages.  It starts with some initial stage S0; it 
develops through successor stages Sn for every finite n < ω; it ends with a limit stage Sω. 
 For example: consider a super-organism whose growth pattern is an L-system whose 
limit is an infinitely self-nested cross.  Figure 3 shows a few iterations of this growth 
pattern.  The initial stage S0 of the super-organism is defined like this: the super-
organism starts as a red cell in the center of [0,1]; in 1/2 second, it grows 4 arms of length 
1/2 minus the endpoints; each arm is a line of black cells except for a blue cell at the 
midpoint of the arm.  For each finite n > 0, the successor stage Sn of the super-organism 
is defined like this: in 1/2n+1 seconds, each blue cell in a line of length 1/2n changes to a 
black cell and grows 2 arms of length 1/2n+1 perpendicular to the line that contains it; 
each arm is a line of black cells except for a blue cell at the midpoint of the arm.  For the 
limit ordinal ω, the limit stage Sω of the super-organism is the union of all the cells in all 
Sn for n finite.  The super-organism is a fractal — an infinitely deeply self-nested cross. 
 It is possible to generalize Moravec's bush robots or bush animals to infinitely 
complex superbushes.  A superbush is an animal bush with infinitely branching limbs.  A 
superbush is described by a transfinite program: (1) it has an initial limb S0; (2) for every 
finite n, each endpoint of each limb at level Sn branches into 2 shorter and thinner limbs 
at level Sn+1; (3) the whole superbush Sω is the union of Sn for all finite n. Each limb is 
half as long and half as thick as the limb on which it is mounted.  A superbush agent has 
as many fingertips as there are real numbers.  It can move its limbs and fingertips to 
manipulate and produce infinitely detailed concrete objects in its environment.  It can 
perceive, think about, and willfully make the fractal limits of L-systems.   
 Superbushes are specific instances of supergraph animals.   A supergraph animal 
(just a "supergraph" for short) is a living connect-the-dots structure with infinitely many 
dots and connections.  The dots are joints and the connections are limbs.  Finite graph 
animals are depicted in the artificial life program called "Framsticks" (Mandik, 2002).  
Supergraph animals are generalizations of Framsticks to the transfinite. 
 

 
 

The initial cross S0. 
 

 
 

Cross S1 with 1 nesting. 
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Cross S2 with 2 nestings. 
 

 
 

Cross S3 with 3 nestings. 
 

 
Figure 3.  The growth pattern of a fractal super-organism. 

 
 
9. Transfinitely Complex Minds 
 
9.1 Cognitive Supertasks 
 
 For every machine, there is a supermachine able to everything done by the machine.  
More: there is a supermachine able to do everything done by the whole class of machines 
(e.g. a super-Turing machine that can do everything any Turing machine can do).  So if 
minds are intelligent machines, and if supermachines exist, then superminds exist.   
 A supermind has infinitely great cognitive power.  It is a concrete object that can 
perform cognitive supertasks.  As an example of a cognitive supertask, consider reading a 
book with infinitely many pages (Borges, 1964, p. 58).  The book is organized like this: 
its front and back covers have some thickness T; if p is any page after the front cover, 
then the thickness of the page after p is half the thickness of p; if p is any page before the 
back cover, then the thickness of the page before p is half the thickness of p.  If the front 
cover is at point 0 and the back cover is a point 1, then the book is a pair of series of 
pages ({0, 1/4, 3/8, 7/16, . . .}, { . . . 9/16, 5/8, 3/4, 1}).  Each page has finitely many 
words.  Zeus reads the book like this: at time t = 0, he reads the first page; at time t = 1/2, 
he reads the last page; at t = 3/4 he reads the page after the first page; at t = 7/8 he reads 
the page before the last page; he goes on like this for one minute.  At time t = 1, he has 
read the whole book.  Zeus has read infinitely many words in one minute — a cognitive 
supertask.  If Zeus is to remember what he has read, he needs an infinite memory. 
 A supermind can play infinite epistemic games. Some propositions require infinitely 
much data to verify them (e.g. "Beyond every star there is another").  Science is often 
thought of as making a series of increasingly accurate theories that progress towards 
some perfectly accurate limit theory.  The limit theory may result from an epistemic 
supertask.  Example: a super-scientist A plays an infinitary game with an environment E 
that obeys fixed laws (Juhl, 1995): (1) E gives some data to A; (2) A tries to give E some 
theory of E that explains the data; (3) E tries to present A with some data that the theory 
does not explain; (4) A tries to provide a better theory.  The cycle of data and theory goes 
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to the limit.  If there is some limit theory that explains all the data, A wins; if not, E wins.  
Brams (1983) investigates whether we are actually playing such games with infinitary 
minds. 
 Superminds have infinitely many perceptions, beliefs, volitions, and so on.  More 
importantly: their cognitive states have infinitely rich content.  They have (1) super-
perception; (2) super-thought; and (3) super-will.  They perceive and represent their 
environments to infinite depths of detail.  They perform infinitely many inferences on 
infinitely detailed representations.  They have infinitely deep and subtle plans.  A 
supermind changes its environment to some infinite depths of detail.  For example: a 
supermind can super-perceive all the infinitely many colors of superlight; it can super-
compute the structure of an infinitely detailed arrangement of supercolors; it can super-
manipulate the field-values at point-instants with infinite precision. So can paint and see 
an infinitely detailed colored picture whose beauty infinitely exceeds every finite degree 
of beauty.  Superminds have infinitely rich psychological (intellectual, emotional, moral) 
lives.  They have infinitely complex characters with virtues and vices.  Communities of 
supergraphs instantiate all sorts of infinitely complex social and political theories. 
 
