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Abstract

Interpretation is the process whereby a hearer reasons to an interpretation of a speaker’s discourse.
The hearer normally adopts a credulous attitude to the discourse, at least for the purposes of interpreting
it. That is to say the hearer tries to accommodate the truth of all the speaker’s utterances in deriving an in-
tended model. We present a nonmonotonic logical model of this process which defines unique minimal
preferred models and efficiently simulates a kind of closed-world reasoning of particular interest for hu-
man cognition.

Byrne’s “suppression” data (Byrne, 1989) are used to illustrate how variants on this logic can capture
and motivate subtly different interpretative stances which different subjects adopt, thus indicating where
more fine-grained empirical data are required to understand what subjects are doing in this task.

We then show that this logical competence model can be implemented in spreading activation net-
work models. A one pass process interprets the textual input by constructing a network which then com-
putes minimal preferred models for (3-valued) valuations of the set of propositions of the text. The neu-
ral implementation distinguishes easy forward reasoning from more complex backward reasoning in a
way that may be useful in explaining directionality in human reasoning.

Keywords: Suppression task; Nonmonotonic logic; Semantic interpretation; Working memory; Neural
networks

1. Introduction

This paper proposes a new engagement between logic and the study of the cognitive pro-
cesses of deductive reasoning. Most concretely we propose a default logical model of some
data from Byrne’s “suppression task” (Byrne, 1989). This model reveals how results from the
logic programming literature yield the implementability of the model in spreading activation
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networks. More generally, we show how this logical model changes our construal of the cogni-
tive issues. This proposal connects several seemingly unconnected topics and we owe the
reader an outline of their new relations:

1. We distinguish between two main kinds of logical reasoning: reasoning from a fixed in-
terpretation of the logical and nonlogical terms in the premisses, and reasoning toward an in-
terpretation of those terms.

2. We illustrate the distinction by means of Byrne’s “suppression task” (Byrne, 1989).
Byrne took her data (a “failure” to apply classical logic) to be evidence against rule-based ac-
counts of logical reasoning and favouring “mental models”; but this follows only if experimen-
tal subjects in her task reason from a fixed interpretation. If what they are doing is reasoning to
a consistent interpretation of the experimental materials, their answers can be shown to make
perfect logical sense, albeit in a different logic.

3. We then show that reasoning toward an interpretation has an important feature in com-
mon with planning, namely model-construction, and can be treated by the same logical tools,
for which we take logic programming with negation as failure. This is a particular form of
nonmonotonic logic which has be shown to be extremely useful in discourse interpretation in
(van Lambalgen and Hamm, 2004).

4. We show how the deviation from classical logical reasoning found in Byrne’s data and
those of others (e.g., Dieussaert, Schaeken, Schroyen and d’Ydewalle [2000]) can be ac-
counted for in the proposed formalism.

5. We then turn to a possible neural implementation of the proposed formalism for reason-
ing toward an interpretation (or, alternatively, for planning). Here the semantics of the formal-
ism, Kleene’s strong three-valued logic, becomes prominent, since it allows a slick implemen-
tation the logic in terms of isomorphic neural nets coupled by inhibitory connections. We view
this implementation as a contribution toward the study of the involvement of the memory sys-
tems in reasoning. Also the observed difference in performance between “forward” reasoning
patterns (e.g., modus ponens) and “backward” reasoning patterns (e.g., modus tollens) is easily
explained in this setup.

6. The discussion section considers the much-debated issue of the computational complex-
ity of nonmonotonic reasoning, and relates the material in the body of the paper to so-called
“dual process” theories of reasoning (for which see e.g., Pollock, 1991, Stanovich, 1999, and
Evans, 2003).

The psychology of reasoning literature alludes to the implication of defeasible processes in
interpretation at a number of points, and there are several different logical and computational
frameworks for modelling defeasible reasoning in AI. However, it should be clear that we pro-
pose here nothing less than a fundamental change in the standards of the field, and the conse-
quent goals and treatments of evidence. Many psychologists would have us accept that logic is
a quite separate endeavour from psychology and that logical models are somehow merely
“technical.” But it was (Johnson-Laird, 1983) himself who proposed that the psychology of
reasoning requires competence models as well as performance models. With this much even
the mental logicians can agree. Mental models theory contains within itself various different
proposals about competence models for various tasks, but these are rarely clearly separated
from the performance modelling, nor, crucially here, even distinguished from each other.
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Formal logic is a discipline which studies competence models of reasoning, and which pro-
vides a body of systems and mathematical techniques for creating others. The inter-relations
between systems are well understood from a century’s worth of study. Psychologists’ failure to
exploit this knowledge, the existing systems, and the available techniques for creating new
competence models, has led them, with few exceptions, to fail to make basic psychological dis-
tinctions (e.g., between defeasible interpretation and monotonic derivation here) and to fail to
make simple predictions from the logical distinctions they have made (e.g., that deontic and
descriptive conditionals pose quite different problems in the selection task (Stenning and van
Lambalgen, 2004). Indeed a substantial proportion of psychological effort has gone into show-
ing that logic cannot provide insight into the basis of human reasoning, with disastrous conse-
quences for the psychology of reasoning. We maintain, on the contrary, that using these logical
systems as competence models opens up the possibility of much richer psychological accounts
because the variety of systems and their relations allow modelling of the many different things
that subjects are doing within and between experiments.

This paper uses formal-logical machinery extensively, and some may think excessively. But
for those who feel that the logical technicalities are not needed for a psychological understand-
ing, we offer the following analogy: in the same way as optics is the geometry of light rays,
logic is the mathematics of reasoning systems. No one would maintain that the technicalities of
optics are irrelevant to how the visual system infers, say, form from motion. Likewise, no con-
sideration of actual human reasoning processes can proceed without careful attention to math-
ematical constraints on these processes.

1.1. Two kinds of reasoning

Our most general aim in this paper is to differentiate interpretation tasks from derivation
tasks with which they are sometimes confused, and in doing so, to establish a productive rela-
tion between logical and psychological studies of human reasoning and memory. So we should
start by saying what we include under the term interpretation. We intend to use the term
broadly for all the structures and processes which connect language to the specifics of the cur-
rent context.

All men are mortal. Socrates is a man. So he is mortal. are two premisses and a conclu-
sion. Without interpretation they have no truth values. Interpreted in the currently relevant
range of contexts, both premisses may be true, or one or other or both false e.g., because
Socrates is immortal in his appearance in the works of Plato, or where Socrates is a dog.
Even if both are true, the “he” in the conclusion may refer to someone other than Socrates.
Agreeing about what is going to count as being a man or mortal, who Socrates is in the cur-
rent argument, and the antecedent of “he” are all parts of the process of interpretation. Un-
der one interpretation anyone who has died is definitely not immortal, whereas under an-
other this may not be the case. Women may or may not be intended to be included in the
denotation of “men,” and so on.

Our claim in this paper is that central logical concepts such as logical category, truth, falsity
and validity can also vary across interpretations; we will therefore refer to these concepts as
“parameters.” For instance, we propose to apply a logic which makes “if ... then” into some-
thing other than a sentential connective, and the notion of validity into “truth in all preferred
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models.” If we are right that the logic proposed is an appropriate model for certain kinds of dis-
course then the parameters characterizing this logic will have to be set in the process of assign-
ing an interpretation, with the psychological consequence that they may also be the subject of
misunderstanding when parties make different settings.

Such misunderstandings are, we claim, endemic in the communication between psycholo-
gists and their subjects in reasoning tasks. Elsewhere we have argued that Wason’s selection
task can be understood as largely invoking interpretative processes in subjects (Stenning and
van Lambalgen, 2001, Stenning and van Lambalgen, 2004, Stenning and Cox, in press) have
shown that syllogistic reasoning has, for the typical undergraduate subject, significant inter-
pretative components, and that these interpretative processes play an important role in deter-
mining subsequent reasoning. Here we extend this approach to Byrne’s suppression task
(Byrne, 1989)—a more obviously interpretative task than either the selection task or syllo-
gisms. The suppression task is a case of what we will call credulous text intepretation, where,
by definition, listeners engage in credulous text interpretation when they attempt to guess the
speaker’s intended model (i.e., a model which makes the speakers’ utterances true and which
the speaker intends the hearer to arrive at). A credulous attitude to interpretation contrasts with
a sceptical attitude under which a hearer seeks countermodels of the speaker’s statements—
models which make all the speaker’s premisses true but their conclusion false.

This contrast between credulous and sceptical attitudes underlies one of the most pervasive
logical contrasts between classical monotonic and nonclassical nonmonotonic concepts of va-
lidity. Thus we wish to put forward a picture of cognition which takes logical categories seri-
ously—one in which participants engaging in discourse are thereby constructing their own in-
terpretations appropriate to their purposes, and this requires the invocation of multiple logical
systems.

The history of the confusion between interpretation and derivation processes in psychology
is important to understanding the point of the present paper. Logic has always assumed that the
process of interpretation of a fragment of language (an argument) into a formal representation
is a substantial process, and even traditional logic at least provided a characterisation of what
constituted a complete interpretation (and the range of possible such interpretations).

