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Abstract. If the computational theory of mind is right, then minds are realized by machines. There is
an ordered complexity hierarchy of machines. Some finite machines realize finitely complex minds;
some Turing machines realize potentially infinitely complex minds. There are many logically pos-
sible machines whose powers exceed the Church–Turing limit (e.g. accelerating Turing machines).
Some of these supermachines realize superminds. Superminds perform cognitive supertasks. Their
thoughts are formed in infinitary languages. They perceive and manipulate the infinite detail of fractal
objects. They have infinitely complex bodies. Transfinite games anchor their social relations.
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1. Introduction

1.1. COMPLEXITY HIERARCHIES

Once upon a time every living thing had some degree of cognitive power. The
classical story of cognition – the story told from Plato up to but not including
Descartes – said that plants, animals, humans, and stars all have souls of different
kinds and different degrees of power. The classical story of cognition painted a
picture of an ordered complexity hierarchy. The “great chain of being” (Lovejoy,
1936) rises link by link from the lifeless and mindless through rank upon rank
of living thinking things – a towering city of minds. Plants had nutritive souls.
Animals add perceptive and locomotive souls. Humans add rational souls with
various intellectual powers. Stars were thought to engage in more perfect forms
of cognition. Above them there were hierarchies of angels engaged in increasingly
powerful kinds of thought. The classical story tells us that above all created minds
there is an uncreated Absolute Mind, the mind of God.1 God is omniscient; better,
God’s mind has that cognitive power than which no greater is possible.

I doubt the reality of the classical complexity hierarchy. I don’t doubt the reality
of the modern complexity hierarchy. It’s a hierarchy of ever more complex logically
possible objects. Some of these objects are computing machines with cognitive
powers. The finite levels of this hierarchy are familiar. All known artifacts and
organisms – even human animals – are likely to be finite state machines (digital
computers with finite memory). But finite state machines are less powerful than
Turing machines (TMs). TMs are digital computers with infinite memory. Some
writers say that human animals are TMs (though that does not seem biologically
plausible). The physical actuality of TMs is controversial. They are nevertheless
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physically possible. They are at least concrete objects in other physically possible
universes. And while the cognitive powers of TMs are greater than those of finite
machines, they are not the most powerful machines.

There are many discussions of machines far more powerful than TMs. These
are the supermachines. Supermachines can perform computational supertasks –
actually infinite calculations. It is doubtful that these are actual physical things. If
they exist, they inhabit physically possible universes far more complicated than
ours. I want to talk about the cognitive powers of supermachines. Most of the
supermachines I discuss are infinitely complex physical things. If they are too
complex to be physical in any ordinary sense, I think of them in terms of ana-
logical extensions of physical categories into the infinite. If they are too complex
to be physical in any sense, then they are purely mathematical objects. If infinitely
complex machines exist, and if minds really are computational, then some of these
machines realize infinitely powerful minds. These infinitely powerful minds are the
superminds. They are minds that perform cognitive supertasks – actually infinite
mental operations. I aim in what follows to sketch a theory of superminds.

1.2. THE PLAN OF THE ARGUMENT

Any attempt to talk both about minds and about the infinite is bound to be difficult.
My discussion proceeds through 13 sections. Section 2 describes the modern com-
plexity hierarchy. Sections 3 through 6 deal with the finite. Section 3 discusses
finite state machines (FSMs) and defines finitary universes (finite networks of
FSMs) and finitary games. Section 4 argues that cells are FSMs so that organisms
are also FSMs. Section 5 deals with cognitive and moral psychology in game-
theoretic terms. Section 6 discusses the hierarchy of finite minds from bacteria
through humans. Sections 7 through 12 deal with infinite complexity. Section 7
describes infinite state machines (ISMs). These are the supermachines. It defines
infinitary universes (infinite networks of ISMs) and infinitary games. Section 8
talks about infinitary organisms. Section 9 starts the discussion of superminds. It
deals with cognitive supertasks and it analyzes super-intentionality in terms of
infinitary logical languages. Section 10 looks at the psychology of superminds
in terms of super-perception, super-thought, and super-will. Section 11 looks at
the farther reaches of the hierarchy of superminds. Section 12 speculates on the
existence and nature of Absolute Minds – minds than which no more cognitively
powerful are possible. I relate these to various conceptions of God. Section 13
concludes with analogies between the classical story of cognition and the modern
computational story. I argue that both stories posit transfinitely endless hierarchies
of machines, organisms, and minds.



SUPERMACHINES AND SUPERMINDS 157

2. The Ontological Background

2.1. THE MATHEMATICAL COMPLEXITY HIERARCHY

I want a unified logical account of machines and their minds. Such an account
requires the definition of an ordered complexity hierarchy in which all machines
are located and in which they all have ranks. One way to obtain such a hierarchy
is to posit an endless series of increasingly complex physically possible universes.
However: (1) it is difficult to rank such universes relative to one another; (2) some
machines are so complex they do not seem to be physical in any sense. So I need a
more uniform and extensive hierarchy.

Modern mathematics – like classical philosophy – depicts reality as an ordered
complexity hierarchy. The bottom level V0 of the mathematical hierarchy contains
one simple concrete object ∅. Nature abounds with cases in which a single object
forms a more complex object. One proton P composes the hydrogen nucleus {P};
one flourine atom F composes the flourine molecule {F}; one amoeba cell A com-
poses the organism {A}. So the object ∅ composes the more complex object {∅}.
Since {∅} is more complex than ∅, we put {∅} on the next higher level V1. Any
comprehensive study of complexity has to consider all logically possible combin-
ations of simpler objects into complexes. For every level Vn, there exists a higher
level Vn+1 that contains all the logically possible combinations of all the objects
on the lower levels. So V2 contains {{∅}} and {∅, {∅}}. Complexity accumulates
as the levels rise higher.

For every endless series of levels of the hierarchy, there exists a limit level above
them all that contains every object on any level of the series. Since V0, V1, V2, and
so on form an endless series of levels, there is a limit level above them that contains
all finitely complex objects (for “finitely complex”, I’ll just say “finitary”). If we
let ω be a limit number that is greater than every finite number,2 then the first limit
level is Vω. The level above it is Vω+1. Vω+1 is the first level that contains infinitely
complex objects (for “infinitely complex”, I’ll just say “infinitary”). The levels of
the hierarchy rise endlessly. The name for the whole hierarchy is V. V contains all
the objects on all levels.3 V is an absolutely infinite World that contains all logically
possible structures. The objects in V are known as pure sets (aka pure classes). V
is the iterative hierarchy of sets.

2.2. PHYSICAL THINGS IN THE MATHEMATICAL HIERARCHY

I like to think of the sets in V as the ultimate theoretical entities of deep science.
One very good reading of physical science says that physical things just are sets
(Quine, 1969, pp. 147–152, 1976, 1978, 1981, pp. 15–18). You can find the stand-
ard mathematical constructions of physical objects in the physics books. Physics
books say our space-time is R4 where R is the real numbers. Since I’m a scientific
realist, and since I read scientific language literally (following Tarski), I accept the
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equation of space-time with R4. The points in R4 are sets. Some sets in V stand in
spatio-temporal relations to one another. So long as space-time is geometric, and
so long as geometry can be done algebraically, and so long as algebra can be done
set-theoretically, space-time is ultimately just a set.

A space-time more generally is a pair (P, d) where P is a set of points and d
is a distance relation. The distance relation is a set of ordered pairs of points. The
ordered pairs are sets. One good way to define points is to identify them with their
coordinate tuples. For a four-dimensional space-time, a point is a tuple (x, y, z, t)
whose components are the positions of the point on the for coordinate axes. Given
a space-time you can define functions that link its points to scalars (e.g. mass-
densities), vectors (e.g., electromagnetic forces), matrices (e.g., local gravitational
curvatures), or operators (e.g., that say how the values of fields change along the
time axis). Unified field theory is clearly consistent with set-theoretic ontology.
Smart (1972, p. 510) says: “if a unified field theory is successful, our ontology
may consist simply of point-instants, classes of them, classes of classes of them,
and so on, and physical objects will be definable in terms of all of these”. An event
is just a vector consisting of a point’s coordinates plus all its field values. One set
of events causes another set of events. A pool table is a space-time R4 with mass-
density field that assigns masses of 0 or 1 to points. A ball is a set of points whose
mass-densities are all 1, whose space-shape is round, and whose time-shape is
linear. The balls X and Y are 4D space-time worms. Their paths converge, collide,
diverge. Their convergent paths are two 4D worms early-X and early-Y. They form
the set {early-X, early-Y}. Their divergent paths are two 4D worms late-X and
late-Y. They form the set {late-X, late-Y}. If you think of causality mechanically,
then the set {early-X, late-X} causes the set {late-X, late-Y}. So some sets stand
in causal relations to one another.

As the complexity of sets in V increases, all possible physical objects and struc-
tures emerge. All discrete spatio-temporal-causal systems inhabit the finite levels of
V. There we find cellular automata whose space-times are finite and whose points
are finite state machines. All possible finitary physical universes (with finitary or-
ganisms and minds) occupy the finite levels of V. As we pass beyond the limit level
Vω into the transfinite, infinitary physical universes (with finitary organisms and
minds) appear. All dense and continuous spatio-temporal-causal systems appear in
the lower infinitary levels of V. There we find cellular automata whose space-times
are infinitely divided and whose points are infinite state machines. So our actual
universe (whether finitary or infinitary) occurs low down in V. All possible physical
universes occur in V (Rucker, 1995, pp. 200–202). The order of V stratifies these
into a hierarchy of all possible physical universes. As the complexity of the sets in
V increases, we ascend to levels whose objects cease to be physical in any ordinary
sense. We must analogically extend the notions of space, time, and causality into
these high levels. As physicality fades away we rise to the extremely complex levels
of V. Many writers say these levels are inhabited by machines (and organisms and
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Table I. Operations of a soda-dispensing FSM

Current Input Coin Next Output

state toss state

S0 Nickel Heads S5 None

S0 Nickel Tails S5 None

S0 Dime Heads S0 Output soda; say “thanks”

S0 Dime Tails S0 Output soda; say “enjoy”

S5 Nickel Heads S0 Output soda; say “thanks”

S5 Nickel Tails S0 Output soda; say “enjoy”

S5 Dime Heads S0 Output soda and nickel; say “thanks”

S5 Dime Tails S0 Output soda and nickel; say “enjoy”

minds) of extraordinary power. At the upper limits of the World (of the hierarchy
of sets) we find the Absolute Machines and Absolute Minds.