 
9.2 Transfinite Intentionality 
 
 A supermind is an intelligent ISM. Psychosemantics for superminds parallel those for 
finitary minds.  Let U be an infinitary universe divided into agent A and environment E.  
So A* is the infinite set of all features of A and E* is the infinite set of all features of E.  
Let R include at least all finitary intentional relations (perceives, believes, wills, etc.).  
The set P of propositions over U is infinite. An intention function ƒ for the agent A is any 
psychosemantically sound map ƒ from A* × E* onto R × P.  Intelligence is defined as in 
the finite case.  The salient difference is that ƒ is infinitary.  Hence any supermind is 
more intelligent than every finite mind.  There are transfinite degrees of intelligence that 
increase along with the complexities of supermachines.  Any supermind that lives in an 
infinitary universe (such as a continuously divided spatio-temporal-causal network of 
ISMs) is easily thought of in physical terms.  It is a concrete physical whole in the set-
theoretic hierarchy V.  As the complexity of the objects in V increases beyond the 
continuous, these physical interpretations become less visualizable. 
 An analysis of the intention function for any supermind leads to the systematic 
replacement of its features with sentences in some language of thought (Fodor, 1975).  
The signs in these sentences are mapped onto parts of the World by (intensional) model-
theoretic semantics.  While the mental sentences for finite minds are formulae in finitary 
languages of thought, the mental sentences for superminds are formulae in infinitary 
languages of thought.  They are super-sentences.  Sentences in infinitary languages may 
have infinite series of quantifiers, infinite conjunctions or disjunctions, and relations that 
have infinitely many places.  If the intentionality of a mind is measured by the 
complexity of its language of thought, then any supermind has super-intentionality.   
 Super-sentences are stored in super-memories able to hold infinitely detailed 
grammatical networks of signs.   They are manipulated (e.g. arranged into infinitely long 
arguments) by super-computations.  Example: let G(x) mean that number x is the sum of 
two primes.  At time 1/2, the supermind Achilles forms the sentence S1 = G(2) and 
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knows that it is true.  At time 3/4, Achilles forms S2 = (G(2) & G(4)) and knows that it is 
true.  At the n-th moment in a Zeno compression, Achilles forms the sentence Sn = (G(2) 
& . . . G(2n)) and knows that it is true.  At the limit time 1, Achilles forms the limit of all 
these sentences.  This is the super-sentence Sω.  It is an infinite conjunction (G(2) & G(4) 
& G(8) & G(10) & . . .).  At the limit time 1, Achilles knows whether this super-sentence 
is true or false.  Since Sω is equivalent to (∀x)(if n is even, then G(n)), it isn't a very rich 
super-sentence.  Richer super-sentences come with infinite sequences of quantifiers, 
infinitely detailed internal grammatical structure, and relations with infinitely many 
places.  Example: (∃x1, x2, . . . xn, . . .)((x1 < x2) & (x2 < x3) & . . . (xn < xn+1) & . . . ).   
 There are endlessly many infinite numbers greater than ω.  Example: ω1 is an 
uncountably infinite number that towers over ω.  For any numbers κ and λ are greater 
than ω, there are infinitary L(κ, λ) languages.  Although we need not go into technical 
details here, the expressive power of any language like L(ω1, ω) and L(ω1, ω1) is far 
greater than that of L(ω,ω).  Karp (1964) describes objects that cannot be fully described 
by finitary sentences but that can be fully described by super-sentences.17  Examples 
include: the natural numbers under the successor operation; the class of well-ordered 
systems.   
 If the complexity of the content of a mental representation corresponds to that of 
some mentalese sentence, then a supermind can truly and completely represent any 
finitary object in one synchronic thought.  You and I can see the entire part-whole 
structure of small finitary patterns without counting or performing a series of analytic 
acts.   A supermind can see all the detail of any finitary structure in one synchronic 
vision.  If a "gods-eye" view is an infinitary vision, then we can rank such views using 
infinitary languages.    
 