In traditional, pre-symbolic. logic, it was assumed that logic could say little about the
process whereby assumptions were adopted, rejected, or modified, or how alternative inter-
pretations of natural languages into artificial ones was achieved. Traditional logical theory
narrowly construed was pretty much defined by the limits of what could be said about rea-
soning from interpretations wheresoever those interpretations came from. Nevertheless, in-
terpretation was always assumed to be a substantial part of the process of human reasoning,
and much of traditional logical education focussed on learning to detect illicit shifts of inter-
pretation within arguments—equivocations. It also trained students to distinguish “fallacies”
which can be viewed as patterns of assumption easily mistaken for valid patterns of conclu-
sion, thus confusing interpretative with derivational processes.1 Traditional logic may have
had no formal theory of interpretation but it had very prominent place-holders for such an
apparatus, and considerable informal understanding of it. It was obvious to all concerned
that interpretation was the process whereby content entered into the determination of form.
We shall see below, in section 2.1, that interpretation plays a much more explicit role in the
modern conception of logic.
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1.2. The suppression task and its role in the psychology of reasoning

Suppose one presents a subject with the following innocuous premisses:

1. If she has an essay to write she will study late in the library. She has an essay to write.

In this case roughly 90% of subjects draw the conclusion “She will study late in the library.”
Next suppose one adds the premiss

2. If the library is open, she will study late in the library.

In this case, only 60% concludes “She will study late in the library.”
However, if instead of (2) the premiss

3. If she has a textbook to read, she will study late in the library.

is added, then the percentage of “She will study late in the library”—conclusions is compara-
ble to that in (1).

These observations are originally due to Ruth Byrne (Byrne, 1989), and they were used by
her to argue against a rule-based account of logical reasoning such as found in, e.g., (Rips,
1983). For if valid arguments can be suppressed, then surely logical inference cannot be a mat-
ter of blindly applying rules; and furthermore the fact that suppression depends on the content
of the added premiss is taken to be an argument against the role of logical form in reasoning.
We will question the soundness of the argument, which we believe to rest on two confusions,
one concerning the notion of logical form, the other concerning the aforementioned distinction
between reasoning from and reasoning to an interpretation. But we agree that the data are both
suggestive and important. We will give a brief overview of how these data have been treated in
the literature following on from Byrne’s paper, and will provide some reasons to think that
these treatments may not be the last word. Readers not interested in the survey can move on to
section 1.2.4 without loss.

We start with Byrne’s explanation in (Byrne, 1989) of how mental models theory explains
the data. “Mental models” assumes that the reasoning process consists of the following stages:

(i) first the premisses are understood in the sense that a model is constructed on the basis
of general knowledge and the specific premisses

(ii) an informative conclusion is read off from the model
(iii) this conclusion is checked against possible alternative models of the situation.

In this particular case the model for the premisses p → q, r → q that is constructed depends
on the content of p and r, and the general knowledge activated by those contents. If r represents
an alternative, the mental model constructed is one appropriate to the formula p ∨ r → q, and
the conclusion q can be read off from this model. If however r represents an additional condi-
tion, that model is appropriate to the formula p ∧ r → q, and no informative conclusion follows.

There are several problems with this explanation and Byrne’s use of the suppression effect
in the “rules versus models” debate. The first is that “rules” and “models” may not be as mutu-
ally exclusive as they are often presented, and in particular there may be both “rules” and
“models” explanations of what is going on (Stenning and Oberlander, 1995, Stenning and
Yule, 1997). The “mental rules” account of logical reasoning is falsified only on a somewhat
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simplistic view of the logical form of the experimental materials. As will be seen below, an ac-
count of logical form more in line with current logical theorizing shows that in the paradigm
case (2), modus ponens is simply not applicable.

The second problem is that the “models” explanation seems more a redescription of the data
then a theory of the processing that is going on in the subject’s mind when she arrives at the
model appropriate for p ∧ r → q: exactly how does general knowledge lead to the construction
of this model? It is a virtue of Byrne’s proposed explanation that it generates this question, but
we do not think it has been solved by mental modellists. It is precisely the purpose of this paper
to propose a solution at several levels, ranging from the logico-symbolic to the neural. We do
so because we believe that the suppression task encapsulates important aspects of the process
of natural language interpretation, which have wider implications as well (for some of these
see (van Lambalgen and Hamm, 2004); also see the paper (van Lambalgen and Smid, 2004) on
the relation between reasoning patterns and executive defects in autism). In the remainder of
this review we discuss some work on the suppression task related to interpretative processes,
and we indicate areas where we believe further work (such as that presented here) needs to be
done. In order to facilitate the discussion of other contributions it is useful to make some pre-
liminary distinctions.

The benefit of seeking formal accounts of interpretations is that it forces one to be clear
about the task as conceived by the subject/experimenter. Unfortunately, few authors have been
entirely clear about what they consider to be the (range of) interpretation of the materials
which subjects should make, let alone what proportions of subjects actually adopt which inter-
pretations. For example, although a considerable number of Byrne’s subjects (about 35%)
withdraw the modus ponens inference after the second conditional premiss is presented, many
more (about 65%) continue to draw the inference. What interpretation of the materials do these
subjects have? If it is the same, then why do they not withdraw the inference too? And if it is
different, then how can it be accommodated within the semantic framework that underpins the
theory of reasoning? Does failure to suppress mean that these subjects have mental logics with
inference rules (as Byrne would presumably would have interpreted the data if no subject had
suppressed)? The psychological data is full of variation, but the psychological conclusions
have been rather monolithic.

(Lechler, 2004) used informal interviewing techniques to elicit subjects’ likely interpreta-
tions of similar materials and showed that a wide range of interpretations is made.

The psychological literature has discussed some varieties of interpretation, and in particular
it has distinguished between a suppositional and a probabilistic interpretation. It is worth our
while to discuss these briefly, since the task becomes determinate only when the interpreta-
tions are. In the end we shall query how radically these interpretations really differ, but for now
the distinction is useful.

1.2.1. Suppositional interpretations
Subjects may choose to interpret the task “suppositionally” in the sense of seeking a inter-

pretation of the materials in which all the conditionals are assumed to be absolutely true, and
proceeding from there by deduction. Implicitly, (Byrne, 1989) assumes that this is what sub-
jects do, while assuming furthermore that subjects adopt the material implication as their
model of the conditional. As we will see below, the combination of the two assumptions has
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been criticized (rightly, in our view), but it should be pointed out that one may formulate the
suppositional interpretation also as: seeking an interpretation of the materials in which all con-
ditionals are assumed to be true as eventually interpreted. The rub is in the italicized phrase:
we need not assume that the prima facie interpretation of a discourse is also definitive. In par-
ticular the logical form assigned to a statement on first reading (or hearing) may be substituted
for another one upon consideration. Only if the proviso expressed by the italicized phrase is
disregarded, can the suppression effect be taken to falsify “rule” theories. The reader may be
forgiven if at this stage it is unclear how the phrase “as eventually interpreted” can be given for-
mal content; explaining this will be task of the technical part of the paper.

It is of some importance to note that when using the expression “deduction” as above, it is
not implied that the mental process involved is derivation in classical logic. What we mean is
that the processes are such as to yield an interpretation (or re-interpretation) of the premisses
which we can entertain as true (what we call a credulous interpretation), from which one can
then proceed to deduce consequences by whatever logic one finds appropriate.

There are however circumstances in which we would be well-advised to adopt a
non-credulous interpretation. Consider the possiblity that the succeeding conditionals are as-
serted by different speakers than the initial ones, and suppose it is clear that they are intended to
voice disagreements:

Speaker A:
“If she has an essay, she’s in the library—she’s a very diligent student you know”
Speaker B:
“Nonsense! If her boyfriend has called she’ll be at the cinema—she’s an airhead”
Now it would be utterly inappropriate to credulously accomodate. The dialogue must be

represented as involving a contradiction and a different, non-credulous logic is required to do
that. Classical logic is useful here, because it allows one to declare a rule to be false if there is a
counterexample. By contrast, credulous logics such as the nonmonotonic logic we will be us-
ing here do not allow the possibility for falsifying a rule, since putative counterexamples are
re-interpreted as exceptions. The following terminology is intended to capture these distinc-
tions. An absolute-suppositional interpretation is one in which the discourse-material (here the
conditionals) is taken at face-value, without the need or indeed the possibility for
re-interpretation. A suppositional interpretation per se is one in which re-interpretation is
allowed.

1.2.2. Probabilistic interpretations
The literature on the suppression task contrasts suppositional readings, as explained above,

with “probabilistic” readings in which the strength of association between antecedent and con-
sequent of the conditionals is variable. The intuition behind this is that a second conditional
premiss may decrease that strength, in which case a subject is no longer willing to draw a con-
clusion. One way to formalize this idea is to express the conditional “if A then B” as a condi-
tional probability P(B|A) = x. The task is then interpreted as judging how the arrival of subse-
quent premisses affects the conditional probabilities of the truth of the candidate conclusions.
However, there are are other ways of conceiving “strength of association”; see for example the
discussion of (Chan and Chua, 1994) below.
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There is a clear difference, both theoretically and empirically, between absolute-suppo-
sitional and probabilistic readings; but one outcome of the analysis will be that the probabilis-
tic interpretation can do the work assigned to it only if the subject may re-interpret the materi-
als as postulated in the suppositional interpretation. Armed with these distinctions, we now
turn to a brief inventory of some important previous work on the suppression task, in chrono-
logical order.

1.2.3. Review of work on the suppression task
A number of authors believe that the main problem with the “mental models” account of the

suppression effect lies in its assumption of an absolute connection between antecedent and
consequent. Thus, (Chan and Chua, 1994) upbraid both the “rules” and “models” camps for
failure “to give a principled account of the interpretative component involved in reasoning.”
Chan and Chua propose a “salience” theory of the suppression task, according to which ante-
cedents are more or less strongly connected with their consequents—“operationalised as rat-
ings of perceived importance (of the antecedent in the second conditional premises) as addi-
tional requirements for the occurrence of the consequent (Chan and Chua, 1994, p. 222).” Thus
Chan and Chua adopt a “weak regularity” interpretation of the conditional instead of the mate-
rial implication (i.e., more like a conditional probability), and they assume their subjects do
too. They correctly argue that both the “rules” and the “models” theories do not fit this inter-
pretation, because

[W]e believe that in the suppression experiments, the way subjects cognise the premiss “If R then Q”
may be more fine-grained than merely understanding the antecedent as an additional requirement or a
possible alternative. (Chan & Chua, 1994, p. 222)

Their main experimental manipulation accordingly varies the strengths of the connections be-
tween antecedents and consequents, and shows that the magnitude of the suppression effect de-
pends upon such variations.