3. Finite Physical Complexity

3.1. FINITE STATE MACHINES

A finite state machine (FSM) has a finite set I of possible inputs, a finite set S of
possible states, a finite set O of possible outputs, and a finite set R of possible values
for a random variable. A feature of an FSM is any whole whose ultimate parts
are in its states, inputs, or outputs. An FSM has a transition function F that maps
its current (input, state, random) configuration onto its next state and a transition
function G that maps its current (input, state, random) configuration onto its output.
So the list (I, S, R, O, F, G) specifies an FSM type of which concrete FSMs are
tokens. The system of possible histories of an FSM is a tree whose branches are
series of configurations. An FSM is deterministic iff F and G are the same for all
values of the random variable. An FSM is non-deterministic otherwise. Table 1
displays the operation of an FSM that dispenses sodas (Doyle, 1991, p. 51). The
coin is a random variable.

3.2. FINITE NETWORKS OF FINITE STATE MACHINES

A network of FSMs is closed iff every FSM in that network gets input from and
gives output to an FSM in that network. A network of FSMs is open otherwise.
A finitary universe is a closed finite network of FSMs. Finitary universes inhabit
the finitary levels of V. If U is some finitary universe, then the FSMs in U are the
points of U; the states of these FSMs carry field values (e.g. values of mass-density
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or force fields); their input–output relations realize the geometry of space-time;
their transition functions realize causal laws. Examples of finite networks of FSMs
include cellular automata like the game of life (Poundstone, 1985) and lattice gas
automata (Wolf-Gladrow, 2000).

Let U be some finitely complex universe. Split U into two open subnetworks.
Call one the agent (A) and the other the environment (E). The interaction between
A and E is a finitary game. They interact like this: (1) E produces an output event
which it sends to A; (2) A receives the event as input, changes its state, and pro-
duces an output event which it sends to E; (3) E receives the event as input, changes
its state, and produces an output event which it sends to A. The cycle repeats until
either A or E enter a halting state (in which either one fails to produce any further
changes or outputs). If A and E are non-deterministic, many changes are possible
at any time. So A and E are embedded in a game tree of branching histories. Each
linear path in the tree is a possible game over U. Let W be the set of all possible
games over U. A proposition over U is any set of possible games of U. So the
collection P of propositions over U is the power set of W.

For example: A and E are both chess playing machines. Each takes a chess
move as input and produces a chess move as output. States are possible legal chess
boards (a board is an arrangement of chess pieces on an 8 by 8 grid). The values
of the random variable encode the preferences of the player whenever the board
permits the player to make many legal moves. Function F maps each (move, board,
random) configuration onto a new board. Function G maps each (move, board,
random) pair onto a next legal move. G is a strategy function. Each player works
like this: (1) it gets an input move; (2) it applies its F to the move and its current
board to produce a new board; (3) it applies its strategy function G to the move
and its current board to produce an output move. A chess game is any series of
interactions that (1) starts from the initial board; (2) alternates A and E moves;
(3) ends with checkmate or stalemate. The game tree for these chess players is a
network whose nodes are boards and whose links are legal moves. Each linear path
from the initial board to an ending board is chess game. Any set of chess games is
a chess proposition.

4. Finitely Complex Organisms

An organism is a living physical system.4 All known organisms are networks of
cells. The best scientific evidence implies that cells are only finitely complex (Lod-
ish et al., 1995).5 Every cell is an FSM. Since a finite network of FSMs is an FSM,
and since an organism is a finite network of cells, every organism is an FSM.

At any instant, any cell takes in only finitely many physical quanta (photons,
atoms, molecules) as input and produces only finitely many physical quanta as
output. I focus on the molecular inputs and outputs to cells (though I don’t mean to
exclude energetic inputs or outputs). There are only finitely many distinct possible
finite sets of molecular inputs or outputs to any cell at any time. So, the set of all
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possible inputs to some cell is I; the set of all possible outputs is O; both I and O
are finite sets of molecules.

The internal states of cells are connect-the-dots networks whose dots are atoms
and whose lines are chemical bonds or interactions. Every cell contains only fi-
nitely many atoms. Its atoms form molecules that fall into finitely many discrete
chemical (e.g. conformal) states. They have definite thresholds of binding (they are
activated or not). Molecules interact as locks and keys which either fit or do not
fit. Although a key may take on infinitely many positions within a lock, when it is
turned it either opens or fails to open the lock. The lock-key nature of biochemical
interactions makes them discrete (Bhalla and Iyengar, 1999). So at any time any
cell is in one of finitely many possible finitary cytoplasmic states. The finite set of
all cytoplasmic states of some cell is S.

When a cell in some cytoplasmic state gets some input molecules (they cross
its membrane), its internal molecular regulatory network (its MRN) determines
both its next cytoplasmic state and the molecules it produces. The MRN is made
of genes, RNAs, and proteins. At any time, the cell’s MRN associates each (input,
state) pair with some next state and with some next output. The set of possible
transformations of the MRN determines the two functions F and G. The MRN is
the cell’s computer (Bray, 1995; Scott and Pawson, 2000; Steinhart, 2001). It is a
(non-deterministic) digital machine. The MRN of any cell is only finitely complex.
The functions F and G of any cell are finitary.

Since every cell has finitely many finite inputs, outputs, and states, and since
it can perform only finitely many molecular transformations of (input, state) pairs
into next states and next outputs, every cell instantiates some FSM type. Since
thermal noise and fluid turbulence may operate as finitary random variables in
cells, cells are likely to be non-deterministic FSMs. Theories of cells as FSMs
are increasingly standard in biology (Yockey, 1992; McAdams and Shapiro, 1995;
Cuthbertson et al., 1996; Somogy and Sniegoski, 1996; Yuh et al., 1998). Any
network of FSMs is also an FSM. Organisms are networks of cells. If this biological
reasoning is right, then every organism is a non-deterministic FSM. Organisms
(natural or artificial) are living machines.

5. Finitely Complex Minds

5.1. FINITE DEGREES OF INTELLIGENCE

A finitary universe divides into an agent A and environment E. Let A∗ be all the
features of A. Let E∗ be all the features of E. The features in E∗ are environmental
contexts. Let P be all propositions over the universe composed of A and E. Let R
be a set of intentional relations. Such relations include: perceives, believes, wills.

An intention function is a table with four columns. The first column holds
features from A∗. The second column holds features from E∗. The third holds
intentional relations from R. The fourth holds propositions from P. So any row
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in such a table is a list (agent feature, environmental context, intentional relation,
proposition). Example: q is a retinal-neural feature of an agent; G is a normal
context and b is an abnormal context; p is a proposition; so: (q, G) is a perception
that p while (q, b) is a hallucination that p. If a mind sees that P we need not
add that it perceives that P. Such redundancies are removable. Any (agent feature,
environmental context) pair is associated with at most one (intentional relation,
proposition) pair. Precisely: an intention function is any map f from A∗ × E∗ onto
R × P. The science of such functions is psychosemantics.6 A psychosemantically
sound intention function satisfies the requirements of some true psychosemantic
theory. Say that A is intelligent in E with respect to the intentional relations R iff
there is exactly one psychosemantically sound intention function f from A∗ × E∗
onto R × P. Analysis of the intention function for some agent leads to the replace-
ment of its features with sentences in some language of thought (Fodor, 1975).
The signs in these sentences are mapped onto parts of the World by (intensional)
model-theoretic semantics.

An FSM is intelligent iff it is in some environment in which it is intelligent. Any
intelligent FSM has some finite degree of intelligence and is a finite mind. There
are many ways to rank the degrees of intelligence of finite minds. One way is to
rank the intelligence of finite minds in terms of their intention functions: mind x
is at least as intelligent as mind y iff the intention function of x includes that of
y. Another way (Dennett, 1996, ch. 4) is to divide finite minds into four genera of
increasing cognitive power: (1) Darwinian minds; (2) Skinnerian minds; (3) Pop-
perian minds; and (4) Gregorian minds. More generally: x is at least as intelligent
as y iff x is able to make every inference that y can make. A third way is to rank
the intelligences of minds in terms of the expressive powers of their languages
of thought. Suppose the expressive powers of logical languages are ranked like
this: (1) any propositional calculus; (2) any propositional calculus plus temporal
operators; (3) any predicate calculus (with times); (4) any predicate calculus with
modal operators; (5) any predicate calculus with modal and attitude operators.
Minds whose languages of thought are more powerful are more intelligent. All
languages of thought of finite minds are finitary languages. Technically: they are
L(ω, ω) languages.7 The more powerful languages of thought of superminds are
infinitary languages.

5.2. VALUE THEORIES IN TERMS OF GAMES

A game tree is a set of possible histories of the interactions between players A and
E. Each player has a utility table with two columns. The first column is a list of
the fixed-points (the final or limit stages of any play) in the histories of the game
tree. The second is the utility of that fixed-point for the player. Example: for a
chess game the fixed-points are the checkmates and stalemates. The utility table
for White associates fixed-point S with +1 if White mates (wins); it associates S
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with −1 if White is mated (loses); it associates S with 0 if S is stalemate. The utility
table for Black is the inverse of that for White.

Positive utilities are pleasurable (good). Negative utilities are painful (bad). The
moral, social, and emotional modalities of minds can be defined in terms of the
utilities. The agent A values (loves, desires) positive utilities and disvalues (hates,
avoids) negative utilities. Players A and E cooperate insofar as they have shared
utilities and compete insofar as they have opposed utilities. Players fear outcomes
with negative utilities and hope for outcomes with positive utilities (these outcomes
are goals). The utility tables facilitate belief-desire psychologies: the white player
wants to move his pawn to the back row because he believes it will defeat the black
player. The computational theory of emotions developed by Ortony et al. (1990)
can be used to extend this analysis. Axelrod (1984) and Danielson (1992) develop
moral theories in the context of games played by machines. Theories of virtues and
vices may be developed in terms of strategies, preferences, and utilities.

A game typically involves many players. It is social. A universe can be divided
into agents and environments in many ways: me and my environment; you and your
environment Games enable us to think about the social experiences of players along
with their those moral qualities involving other agents. Game theory is an important
part of economics and politics. We use moral-political verbs in games: the rook
threatens the queen; the bishop defends the king; the White player sacrifices his
knight; the Black player moves her queen very aggressively. I will not presently
discuss the emotional, moral, social, or political aspects of minds or superminds.
Since transfinite value theory seems in its infancy (Sorensen, 1994), I leave these
topics for future work.