 
10. Some Cognitive Powers of Superminds  
 
10.1 Super-Perception 
 
 A finite mind has only finitely many input states.  The retina of a finite mind is 
finitely divided and finitely extended grid of receptors for atomic sense data.  A 
supermind has infinitely many input states.  The retina of a supermind is an infinitely 
divided grid of receptors.  Between any two receptors there is always another.  So a 
supermind can see (or hear, or feel) infinite detail.  Since a supermind's receptors are 
ISMs, these receptors may register light intensity or color with infinite precision.  As we 
see only finitely many (3) dimensions, so a supermind may see infinite dimensional 
spaces. 
 A mind with super-perception is able to perceive infinite detail in finite time.  It does 
this by performing (completing) perceptual supertasks.  A supermind is able to perceive 
the limits of L-systems (it can see, in one limit act, all the infinite detail of any Koch 
curve or fractal plant).  I illustrate super-perception with Royce's perfectly accurate map 
of England within England (Royce, 1927, p. 506 - 7).  A part of the map perfectly 
accurately depicts the part of England that contains the map.  It's an infinitely nested 
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series of pictures.  Royce's self-nested map of England is an infinitely rich physical 
fractal object. Royce's definition is recursive: the structure of England is endlessly 
repeated within England.  Royce's map is easily formalized as a connect-the-dots diagram 
(a graph).  The map at level 0 is denoted M0. Suppose M0 is a square containing a cross 
(England's not what it used to be).  For any finite n, the next map Mn+1 is Mn plus a copy 
of M0 in its smallest lower right-hand square.  The limit map Mω is infinitely rich.  It is 
the union of all Mn for n finite.  Royce's perfect map of England is a map of the form Mω.  
Figure 4 shows the first four iterations of a trivially simple version of Royce's self-nested 
map.   
 A mind with powers of super-perception successively perceives (sees) the members 
of an infinite series of increasingly rich perceptual objects and converges in the limit to 
the limit object of that series.  Suppose Athena is a super-perceiver who plans to 
completely see the Royce map.  At time 1/2, Athena sees M0.  At time 3/4, Athena sees 
M1.  As time goes from 0 to 1, Athena brings each map Mn into focus.  You may think of 
her eyes as microscopes able to focus in on ever-greater detail at ever-higher levels of 
resolution.  At each successive time 1/2, 3/4, and so on, she "zooms-in" on the next level 
of detail of the map while keeping the size of her visual field the same.  Athena forms an 
internal mental representation of map Mn at the n-th visual act.  For all n < ω, she sees 
map Mn at time (2n-1)/2n.  As time passes, Athena's accelerating series of visual acts 
converges to the limit vision.  A time 1, Athena sees the limit map Mω.  So at time 1, she 
completely and truly and in that instant sees the infinitely complex map. Athena has an 
internal infinitely complex mental representation of map Mω at time 1.  If Athena is an 
MATM, then she is able perform the whole infinite operation in any non-zero interval.  
So Athena is able to perceive countably many countably complex objects in any finite 
time.    
 

    
 

Figure 4.  The first four iterations of a Roycean self-nested map. 
 
 
10.2 Super-Thought 
 
 A supermind needs infinitely many internal states in order to store infinitely detailed 
mental representations of infinitary objects.  It needs a super-memory to record its 
infinitely detailed perceptions and ideas (e.g. its reading of the Borges book or vision of 
the Royce map).  A minimal super-memory is an infinitary register with ω many bits.  
Such a register can be squeezed into a finite continuous space by Zeno compression.  The 
memory of an infinite von Neumann machine is an array of ω many infinitary registers.  
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A supermind can store a complete true description of itself in its super-memory.  A 
supermind (and only a supermind) can have perfect self-awareness and self-knowledge.18  
 A supermind can perform infinitely many computations on the mental representations 
in its super-memory.  Some of these transfinite computations are super-inferences.  
Super-inference involves the solution of problems not solvable by finite means.  For 
example: a super-mind running on an MATM is able to compute the halting function for 
all classical TMs; it is able to fill out a table whose i-th row and j-th column contains 0 if 
the i-th classical TM halts on input j.  It can calculate an infinite look-up table that lists 
the recursive total functions from the positive integers to {0,1}and it can do anti-
diagonalization on that table to obtain a non-recursive function (Shagrir, 1997, p. 328 - 
9).  It can perform infinitely long deductions.  It can find the truth-values of arithmetical 
propositions by sheer enumeration.  For example: it can decide the truth-value of 
Goldbach's conjecture just by exhaustive search.  For any non-constructive proof, a 
sufficiently powerful supermind ought to be able to find examples of the objects or 
processes asserted by the proof.  For example: the Banach-Tarski theorem asserts that "a 
closed three-dimensional solid ball may be split into finitely many pieces which can be 
rearranged without distortion to form two solid balls of the same size as the original" 
(Hamilton, 1982, p. 186).  A sufficiently powerful supermind ought to be able to figure 
out a way to cut a solid ball that satisfies the theorem, so that it can take the ball apart and 
put its pieces back together into two balls. 
 A supermind can do anything that can be done by any less powerful machine.  It can 
simulate (imagine) all possible finite computations.  So it can exactly simulate any 
finitely complex universe.  Its simulation is not an approximation; it is an exact 
reproduction.  So a supermind can contain a copy of any finitary universe (any closed 
network of FSMs).  If there are persons in some finitary universe, the supermind can 
exactly replicate their lives (Moravec, 1988, p. 178 - 9).  If exactness is needed for being 
"real" (rather than being fake or inauthentic), then the copy of a universe in a supermind 
is as real as the original.  A supermind that simulates within itself every possible finitary 
universe will generate within itself a data structure like Leibniz's Palace of the Fates.  
Leibniz says that all possible worlds are present in the mind of God as ideas.  He 
describes the system of ideas in a conversation between the mythical Athena and 
Theodorus: 
 