(George, 1995) presents strong evidence that subjects vary as to whether they adopt an
absolute-suppositional or a statistical-tendency interpretation of the materials, and that the
proportion of interpretations is strongly affected by the response modes offered. By getting
subjects to first rate their beliefs in the conditionals used, he showed that about half his sub-
jects adopted absolute-suppositional interpretations in which modus ponens was applied re-
gardless of the subjects’ belief in the conditional, whereas for the other half of subjects there
was a strong correlation between their degree of belief in, and their willingness to draw con-
clusions from, conditionals. He further shows that the higher incidence of “suppression” of
the conditional in his population relative to Byrne’s is substantially due to offering response
categories graded in likelihood. George was the first to observe that instead of being seen as
contributing to a debate between mental models and mental logics, Byrne’s results point to
some non-standard forms of reasoning which are outside the scope of both theories. As far
as formal theories of these non-standard patterns go, George mentions (Collins, 1978) and
(Collins and Michalski, 1989).

(Stevenson and Over, 1995) present an account of the suppression effect which is based on a
probabilistic interpretation, along with four experiments designed to support the idea that sub-
jects at least may interpret the materials of Byrne’s experiment in terms of conditional proba-
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bilities. Their methods of encouraging a probabilistic interpretation are interesting. Apart from
the fact that subjects were asked to make judgements of (qualitative) probabilities of conclu-
sions, in their Experiment 2 the instructions were to imagine that the premisses were part of a
conversation between three people (our italics). Presumably, having three separate sources was
intended to diminish the likelihood of subjects focussing on the sources’ intentions about the
relations between the statements ie. to prevent subjects interpreting the statements as a dis-
course.

While accepting that some subjects do interpret the materials suppositionally, Stevenson
and Over believe that this is somehow unnatural and that the probability-based interpretations
are more natural. Two quotes give a flavour of their position. In motivating the naturalness of a
probabilistic interpretation they argue that

…it is, in fact, rational by the highest standards to take proper account of the probability of one’s
premisses in deductive reasoning (Stevenson and Over, 1995, p. 615).

…performing inferences from statements treated as absolutely certain is uncommon in ordinary rea-
soning. We are mainly interested in what subjects will infer from statements in ordinary discourse
that they may not believe with certainty and may even have serious doubts about (Stevenson and
Over, 1995, p. 621).

In our opinion, at least two issues should be distinguished here—the issue what knowledge
and belief plays a role in arriving at an interpretation, and the issue whether the propositions
which enter into those interpretations are absolute or probabilistic. We agree that subjects fre-
quently entertain interpretations with propositions which they believe to be less than certain.
We agree that subjects naturally and reasonably bring to bear their general knowledge and be-
lief in constructing interpretations. And we agree that basing action, judgement or even belief
on reasoning requires consideration of how some discourse relates to the world. But we also
believe that subjects can only arrive at less than absolute interpretations (anymore than at abso-
lute interpretations) by some process of constructing an interpretation. Stevenson and Over
need there to be a kind of discourse in which statements are already interpreted on some range
of models known to both experimenter and subject within which it is meaningful to assign like-
lihoods. Most basically, hearers need to decide what domain of interpretation speakers intend
before they can possibly assign likelihoods.

So how are we to interpret claims that subjects’ interpretations are “probabilistic”? First
there is a technical point to be made. Strictly speaking, of course, one is concerned not with the
probability of a premiss but with a presumably true statement about conditional probability. In
that sense the suppositional and probabilistic interpretation are in the same boat: the authors
cannot mean that subjects may entertain serious doubts about their own assignments of condi-
tional probabilities. In fact, in this and other papers on probabilistic approaches to reasoning
there is some ambiguity about what is intended. At one point we read about “probability of
one’s premisses,” only to be reminded later that we should not take this as an espousal of the
cognitive reality of probability theory: “Even relatively simple derivations in that system are
surely too technical for ordinary people (Stevenson and Over, 1995, p. 638).” So there is a real
question is to how we are to cidentally, interpret occurrences of the phrase “conditional proba-
bility.” Oaksford and Chater (2003) present models of probabilistic interpretations of the sup-
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pression task and show that these models can fit substantial parts of the data from typical sup-
pression experiments. What is particularly relevant in the current context is that these authors,
like Stevenson and Over, do not present the probability calculus as a plausible processing
model, but merely as computational-level model in Marr’s sense—that is a model of what the
subjects’ mental processes are “designed” to perform (Marr, 1982, p. 25). In contrast, the
nonmonotonic logic presented here as a computational model for the suppression effect is also
intended as a processing model, via the neural implementation given in section 5.

The most important point we want to make about probabilistic interpretations is this: proba-
bilistic and suppositional interpretations share an important characteristic in that they neces-
sarily require the same interpretative mechanisms. For instance, as designers of expert systems
well know, it is notoriously difficult to come up with assignments of conditional probabilities
which are consistent in the sense that they can be derived from a joint probability distribution.
This already shows that the probabilistic interpretation may face the same problems as the
suppositional interpretation: both encounter the need to assure consistency.

Now consider what goes into manipulating conditional probabilities of rules, assuming that
subjects are indeed able to assign probabilities.4 Recall that an advantage of the probabilistic
interpretation is supposed to be that conditional probabilities can change under the influence of
new information, such as additional conditionals. What makes this possible?

Let the variable Y represent the proposition “she studies late in the library,” X the proposi-
tion “she has an essay,” and 2: “the library is open.” Probabilistic modus ponens then asks for
the probability P(Y | X = 1). It is clear that if the first conditional were to be modelled as a con-
ditional probability table of the form P(Y | X), and the second as P(Y | Z), the setup trivializes,
for then the second conditional cannot influence the conditional probability we are interested
in.

What presumably happens instead is that the premisses are first integrated into a Bayesian
network which represents causal (in)dependencies, and which determines the conditional
probabilities that have to be estimated. For instance, the processing of an additional premiss as
the second conditional is represented by the move from a Bayesian network of the form de-
picted in Fig. 1, to one of the form as depicted in Fig. 2.
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This structure would make the subject realize that what she can estimate is the conditional
probability table for P(Y | X, Z), rather than those for P(Y | X) and P(Y | 2). The additional char-
acter of the premiss is reflected in the entry in the table which says P(Y = 1 | X = l , Z = 0) = 0. As
a consequence we have P(Y = 1 | X = 1) = P(Y = 1 | X = 1, Y = 1)P(Z = I), i.e., probabilistic mo-
dus ponens will be suppressed in the absence of further information about P(Z) .

Now let us see what happens in the case of an alternative premiss, where Z is “she has a text-
book to read.” The specific alternative character can only be represented by a different
Bayesian network, which now involves an OR variable (i.e. the distinction as defined by the
standard truth table), as in Fig. 3.

More complicated cases can be imagined, involving conditional premisses which are not
clearly either additional or alternative. The upshot of this discussion of (Stevenson and Over,
1995) is that moving to a probabilistic interpretation of the premisses does not obviate the need
for an interpretative process which (a) constructs a model for the premisses, and (b) conducts a
computation on the basis of that model. This is necessary whether the premisses are interpreted
probabilistically or logically, although doubtless much more challenging to model in the
probabilistic case.

We close with a discussion of a more recent restatement of Byrne’s own position in (Byrne,
Espino and Santamaria, 1999). Byrne provides a slightly more detailed explanation of the
suppression effect in the “mental models” framework, pointing to its emphasis on
counterexamples

According to the model theory of deduction, people make inferences according to the semantic prin-
ciple that a conclusion is valid if there are no counterexamples to it (Byrne et al., 1999, p. 350)3

and going on to argue against Stevenson and Over that

Our counterexample availability explanation of the suppression effect … suggests that people disbe-
lieve not the truth of the premisses, but the validity of the conclusion, because they can readily think
of a counterexample to it. On our account, people do not doubt the truth of either of the conditional
premisses: A conditional that has an antecedent that is insufficient but necessary for the consequent is
no more uncertain or doubted than a conditional which has an antecedent that is sufficient but not
necessary (Byrne et al., 1999, p. 353).

The explanation thus attempts to stay with a classical concept of validity and, in a roundabout
way, to retain classical logic’s interpretation of the conditional as material implication as the
“basic” meaning of conditionals. An additional premiss is taken to make subjects aware that
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the antecedent of the main conditional is not sufficient for its consequent, and subjects are sup-
posed, as a result, to invert the conditional, as evidenced by the non-suppression of the fallacies
denial of the antecedent and affirmation of the consequent (Byrne et al., 1999, p. 364). Indeed,
going one step further and adding both an additional and an alternative premiss then suppresses
all inferences (Experiment 4, [Byrne et al., 1999, p. 364]). The interpretation of this final ex-
periment is interesting:

The suppression of valid inferences and fallacies indicates that people can interpret a conditional
within a coherent set of conditionals as supporting none of the standard inferences whatsoever. A
conditional can be interpreted as a “non-conditional,” that is, as containing an antecedent that is nei-
ther sufficient nor necessary for its consequent. (Byrne et al., 1999, p. 364)

If one now inquires how this “non-conditional” is defined, one is referred to Table 2 [Byrne et
al., 1999, p. 349] where one finds that it is determined by the truth table of a tautology. This we
take to be a reductio ad absurdum of the attempt to model conditionals using tools from classi-
cal logic only, an attempt already made inauspicious by the weight of linguistic evidence
against it. As we will see below, nonmonotonic accounts of the conditional allow a more
fine-grained study of when and why the four inference patterns are (in)applicable, which go
much beyond saying that none applies. It therefore comes as something of a surprise to see that
the penultimate section of (Byrne et al., 1999) is entitled “Suppression and the non-mono-
tonicity or defeasibility of inferences,” where it is claimed that “the model theory attempts to
provide an account of one sort of non-monotonic reasoning, undoing default assumptions … ”
(Byrne et al., 1999, p. 370). We have been unable to give formal substance to this claim, but if
true the “mental models” solution and the one given here should be mutually translatable, and
we look forward to seeing such a proof.