6. The Hierarchy of Finite Minds

6.1. FINITE MINDS FROM BACTERIA TO HUMANS

There are increasingly complex FSM networks in nature.8 The level of complexity
at which intelligence first emerges in natural FSM networks is hardly clear. Doyle
(1991, p. 69) argues that “Possible minds may be as simple as a soda machine, or as
complex as Lev Tolstoy.” But I doubt that rocks or soda machines are intelligent.
On my reading of the scientific literature, it seems most reasonable to say that
intelligence emerges within the MRNs of living or almost-living things (Steinhart,
2001). Viruses (like the lambda phage) have MRNs that guide their activity after
they infect cells (Ptashne, 1996). Bacteria have MRNs that exhibit minimal intel-
ligence (Koshland, 1980). An intelligent FSM network is at least as complex as
a living or almost-living thing. More generally: it is as complex as an adaptive
autonomous agent (Maes, 1995; Russell and Norvig, 1995).

If single cells have non-zero intelligence, then increasingly complex networks
of cells have increasing intelligence. Intelligence adds up. I believe the best avail-
able scientific evidence implies that natural human intelligence is only finite. No
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natural part or process of any human animal is infinitely complex. Every human
animal contains only finitely many cells. If cells are FSMs (as I have argued),
then human animals are FSMs. So human animals are finite minds. We are not
as powerful as any machine with potentially or actually infinite complexity. I find
no dishonor in earthly finitude – but others seem to find it offensive. On the basis
of present scientific evidence, we are at most FSMs.9 The intelligence of human
animals is finite.10 If this evidence changes, I’m happy to change my view.11 It’s
better to be promoted than demoted. My discussion of the complexity hierarchy
of minds does not depend on where human animals are located in that hierarchy.
As the complexity of artificial FSMs (whether alive or not) reaches that of living
systems, we may expect to see a parallel emergence of intelligence.

6.2. SUPERHUMAN MINDS AND THEIR BODIES

It is surely possible for there to be organisms or artifacts far more intelligent than
human animals. Whether or not human minds lie within the class of finitely com-
plex minds, it would be absurd to argue that the cognitive power of the human
animal exceeds every degree of complexity. There is some degree of cognitive and
computational complexity that serves as an upper bound for minds realized by
human bodies. Doyle (1991, p. 41–44) argues that “Human beings and Turing-
equivalent machines need not exhaust the range of entities in which to realize
psychologies”. Moravec (1988, 2000) argues for the possible existence of machines
far more intelligent than human animals. He speculates (1988, p. 74) that ma-
chines may evolve intellects 1030 times more powerful than human minds. While
Moravec’s claims may be overly dramatic, the cognitive power of human flesh is
hardly the upper bound for computational or cognitive complexity.

It is likely that a superhuman organism would have a superhuman body. One
sort of superhuman body extrapolates the growth pattern of the human flesh. This
growth pattern is recursive. It is algorithmic. The human body consists of a central
stick S0; on this central stick are mounted four other swiveling sticks at level S1

(arms and legs); on each of the sticks in S1 there are five swiveling sticks at level
S2 (fingers and toes). It is apparent that we could have fingers on our fingers. Our
limbs could be further articulated. Moravec (1988, p. 102–108, 2000, p. 150–154)
describes robot bushes that have many levels of branching limbs. I prefer to think of
them as animal bushes (super-intelligent versions of basket starfish bodies). Their
ultimate fingers (at level Sn for some large n) are sufficiently small and precisely
coordinated to perform highly detailed physical tasks. They are equipped with tiny
detectors so that each finger is a sense organ.
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7. Transfinite Physical Complexity

7.1. COUNTABLY INFINITE STATE MACHINES

An infinite state machine (ISM) has a set I of possible inputs, an set S of possible
states, a set of random values R, and a set O of possible outputs. Its input, random,
and output sets may be finite or infinite. Its set of possible states is infinite.12 An
ISM has a function F that maps its current (input, state, random) triple onto its next
state and a function G that maps its current (input, state, random) triple onto its
next output. So the list (I, S, R, O, F, G) specifies an ISM type of which concrete
ISMs are tokens.

A good introduction to ISMs is an infinitary game in which two infinite state
machines compete by forming an infinitely long series of digits (Hamilton, 1982,
p. 189). The two players are the agent (A) and environment (E). Their inputs and
ouputs are the digits 0 to 9. Their states are series of digits of any finite length.
Since there are ω many finite series of digits, each player has ω many states. The
next state function F maps each (input digit d, series s) pair onto the series made
by appending d to the end of s. F is realized by means of a memory register M of
length ω. The output function G maps each (digit, series) pair onto an output digit.
G encodes the machine’s strategy. Each player operates as follows: (1) it gets an
input d; (2) it looks up (M, d) in its strategy table to produce an output digit; (3) it
appends d to the end of its memory M to make the series Md; (4) it sends its output
to the other player. Game trees, possible histories, and propositions are defined for
these players by analogy with the finite case.

Each appending or look-up operation involves only finitely many operations.
However: there is no finite upper bound to the length of these operations. For any
n, each ISM has to look up a series of length n in its strategy table. If we want each
machine to complete its operation in one unit of time (one clock tick), then we need
to make each machine accelerate. Acceleration involves the Zeno compression of
ω acts into continuous but finitely extended time. Let [0,1] be some continuous unit
period of time (e.g., 1 s). The first act is done in 1/2 s. The next act is done in 1/4
s so that two acts have been done in 3/4 s. Generally: the n-th act is done in 1/2n s
so that n acts have been completed in (2n − 1)/2n s. Example: if agent A finds digit
dn in 1/2n s, then within 1 s A can find the entry for any series in its strategy table.
Although these ISMs accelerate, they never take limits. They are only countably
complex. Each player applies its functions F and G in one time unit (one clock
tick). It makes its move in one clock tick. Each move generates a digit. If the n-th
clock tick is an even number, then A produces digit dn; if it is odd, then E produces
digit dn. The result in ω clock ticks is an infinite series of digits (it is a real number
0.d1d2d3d4...).13 If you want the game to be over in finite time, then just make the
clock accelerate.
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7.2. UNCOUNTABLY INFINITE STATE MACHINES

A supertask is an actually infinite series of operations done in some finite region of
space-time. Many supertasks have consistent recursive definitions and converge to
well-defined objects at transfinite limits (Earman and Norton, 1996; Koetsier and
Allis, 1996). An uncountably complex ISM is one that performs computational
supertasks. It generates limits (Steinhart, 2002). Although there are many different
kinds of uncountably complex ISMs,14 I focus here on multi-tape accelerating
Turing machines (MATMs).

An MATM is a classical multi-tape Turing machine that can do supertasks
(Copeland, 1998a; Davies, 2000; Hamkins and Lewis, 2000). Since it can perform
computational supertasks, an MATM is more powerful than a classical multi-tape
Turing machine (Copeland, 1998b). It can produce an infinite series of configur-
ations and take the limit of that series. An MATM has: (1) some input registers;
(2) some internal state registers; and (3) several output registers. Although I won’t
mention the random variables, I’m including non-deterministic MATMs. Each re-
gister is like the tape of a classical Turing machine. It has ω many one bit variables
(values 0 or 1). A register configuration is the list of the values of its variables plus
the position of its read/write head. The action of an MATM is controlled by an
internal FSM just like a classical Turing machine. From one moment to the next,
the FSM reads from and writes to the various registers and changes its own internal
state. An MATM’s configuration is the list of its register configurations plus the
state of its FSM. So an MATM has uncountably infinitely many configurations.

An MATM accelerates to limits. It starts at time t=0 in its initial configuration
S0. It produces its first configuration S1 at time 1/2. It makes S2 at time 3/4. Gen-
erally: it makes Sn at time (2n − 1)/2n. At the limit time t=1, an MATM is in its
limit configuration Sω. The limit configuration is the list of the limit configurations
of its registers. The limit of any register is some function of the entire previous
infinite series of configurations of that register. There are many ways to define
limits for registers. I describe three. Let Rn be the configuration of register R at
time (2n − 1)/2n. We may let Rω be the infinite disjunction of all the Rn. Formally:
Rω = ∨ω

n=1 Rn. We may let Rω be the infinite conjunction of all the Rn. Formally:
Rω = ∧ω

n=1 Rn. If we think of Rn as a real number between 0 and 1, then we may
let Rω be the calculus ε − δ limit of all the Rn. Formally: Rω = limn→ω Rn.

An input configuration for an MATM is the list of its input register configura-
tions. The input set I for an MATM is the set of its possible input configurations.
Analogously, the state set S is the set of the MATM’s possible internal state con-
figurations and its output set O is the set of its possible output configurations. An
MATM’s accelerating operations realize functions F and G. If i is an input in I and
s is a state in S, then F maps each (i, s) pair onto a next state in S, and G maps
each (i, s) onto an output o in O. Each application of F and G is a supertask. The
operations of an MATM apply F and G simultaneously. For any countable ordinal
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κ , an MATM can perform κ operations in one time unit (one clock tick).15 So a
group of MATMs can be synchronized by common clock.

7.3. INFINITE NETWORKS OF INFINITE STATE MACHINES

An infinite network of infinite state machines (ISMs) is the basis for an infinitary
physical universe. The network is a space–time whose point-instants are the con-
figurations of its ISMs. The input-output connections among the ISMs determine
the geometry of space-time. Their internal state registers carry field values. Their
transition functions realize the causal laws. Example: if the output registers of
MATMs are linked to the input registers of other MATMs, the result is a network
of interacting infinite state machines. Any network of ISMs is a set in the hierarchy
V. Infinitary universes inhabit the infinitary levels of V. They may contain (copies
of) finitary universes as subnetworks.

An infinitary universe U is a closed infinite network of ISMs. Let U be some
infinitary universe. Split U into two open subnetworks. Call one the agent (A) and
the other the environment (E). The interaction between A and E is an infinitary
game. They interact infinitely many times. The agent (A) and the environment
(E) interact by alternating moves. Each move happens in one clock tick. Each
move is a supertask in which the player accepts an input, changes its state, and
produces an output. The output of each player is the next input to the other player.
The players generate an infinite series of moves. For infinitary games, any infinite
series of moves has a limit. For example: the limit of an infinite series of digit
choices is a real number. The configuration of each player at each limit ordinal is
the limit of that player’s previous configurations. Game trees, possible histories,
and propositions are defined by analogy with the finite case.