[Athena said to Theodorus]: The pyramid you see here is the Palace of the Fates . 
. . It contains representations not only of that which actually happens but also of 
all that which is possible.  At the beginning of time, Zeus surveyed all these 
possibilities and sorted them into alternative possible worlds; . . . I have only to 
speak, and we shall see a whole world that my father Zeus might have produced . 
. . These worlds are all here as ideas in the divine mind of Zeus. . . . After saying 
this, the goddess led Theodorus into one of the halls of the Palace of the Fates; 
when he was inside, it was no longer a hall, it was a world presented to his mind 
as if he were watching a dramatic play happening on a stage. . . . Looking around 
in the Palace, Theodorus saw a collection of documents bound up into a book. . . . 
The goddess told him: this is the history of the world which we are now visiting; 
you are looking at the book of its Fate. . . . put your finger on any line in this 
book, and you will see represented actually in all its detail every fact which is 
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described by that line of divine writing. . . . Athena took Theodorus into other 
halls in the Palace, hall after hall, world after world, in which they saw endlessly 
many ways things might have been, or might yet be. (Leibniz, 1996: secs. 414-
417) 

 
 
10.3 Super-Will 
 
 One analysis of willing says that agent A in environment E wills that p iff A works in 
E to make p true.  If willing is methodical rather than accidental, then an agent A wills all 
the outcomes of its plans or strategies.  Example: if a chess player plays with a fixed 
strategy, then she wills the conjunction of all the outcomes of that strategy.  A player who 
plays according to a fixed strategy wills all the wins and all the losses that it entails.  An 
agent has a more perfect will that p iff that agent's plan has a greater chance of making p 
be true.  A plan is an algorithm.  An algorithm has a set of final states (halting states or 
fixed-point states to which it converges in the limit).  Each execution of an algorithm by 
A in E to a final state determines a history of the universe in which A and E reside.  So 
the execution of an algorithm S determines a proposition (the set of all the possible 
histories in which A runs S to some final state).  So A in E wills that p iff there is some 
algorithm S such that A runs S and p is the set of all histories containing final states of S.  
If T is a theory, then agent A wills that T iff it runs an algorithm whose finals states are 
all models of T. 
 A finite mind has a finite will.  It can only will the halting states of finite algorithms.  
It is only able to will the fixed-points to which finite algorithms converge.  Example: a 
finite mind can make finite theories true by building their models.   A supermind has 
super-will.  It can at least will the halting states of Turing machines.  An intelligent 
MATM or other supermachine that takes limits can will the final states of supertasks.  It 
can will the states to which those supertasks converge.  A supermind that can take limits 
can will the existence of (i.e. it can make or construct) all kinds of infinitary fractal 
objects.   It can draw Royce's perfect map of England or construct the limits of L-systems 
in finite time.     
 An infinitary organism (e.g. a superbush) wills the existence of an infinitary object by 
completely running an algorithm that converges to that object in the limit.  For example: 
a superbush wills the existence of the Sierpinski carpet (Mandelbrot, 1978, p. 166 - 7) by 
completely running the following algorithm: (1) the initial situation S0 consists of a flat 
square continuous material surface on which the superbush is resting its finger tips 
(exactly one finger tip rests on each point on the square); (2) for any n, the superbush 
transforms Sn into the successor situation Sn+1 by dividing every square in Sn into a 3 by 
3 grid like a tic-tac-toe board and then punching out the middle square to make a hole 
(punched-out points are not in Sn+1); (3) the limit situation Sω is the intersection of all Sn 
for n finite.  The limit situation is the Sierpinski carpet.  Any project guided by a 
transfinite algorithm is a super-project.  Making the Sierpinski carpet is a super-project.  
A more physicalistic super-project (it involves digging) is making the Lakes of Wada.  It 
takes place in a universe in which space, time, and matter are all continuous.  The Lakes 
of Wada is a simple supertask.  Koetsier & Allis (1997) describe it like this: 
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Imagine an island in the ocean on which there are two lakes.  We carry out a 
project on the island during which the three different kinds of water are kept 
separated.  On the first day we construct dead end canals starting from the ocean 
and from the two lakes in such a way that each point of dry land is at a distance of 
less than 1 kilometer from the sea and from the water of both lakes. The three 
kinds of water remain separated.  On the second half day we extend the canals in 
such a way that each dry point is at most 1/2 kilometer from the three kinds of 
water.  On the following quarter day we continue until each dry point is less than 
1/4 kilometer from the three kinds of water.  After two days of work the island 
will have been turned into a curve that has the amazing property that it separates 
the three kinds of water — they do not mix, while at the same time each point of 
the curve can be approached arbitrarily close from each of the three kinds of 
water. (p. 293) 

 
 A supermind can will theories whose models are infinitary objects.  A sufficiently 
powerful supermind in a sufficiently rich environment can will the truth of Zermelo-
Fraenkel-Choice (ZFC) set theory by building a concrete model of ZFC.  An agent able to 
do this would be able to empirically verify the continuum hypothesis.  The environment 
for such an agent would have to be at least as complex as the least stage of the hierarchy 
V that contains a model of ZFC.  It would have to be at least as complex as some level of 
that hierarchy whose index is an inaccessible cardinal (Hamilton, 1982, p. 230 - 3).  Such 
agents and their environments are physical in analogically extended senses (e.g. the 
space-time in which the agent works is even more divisible than the continuum).  A 
sufficiently powerful supermind can make sentences in infinitary languages be true. 
 