1.2.4. Conclusions and outlook
A common thread through the articles reviewed here is that their authors try to explain the

suppression effect by assuming a link between the antecedent and consequent of a rule which is
different from material implication. This is certainly the correct way to go, but it leaves several
questions unanswered. Human reasoning may well mostly be about propositions which are
less than certain, and known to be less than certain, but our processes of understanding which
meaning is intended have to work initially by credulously interpreting the discourse which de-
scribes the situation, and in doing so accommodating apparent inconsistencies, repairs and re-
visions. For instance, only after we have some specification of the domain can we start consis-
tently estimating probabilities in the light of our beliefs about what we have been asked to
suppose. Of course, our judgements about the likely intended interpretation are as uncertain as
all our other judgements, but we judge how to accomodate utterances in a way that makes them
absolutely consistent.

The good news about the “mental models” approach is that it draws attention to this inter-
pretative process, but it simultaneously fails to distinguish between reasoning to and reasoning
from an interpretation, and it is sorely lacking in detail. The present paper shows that a much
more explicit approach to interpretation is possible once one accepts the lessons from the au-
thors discussed above (and from linguistic discussions about the meaning of conditionals; see
for example (Stenning and van Lambalgen, 2001, Stenning and van Lambalgen, 2004,
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Traugott et al., 1982, Athanasiadou and Dirven, 1997), that subjects generally allow rules to
have exceptions. It will be seen that there is in fact an intimate connection between excep-
tion-handling and interpretation of discourse. As a first step in that direction, we will now look
at an area where efficient exception-handling is of prime importance, namely planning.

1.3. Logic, working memory and planning

In some ways classical logic is the nemesis of working memory. Consider what is involved
in checking semantically whether an argument of the form ϕ1, ϕ2/ψ is classically valid. One
has to construct a modelM, then check whetherM� ϕ1, ϕ2; if not, discardM; otherwise, pro-
ceed to check whetherM� ψ, and repeat until all models have been checked. This procedure
puts heavy demands on working memory, because the models which have to be constructed are
generally not saliently different, so are hard to tell apart. By the same token, it is not easy to
check whether one has looked at all relevant models. The fact that classical logic does not fit
harmoniously with the operation of working memory already suggests that classical logic is
not the most prominent logic for interpreting discourse. Classical logic may indeed be an ac-
quired trick as is sometimes maintained, because it requires overcoming the tyranny of work-
ing memory. There may however be other logics which are very much easier on working mem-
ory, for instance because the number of models to be considered is much lower, or because
these models exhibit salient differences; and we claim that planning provides a good source for
such logics.

By definition, planning consists in the construction of a sequence of actions which will
achieve a given goal, taking into account properties of the world and the agent, and also events
that might occur in the world. Both humans and nonhuman primates engage in planning. It has
even been attested in monkeys. In recent experiments with squirrel monkeys by McGonigle et
al. (2003), a monkey has to touch all shapes appearing on a computer screen, where the shapes
are reshuffled randomly after each trial. The shapes come in different colours, and the interest-
ing fact is that, after extensive training, the monkey comes up with the plan of touching all
shapes of a particular colour, and doing this for each colour. This example clearly shows the hi-
erarchical nature of planning: a goal is to be achieved by means of actions which are them-
selves composed of actions. It is precisely the hierarchical, “recursive” nature of planning
which has led some researchers to surmise that planning has been co-opted by the language
faculty, especially syntax (Greenfield, 1991); (Steedman, 2002). There is also a route from
planning to language that goes via semantics. There is a live possibility that a distinguishing
feature of human language vis à vis ape language is the ability to engage in discourse. Chim-
panzees can produce single sentences, which when read charitably show some signs of syntax.
But stringing sentences together into a discourse, with all the anaphoric and temporal relations
that this entails, seems to be beyond the linguistic capabilities of apes. One can make a good
case, however, that constructing a temporal ordering of events out of a discourse involves an
appeal to the planning faculty (van Lambalgen and Hamm, 2004).

We defined planning as setting a goal and devising a sequence of actions that will achieve
that goal, taking into account events in, and properties of the world and the agent. In this defini-
tion, “will achieve” cannot mean: “provably achieves,” because of the notorious frame prob-
lem: it is impossible to take into account all eventualities whose occurrence might be relevant
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to the success of the plan. Therefore the question arises: what makes a good plan? A reasonable
suggestion is: the plan works to the best of one’s present knowledge. Viewed in terms of mod-
els, this means that the plan achieves the goal in a “minimal model” of reality, where, very
roughly speaking, every proposition is false which you have no reason to assume to be true. In
particular, in the minimal model no events occur which are not forced to occur by the data. This
makes planning a form of nonmonotonic reasoning: the fact that

“goal G can be achieved in circumstances C”

does not imply

“goal G can be achieved in circumstances C + D”

The book (van Lambalgen and Hamm, 2004) formalizes the computations performed by the
planning faculty by means of a temporal reasoner (the Event Calculus) as formulated in a par-
ticular type of nonmonotonic logic, namely first-order constraint logic programming with ne-
gation as failure.4 Syntactically, logic programming is a good formalism for planning because
its derivations are built on backward chaining (regression) from a given goal.

Semantically, it corresponds to the intuition that planning consists in part of constructing
minimal models of the world. The purpose of (van Lambalgen and Hamm, 2004) is to show
that the semantics of tense and aspect in natural language can be formally explained on the as-
sumption that temporal notions are encoded in such a way as to subserve planning. For our
present purposes we may abstract from the temporal component of planning, and concentrate
on the skeleton of the inference engine required for planning, namely propositional logic pro-
gramming. Planning proceeds with respect to a model of the world and it is hypothesised that
the automatic process of constructing a minimal model which underlies planning also sub-
serves discourse integration. We present our analysis of the suppression task as evidence for
this hypothesis.

Nonmonotonic logics abound, of course,5 but logic programming is attractive because it is
both relatively expressive and computationally efficient.6 Below we shall see that logic pro-
gramming also has an appealing implementation in neural nets, and that it may thus shed some
light on the operation of working memory. Taken together, the proven merits of logic program-
ming in discourse processing (van Lambalgen and Hamm, 2004) and its straightforward im-
plementation in neural networks suggests to us that it is relevant to cognitive modelling. We are
not aware of any other nonmonotonic logic which has this range of features, but definitely do
not claim that there cannot be any such logic.7,8

2. The suppression effect

The suppression task sets subjects the problem of finding an interpretation which accommo-
dates premises which at least superficially may conflict. It is therefore provides a good illustra-
tion of how default logic can be used to model human interpretation and reasoning. It is one of
the benefits of formalisation that it reveals many aspects of the data which are in need of clarifi-
cation and suggests how finer-grained data might be found, as well as how the formalism may
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be modified to account for richer data. As the literature review above revealed, there are several
prominent interpretations subjects may adopt, and there are certainly more than was men-
tioned there. All that is attempted here is to provide an illustrative model of one important in-
terpretation subjects adopt. We believe this is a reasonable reconstruction of how Byrne ap-
pears to believe her subjects are interpreting the materials.

As mentioned in the introduction, if one presents a subject with the following premisses:

4a. If she has an essay to write she will study late in the library.
b. She has an essay to write.

roughly 90% of subjects9 draw the conclusion “She will study late in the library” (we will later
discuss what the remaining 10% may be thinking). Next suppose one adds the premiss

5. If the library is open, she will study late in the library.

and one asks again: what follows? In this case, only 60% concludes “She will study late in the
library.”

However, if instead of the above, the premiss

6. If she has a textbook to read, she will study late in the library.

is added, then the percentage of “She will study late in the library”-conclusions is around 95%.
In this type of experiment one investigates not only modus ponens (MP), but also modus

tollens (MT), and the “fallacies” afirmation of the consequent (AC), and denial of the anteced-
ent (DA), with respect to both types of added premisses, (5) and (6). In Table 1 we tabulate the
relevant data, following (Dieussaert et al., 2000), since the experiments reported in this study
have more statistical power than those of (Byrne, 1989).

2.1. Logical form

The conclusion that Byrne draws from the experimental results is that

…in order to explain how people reason, we need to explain how premisses of the same apparent log-
ical form can be interpreted in quite different ways. The process of interpretation has been relatively
neglected in the inferential machinery proposed by current theories based on formal rules. It plays a
more central part, however, in theories based on mental models [Byrne, 1989, p. 83].