An infinitely complex universe (an infinite network of ISMs) has an infinitely
divided and infinitely extended space and time. It also has infinitely divided caus-
ality or materiality (i.e., fields whose intensity values are rational or real numbers).
If points (ISMs) carry the instantaneous values of fields, then infinitely divided
space-time suffices for the definition of things with infinitely precise detail. Such
things are familiar as fractals (Mandelbrot, 1978). Many supertasks produce fractal
things as their end products. I am particularly interested in transfinite machines
that can take the limits of Lindenmayer systems (L-systems; Prusinkiewicz and
Lindenmayer, 1990). L-systems are recursive rules for making drawings or shapes
or structures. Example: (1) start with a Y; (2) replace each branch of the Y with
a smaller Y. Figure 1 shows several iterations of this L-system. One standard way
to make L-systems is by means of turtle geometry (Abelson and diSessa, 1984).
A turtle is a mathematical creature that lives in Euclidean space (e.g. on the flat
Euclidean plane). Although classical TM heads move on 1D tapes, you can think
of turtles as accelerating TM heads that move with infinite precision on 2D planes
or in 3D volumes. A TM turtle that moves in many dimensions and that accelerates
can make infinitely detailed black and white drawings or carve infinitely detailed
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Figure 1. Three iterations of a simple L-system.

sculptures. The limits of L-systems are typically fractals (Koch curves and islands;
dragon curves, etc.). Since they are infinitely detailed space-time structures, the
limits of L-systems are appropriate objects of perception, thought, and action for
superminds.

7.4. AN INFINITARY GAME THAT MAKES A FRACTAL OBJECT

Let U be an infinite closed network of ISMs split into open subnets A and E. The
topology of E is a continuous flat square whose sides have length 1. Formally this
square is denoted [0,1]2. You can think of [0,1]2 as a square piece of infinitely
divisible graph paper. Each point in E has coordinates (x, y) where x and y vary
between 0 and 1. Each ISM in E supports a 1-bit color value so that E supports a
black-and-white color field. If we identify each ISM in E with its (x, y) location in
E, then any color field over E is some function from [0,1]2 to {0,1}. You can think
of each function from [0,1]2 to {0,1} as a black-and-white drawing. For any such
function f , the point (x, y) in [0,1]2 is black if f (x,y) is 1 and white otherwise.
The agent A has its eye on one side of E and its hand on the other side. On the
eye side, the input registers of A are arranged in a flat square like an infinite retina.
Each retinal cell of A sees one color bit on E. On the hand side, the output registers
of A are arranged in a flat square like an infinite grid of fingertips. Each fingertip
of A sends 1 (mark with black ink) or 0 (erase with white ink) to its corresponding
point in E. The remaining ISMs in A link A’s retina to its fingertips.

Let S be the set of all functions from [0,1]2 to {0,1}. So S is the set of all black
and white drawings on the paper [0,1]2. Let S0 be the drawing made by dividing a
blank piece of paper in half horizontally and vertically and writing | in the top row
of the paper. If Sn is any drawing, let Sn+1 be the drawing produced by copying Sn

and then dividing the bottom row of Sn in half and the right column of Sn in half
and writing N| in the top half of the blank part of the paper. Any two drawings are
merged by taking their point-by-point disjunction.16 Any series of drawings has a
disjunction. Let Sω be the disjunction of Sn for all finite n. Suppose that S0 is made
in 1/2 unit of time and that if Sn was made in any fractional unit of time, then Sn+1

is made twice as fast. This is a consistent supertask that converges in 1 unit of time
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Figure 2. A few iterations towards the Hilbert Paper.

to a limit drawing Sω such that | is on Sω and if N is on Sω then N| is on Sω. Sω is the
Hilbert Paper. A simple infinitary game between A and E makes Sω. A’s n-th move
consists of sending outputs to E that make drawing Sn. In this game, E cooperates.
E’s n-th move consists of changing the states of its machines so that Sn is made.
The limit of the infinite series of moves is the drawing Sω that contains every finite
stroke-series. Figure 2 shows a few iterations of this game.

8. Transfinitely Complex Organisms

Since the forms of finitary organisms resemble the finite iterations of L-systems,
I suppose that the forms of infinitary organisms resemble the limits of L-systems.
For example: just as the forms of finite plants are the finite iterations of L-systems,
so the forms of infinite plants are the limits of L-systems. Since infinitely complex
universes contain the limits of all sorts of L-systems, I suppose they contain super-
organisms.

Transfinite organisms in super-universes are infinitely complex networks of
cells. These cells may be finitely or infinitely complex. It’s clearly more interesting
if the cells are infinite state machines (ISMs). The growth pattern of a super-
organism generates an infinitely complex fractal system of cells (e.g., the limit of
an L-system). A super-organism grows through transfinitely many stages. It starts
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Figure 3. The growth pattern of a fractal super-organism.

with some initial stage S0; it develops through successor stages Sn for every finite
n< ω; it ends with a limit stage Sω.

For example: consider a super-organism whose growth pattern is an L-system
whose limit is an infinitely self-nested cross. Figure 3 shows a few iterations of this
growth pattern. The initial stage S0 of the super-organism is defined like this: the
super-organism starts as a red cell in the center of [0,1]2; in 1/2 s, it grows four
arms of length 1/2 minus the endpoints; each arm is a line of black cells except for
a blue cell at the midpoint of the arm. For each finite n > 0, the successor stage
Sn of the super-organism is defined like this: in 1/2n+1 seconds, each blue cell in
a line of length 1/2n changes to a black cell and grows 2 arms of length 1/2n+1

perpendicular to the line that contains it; each arm is a line of black cells except
for a blue cell at the midpoint of the arm. For the limit ordinal ω, the limit stage
Sω of the super-organism is the union of all the cells in all Sn for n finite. The
super-organism is a fractal – an infinitely deeply self-nested cross.

It is possible to generalize Moravec’s bush robots or bush animals to infinitely
complex superbushes. A superbush is an animal bush with infinitely branching
limbs. A superbush is described by a transfinite program: (1) it has an initial limb
S0; (2) for every finite n, each endpoint of each limb at level Sn branches into two
shorter and thinner limbs at level Sn+1; (3) the whole superbush Sω is the union of
Sn for all finite n. Each limb is half as long and half as thick as the limb on which
it is mounted. A superbush agent has as many fingertips as there are real numbers.
It can move its limbs and fingertips to manipulate and produce infinitely detailed
concrete objects in its environment. It can perceive, think about, and willfully make
the fractal limits of L-systems.

Superbushes are specific instances of supergraph animals. A supergraph an-
imal (just a “supergraph” for short) is a living connect-the-dots structure with
infinitely many dots and connections. The dots are joints and the connections are
limbs. Finite graph animals are depicted in the artificial life program called “Fram-
sticks” (Mandik, 2002). Supergraph animals are generalizations of Framsticks to
the transfinite.
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9. Transfinitely Complex Minds

9.1. COGNITIVE SUPERTASKS

For every machine, there is a supermachine able to everything done by the machine.
More: there is a supermachine able to do everything done by the whole class of
machines (e.g. a super-Turing machine that can do everything any Turing machine
can do). So if minds are intelligent machines, and if supermachines exist, then
superminds exist.

A supermind has infinitely great cognitive power. It is a concrete object that can
perform cognitive supertasks. As an example of a cognitive supertask, consider
reading a book with infinitely many pages (Borges, 1964, p. 58). The book is
organized like this: its front and back covers have some thickness T; if p is any
page after the front cover, then the thickness of the page after p is half the thickness
of p; if p is any page before the back cover, then the thickness of the page before
p is half the thickness of p. If the front cover is at point 0 and the back cover is a
point 1, then the book is a pair of series of pages ({0, 1/4, 3/8, 7/16,...}, {...9/16,
5/8, 3/4, 1}). Each page has finitely many words. Zeus reads the book like this: at
time t=0, he reads the first page; at time t = 1/2, he reads the last page; at t = 3/4
he reads the page after the first page; at t = 7/8 he reads the page before the last
page; he goes on like this for 1 min. At time t = 1, he has read the whole book.
Zeus has read infinitely many words in 1 min – a cognitive supertask. If Zeus is to
remember what he has read, he needs an infinite memory.

A supermind can play infinite epistemic games. Some propositions require in-
finitely much data to verify them (e.g., “Beyond every star there is another”).
Science is often thought of as making a series of increasingly accurate theories
that progress towards some perfectly accurate limit theory. The limit theory may
result from an epistemic supertask. Example: a super-scientist A plays an infinitary
game with an environment E that obeys fixed laws (Juhl, 1995): (1) E gives some
data to A; (2) A tries to give E some theory of E that explains the data; (3) E tries
to present A with some data that the theory does not explain; (4) A tries to provide
a better theory. The cycle of data and theory goes to the limit. If there is some limit
theory that explains all the data, A wins; if not, E wins. Brams (1983) investigates
whether we are actually playing such games with infinitary minds.

Superminds have infinitely many perceptions, beliefs, volitions, and so on. More
importantly: their cognitive states have infinitely rich content. They have (1) super-
perception; (2) super-thought; and (3) super-will. They perceive and represent their
environments to infinite depths of detail. They perform infinitely many inferences
on infinitely detailed representations. They have infinitely deep and subtle plans. A
supermind changes its environment to some infinite depths of detail. For example:
a supermind can super-perceive all the infinitely many colors of superlight; it can
super-compute the structure of an infinitely detailed arrangement of supercolors; it
can super-manipulate the field-values at point-instants with infinite precision. So
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can paint and see an infinitely detailed colored picture whose beauty infinitely ex-
ceeds every finite degree of beauty. Superminds have infinitely rich psychological
(intellectual, emotional, moral) lives. They have infinitely complex characters with
virtues and vices. Communities of supergraphs instantiate all sorts of infinitely
complex social and political theories.

9.2. TRANSFINITE INTENTIONALITY

A supermind is an intelligent ISM. Psychosemantics for superminds parallel those
for finitary minds. Let U be an infinitary universe divided into agent A and envir-
onment E. So A∗ is the infinite set of all features of A and E∗ is the infinite set of
all features of E. Let R include at least all finitary intentional relations (perceives,
believes, wills, etc.). The set P of propositions over U is infinite. An intention
function f for the agent A is any psychosemantically sound map f from A∗ × E∗
onto R × P. Intelligence is defined as in the finite case. The salient difference is
that f is infinitary. Hence any supermind is more intelligent than every finite mind.
There are transfinite degrees of intelligence that increase along with the complex-
ities of supermachines. Any supermind that lives in an infinitary universe (such as
a continuously divided spatio-temporal-causal network of ISMs) is easily thought
of in physical terms. It is a concrete physical whole in the set-theoretic hierarchy
V. As the complexity of the objects in V increases beyond the continuous, these
physical interpretations become less visualizable.

An analysis of the intention function for any supermind leads to the systematic
replacement of its features with sentences in some language of thought (Fodor,
1975). The signs in these sentences are mapped onto parts of the World by (inten-
sional) model-theoretic semantics. While the mental sentences for finite minds are
formulae in finitary languages of thought, the mental sentences for superminds are
formulae in infinitary languages of thought. They are super-sentences. Sentences in
infinitary languages may have infinite series of quantifiers, infinite conjunctions or
disjunctions, and relations that have infinitely many places. If the intentionality of a
mind is measured by the complexity of its language of thought, then any supermind
has super-intentionality.