 
11. The Hierarchy of Transfinite Minds 
 
11.1 Super-Physical Universes 
 
 A finitary universe is any closed finitary network of FSMs.  A finitary universe splits 
into an agent A and environment E.  The interactions between A and E form a finitary 
game.  If A is intelligent, then A is a finitary mind.  Finitary minds play finitary games.  
Finitary games generally have ordinary physical interpretations.  Example: a chess board 
is a familiar 2D space and chess moves form a familiar 1D time.  The causal laws of 
chess are the rules for changes of positions (motions) of the pieces (things). 
 An infinitary universes is any closed infinitary network of ISMs.  An infinitary 
universe splits into an agent A and an environment E.  The interactions between A and E 
form an infinitary game.  If A is intelligent, then A is a supermind.  Superminds play 
infinitary games.  Some games played by superminds have ordinary physical 
interpretations.  They are played in continuous space-times with infinitely detailed 
material structures.  Causal laws are like those for finitary games.  Example: if A and E 
play a game by choosing an infinite series of digits, we may visualize them as writing 
down digits one after another faster and faster and smaller and smaller on a paper tape.   
 It is possible for superminds to play games in universes that are too complex to be 
physical in any ordinary sense.  These universes are extremely complex objects in the set-
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theoretic  hierarchy V.  They are super-physical systems.  A super-physical system has 
generalized space, generalized time, and generalized causality.  An ordinary space is a set 
of points with a metric (a distance function).  More generally: a space is any set with a 
metric.  A generalized space is any collection that contains every object needed for 
playing any possible history of the game.  An ordinary time is a series of instants.  More 
generally: a time is some number line (e.g. the natural, rational, or real number lines).  A 
generalized time is any linearly ordered series.  Generalized times include the whole 
ordinal line and the surreal number line (Conway, 2001).  Kitcher (1984, p. 146 - 7) talks 
about supertime as a highly superdenumerable "medium analogous to time, but far richer 
than time".  Generalized motions are curves in generalized space-times.  Generalized 
causal laws are just the rules of any transfinite game.   These analogical extensions of 
ordinary physical concepts are not likely to extend to arbitrarily complex wholes in V.  
Superminds may play games in environments so complex they are purely mathematical.  
This is not a shift from the "concrete" to the "abstract".  It is a shift from the simpler to 
the more complex. 
 
 
11.2 Some Superminds in Super-Physical Universes 
 
 Most infinite games are mathematical devices for the construction of infinite series of 
situations.  Gale & Stewart (1953) is the classical source.  Freiling (1984) gives many 
examples.  The universes for these games are sets.  They are infinitely detailed lifeworlds 
in which superminds interact.  Since these games are presented in the rather dry 
terminology of set-theory, they may seem psychologically shallow.  This shallowness 
may be a false impression.  Since we are finite, we have little epistemic or emotional 
access to infinitely complex systems.  Consequently: we are not likely to find much 
drama in the careful selection of sets of real numbers.  But an infinite agent, one able to 
experience all the properties of these sets as we experience our own phenomenal world, 
might live a psychologically rich life in a game world that seems shallow to us.  For such 
an agent, sets of real numbers might be extremely beautiful or ugly; the selection of a 
beautiful set might be an extremely pleasurable act; the selection of an ugly set very 
painful.  The selection of a certain set according to a certain strategy is an exercise of 
skill.  It is possible to think of these shallow numerical or set-theoretical games as the 
skeletal versions of infinitely complex games in which the players live psychologically 
rich lives.   
 Jech (1984) defines a game he calls a "cut and choose" game.  The game is interesting 
because — unlike games mentioned before — the players perform different operations.  
The White player cuts a set into two disjoint subsets (these are two portions of the 
original set); the Black player chooses one portion; the White player then cuts the set 
again; the Black player chooses another portion.  The game continues to infinity with 
alternating cutting and choosing.  White wins if and only if the infinite product of Black's 
choices is 0; otherwise Black wins.  The strategies of infinite games are functions that 
define the moves of players.  It takes infinitely extended memory plus infinite 
computational power to apply any strategy that maps arbitrary sequences (of previous 
moves) onto the player's next move.  A player who lacks infinitely extended memory has 
to use strategies that depend only on finitely many previous moves.  The skill of a player 
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(his or her strategy) depends on his or her memory and computational power.  Ciesielski 
& Laver (1990) and Scheepers (1993) describe infinite games in which infinite memory 
makes a difference. 
 