Byrne thus sees the main problem as explaining “how premisses of the same apparent logical
form can be interpreted in quite different ways.” We would question the accuracy of this for-
mulation, and instead prefer to formulate the main issue as follows: it is the job of the interpre-
tative process to assign logical form, which cannot simply be read off from the given material.
In other words, the difference between Byrne and ourselves appears to be this: whereas she
takes logical form to be more or less given, we view it as the end result of a (possibly laborious)
interpretative process. This difference is connected to a different view of what logical form is.
Psychologists have often taken this to mean the formal expression which results from translat-
ing the surface structure of the given sentence into a chosen formal language; this is apparently
how Byrne conceives of logical form. However, from a logician’s point of view much more is
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involved. LetN be (a fragment of) natural language. A more complete list10 of what is involved
in assigning logical form to expressions in N is given by:

1. L a formal language into which N is translated
2. the expression in L which translates an expression in N
3. the semantics S for L
4. the definition of validity of arguments ψ1, … , ψn/ϕ with premisses ψi and conclusion ϕ.

We can see from this list that assigning logical form is a matter of setting parameters. For each
item on the list, there are many possibilities for variation. Take just one example, the choice of
a formal language. One possibility here is the ordinary recursive definition, which has clauses
like “if A,B are formulas, then so is A → B”, thus allowing for iteration of the conditional. How-
ever, another possibility, and one which we shall choose, is where formation of A → B is re-
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Table 1
Percentages of Dieussaert’s subjects drawing target conclusions in each of the four argument forms modus
ponens (MP), modus tollens (MT), denial of the antecedent (DA), and affirmation of the consequent (AC), in two
premiss and three premiss arguments

Role Content

Conditional 1
Categorical
Conclusion

If she has an essay to write she will study late in the library
She has an essay to write
She will study late in the library (MP 90%)

Alternative
Conclusion

If she has a textbook to read, she will study late in the library
She will study late in the library (MP 95%)

Additional
Conclusion

If the library stays open, she will study late in the library
She will study late in the library (MP 60%)

Conditional 1
Categorical
Conclusion

If she has an essay to write she will study late in the library
She will study late in the library
She has an essay to write (AC 53%)

Additional
Conclusion

If the library stays open then she will study late in the library
She has an essay to write (AC 55%)

Conditional 1
Categorical
Conclusion

If she has an essay to write she will study late in the library
She hasn’t an essay to write
She will not study late in the library (DA 49%)

Additional If the library stays open, she will study late in the library

Conclusion She will study late in the library (DA 49%)

Alternative
Conclusion

If she has a textbook to read, she will study late in the library
She will study late in the library (DA 22%)

Conditional 1
Categorical
Conclusion

If she has an essay to write she will study late in the library
She will not study late in the library
She doesn’t have an essay to write (MT 44%)

Alternate
Conclusion

If she has a textbook to read, she will study late in the library
She does not have an essay to write (MT 69%)

Note. In a two-premiss argument it is combined only with the categorical premiss shown. In a three-premiss ar-
gument, both are combined with either an “alternative” or an “additional” conditional premiss. Conditional 1 is the
same first premiss in all cases.



stricted to A, B which do not themselves contain a conditional. Furthermore, these parameters
are independent: if one has decided to translateN into a propositional language with connec-
tives ¬, ∨, ∧, →, one is still at liberty to choose a semantics for these connectives; and, perhaps
more surprisingly, one is also at liberty to choose a definition of validity. The classical defini-
tion of validity: “an argument is valid if the conclusion is true in all models of the premisses,” is
but one possibility; the general form of a nonmonotonic notion of validity: “an argument is
valid if the conclusion is valid in all preferred models of the premisses” is another. In fact, ap-
plying the classical definition of validity means that one must leave out of consideration all in-
formation we happen to have, beyond the premisses. This is typically almost impossible to
achieve for those without logical training.11

In the remainder of the paper we will reanalyse the data regarding the suppression effect
with the above distinctions in mind, and show their relevance for the process of interpretation
and its relation to working memory. One outcome of the analysis will be that there is no “sup-
pression effect” in the sense of suppression of formal reasoning—indeed the observed reason-
ing patterns, “fallacies” included, conform to well-known logical forms. We will illustrate the
main logical ideas involved using (propositional) logic programming with negation as failure,
to which we give a brief introduction in section 3.12 Before we do so, we briefly discuss some
aspects of the meaning of the natural language conditional.

2.2. A logical form for the conditional

We have seen above that several authors have tried to explain the suppression effect by as-
suming that the conditional expresses a regularity rather than a material implication, as in clas-
sical logic. Furthermore, the literature on the semantics of natural language provides a wealth
of data showing that the identification of the conditional with the material implication is not
generally warranted. It is impossible to do justice to that vast literature here, so we content our-
selves with references to two books containing important review articles: Traugott et al.
(1982), and Athanasiadou and Dirven (1997).

The meaning of the conditional that we shall focus on is that of a lawlike relationship be-
tween antecedent and consequent. An example of a law expressed by means of a conditional is

7. If a glass is dropped on a hard surface, it will break.
8. If a body is dropped, its velocity will increase as gt2.

What is common to both examples is that the antecedent hides an endless number of un-
stated assumptions: in the first case, e.g., that the glass is not caught before it falls, etc., in the
second case, e.g., that there are no other forces at work on the body, etc.13 We will therefore
give the general logical form of lawlike conditionals “if A then B” as

9. If A, and nothing abnormal is the case, then B.

wherewhat isabnormal isprovidedby thecontext;wewill shortlyseeexamplesof this in thesup-
pression task. The preceding formulation, however, still explains “if . . .then” in terms of “if . .
“then,” sowemustnowinquire seriously into themeaningof theconditional.Wecontend that the
conditional is often not so much a truth functional connective, as a license for certain infer-
ences.14 Onereason is the roleofputativecounterexamples, i.e., situationswhereAandnot-B; es-
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pecially in the case of lawlike conditionals, such a counterexample is not used to discard the con-
ditional, but to look for an abnormality; it is thus more appropriate to describe it as an exception.
Thus,oneuseof theconditional iswhere it is takenasgiven,not asa statementwhichcanbe false,
andweclaimthat this is theproperwaytoviewtheconditionalsoccurring in thesuppression task,
whichareafter all suppliedby theexperimenter.15 (StenningandvanLambalgen,2001,Stenning
and van Lambalgen, 2004) use these same observations about natural language conditionals to
explain many apparently unrelated phenomena in Wason’s selection task.

Having posited that, in the present context, the conditional is rather a license for inferences
than a connective, we must determine what these inferences are. One inference is, of course, mo-
dus ponens: the premisses A and “if A then B” license the inference that B. The second type of in-
ference licensed by the conditional may be dubbed “closed world reasoning”: it says that if it is
impossible to derive a proposition B from the given premisses by repeated application of modus
ponens, thenonemayassumeBis false.Thiskindof reasoning is routinelyapplied indaily life: if
the timetable does not say there is a train leaving Edinburgh for London between 5 pm and 5:10
pm, one assumes there is no such train scheduled. Closed world reasoning is what allows humans
to circumvent the notorious frame problem (at least to some extent): my reaching for a glass of
water may be unsuccessful for any number of reasons, for instance because the earth’s gravita-
tional field changes suddenly, but since I have no positive information that this will happen, I as-
sume it will not. We hypothesise that closed world reasoning plays an important part in reasoning
with conditionals; in particular, the suppression effect will be seen to be due to a special form of a
closed world assumption. We now recast the preceding considerations as a formal definition in
logic programming. The next section is inevitably somewhat technical.

3. Logic programming

A good framework for a conditional with the properties outlined above is logic program-
ming, a fragment of propositional (or predicate) logic with a special, nonclassical, semantics.
For the sake of clarity we start with a fragment of logic programming in which negation is not
allowed; but note that the proposed notion of conditionals does require negation.

Definition 1: A (positive) clause is a formula of the form p1, … pn → q, where the q, pi are
propositional variables; the antecedent may be empty. In this formula, q is called the
head, and pl, … pn the body of the clause. A (positive) program is a finite set of positive
clauses.

Until further notice, we assume that propositions are either true (1) or false (0), but the se-
mantics is nonetheless nonclassical. The only models to be considered are those of the follow-
ing form

Definition 2: Let P be a positive program on a finite set L of proposition letters. An as-
signmentM of truthvalues {0,1} to L (i.e., a functionM: L → {0.1}) is a model of P if
for q ∈ L,

1. M (q) = 1 if there is a clause p1, … pn → q, in P such that for all i,M(pi) = 1
2. M(q) = 0 if for all clauses p1, … pn → q, in P there is some pi for whichM (pi) = 0.
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The definition entails that for any q not occurring as the head of a clause,M(q) = 0. More gener-
ally, themodelM isminimal in thesense thatapropositionnot forced tobe trueby theprogramis
false inM; this is our first (though not final) formulation of the closed world assumption.

We will next liberalize the preceding definitions and allow negation in the body of a clause.

Definition 3: A (definite) clause is a formula of the form (¬)pl ∧ … ∧ (¬)pn → q, where
the pi are either propositional variables, � or �16, and q is a propositional variable. Facts
are clauses of the form � → q, which will usually be abbreviated to q. Empty antecedents
are no longer allowed. A definite logic program is a finite conjunction of definite clauses.

In order to give a semantics for negation, the closed world assumption is internalised to what
is known as “negation as failure”: ¬ϕ is true if the attempt to derive ϕ from the program P fails.
The proper semantics for definite programs requires a move from two-valued logic to Kleene’s
strong three-valued logic (introduced in [Kleene, 1951, p. 332–334), which has the truth values
undecided (u), false (0) and true (1). The meaning of undecided is that the truth value can
evolve toward either true or false (but not conversely).17 This semantics will be introduced in
greater detail below. It is an important fact, however, that the models of interest can be captured
by means of the following construction

Definition 4: (a) The completion of a program P is given by the following procedure:

1. take all clauses ϕi → q whose head is q and form the expression Vi ϕi → q.18

2. replace the →‘s by ↔s (here, ↔ has a classical interpretation given by: ψ ↔ ϕ is true if
ψ,ϕ have the same truth value, and false otherwise).