Super-sentences are stored in super-memories able to hold infinitely detailed
grammatical networks of signs. They are manipulated (e.g., arranged into infinitely
long arguments) by super-computations. Example: let G(x) mean that number x is
the sum of two primes. At time 1/2, the supermind Achilles forms the sentence S1

= G(2) and knows that it is true. At time 3/4, Achilles forms S2 = (G(2) & G(4))
and knows that it is true. At the n-th moment in a Zeno compression, Achilles
forms the sentence Sn = (G(2) &...G(2n)) and knows that it is true. At the limit
time 1, Achilles forms the limit of all these sentences. This is the super-sentence
Sω. It is an infinite conjunction (G(2) & G(4) & G(8) & G(10) & ...). At the limit
time 1, Achilles knows whether this super-sentence is true or false. Since Sω is
equivalent to (∀n)(if n is even, then G(n)), it isn’t a very rich super-sentence. Richer
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super-sentences come with infinite sequences of quantifiers, infinitely detailed in-
ternal grammatical structure, and relations with infinitely many places. Example:
(∃x1, x2, ...xn, ...)((x1 < x2)&(x2 < x3)&...(xn < xn+1)&...).

There are endlessly many infinite numbers greater than ω. Example: ω1 is an
uncountably infinite number that towers over ω. For any numbers κ and λ greater
than ω, there are infinitary L(κ , λ) languages. Although we need not go into tech-
nical details here, the expressive power of any language like L(ω1, ω) and L(ω1,
ω1) is far greater than that of L(ω,ω). Karp (1964) describes objects that cannot
be fully described by finitary sentences but that can be fully described by super-
sentences.17 Examples include: the natural numbers under the successor operation;
the class of well-ordered systems.

If the complexity of the content of a mental representation corresponds to that
of some mentalese sentence, then a supermind can truly and completely represent
any finitary object in one synchronic thought. You and I can see the entire part-
whole structure of small finitary patterns without counting or performing a series
of analytic acts. A supermind can see all the detail of any finitary structure in one
synchronic vision. If a “gods-eye” view is an infinitary vision, then we can rank
such views using infinitary languages.

10. Some Cognitive Powers of Superminds

10.1. SUPER-PERCEPTION

A finite mind has only finitely many input states. The retina of a finite mind is
finitely divided and finitely extended grid of receptors for atomic sense data. A su-
permind has infinitely many input states. The retina of a supermind is an infinitely
divided grid of receptors. Between any two receptors there is always another. So a
supermind can see (or hear, or feel) infinite detail. Since a supermind’s receptors are
ISMs, these receptors may register light intensity or color with infinite precision.
As we see only finitely many (three) dimensions, so a supermind may see infinite
dimensional spaces.

A mind with super-perception is able to perceive infinite detail in finite time. It
does this by performing (completing) perceptual supertasks. A supermind is able
to perceive the limits of L-systems (it can see, in one limit act, all the infinite detail
of any Koch curve or fractal plant). I illustrate super-perception with Royce’s per-
fectly accurate map of England within England (Royce, 1927, pp. 506–507). A part
of the map perfectly accurately depicts the part of England that contains the map.
It’s an infinitely nested series of pictures. Royce’s self-nested map of England is an
infinitely rich physical fractal object. Royce’s definition is recursive: the structure
of England is endlessly repeated within England. Royce’s map is easily formalized
as a connect-the-dots diagram (a graph). The map at level 0 is denoted M0. Suppose
M0 is a square containing a cross (England’s not what it used to be). For any finite
n, the next map Mn+1 is Mn plus a copy of M0 in its smallest lower right-hand
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Figure 4. The first four iterations of a Roycean self-nested map.

square. The limit map Mω is infinitely rich. It is the union of all Mn for n finite.
Royce’s perfect map of England is a map of the form Mω. Figure 4 shows the first
four iterations of a trivially simple version of Royce’s self-nested map.

A mind with powers of super-perception successively perceives (sees) the mem-
bers of an infinite series of increasingly rich perceptual objects and converges in
the limit to the limit object of that series. Suppose Athena is a super-perceiver who
plans to completely see the Royce map. At time 1/2, Athena sees M0. At time 3/4,
Athena sees M1. As time goes from 0 to 1, Athena brings each map Mn into focus.
You may think of her eyes as microscopes able to focus in on ever-greater detail
at ever-higher levels of resolution. At each successive time 1/2, 3/4, and so on, she
“zooms-in” on the next level of detail of the map while keeping the size of her
visual field the same. Athena forms an internal mental representation of map Mn

at the n-th visual act. For all n < ω, she sees map Mn at time (2n − 1)/2n. As time
passes, Athena’s accelerating series of visual acts converges to the limit vision. A
time 1, Athena sees the limit map Mω. So at time 1, she completely and truly and
in that instant sees the infinitely complex map. Athena has an internal infinitely
complex mental representation of map Mω at time 1. If Athena is an MATM, then
she is able perform the whole infinite operation in any non-zero interval. So Athena
is able to perceive countably many countably complex objects in any finite time.

10.2. SUPER-THOUGHT

A supermind needs infinitely many internal states in order to store infinitely de-
tailed mental representations of infinitary objects. It needs a super-memory to re-
cord its infinitely detailed perceptions and ideas (e.g., its reading of the Borges
book or vision of the Royce map). A minimal super-memory is an infinitary register
with ω many bits. Such a register can be squeezed into a finite continuous space by
Zeno compression. The memory of an infinite von Neumann machine is an array
of ω many infinitary registers. A supermind can store a complete true description
of itself in its super-memory. A supermind (and only a supermind) can have perfect
self-awareness and self-knowledge.18

A supermind can perform infinitely many computations on the mental repres-
entations in its super-memory. Some of these transfinite computations are super-
inferences. Super-inference involves the solution of problems not solvable by finite
means. For example: a super-mind running on an MATM is able to compute the
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halting function for all classical TMs; it is able to fill out a table whose i-th row and
j-th column contains 0 if the i-th classical TM halts on input j. It can calculate an in-
finite look-up table that lists the recursive total functions from the positive integers
to {0,1} and it can do anti-diagonalization on that table to obtain a non-recursive
function (Shagrir, 1997, pp. 328–329). It can perform infinitely long deductions.
It can find the truth-values of arithmetical propositions by sheer enumeration. For
example: it can decide the truth-value of Goldbach’s conjecture just by exhaustive
search. For any non-constructive proof, a sufficiently powerful supermind ought
to be able to find examples of the objects or processes asserted by the proof. For
example: the Banach-Tarski theorem asserts that “a closed three-dimensional solid
ball may be split into finitely many pieces which can be rearranged without distor-
tion to form two solid balls of the same size as the original” (Hamilton, 1982, p.
186). A sufficiently powerful supermind ought to be able to figure out a way to cut
a solid ball that satisfies the theorem, so that it can take the ball apart and put its
pieces back together into two balls.

A supermind can do anything that can be done by any less powerful machine.
It can simulate (imagine) all possible finite computations. So it can exactly simu-
late any finitely complex universe. Its simulation is not an approximation; it is an
exact reproduction. So a supermind can contain a copy of any finitary universe
(any closed network of FSMs). If there are persons in some finitary universe,
the supermind can exactly replicate their lives (Moravec, 1988, pp. 178–179). If
exactness is needed for being “real” (rather than being fake or inauthentic), then
the copy of a universe in a supermind is as real as the original. A supermind that
simulates within itself every possible finitary universe will generate within itself
a data structure like Leibniz’s Palace of the Fates. Leibniz says that all possible
worlds are present in the mind of God as ideas. He describes the system of ideas in
a conversation between the mythical Athena and Theodorus:

[Athena said to Theodorus]: The pyramid you see here is the Palace of the Fates
... It contains representations not only of that which actually happens but also
of all that which is possible. At the beginning of time, Zeus surveyed all these
possibilities and sorted them into alternative possible worlds; ... I have only to
speak, and we shall see a whole world that my father Zeus might have produced
... These worlds are all here as ideas in the divine mind of Zeus. ... After saying
this, the goddess led Theodorus into one of the halls of the Palace of the Fates;
when he was inside, it was no longer a hall, it was a world presented to his
mind as if he were watching a dramatic play happening on a stage. ... Looking
around in the Palace, Theodorus saw a collection of documents bound up into
a book. ... The goddess told him: this is the history of the world which we are
now visiting; you are looking at the book of its Fate. ... put your finger on any
line in this book, and you will see represented actually in all its detail every fact
which is described by that line of divine writing. ... Athena took Theodorus into
other halls in the Palace, hall after hall, world after world, in which they saw
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endlessly many ways things might have been, or might yet be. (Leibniz, 1996,
Sections 414–417)

10.3. SUPER-WILL

One analysis of willing says that agent A in environment E wills that p iff A works
in E to make p true. If willing is methodical rather than accidental, then an agent
A wills all the outcomes of its plans or strategies. Example: if a chess player plays
with a fixed strategy, then she wills the conjunction of all the outcomes of that
strategy. A player who plays according to a fixed strategy wills all the wins and all
the losses that it entails. An agent has a more perfect will that p iff that agent’s plan
has a greater chance of making p be true. A plan is an algorithm. An algorithm
has a set of final states (halting states or fixed-point states to which it converges in
the limit). Each execution of an algorithm by A in E to a final state determines a
history of the universe in which A and E reside. So the execution of an algorithm
S determines a proposition (the set of all the possible histories in which A runs S
to some final state). So A in E wills that p iff there is some algorithm S such that A
runs S and p is the set of all histories containing final states of S. If T is a theory,
then agent A wills that T iff it runs an algorithm whose finals states are all models
of T.

A finite mind has a finite will. It can only will the halting states of finite al-
gorithms. It is only able to will the fixed-points to which finite algorithms converge.
Example: a finite mind can make finite theories true by building their models. A
supermind has super-will. It can at least will the halting states of Turing machines.
An intelligent MATM or other supermachine that takes limits can will the final
states of supertasks. It can will the states to which those supertasks converge.
A supermind that can take limits can will the existence of (i.e., it can make or
construct) all kinds of infinitary fractal objects. It can draw Royce’s perfect map of
England or construct the limits of L-systems in finite time.