 
12. The Absolute Minds 
 
 I've discussed a variety of endless series of ever greater (ever more complex) objects.  
Say an endless series is bounded above by x iff x is greater than every object in the series.  
Example: 1/2, 3/4, 7/8 is bounded above by 1. Say machine x is greater than machine y 
iff x can do everything that y can do but y cannot do everything that x can do.  So there is 
an endless series of finite state machines (FSMs).  The endless series of FSMs is bounded 
above by the universal Turing machines (UTMs).  Any UTM can do what FSM can do; 
but any UTM can do things that no FSM can do.  I say there's an endless series of ever 
greater infinitary machines.  I don't know whether or not the endless series of 
supermachines is bounded above or not.  If no, then for any machine there is a greater 
(more powerful) machine above and beyond it.  If so, then there are some machines 
greater than every machine in the endless series of infinitary machines.  Say an object of 
some kind is absolute iff it is an instance of the kind than which no greater is possible.  
Any attempt to define a greater instance of that kind will be logically inconsistent.  I 
follow Cantor's distinction of (1) the finite; (2) the infinite; and (3) the absolute.  So a 
machine greater than every finitary and infinitary machine is an Absolute Machine. 
 I tend to think there are Absolute Machines and Absolute Minds.  For any ordinals κ 
and λ, there is an infinitary language L(κ, λ).  There are games on arbitrarily large 
ordinals.  As ordinals go, so go languages and games; so also go machines and minds.  
The series of machines and minds goes on like the series of ordinals.  It is endless in a 
very strong sense.  I'm arguing by analogy for Absolute Machines and Minds: just as the 
series of ordinals is bounded above (by the proper class Ω), and just as the series of sets 
is bounded above (by the proper class V), so also the series of machines is bounded 
above by an Absolute Machine and the series of minds is bounded above by an Absolute 
Mind.  Just as a UTM can do whatever any other Turing machine can do (including any 
other UTM), so an Absolute Machine can do whatever any logically possible machine 
can do (including any other Absolute Machine).  Absolute Machines are computationally 
universal in a very strong sense.  An Absolute Machine contains every finitary and 
infinitary mind.  It can do whatever any of those minds can do.  Absolute Machines are 
Absolute Minds.  The power of an Absolute Mind is so extreme that it does everything 
that every other mind does.  If this is right, then Absolute Minds are cognitively or 
psychologically indiscernible.  They are exact mental copies of one another.  If there are 
many distinct Absolute Minds, each is the same mind as every other and each is the same 
person as every other. 
 Absolute Minds are those minds than which there are none more powerful or 
intelligent.  Every Absolute Mind possesses all cognitive perfections. Taliaferro (1985, p. 
139) defines omniscience as "supreme epistemic excellence".  He says "X is omniscient if 
and only if it is impossible for there to be a being with greater cognitive power and this 
power is fully exercised" (Taliaferro, 1994, p. 287).  Royce (1987) gives a 
psychologically rich analysis of such omniscience.  A notion of omniscience as supreme 
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cognitive power seems superior to the traditional definition of omniscience as merely 
knowing that p iff p is true.  It is more dynamic.  An Absolute Mind has the power to 
produce all truths (by making models of all consistent theories).  If there are Absolute 
Minds, then all the cognitive operations of all human and superhuman minds are parts of 
these Minds.   
 An Absolute Mind realizes every other mind.  It has parts that are indiscernible from 
those other minds.  Somewhat more precisely, we may (and must) characterize Absolute 
Minds by reflection principles: if M is omniscient, and if p is any psychological property 
of M, then there exists some x such that x is a proper part of M and x instantiates p.  Just 
as reflection principles are central to the study of extremely complex sets, so 
computational and cognitive reflection principles are likely to be important tools for 
studying very complex machines and minds. 
 The classical Neoplatonists (Plotinus, Proclus) argued for a trinitarian conception of 
God according to which God's three main hypostases are (1) Unity; (2) the Divine Mind; 
and (3) the World Soul.  For these Neoplatonists, cognition stops with the Divine Mind; 
Unity is above the Divine Mind and so is beyond intelligence.  My view of the hierarchy 
of minds accords well with this Neoplatonism.  The community of Absolute Minds is a 
system of indiscernible intellects at the most complex level of mathematical existence.  If 
Unity is construed as the ground of being (as Being rather than some being), then indeed 
Unity has no intelligence.  It surpasses all sets, all machines, all minds.  Traditional 
theists are not likely to approve of this picture.  They are likely to argue that the Mind of 
God is superior to all minds.    A trinitarian Christian might try to argue that there are 
exactly three Absolute Minds.  I leave the difficulties of the Trinity and the Mind of God 
to others.  One need not believe Anselm's "Proof" to accept the Anselmian definition of 
God as that than which no greater is possible.  Since the Anselmian definition of God is 
the only one that makes any sense to me, I infer that God surpasses even the Absolute 
Minds.  For both theist and Neoplatonist, I think the Absolute Minds must be less than 
God.  
 