3. this gives the completion of P, which will be denoted by comp(P).

(b) If P is a logic program, define the nonmonotonic consequence relation |� by

If P |� ϕ, we say that ϕ follows from P by negation as failure, or by closed world reasoning.
The process of completion is also referred to as minimization.19

Using the terminology introduced above, our main hypothesis in explaining Byrne’s data as
conforming to the logical competence model of closed world reasoning can then be stated as

a. the conditionals used in the suppression task, far from being material implications, can be
captured much more adequately by logic programming clauses of the form p ∧ ¬ab → q,
where ab is a proposition letter indicating that something abnormal is the case;

b. when making interpretations, subjects usually do not consider all models of the
premisses, but only minimal models, defined by a suitable completion.

The readers who wish to see some applications of these notions to the suppression task be-
fore delving into further technicalities, may now jump ahead to section 4, in particular the ex-
planations with regard to the forward inferences MP and DA. The backward inferences MT
and AC require a slightly different application of logic programming, which will be introduced
in the next subsection. The final subsection will look at the construction of models, which is
necessary for the connection with neural networks.
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3.1. A strengthening of the closed world assumption: integrity constraints

So far we have applied the closed world assumption to atomic formulas (for instance ab)
and their negations: if ab is not in the database, we may assume it is false. We now extend the
closed world assumption to cover program clauses as well: if ϕl → q, … , ϕn → q are all the
clauses with nontrivial body which have q as head, then we (defeasibly) conclude that q can
only be the case because one of ϕ1, … , ϕn is the case. We therefore do not consider the possibil-
ity that q is the case because some other state of affairs ψ obtains, where ψ is independent of the
ϕ1, … , ϕn and such that ψ → q. This kind of reasoning might be called “diagnostic.”

This notion of closed world is not quite expressed by the completion of a program. For in the
simple case where we have only a clause p → q and a fact q is added, the completion becomes
(p ∨ �) ↔ q, from which nothing can be derived about p. What we need instead is a principled
way of adding q such that the database or model is updated with p. The proper technical way of
achieving this is by means of so-called integrity constraints. To clarify this notion, we need a
small excursion into database theory, taking an example from Kowalski (1995, p. 232).

An integrity constraint in a database expresses obligations and prohibitions that the states of
the database must satisfy if they fulfill a certain condition. For instance, the “obligation” to
carry an umbrella when it is raining may be formalized (using a self-explanatory language for
talking about actions and their effects) by the integrity constraint

Holds (rain, t) → Holds (carry – umbrella, t). (1)

The crucial point here is the meaning of →. The formula 1 cannot be an ordinary program
clause, for in that case the addition of Holds (rain, t) would trigger the consequence Holds
(carry – umbrella, t) which may well be false, and in any case does not express an obligation.

A better way to think of an integrity constraint is to view the consequent as a constraint that
the database must satisfy if the antecedent holds. This entails in general that the database has to
be updated with a true statement about the world. First a piece of terminology. A formula ϕ is
used as a query, and denoted ?ϕ, if one tries to determine whether ϕ follows from a program P.
The “success” or “failure” of a query is usually defined syntactically, but we will not introduce
a derivational apparatus here, and provide only a semantic characterization: a query ?ϕ suc-
ceeds with respect to a program P, if comp(P) |� ϕ, i.e., if ϕ is entailed by the completion of P.
Likewise, a query ?ϕ fails with respect to a program P, if comp(P) |� ¬ϕ.

To return to our example, there will be an action take – umbrella, linked to the rest of the da-
tabase by

Initiates(take – umbrella, carry – umbrella, t)

Suppose the database contains Holds (rain, now), then the integrity constraint requires us to
update the database in such a way that the query

?Holds (carry – umbrella, now),

succeeds. The appropriate way to do so is, of course, to take an umbrella and inform the data-
base that one has done so.

It is also possible to have an integrity constraint without a condition, such as Holds (rain, t)
in the above example. An entry in someone’s diary like “appointment in Utrecht, Friday
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at 9.00” expresses an unconditional obligation to satisfy HoldsAt (be-in-Utrecht,Fri-
day-at-9.00), and presented with this integrity constraint, the internal database comes up with a
plan to satisfy the constraint. Such unconditional integrity constraints are especially useful for
the kind of examples discussed here. Readers who wish to see applications to the suppression
task may now jump ahead to the second part of section 4, which treats the backward inferences
MT and AC. The next (and final) subsection is only essential for the neural implementation.

3.2. Constructing models

In this last subsection, we explain how minimal models can be efficiently computed given a
definite logic program. As above we start with a simpler case. Recall that a positive logic pro-
gram has clauses of the form pl ∧ … ∧ pn → q, where the pi, q are proposition letters and the an-
tecedent (also called the body of the clause) may be empty. Models of a positive logic program
P are given by the fixed points of a monotone20 operator:

Definition 5: The operator TP associated to P transforms a modelM (viewed as a func-
tionM : L → {0,1}, where L is the set of proposition letters) into a model TP(M) accord-
ing to the following stipulations: if v is a proposition letter,

1. TP (M) (v) = 1 if there exists a set of proposition letters C, true onM, such that�C → v
∈ P

2. TP (M) (v) = 0 otherwise.

Definition 6: An ordering C on models is given by:M ⊆N if all proposition letters true
in M are true in N.

Lemma 1 If P is a positive logic program, Tp is monotone in the sense thatM ⊆N im-
plies TP(M) ⊆ TP(N).

This form of monotonicity would fail if a body of a clause in P contains a negated atom ¬q and
also a clause ¬q → s: one can then set up things in such a way that s is true at first, and becomes
false later. Hence we will have to complicate matters a bit when considering negation, but this
simple case illustrates the use of monotone operators. Monotonicity is important because it im-
plies the existence of so called fixed points of the operator Tp.

Definition 7: A fixed point of TP is a modelM such that TP(M) =M

Lemma 2 If TP is monotone, it has a least and a greatest fixed point. The least fixed point
will also be called the minimal model.

Monotonicity is also important because it allows incremental computation of the minimal
model. As noted above, by itself circumscription does not give this computational information.
Computability is a consequence of the syntactic restrictions on logic programs.

So far we have only modelled positive programs, but the logic programs that we need must
allow negation in the body of a clause, since we model the conditional “p implies q” by the
clause p ∧ ¬ab → q. As observed above, extending the definition of the operator TP with the
classical definition of negation would destroy its monotonicity, necessary for the incremental
approach to the least fixed point. One solution is to replace the classical two-valued logic by a
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particular form of three-valued logic, Kleene’s strong three-valued logic, designed for model-
ling the process whereby reasoning algorithms take us from uncertainty to definitive values
(Kleene, 1951, p. 332–334). This logic has truth values {u, 0, l} with the partial order u ≤ 0 and
u ≤ 1. Here, u is not a degree of truth, but rather means that the truth value is, so far, undecided.
The chosen ordering reflects the intuition that u can “evolve” toward 0 or 1 as a result of com-
putation. The truth tables given in Fig. 4 (taken from Kleene [1951, p. 334]) are then immedi-
ate, as readers should satisfy themselves.

In addition we define an equivalence ↔ by assigning 1 to ϕ ↔ ψ if ϕ,ψ have the same truth
value (in {u, 0, l}) , and 0 otherwise.

We show how to construct models for such programs, as fixed points of a three-valued con-
sequence operator � P

3 . We will drop the superscript when there is no danger of confusion with
its two-valued relative defined above.

Definition 8: A three-valued model is an assignment of the truth values u, 0, 1 to the set of
proposition letters. If the assignment does not use the value u, the model is called
two-valued. IfM,N are models, the relationM ≤Nmeans that the truth value of a prop-
osition letter p inM is less than or equal to the truth value of p inN in the canonical or-
dering on u, 0, l.

Definition 9: Let P be a program.

a. The operator TP applied to formulas constructed using only ¬, ∧ and ∨ is determined by
the above truth tables.

b. Given a three-valued modelM, TP(M) is the model determined by
a. TP(M)(q) = 1 if there is a clause ϕ → q such thatM � ϕ
b. TP(M)(q) = 0 if there is a clause ϕ → q in P and for all such clauses,M � ¬ϕ

The preceding definition ensures that unrestricted negation as failure applies only to proposi-
tion letters q which occur in a formula � → q; other proposition letters about which there is no
information at all may remain undecided.21 This will be useful later, when we will sometimes
want to restrict negations as failure to ab. Once a literal has been assigned value 0 or 1 by TP, it
retains that value at all stages of the construction; if it has been assigned value u, that value may
mutate into 0 or 1 at a later stage.
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Lemma 3: If P is a definite logic program, TP is monotone in the sense that M ≤ N implies
TP(M) ≤ TP(N).

Here are three essential results, which will turn out to be responsible for the efficient
implementability in neural networks.

Lemma 4: Let P be a program.

1.M is a model of the comp(P) if it is a fixed point of TP.
2. The least fixed point of TP is reached in finitely many steps (n + 1 if the program consists

of n clauses).

Lemma 5: If P is a definite logic program, TP is monotone in the sense thatM ≤ N im-
plies TP(M) ≤ TP(N).

Lemma 6:

1. The operator � P
3 has a least fixed point. The least fixed point of � P

3 will be called the
minimal model of P.

2. All modelsM of comp(P) are fixed points of � P
3 , and every fixed point is a model.

In this context, the nonmonotonic consequence relation P |� ϕ (see Definition 4) is given by
“comp(P) �3 ϕ”, or in words: all (three-valued) models of comp(P) satisfy ϕ. Observe that the
relation |� is completely determined by what happens on the least fixed point. Larger fixed
points differ in that some values u in the least fixed point have been changed to 0 or 1 in the
larger fixed point; but by the monotonicity property (with respect to truth values) of Kleene’s
logic this has no effect on the output pairs, in the sense that an output value 1 cannot be changed
into 0 (or conversely).