An infinitary organism (e.g., a superbush) wills the existence of an infinitary
object by completely running an algorithm that converges to that object in the limit.
For example: a superbush wills the existence of the Sierpinski carpet (Mandelbrot,
1978, pp. 166–167) by completely running the following algorithm: (1) the initial
situation S0 consists of a flat square continuous material surface on which the
superbush is resting its finger tips (exactly one finger tip rests on each point on
the square); (2) for any n, the superbush transforms Sn into the successor situation
Sn+1 by dividing every square in Sn into a 3 by 3 grid like a tic-tac-toe board and
then punching out the middle square to make a hole (punched-out points are not in
Sn+1); (3) the limit situation Sω is the intersection of all Sn for n finite. The limit
situation is the Sierpinski carpet. Any project guided by a transfinite algorithm is a
super-project. Making the Sierpinski carpet is a super-project. A more physicalistic
super-project (it involves digging) is making the Lakes of Wada. It takes place in a
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universe in which space, time, and matter are all continuous. The Lakes of Wada is
a simple supertask. Koetsier and Allis (1997) describe it like this:

Imagine an island in the ocean on which there are two lakes. We carry out a
project on the island during which the three different kinds of water are kept
separated. On the first day we construct dead end canals starting from the ocean
and from the two lakes in such a way that each point of dry land is at a distance
of less than 1 kilometer from the sea and from the water of both lakes. The
three kinds of water remain separated. On the second half day we extend the
canals in such a way that each dry point is at most 1/2 kilometer from the three
kinds of water. On the following quarter day we continue until each dry point
is less than 1/4 kilometer from the three kinds of water. After two days of work
the island will have been turned into a curve that has the amazing property that
it separates the three kinds of water – they do not mix, while at the same time
each point of the curve can be approached arbitrarily close from each of the
three kinds of water. (p. 293)

A supermind can will theories whose models are infinitary objects. A sufficiently
powerful supermind in a sufficiently rich environment can will the truth of Zermelo-
Fraenkel-Choice (ZFC) set theory by building a concrete model of ZFC. An agent
able to do this would be able to empirically verify the continuum hypothesis. The
environment for such an agent would have to be at least as complex as the least
stage of the hierarchy V that contains a model of ZFC. It would have to be at least
as complex as some level of that hierarchy whose index is an inaccessible cardinal
(Hamilton, 1982, pp. 230–233). Such agents and their environments are physical in
analogically extended senses (e.g., the space-time in which the agent works is even
more divisible than the continuum). A sufficiently powerful supermind can make
sentences in infinitary languages be true.

11. The Hierarchy of Transfinite Minds

11.1. SUPER-PHYSICAL UNIVERSES

A finitary universe is any closed finitary network of FSMs. A finitary universe
splits into an agent A and environment E. The interactions between A and E form
a finitary game. If A is intelligent, then A is a finitary mind. Finitary minds play
finitary games. Finitary games generally have ordinary physical interpretations.
Example: a chess board is a familiar 2D space and chess moves form a familiar 1D
time. The causal laws of chess are the rules for changes of positions (motions) of
the pieces (things).

An infinitary universes is any closed infinitary network of ISMs. An infinitary
universe splits into an agent A and an environment E. The interactions between
A and E form an infinitary game. If A is intelligent, then A is a supermind. Su-
perminds play infinitary games. Some games played by superminds have ordinary
physical interpretations. They are played in continuous space-times with infinitely
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detailed material structures. Causal laws are like those for finitary games. Example:
if A and E play a game by choosing an infinite series of digits, we may visualize
them as writing down digits one after another faster and faster and smaller and
smaller on a paper tape.

It is possible for superminds to play games in universes that are too complex to
be physical in any ordinary sense. These universes are extremely complex objects
in the set-theoretic hierarchy V. They are super-physical systems. A super-physical
system has generalized space, generalized time, and generalized causality. An or-
dinary space is a set of points with a metric (a distance function). More generally:
a space is any set with a metric. A generalized space is any collection that contains
every object needed for playing any possible history of the game. An ordinary
time is a series of instants. More generally: a time is some number line (e.g., the
natural, rational, or real number lines). A generalized time is any linearly ordered
series. Generalized times include the whole ordinal line and the surreal number line
(Conway, 2001). Kitcher (1984, pp. 146–147) talks about supertime as a highly su-
perdenumerable “medium analogous to time, but far richer than time”. Generalized
motions are curves in generalized space-times. Generalized causal laws are just
the rules of any transfinite game. These analogical extensions of ordinary physical
concepts are not likely to extend to arbitrarily complex wholes in V. Superminds
may play games in environments so complex they are purely mathematical. This is
not a shift from the “concrete” to the “abstract”. It is a shift from the simpler to the
more complex.

11.2. SOME SUPERMINDS IN SUPER-PHYSICAL UNIVERSES

Most infinite games are mathematical devices for the construction of infinite series
of situations. Gale and Stewart (1953) is the classical source. Freiling (1984) gives
many examples. The universes for these games are sets. They are infinitely detailed
lifeworlds in which superminds interact. Since these games are presented in the
rather dry terminology of set-theory, they may seem psychologically shallow. This
shallowness may be a false impression. Since we are finite, we have little epistemic
or emotional access to infinitely complex systems. Consequently: we are not likely
to find much drama in the careful selection of sets of real numbers. But an infinite
agent, one able to experience all the properties of these sets as we experience our
own phenomenal world, might live a psychologically rich life in a game world that
seems shallow to us. For such an agent, sets of real numbers might be extremely
beautiful or ugly; the selection of a beautiful set might be an extremely pleasurable
act; the selection of an ugly set very painful. The selection of a certain set according
to a certain strategy is an exercise of skill. It is possible to think of these shallow
numerical or set-theoretical games as the skeletal versions of infinitely complex
games in which the players live psychologically rich lives.

Jech (1984) defines a game he calls a “cut and choose” game. The game is
interesting because – unlike games mentioned before – the players perform dif-
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ferent operations. The White player cuts a set into two disjoint subsets (these
are two portions of the original set); the Black player chooses one portion; the
White player then cuts the set again; the Black player chooses another portion.
The game continues to infinity with alternating cutting and choosing. White wins
if and only if the infinite product of Black’s choices is 0; otherwise Black wins.
The strategies of infinite games are functions that define the moves of players.
It takes infinitely extended memory plus infinite computational power to apply
any strategy that maps arbitrary sequences (of previous moves) onto the player’s
next move. A player who lacks infinitely extended memory has to use strategies
that depend only on finitely many previous moves. The skill of a player (his or
her strategy) depends on his or her memory and computational power. Ciesielski
and Laver (1990) and Scheepers (1993) describe infinite games in which infinite
memory makes a difference.

12. The Absolute Minds

I’ve discussed a variety of endless series of ever greater (ever more complex)
objects. Say an endless series is bounded above by x iff x is greater than every
object in the series. Example: 1/2, 3/4, 7/8 is bounded above by 1. Say machine
x is greater than machine y iff x can do everything that y can do but y cannot
do everything that x can do. So there is an endless series of finite state machines
(FSMs). The endless series of FSMs is bounded above by the universal Turing
machines (UTMs). Any UTM can do what any FSM can do; but any UTM can do
things that no FSM can do. I say there’s an endless series of ever greater infinit-
ary machines. I don’t know whether or not the endless series of supermachines
is bounded above or not. If no, then for any machine there is a greater (more
powerful) machine above and beyond it. If so, then there are some machines greater
than every machine in the endless series of infinitary machines. Say an object of
some kind is absolute iff it is an instance of the kind than which no greater is
possible. Any attempt to define a greater instance of that kind will be logically
inconsistent. I follow Cantor’s distinction of (1) the finite; (2) the infinite; and (3)
the absolute. So a machine greater than every finitary and infinitary machine is an
Absolute Machine.

I tend to think there are Absolute Machines and Absolute Minds. For any ordin-
als κ and λ, there is an infinitary language L(κ , λ). There are games on arbitrarily
large ordinals. As ordinals go, so go languages and games; so also go machines
and minds. The series of machines and minds goes on like the series of ordinals.
It is endless in a very strong sense. I’m arguing by analogy for Absolute Machines
and Minds: just as the series of ordinals is bounded above (by the proper class �),
and just as the series of sets is bounded above (by the proper class V), so also the
series of machines is bounded above by an Absolute Machine and the series of
minds is bounded above by an Absolute Mind. Just as a UTM can do whatever
any other Turing machine can do (including any other UTM), so an Absolute Ma-
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chine can do whatever any logically possible machine can do (including any other
Absolute Machine). Absolute Machines are computationally universal in a very
strong sense. An Absolute Machine contains every finitary and infinitary mind.
It can do whatever any of those minds can do. Absolute Machines are Absolute
Minds. The power of an Absolute Mind is so extreme that it does everything that
every other mind does. If this is right, then Absolute Minds are cognitively or
psychologically indiscernible. They are exact mental copies of one another. If there
are many distinct Absolute Minds, each is the same mind as every other and each
is the same person as every other.

Absolute Minds are those minds than which there are none more powerful or
intelligent. Every Absolute Mind possesses all cognitive perfections. Taliaferro
(1985, p. 139) defines omniscience as “supreme epistemic excellence”. He says
“X is omniscient if and only if it is impossible for there to be a being with greater
cognitive power and this power is fully exercised” (Taliaferro, 1994, p. 287). Royce
(1987) gives a psychologically rich analysis of such omniscience. A notion of
omniscience as supreme cognitive power seems superior to the traditional defin-
ition of omniscience as merely knowing that p iff p is true. It is more dynamic.
An Absolute Mind has the power to produce all truths (by making models of all
consistent theories). If there are Absolute Minds, then all the cognitive operations
of all human and superhuman minds are parts of these Minds.

An Absolute Mind realizes every other mind. It has parts that are indiscernible
from those other minds. Somewhat more precisely, we may (and must) character-
ize Absolute Minds by reflection principles: if M is omniscient, and if p is any
psychological property of M, then there exists some x such that x is a proper part
of M and x instantiates p. Just as reflection principles are central to the study of
extremely complex sets, so computational and cognitive reflection principles are
likely to be important tools for studying very complex machines and minds.

The classical Neoplatonists (Plotinus, Proclus) argued for a trinitarian concep-
tion of God according to which God’s three main hypostases are (1) Unity; (2) the
Divine Mind; and (3) the World Soul. For these Neoplatonists, cognition stops with
the Divine Mind; Unity is above the Divine Mind and so is beyond intelligence.
My view of the hierarchy of minds accords well with this Neoplatonism. The
community of Absolute Minds is a system of indiscernible intellects at the most
complex level of mathematical existence. If Unity is construed as the ground of
being (as Being rather than some being), then indeed Unity has no intelligence.
It surpasses all sets, all machines, all minds. Traditional theists are not likely to
approve of this picture. They are likely to argue that the Mind of God is superior
to all minds. A trinitarian Christian might try to argue that there are exactly three
Absolute Minds. I leave the difficulties of the Trinity and the Mind of God to others.
One need not believe Anselm’s “Proof” to accept the Anselmian definition of God
as that than which no greater is possible. Since the Anselmian definition of God
is the only one that makes any sense to me, I infer that God surpasses even the
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Absolute Minds. For both theist and Neoplatonist, I think the Absolute Minds must
be less than God.