 
13. Conclusion 
 
 According to classical metaphysics, reality is an ordered complexity hierarchy.  
Aristotle pictured a hierarchy of living thinking substances: plants, animals, humans, 
celestial intelligences.  Above them all is an Absolute Mind: the Prime Mover.  This 
Aristotelian divinity is an intellect that thinks about thinking.  The Neoplatonists talked 
about endless hierarchies of intelligences (Proclus, 1992).  Above them all is an infinitary 
Absolute Mind: the Divine Mind (Nous). The Medieval Christians posited choirs of 
angels.  Above them all is the Absolute Mind of God.  The story of the Mind of God is 
developed in modern thought by Berkeley, Spinoza, and Royce, among others.  Although 
science has falsified many details of the classical story, its logical structure lives on. 
 Many features of classical metaphysics survive in modern mathematics.  Mathematics 
pictures the World as an ordered complexity hierarchy.  The World is the iterative 
hierarchy V of pure sets.  The World consists of rank upon rank of increasingly complex 
objects.  It starts with one simple particular object at its bottom level.  The objects at the 
next level are all the logically possible combinations of all the objects at all the lower 
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levels.  These sets are all concrete particulars.  Simpler sets are members of more 
complex sets.  As sets grow ever more complex they form points, regions, vectors, fields, 
space-times, particles, systems of particles in motion according to causal laws.  All 
possible spatio-temporal-causal systems (including our actual universe) exist within V.   
Sets are the ultimate theoretical entities of deep science — as real as quarks and stars.   
 I do not oppose mathematics to physics.  I advocate a pythagorean ontology 
according to which the existence of V is the best explanation for the order and structure 
of our physical universe.  If V exists, then a hierarchy of all logically possible machines 
exists.  If all logically possible machines exist, then there are machines of arbitrarily high 
complexity that satisfy the biological requirements of life.  If V exists, then a hierarchy of 
all logically possible organisms exists.   If all logically possible machines exist, then 
there are machines of arbitrarily high complexity that satisfy the psychological 
requirements of intelligence.  If V exists, then a hierarchy of all logically possible minds 
exists.  If my reasoning is right, then V contains a community of Absolute Minds that live 
and think supremely far above all other minds.  The modern mathematical World V looks 
very much like the classical cosmos — a glorious city of intelligent living machines.  If 
my reasoning is right, then we live in a very richly and beautifully populated world. 
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Notes 
 