4. How this explains nonclassical answers in the suppression task

The explanation of Byrne’s data will be presented in two stages, corresponding to the for-
ward inferences (MP and DA) and the backward inferences (MT and AC).

Before we present the explanation we want to make a remark of a methodological nature.
Once one acknowledges that there are many alternative logical models besides classical logic,
logic takes on a more interesting combination of normative and descriptive roles in empirical
investigations. So, if subjects adopt the processing goals implicit in our proposed nonmono-
tonic logic, then “correct” performance must be judged by that model. This offers us the possi-
bility of explaining, for example, two groups of subjects drawing different conclusions in one
of Byrne’s conditions as both conforming to competence models—but different ones. Obvi-
ously, if there are sufficient unconstrained competence models to fit any data, then our enter-
prise is not an empirical one. But the reverse is true. We can readily seek corroborating data by
seeing whether subjects’ discourse-processing goals (their construal of the task) accords with
the strict assumptions of the proposed competence models. In particular it seems that subjects
can have two main discourseprocessing goals in this type of task: accomodating the speaker’s
utterances, or questioning them. As we have seen, classical logic is appropriate to the latter
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goal, but not to the former. Below, we will only explain what the appropriate pattern of answers
is on the assumption that subjects are accomodating. The reader will readily supply the appro-
priate answers for the other alternative.22

4.1. The forward inferences: MP and DA

We will represent the conditionals in Byrne’s experiment as definite clauses of the form p ∧ l
ab → q, where ab is a proposition which indicates that something abnormal is the case, i.e., a
possibly disabling condition.

Definition 10 For our purposes, a program is a finite set of conditionals of the form A1 ∧
… ∧ An ∧ ¬ab → B, together with the clauses � → ab for all proposition letters of the
form ab occurring in the conditionals. Here, the Ai are propositional variables or nega-
tions thereof, and B is a propositional variable. We also allow the Ai to be � and �.
Empty antecedents are not allowed.23

In the following we will therefore represent (10-a) as (10-b)

(10) a. If she has an essay, she will study late in the library.
b. p ∧ ¬ab → q

and (11-a) and (11-b) both as (11-c)

(11) a. If the library is open, she will study late in the library.
b. If she has a textbook to read, she will study late in the library.
c. r ∧ ¬ab′ → q

It is essential that the conditionals are represented as being part of a definite logic program,
so that they function as licenses for inference rather than truthfunctional connectives. We show
that on the basis of this interpretation, the forward inferences MP and DA and their “suppres-
sion” correspond to valid argument patterns. The main tool used here is the completion of a
program, as a formalisation of the closed world assumption as applied to facts. We emphasise
again that in virtue of lemmas 4–6, the completion is really shorthand for a particular model.
Thus, what we will be modelling is how subjects reason toward an interpretation of the
premisses by suitably adjusting the meaning of the abnormalities. Once they have reached an
interpretation, reasoning from that interpretation is trivial.

The “backward” inferences (MT and AC) require the closed world assumption as applied to
rules, and will be treated separately, in section 4.2.

4.1.1. MP for a single conditional premiss
Suppose we are given a single conditional p ∧ ¬ab → q and the further information that p

(i.e., � → p). The full logic program for this situation is {p;p ∧ ¬ab → q; � → ab}. Closed
world reasoning as formalised in the completion gives the set {p;p ∧ ¬ab ↔ q; �↔ ab},
which is equivalent to {p;p ↔ q}, from which q follows. This argument can be rephrased in
terms of our distinction between two forms of reasoning as follows.

Reasoning to an interpretation starts with the general form of a conditional,24 and the deci-
sion to apply nonmonotonic closed world reasoning. As a consequence, one derives as the logi-
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cal form of the conditional p ↔ q. Reasoning from an interpretation then starts from this logi-
cal form and the atomic premiss p, and derives q.

4.1.2. A “fallacy”: DA for a single conditional premiss
Suppose we are again given a conditional p ∧ ¬ab → q and the further information ¬p.25

Reasoning to an interpretation starts from the program {¬p;p ∧ ¬ab → q; � → ab} and the
closed world assumption. As above, the end result of that reasoning process is {¬p;p ↔ q}.
Reasoning from an interpretation then easily derives ¬q.

4.1.3. MP in the presence of an additional premiss
As we have seen, if the scenario is such that nothing is said about ab, minimisation sets ab

equal to �and the conditional p ∧ ¬ab → q reduces to p ↔ q. Now suppose that the possibility
of an abnormality is made salient, e.g., by adding a premiss “if the library is open, she will
study late in the library” in Byrne’s example. We propose that this results in the addition of a
clause such as ¬r → ab, because the possibility of an ab-normality is highlighted by the addi-
tional premiss.26 Although this is not essential, the situation may furthermore be taken to be
symmetric, in that the first conditional highlights a possible abnormality relating to the second
conditional. The circumstance that the library is open is not a sufficient incentive to go and
study there, one must have a purpose for doing so.27 This means that the further condition ¬p
→ ab′ for ab′ is added. That is, reasoning toward an interpretation starts with the set

{p;p ∧ ¬ab → q; r ∧ ¬ab′ → q; � → ab; � → ab′; ¬r → ab; ¬p → ab′}.

Applying closed world reasoning in the form of the completion yields

{p; (p ∧ ¬ab) ∧ (r ∧ ¬ab′) ↔ q; (� ∨ ¬r ) ↔ ab; (� ∨ ¬p ) ↔ ab′}

which reduces to {p; (p ∧ r) ↔ q}. Reasoning from an interpretation is now stuck in the ab-
sence of information about r.

Here we see nonmonotonicity at work: the minimal model for the case of an additional
premiss is essentially different from the minimal model of a single conditional premiss plus
factual information.

4.1.4. DA in the presence of an additional premiss
Now suppose we have as minor premiss ¬p instead of p. Reasoning toward to an interpreta-

tion derives as above the set {¬p; (p ∧ r) ↔ q}. Since ¬( p ∧ r), reasoning from an interpreta-
tion concludes ¬q. It follows that “denying the antecedent” will not be suppressed, as ob-
served.

4.1.5. MP and DA for an alternative premiss
The difference between this case and the previous one is that, by general knowledge, the al-

ternatives do not highlight possible obstacles. This means that the clauses ¬r → ab; ¬p → ab′
are lacking. Reasoning to an interpretation thus starts with the set

{p; p ∧ ¬ab → q; r ∧ ¬ab′ → q; � → ab; � → ab′}
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Closed world reasoning converts this to

{p; (p ∧ ¬ab) ∨ r ∧ ¬ab′) ↔ q; � ↔ ab; � ↔ ab′},

which reduces to {p; (p ∨ r) ↔ q}. Reasoning from an interpretation then easily derives q: no
suppression.

Now consider “denial of the antecedent.” We interpret ¬p again as obtained from � → p by
closed world reasoning. The completion then becomes (p ∨ r ↔ q) ∧ (p ↔ �), and reasoning
from an interpretation is stuck: suppression. Indeed, in Byrne’s study (Byrne, 1989) DA for
this type of problem was applied by only 4% of the participants. However, in (Dieussaert et al.,
2000) 22% applied DA in this case. This could be a consequence of applying negation as fail-
ure to r as well, instead of only to abnormalities. The competence model allows both choices.

4.2. The backward inferences: MT and AC

As we have seen, the forward inferences rely on the completion, that is, the closed world as-
sumption for facts. We propose that the backward inferences rely in addition on the closed
world assumption for rules. When we come to discuss the neural implementation of the for-
malism we will see that this explains to some extent why backward inferences are perceived to
be more difficult. This section uses the material on integrity constraints introduced in
section 3.1.

4.2.1. AC and MT for a single conditional premiss
Suppose we have a single conditional premiss p ∧ ¬ab → q and a fact q. Closed world rea-

soning about facts would yield the completion {([p ∧ ¬ab] ∨ �) ↔ q; ab ↔ �}, from which
nothing can be concluded about p.

But now assume that reasoning to an interpretation sets up the problem in such a way that
AC is interpret as an integrity constraint, that is, as the statement

if ?q succeeds, then ?p succeeds.

In this case, closed world reasoning for rules can be applied and we may ask what other atomic
facts must hold if q holds. Since the only rule is p ∧ ¬ab → q, it follows that p ∧ ¬ab must hold.
For ¬ab this is guaranteed by closed world reasoning about facts, but the truth of p must be
posited. In this sense AC is valid.

For MT, the reasoning pattern to be established is

if ?q fails, then ?p fails.

One starts from the integrity constraint that the query ?q must fail. This can only be if at least
one of ?p and ?¬ab fails. Since in this situation we know that ¬ab is true (by closed world rea-
soning for facts), we must posit that p is false.28

4.2.2. AC and MT for an additional premiss
In the case of an additional premiss, the program consists of

p ∧ ¬ab → q,r ∧ ¬ab′ → q, ¬p → ab′, ¬r → ab.
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Consider AC: here we start with the integrity constraint that the query ?q succeeds. It follows
that at least one of p ∧ ¬ab, r ∧ ¬ab′ must be true. But given the information about the abnor-
malities furnished by closed world reasoning for facts, namely ¬r ↔ ab and ¬p ↔ ab′, in both
cases this means that p and r must true, so that AC is supported.

Now consider MT, for which we have to start from the integrity constraint that ?q must fail.
The same reasoning as above shows that at least one of p, r must fail—but we don’t know
which. We thus expect suppression of MT.