13. Conclusion

According to classical metaphysics, reality is an ordered complexity hierarchy. Ar-
istotle pictured a hierarchy of living thinking substances: plants, animals, humans,
celestial intelligences. Above them all is an Absolute Mind: the Prime Mover. This
Aristotelian divinity is an intellect that thinks about thinking. The Neoplatonists
talked about endless hierarchies of intelligences (Proclus, 1992). Above them all
is an infinitary Absolute Mind: the Divine Mind (Nous). The Medieval Christians
posited choirs of angels. Above them all is the Absolute Mind of God. The story of
the Mind of God is developed in modern thought by Berkeley, Spinoza, and Royce,
among others. Although science has falsified many details of the classical story, its
logical structure lives on.

Many features of classical metaphysics survive in modern mathematics. Math-
ematics pictures the World as an ordered complexity hierarchy. The World is the
iterative hierarchy V of pure sets. The World consists of rank upon rank of in-
creasingly complex objects. It starts with one simple particular object at its bottom
level. The objects at the next level are all the logically possible combinations of all
the objects at all the lower levels. These sets are all concrete particulars. Simpler
sets are members of more complex sets. As sets grow ever more complex they
form points, regions, vectors, fields, space-times, particles, systems of particles
in motion according to causal laws. All possible spatio-temporal-causal systems
(including our actual universe) exist within V. Sets are the ultimate theoretical
entities of deep science – as real as quarks and stars.

I do not oppose mathematics to physics. I advocate a pythagorean ontology
according to which the existence of V is the best explanation for the order and
structure of our physical universe. If V exists, then a hierarchy of all logically
possible machines exists. If all logically possible machines exist, then there are
machines of arbitrarily high complexity that satisfy the biological requirements
of life. If V exists, then a hierarchy of all logically possible organisms exists. If
all logically possible machines exist, then there are machines of arbitrarily high
complexity that satisfy the psychological requirements of intelligence. If V exists,
then a hierarchy of all logically possible minds exists. If my reasoning is right,
then V contains a community of Absolute Minds that live and think supremely far
above all other minds. The modern mathematical World V looks very much like the
classical cosmos – a glorious city of intelligent living machines. If my reasoning is
right, then we live in a very richly and beautifully populated World.
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Notes

1Leslie (2001) continues the classical story in modern scientific terms. I learned of his book too late
for this article. I hope to incorporate his ideas in future work.
2The finite ordinal numbers are the whole numbers 0, 1, 2, 3, and so on. Each ordinal n is the set of
all ordinals less than n. So 0 = {}, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} and so on. The least infinite
ordinal is the set of all finite ordinals. So the set ω = {0, 1, 2, 3,...} is the least infinite ordinal. The
next infinite ordinal is ω + 1 = {0, 1, 2, 3, ...ω}. There are endlessly many greater infinite ordinals
beyond ω.
3I work within the universe of sets and proper classes defined by Von Neumann–Bernays–Godel
class theory (VBG) and the von Neumann theory of ordinal numbers developed in VBG (Hamilton,
1982: chs. 4 and 6).
4Farmer and Belin (1991, p. 818) list these features of living things: existence not as a thing but as
a pattern in space-time; self-reproduction; information storage of a self-representation; metabolism;
functional interactions with the environment; interdependence of parts; stability under perturbations;
the ability to evolve; growth. These features are easily extended to the transfinite (e.g., infinitely
many genes; infinite genetic algorithms). Any thing, finitary or infinitary, ought to have features like
those listed by Farmer and Belin to be living.
5I am not aware of any biologically sound argument for infinite complexity in actual living systems.
Siegelmann (1996), Boucher (1997), and Penrose (1991) are not biologically plausible. Quantum
mechanics (so far from revealing any natural infinitude) seems to prove that human animals are
merely digital machines. Deutsch (1985) argues that quantum computation is just parallel Turing
computation. The quantum mechanical theory of information (Bekenstein and Schiffer, 1990) implies
that cells are only finitary (hence not even Turing machines) Moravec (2000, p. 166) uses Beken-
stein’s quantum mechanical theory of information to calculate the maximum amount of information
in any human animal. He says we each contain about 1045 bits – a small finite number.
6A psychosemantic theory defines the constraints that any psychologically sound intention function
must satisfy. One kind of psychosemantics says that state S of system x means that P iff S optim-
ally causally covaries with P (Stalnaker, 1984, p. 24; Tye, 1995, p. 101). Other approaches include
teleosemantic theories (Millikan) and asymmetric dependency theory (Fodor, 1987, 1990). Glasgow
and Papadias (1992) show how psychosemantic theories might handle imagination. Ortony et al.
(1990) show how to handle emotions. I prefer to analyze the attitudes using a physicalized version of
Hintikka’s modal analysis (Hintikka, 1969, 1975). For example: x sees that p = there is some retinal-
neural state q such that x is in state q, and in all possible universes in which x is in state q, it is the
case that p. The game tree for an agent and environment serves as the system of possible universes
that supports the Hintikkan truth-conditions.
7If n and M are ordinal numbers, then an L(n, M) language has logical operator sequences of length
less than n and quantifier sequences of length less than M. Since every number less than ω is finite,
all sentences in an L(ω, ω) language have finitely long sequences of logical operators and finitely
long sequences of quantifiers. The first-order predicate calculus is the prime example of an L(ω,
ω) language. The lengths of sentences in L(ω, ω) languages can be of any finite length, they are
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potentially infinite. Finite minds (like human animals) use some L(N, M) with both N and M finite.
The language of thought of any supermind is infinitary language L(κ , λ) with κ and λ both greater
than ω.
8I take a resolutely physicalistic attitude to the ontology of finite intelligence. This attitude is deeply
anti-Cartesian. Although I deny the existence of Cartesian minds (res cogitans), I do not thereby deny
the reality of the soul. I take an Aristotelian position: the soul is the form of the body at a level of
abstraction sufficiently high to avoid any reference to particular materiality and sufficiently detailed
to distinguish the body from all other possible organisms. The soul is the algorithmic form of the
body. If someone were to raise religious worries about the immortality of the soul, then I would reply
(1) since the soul is a property, it is eternal; (2) the resurrection of the body is a kind of personal
immortality far more perfect than any disembodied cogitation (especially if that resurrection body
were an infinitely complex organism – a physical supermachine with a supermind).
9Finitary minds understand the infinite by means of finitary descriptions (such as recursive defini-
tions). Poincare (1952, p. 11) says: “reasoning by recurrence ... is the only instrument which enables
us to pass from the finite to the infinite”.
10Although the intelligence of human animals is finite, some will argue that human animals are
merely proper parts of human persons. They will say that human animals are the material parts of
human persons but that these persons have immaterial parts (Cartesian minds) that are infinitely
intelligent. Since I reject Cartesian dualism, I can see only one way that human animals can be
proper parts of human persons. It is that human animals are initial finite parts of human persons
while human super-animals are later transfinite parts of human persons. One way to work this out
is to use something like Hick’s (1976) resurrection theory. Accordingly: earthly human animals are
only finitary machines; earthly human animals are resurrected into infinitary resurrection bodies (into
supermachines). Human persons are infinitary things whose earthly animal parts are all only fintary.
You may be infinitely complex in the future; you are not infinitely complex now.
11Copeland (2000, p. 9) says: “A wide mechanist ... holds that the mind is a machine but countenances
the possibility of information-processing machines that cannot be mimicked by a universal TM, and
allows in particular that the mind may be such a machine”. I’m a wide mechanist. I’m open to the
possibility that earthly human bodies are infinitary.
12A machine is countably infinitely complex iff the least upper bound of the cardinality of its set of
possible states is ω. The following machines are countably infinitely complex: push-down automata
with actually infinitely deep stacks; linear bounded automata (classical Turing machines with a fi-
nitely long tapes determined by the unbounded sizes of their inputs); classical Turing machines whose
tapes are finite but always extendible; classical Turing machines; classical Turing machines that make
non-recursive moves (Giunti, 1997) or that operate on non-recursively defined data (Shagrir, 1997).
13Since this is a game, we need some utility function that assigns outcomes to the players. Let S be
any set of real numbers. If the number 0.d1d2d3d4 ... is in S, then A wins; if not, then E wins. Utility
functions ground the preferences, goals, emotions, attitudes, and the moral and social values of the
players of infinite games.
14Other transfinite machines are analog shift maps (Siegelmann, 1995); real random access machines
(Preparata and Shamos, 1985, p. 1.4); flowchart machines (Blum et. al, 1998).
15Zeno compressions can be nested. You can put ω acts between times 0 and 1/2. Put the first act at
1/4, the second at 3/8, the third at 7/16 and so on. You can put ω more acts between 1/2 and 3/4, and
so on. See Rucker (1995, pp. 66–69).
16For any drawings A and B, and for any point (x, y), let the color of the point (x,y) in the merged
drawing (A ∗ B) be the disjunction of the color of (x,y) in A and B. So point (x, y) is 1 in (A ∗ B) iff
(x,y) is 1 in A or (x,y) is 1 in B.
17We may divide objects and tasks into those that have finitary descriptions and those that have only
infinitary descriptions. Finitary minds like ours have at most finitary representations of infinitary
things (e.g., recursive definitions in L(ω,ω)). We cannot describe any object whose complexity ex-
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ceeds finitary definition in L(ω, ω). At this boundary the superminds themselves take off into the
pythagorean heavens, leaving us in the finitary dust. While we can argue that superminds are, we
have little understanding of what they are. The ability of superminds to perceive, think, and will in
languages greater than L(ω,ω) places them far beyond our comprehension.
18Any infinitary object contains a proper part that is isomorphic to the whole. An infinitary object is
self-reflecting. For instance: in the case of the infinitely self-nested cross, one of the corner crosses
completely reflects the whole. Since no finitary object contains any part with equal complexity, no
finitary object is able to contain a complete and true description of itself. Self-consciousness is the
complete mental self-reflection (self-representation) of the whole mind by a part of the mind. No
finitary mind is completely self-reflecting; hence no finite mind is completely self-conscious; all and
only infinitary minds are self-reflecting; hence all and only infinitary minds are truly self-conscious.

References

Abelson, H. and diSessa, A. (1984), Turtle Geometry: The Computer as a Medium for Exploring
Mathematics, Cambridge, MA: MIT Press.