1Leslie (2001) continues the classical story in modern scientific terms.  I learned of his 
book too late for this article.  I hope to incorporate his ideas in future work. 
2The finite ordinal numbers are the whole numbers 0, 1, 2, 3, and so on.  Each ordinal n is 
the set of all ordinals less than n.  So 0 = {}, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} and so on.  
The least infinite ordinal is the set of all finite ordinals.  So the set ω = {0, 1, 2, 3, . . .} is 
the least infinite ordinal.  The next infinite ordinal is ω+1 =  {0, 1, 2, 3, . . . ω}.  There are 
endlessly many greater infinite ordinals beyond ω.   
3I work within the universe of sets and proper classes defined by Von Neumann - 
Bernays - Godel class theory (VBG) and the von Neumann theory of ordinal numbers 
developed in VBG (Hamilton, 1982: chs. 4 & 6).  
4Farmer & Belin (1991: 818) list these features of living things: existence not as a thing 
but as a pattern in space-time; self-reproduction; information storage of a self-
representation; metabolism; functional interactions with the environment; 
interdependence of parts; stability under perturbations; the ability to evolve; growth.  
These features are easily extended to the transfinite (e.g. infinitely many genes; infinite 
genetic algorithms).  Any thing, finitary or infinitary, ought to have features like those 
listed by Farmer & Belin to be living. 
5I am not aware of any biologically sound argument for infinite complexity in actual 
living systems.  Siegelmann (1996), Boucher (1997), and Penrose (1991) are not 
biologically plausible.  Quantum mechanics (so far from revealing any natural infinitude) 
seems to prove that human animals are merely digital machines.  Deutsch (1985) argues 
that quantum computation is just parallel Turing computation.   The quantum mechanical 
theory of information (Bekenstein & Schiffer, 1990) implies that cells are only finitary 
(hence not even Turing machines)  Moravec (2000: 166) uses Bekenstein's quantum 
mechanical theory of information to calculate the maximum amount of information in 
any human animal.  He says we each contain about 1045 bits — a small finite number.  
6A psychosemantic theory defines the constraints that any psychologically sound 
intention function must satisfy.  One kind of psychosemantics says that state S of system 
x means that P iff S optimally causally covaries with P (Stalnaker, 1984: 24; Tye, 1995: 
101).  Other approaches include teleosemantic theories (Millikan) and asymmetric 
dependency theory (Fodor, 1987, 1990).  Glasgow & Papadias (1992) show how 
psychosemantic theories might handle imagination.  Ortony et al. (1990)  show how to 
handle emotions.  I prefer to analyze the attitudes using a physicalized version of 
Hintikka's modal analysis (Hintikka, 1969, 1975).  For example: x sees that p = there is 
some retinal-neural state q such that x is in state q, and in all possible universes in which 
x is in state q, it is the case that p.  The game tree for an agent and environment serves as 
the system of possible universes that supports the Hintikkan truth-conditions.    
7If n and m are ordinal numbers, then an L(n, m) language has logical operator sequences 
of length less than n and quantifier sequences of length less than m.  Since every number 
less than ω is finite, all sentences in an L(ω, ω) language have finitely long sequences of 
logical operators and finitely long sequences of quantifiers.  The first-order predicate 
calculus is the prime example of an L(ω, ω) language.   The lengths of sentences in L(ω, 
ω) languages can be of any finite length, they are potentially infinite.  Finite minds (like 
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human animals) use some L(N, M) with both N and M finite. The language of thought of 
any supermind is infinitary language L(κ, λ) with κ and λ both greater than ω. 
8I take a resolutely physicalistic attitude to the ontology of finite intelligence.  This 
attitude is deeply anti-Cartesian.  Although I deny the existence of Cartesian minds (res 
cogitans),  I do not thereby deny the reality of the soul.  I take an Aristotelian position: 
the soul is the form of the body at a level of abstraction sufficiently high to avoid any 
reference to particular materiality and sufficiently detailed to distinguish the body from 
all other possible organisms.  The soul is the algorithmic form of the body.  If someone 
were to raise religious worries about the immortality of the soul, then I would reply (1) 
since the soul is a property, it is eternal; (2) the resurrection of the body is a kind of 
personal immortality far more perfect than any disembodied cogitation (especially if that 
resurrection body were an infinitely complex organism — a physical supermachine with 
a supermind). 
9Finitary minds understand the infinite by means of finitary descriptions (such as 
recursive definitions).  Poincare (1952: 11) says: "reasoning by recurrence . . . is the only 
instrument which enables us to pass from the finite to the infinite". 
10Although the intelligence of human animals is finite, some will argue that human 
animals are merely proper parts of human persons.  They will say that human animals are 
the material parts of human persons but that these persons have immaterial parts 
(Cartesian minds) that are infinitely intelligent.  Since I reject Cartesian dualism, I can 
see only one way that human animals can be proper parts of human persons.  It is that 
human animals are initial finite parts of human persons while human super-animals are 
later transfinite parts of human persons. One way to work this out is to use something like 
Hick's (1976) resurrection theory. Accordingly: earthly human animals are only finitary 
machines; earthly human animals are resurrected into infinitary resurrection bodies (into 
supermachines).  Human persons are infinitary things whose earthly animal parts are all 
only fintary.  You may be infinitely complex in the future; you are not infinitely complex 
now. 
11Copeland (2000: 9) says: "A wide mechanist. . .holds that the mind is a machine but 
countenances the possibility of information-processing machines that cannot be 
mimicked by a universal TM, and allows in particular that the mind may be such a 
machine".  I'm a wide mechanist.  I'm open to the possibility that earthly human bodies 
are infinitary. 
12A machine is countably infinitely complex iff the least upper bound of the cardinality of 
its set of possible states is ω.  The following machines are countably infinitely complex: 
push-down automata with actually infinitely deep stacks; linear bounded automata 
(classical Turing machines with a finitely long tapes determined by the unbounded sizes 
of their inputs); classical Turing machines whose tapes are finite but always extendible; 
classical Turing machines; classical Turing machines that make non-recursive moves 
(Giunti, 1997) or that operate on non-recursively defined data (Shagrir, 1997). 
13Since this is a game, we need some utility function that assigns outcomes to the players.  
Let S be any set of real numbers.  If the number 0.d1d2d3d4 . . .is in S, then A wins; if 
not, then E wins.  Utility functions ground the preferences, goals, emotions, attitudes, and 
the moral and social values of the players of infinite games. 
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14Other transfinite machines are analog shift maps (Siegelmann, 1995); real random 
access machines (Preparata & Shamos, 1985: 1.4); flowchart machines (Blum et. al, 
1998). 
15Zeno compressions can be nested.  You can put ω acts between times 0 and 1/2.  Put the 
first act at 1/4, the second at 3/8, the third at 7/16 and so on. You can put ω more acts 
between 1/2 and 3/4, and so on.   See Rucker (1995: 66 - 69). 
16For any drawings A and B, and for any point (x, y), let the color of the point (x,y) in the 
merged drawing (A * B) be the disjunction of the color of (x,y) in A and B.  So point (x, 
y) is 1 in (A * B) iff (x,y) is 1 in A or (x,y) is 1 in B. 
17We may divide objects and tasks into those that have finitary descriptions and those that 
have only infinitary descriptions.  Finitary minds like ours have at most finitary 
representations of infinitary things (e.g. recursive definitions in L(ω,ω)).  We cannot 
describe any object whose complexity exceeds finitary definition in L(ω, ω).  At this 
boundary the superminds themselves take off into the pythagorean heavens, leaving us in 
the finitary dust.  While we can argue that superminds are, we have little understanding 
of what they are.  The ability of superminds to perceive, think, and will in languages 
greater than L(ω,ω) places them far beyond our comprehension.  
18Any infinitary object contains a proper part that is isomorphic to the whole.  An 
infinitary object is self-reflecting.  For instance: in the case of the infinitely self-nested 
cross, one of the corner crosses completely reflects the whole.  Since no finitary object 
contains any part with equal complexity, no finitary object is able to contain a complete 
and true description of itself.  Self-consciousness is the complete mental self-reflection 
(self-representation) of the whole mind by a part of the mind.  No finitary mind is 
completely self-reflecting; hence no finite mind is completely self-conscious; all and only 
infinitary minds are self-reflecting; hence all and only infinitary minds are truly self-
conscious.  
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