Axelrod, R. (1984), The Evolution of Cooperation, New York: Basic Books.
Bekenstein, J. and Schiffer, M. (1990), ‘Quantum Limitations on the Storage and Transmission of

Information’, International Journal of Modern Physics, 1 pp. 355–422.
Bhalla, U. and Iyengar, R. (1999), ’Emergent Properties of Networks of Biological Signaling

Pathways’, Science 283, pp. 381–387.
Blum, L., Cucker, F. Shub, M. and Smale, S. (1998), Complexity and Real Computation, New York:

Springer-Verlag.
Boolos, G. and Jeffrey, R. (1980), Computability and Logic (2nd edition), New York: Cambridge

University Press.
Borges, J.L. (1964), Labyrinths, New York: New Directions.
Boucher, A. (1997), ’Parallel Machines’, Minds and Machines 7, pp. 543–551.
Brams, J. (1983), Superior Beings, New York: Springer.
Bray, D. (1995), ‘Protein Molecules as Computational Elements in Living Cells’, Nature 376 (6538),

pp. 307–312.
Ciesielski, K. and Laver, R. (1990), ‘A Game of D. Gale in which One of the Players has Limited

Memory’, Periodica mathematica Hungarica 22, pp. 153–158.
Conway, J. (2001), On Numbers and Games (2nd edition), Natick, MA: A. K. Peters.
Copeland, B.J. (1998a), ‘Super-Turing Machines’, Complexity 4(1), pp. 30–32.
Copeland, B.J. (1998b), ‘Even Turing Machines can Compute Uncomputable Functions’, in C.

Calude, J. Casti, and M. Dinneen, eds., Unconventional models of Computation, New York:
Springer.

Copeland, B.J. (2000), ‘Narrow Versus Wide Mechanism’, Journal of Philosophy 95(1), pp. 5–32.
Cuthbertson, R., Paton, R. and Holcombe, M. (1996), Computation in Cellular and Molecular

Biological Systems, River Edge, NJ: World Scientific.
Danielson, P. (1992), Artificial Morality: Virtuous Robots for Virtual Games, New York: Routledge.
Davies, E.B. (2000), ‘Building Infinite Machines’, British Journal for the Philosophy of Science

52(4), pp. 671–682.
Dennett, D. (1996), Kinds of Minds, New York: Basic Books.
Deutsch, D. (1985), ‘Quantum Theory, the Church-Turing Principle and the Universal Quantum

Computer’, Proceedings of the Royal Society, Series A, 400, pp. 97–117.
Doyle, J. (1991), ‘The Foundations of Psychology’, in R. Cummins and J. Pollock, eds., Philosophy

and AI: Essays at the Interface, Cambridge, MA: MIT Press, pp. 39–78.
Earman, J. and Norton, J. (1996), ‘Infinite Pains: The Trouble with Supertasks’, in A. Morton and S.

Stich, eds., Benacerraf and His Critics, Cambridge, MA: Blackwell, pp. 231–262.



SUPERMACHINES AND SUPERMINDS 185

Farmer, J. and Belin, A. d’A. (1991), ‘Artificial Life: The Coming Evolution’, in C. Langton, C.
Taylor, J. Farmer, and S. Rasmussen, Artificial Life II, Reading, MA: Addison-Wesley, pp. 815–
840.

Fodor, J. (1975), The Language of Thought, Cambridge, MA: Harvard University Press.
Fodor, J. (1987), Psychosemantics, Cambridge, MA: MIT Press.
Fodor, J. (1990), A Theory of Content and Other Essays, Cambridge, MA: MIT Press.
Freiling, C. (1984), ‘Banach Games’, Journal of Symbolic Logic 49(2), pp. 343–375.
Gale, D. and Stewart, F.M. (1953), ‘Infinite Games With Perfect Information’, in H. Kuhn and A.

Tucker, eds., Contributions to the Theory of Games Vol. 2, Annals of Mathematical Studies 28,
Princeton, NJ: Princeton University Press, pp. 245–266.

Giunti, M. (1997), Computation, Dynamics, and Cognition, New York: Oxford University Press.
Glasgow, J. and Papadias, D. (1992), ‘Computational Imagery’, Cognitive Science 16, pp. 355-394.
Hamilton, A. (1982), Numbers, Sets, and Axioms: The Apparatus of Mathematics, New York:

Cambridge University Press.
Hamkins, J.D. and Lewis, A. (2000), ‘Infinite Time Turing Machines’, Journal of Symbolic Logic

65(2), pp. 567–604.
Hick, J. (1976), Death and Eternal Life, New York: Harper and Row.
Hintikka, J. (1969), Models for Modalities, Dordrecht: Reidel.
Hintikka, J. (1975), The Intentions of Intentionality, Dordrecht: Reidel.
Jech, T. (1984), ‘More Game-Theoretic Properties of Boolean Algebras’, Annals of Pure and Applied

Logic 26, pp. 11–29.
Juhl, C. (1995), ‘Is Gold-Putnam Diagonalization Complete?’, Journal of Philosophical Logic 24,

pp. 117–138.
Karp, C. (1964), Languages with Expressions of Infinite Length, Amsterdam: North-Holland.
Kitcher, P. (1984), The Nature of Mathematical Knowledge, New York: Oxford University Press.
Koetsier, T. and Allis, V. (1997), ’‘Assaying Supertasks’, Logique et Analyse 159, pp. 291–313.
Koshland, D.E., Jr. (1980), ‘Bacterial Chemotaxis in Relation to Neurobiology’, Annual Review of

Neurosciences 3, pp. 43–75.
Leibniz, G.W. (1710/1996) Theodicy, trans. E.M. Huggard with modifications by E. Steinhart, Peru,

IL: Open Court.
Leslie, J. (2001), Infinite Minds: A Philosophical Cosmology, New York: Oxford.
Lewis, D. (1986), On the Plurality of Worlds, Cambridge, MA: Blackwell.
Lodish, H., Baltimore, H., Berk, A., Zipusky, S., Matsudaira, P. and Darnell, J. (1995), Molecular

Cell Biology, 3rd edition, New York: W.H. Freeman.
Lovejoy, A. (1936), The Great Chain of Being, Cambridge, MA: Harvard University Press.
Maes, P. (1995), ‘Modeling Adaptive Autonomous Agents’, in C. Langton, ed., Artificial Life: An

Overview, Cambridge, MA: MIT Press, pp. 135–162.
Mandik, P. (2002), ‘Synthetic Neuroethology’, in T. Bynum and J. Moor, eds., Metaphilosophy Spe-

cial Issue: CyberPhilosophy: The Intersection of Philosophy and Computing, Metaphilosophy
33(1/2), pp. 11–29.

Mandlebrot, B. (1978), Fractals: Form, Chance, and Dimension, San Francisco: CA: W.H. Freeman.
McAdams, H. and Shapiro, L. (1995), ‘Circuit Simulation of Genetic Networks’, Science 269, pp.

650–656.
Moravec, H. (1988), Mind Children: The Future of Robot and Human Intelligence, Cambridge MA:

Harvard University Press.
Moravec, H. (2000), Robot: Mere Machine to Transcendent Mind, New York: Oxford University

Press.
Ortony, A., Clore, G., and Collins, A. (1990), The Cognitive Structure of Emotions, New York:

Cambridge University Press.
Penrose, R. (1991), The Emporer’s New Mind, New York: Penguin Books.
Poincare, H. (1952), Science and Hypothesis, New York: Dover Publications.



186 ERIC STEINHART

Preparata, F. and Shamos, M. (1985), Computational Geometry: An Introduction, New York:
Springer.

Proclus (1992), The Elements of Theology, trans. E.R. Dodds, New York: Oxford University Press.
Prusinkiewicz, P. and Lindenmayer, A. (1990), The Algorithmic Beauty of Plants, New York:

Springer.
Ptashne, M. (1996), A Genetic Switch: Phage (Lambda) and Higher Organisms, 2nd edition, New

York: Blackwell Science.
Quine, W.V. (1969), Ontological Relativity and Other Essays, New York: Columbia University Press.
Quine, W.V. (1976), ‘Wither Physical Objects?’, Boston Studies in the Philosophy of Science 39, pp.

497–504.
Quine, W.V. (1978), ‘Facts of the Matter’, Southwestern Journal of Philosophy 9(2), pp. 155–169.
Quine, W.V. (1981), Theories and Things, Cambridge, MA: Harvard University Press.
Royce, J. (1927), The World and the Individual, First Series, Supplementary Essay, New York: The

Macmillan Company.
Royce, J. (1987), ‘The Conception of God’, in J. Royce, J. Le Conte, G. Howison and S. Mezes, The

Conception of God, New York: The Macmillan Company.
Rucker, R. (1995), Infinity and the Mind, Princeton, NJ: Princeton University Press.
Russell, S. and Norvig, P. (1995), Artificial Intelligence: A Modern Approach, Englewood Clifs, NJ:

Prentice Hall.
Scheepers, M. (1993), ‘Variations on a Game of Gale (I): Coding Strategies’, Journal of Symbolic

Logic 58(3), pp. 1035–1043.
Scott, J. and Pawson, T. (2000), ‘Cell Communication: The Inside Story’, Scientific American 282(6),

pp. 72–79.
Shagrir, O. (1997), ‘Two Dogmas of Computationalism’, Minds and Machines 7(3), pp. 321–344.
Siegelmann, H. (1995), ‘Computation beyond the Turing Limit’, Science 268, pp. 545–548.
Siegelmann, H. (1996), ‘The Simple Dynamics of Super Turing Theories’, Theoretical Computer

Science 168, pp. 461–472.
Smart, J.J.C. (1972), ‘Space’, in P. Edwards, ed., The Encyclopedia of Philosophy, New York:

Macmillan Publishing, Vol. 7, pp. 506–511.
Smolgyi, R. and Sniegoski, C. (1996), ‘Modeling the Complexity of Genetic Networks’, Complexity

1(6), pp. 45–63.
Sorensen, R. (1994), ‘Infinite Decision Theory’, in J. Jordan, ed., Gambling on God. London:

Rowman and Littlefield, pp. 139–159.
Stalnaker, R. (1984), Inquiry, Cambridge, MA: MIT Press.
Steinhart, E. (2001), ‘Persons vs. Brains: Biological Intelligence in the Human Organism’, Biology

and Philosophy 16(1), pp. 3–27.
Steinhart, E. (2002), ‘Logically Possible Machines’, Minds and Machines 12(2), pp. 259–280.
Taliaferro, C. (1985), ‘Divine Cognitive Power’, International Journal for Philosophy of Religion

18, pp. 133–140.
Taliaferro, C. (1994), Consciousness and the Mind of God, New York: Cambridge University Press.
Tye, M. (1995), Ten Problems of Consciousness, Cambridge, MA, MIT Press.
Yockey, H. (1992), Information Theory and Molecular Biology, New York: Cambridge University

Press.
Yuh, C.-H. et al. (1998), ‘Genomic cis-Regulatory Logic’, Science 279, pp. 1896–1902.