4.2.3. AC and MT for an alternative premiss
In the case of AC, an alternative premiss leads to clear suppression (from 55% to 16%). It is

easy to see why this must be so. Closed world reasoning for facts reduces the two conditional
premisses to p → q and r → q. Given that ?q must succeed, closed world reasoning for rules
concludes that at least one of p, r must be true—but we don’t know which. It is interesting at
this point to look at an experiment in [Dieussaert et al., 20001 where subjects are allowed to
give compound answers such as p ∧ q or p ∨ q.29 For AC, 90.7% subjects then chose the
nonmonotonically correct p ∨ r.

Turning to MT, we do not expect suppression, and indeed, the requirement that ?q fails
means that both p and r have to be false. In Dieussaert et a1.s data for MT, 96.3% of the sub-
jects, when allowed to choose compound answers, chose the classically correct ¬p ∧ ¬r .

4.3. Competence and performance

We derived the pattern of suppression and non-suppression observed by Byrne and others
by means of a nonclassical competence model, namely closed world reasoning with facts and
rules, applied in the service of constructing a model of the discourse. We have thus adopted
what (Dieussaert et al., 2000) call an “integration strategy”: the premisses, both conditionals
and facts, are taken jointly when constructing a minimal model, and it is assumed that no more
premisses will be supplied.

The data obtained by Dieussaert et al. (2000) suggest however that some answers may not so
much reflect a competence model as processing constraints. Dieussaert et al. observed that in the
case of MT for an additional premiss, 35.3% of subjects, when allowed to choose compound an-
swers, chose¬p∧¬r,whereas56.9%chose theclassicallycorrect¬p∨¬r.Thesecondanswer is
readily explained in the present framework. The first answer can be explained if subjects first set
ab, ab′ to �, and report the result of this intermediate computation: for if ?q fails, both p ∧ ¬ab
and r ∧ ¬ab′ must be false. Since by assumption ¬ab and ¬ab′ are true, both ¬p and ¬r must be
true. We hypothesize that in a case such as this, some subjects simplify their handling of the ab-
normalities, to reduce the complexity of the correct derivation. This type of answer does not con-
form to a particular competence model, but reflects processing constraints. It is argued in (van
Lambalgen and Smid, 2005) that these processing constraints play a role in autism as well.

4.4. Summary

Let us retrace our steps. Byrne claimed that both valid and invalid inferences can be sup-
pressed, based on the content of supplementary material; therefore, the form of sentences
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would determine only partially the consequences that people draw from them. Our analysis is
different. Consider first the matter of form and content. We believe that logical form is not sim-
ply read off from the syntactic structure of the sentences involved, but is assigned on the basis
of “content’—not only that of the sentences themselves, but also that of the context. In this case
the implied context—a real-life situation of going to a library—makes it probable that the con-
ditionals are not material implications but some kind of defaults. We then translate the condi-
tionals, in conformity with this meaning, into a formal language containing the ab, ab′, …
formulas; more importantly, in this language the conditional is a special, non-iterable
non-truthfunctional connective. However, translation is just the first step in imposing logical
form. The second step consists in associating a semantics and a definition of validity to the for-
mal language. For example, in our case the definition of validity is given in terms of minimal
models, leading to a nonmonotonic concept of validity. Once logical form is thus fixed (but not
before!), one may inquire what follows from the premisses provided. In this case the inferences
observed in the majority of Byrne’s subjects correspond to valid inferences (given the assign-
ment of logical form). Hence we would not say that content has beaten form here, but rather
that content contributes to the choice of a logical form appropriate to content and context.
There are many different ways of assigning logical form, and that of classical logic is not by
any means the most plausible candidate for common sense reasoning; indeed default systems
can provide several models of the variety of reasoning behaviour observed.

As regards Byrne’s positive suggestion that “mental models” provides a better account of
what goes in a subject who suppresses MP, we do not dispute that such subjects construct se-
mantic representations (“models”) which do not support MP. The present proposal seems how-
ever to add more detail as to how the construction is done, namely as a form of closed world
reasoning analogous to what is necessary for planning.

We now propose that it is possible to go further and use these systems as a basis for propos-
als about cognitive architecture, in particular neural implementation.

5. Closed world reasoning and working memory

We will now show that the computations underlying the suppression effect can actually be
performed very efficiently in suitable neural networks. The observation that there is a strong
connection between logic programming and neural nets is not new (and can be found in
d’Avila Garcez, Broda and Gabbay, 2002), but what is new here is a very straightforward mod-
elling of closed world reasoning (negation as failure) by means of coupled neural nets. This ex-
ploits the soundness and completeness of negation as failure with respect to Kleene’s strong
three-valued logic. What is of importance here is that the relevant models can also be viewed as
stable states of a neural network, obtained by a feedforward computation mimicking the action
of the consequence operator associated to the logic program. We first present some pertinent
definitions.30

5.1. Neural nets

Definition 11 A computational unit, or unit for short, is a function with the following in-
put–output behaviour
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1. Inputs are delivered to the unit via links, which have weights wj ∈�

2. The inputs can be both excitatory or inhibitory; let x1 . . xn ∈� be excitatory, and yl . . . ym

∈� inhibitory
3. If one of the yi fires, i.e., yi ≠ 0, the unit is shut off, and outputs 0
4. Otherwise, the quantity i

i n
i ix w

�

�

� 1 is computed; if this quantity is greater than or equal
to a threshold θ, the unit outputs 1, if not it outputs 0

5. We assume that this computation takes one time-step.31

Definition 12

1. A spreading activation network is a directed graph on a set of units, whose (directed)
edges are called links.

2. A (feedforward) neural network is a spreading activation network with two distin-
guished sets of units, I (input) and O (output), with the added condition that there is no
path from a unit32 in O to one in I.

Neural networks and spreading activation networks differ in some respects. A spreading acti-
vation network is typically conceived of as consisting of units which fire continuously, subject
to a decay, whereas in neural nets one commonly considers units which fire once, when trig-
gered. Some neural networks are equipped with a “nice” structure, in order to facilitate the ac-
tion of the backpropagation algorithm; e.g., one assumes that the network is composed of in-
put, output and an ordered set of hidden layers, such that units are only connected to (all units
of) the next layer. Spreading activation networks require no such assumption. Although we talk
of “backpropogation” in our spreading activation networks to describe a process analogous to
the learning algorithm in neural nets, it does not have some of the “nasty” neural
implausibilities of the latter in this context. Our construction will need a bit of both kinds of
network; in logic programming one typically computes models, which correspond to stable
patterns of activation, but sometimes one focusses on models which make a designated output
true, as when considering integrity constraints.

Wenowpropose that the fixedpointsof theconsequenceoperatorassociated toaprogramcor-
respond to stable states in a spreading activation network derived from the program. We start
again with positive programs; here the correspondence is due to Avila Garcez et al. (2002).

5.1.1. Example
Consider the language L = {p, q, r, s, t}, and following example of a program P in L: P = {p,p

→ q, q ∧ s → r}. We start from the empty modelM0 = 0, i.e., the model in which all proposi-
tion letters are false. We then get the following computation:

1. M1 is given by TP(M0)(p) = 1, TP(M0)(q) = TP(M0)(r) = TP(M0)(s) = TP(M0)(t) = 0
2. M2 is given by TP(M1)(p) = 1, TP(M1)(q) = 1, TP(M1)(r) = TP(M1)(s) = TP(M1)(t) = 0

The modelM2 is a fixed point of TP in the sense that TP(M2) =M2. It is also the least fixed
point; we may considerM2 to be the minimal model in the sense that it makes true as few prop-
osition letters as possible.M2 is not the only fixed point, sinceM3 = {p, q, r, s} is also one.
However, such greatest fixed points are neurally less plausible; see below.

Fig. 5 shows our proposal for the the spreading activation network associated to the program
P. Until further notice all links will be assumed to have weight 1. The important design deci-
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sion here is that → is not represented as a unit, but as a link—this is the neural correlate of the
earlier observation that the conditional often does not act as a truthfunctional connective.

In this picture, the node labelled AND is a unit computing conjunction. The time-course of
the spreading of activation in this network mimics the action of the monotone operator TP. At
time 0, no node is activated; at time 1, the data is fed into the network,33 and only p is activated,
and at time 2, as the result of a computation, p and q become activated. The presence of p in the
program means that the input site p is continually activated, without decay of activation; the ac-
tivation of q (and the nonactivation of r, s, t), is therefore also permanent. The most important
point to emphasise here is that the least fixed point of TP, that is, the minimal model of P, corre-
sponds to a stable pattern of activation of the network, starting from a state of no activation. We
thus claim that the computation of minimal models is something that working memory is natu-
rally equipped to do.

Interestingly, the greatest fixed pointM3 = {p, q, r, s} cannot be obtained by a simple bot-
tom up computation, starting from an initial state of no activation. In terms of neural nets, the
greatest fixed point corresponds rather to starting from a state where all units are activated, and
where the activation decays unless it is maintained by the input. This seems less plausible as a
model of neural computation.

5.2. From algorithm to neural implementation: definite programs

To describe a network corresponding to a definite logic program, we need units which com-
pute ∧ , ∨, and ¬ with respect to Kleene’s strong three-valued logic. The following trick is in-
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strumental in defining these units (here we will part company with [Avila Garcez et al., 2002]).
The three truth values {u, 0, l} in Kleene’s logic can be represented as pairs (0,0) = u, (0, l) = 0
and (1,0) = 1, ordered lexicographically via 0 < 1. The pair (1,1), which would represent a con-
tradiction, is considered to be excluded. We shall refer to the first component in the pair as the +
(or true) component, and to the right component as the – (or false) component. Interpret a 1
neurally as activation, and 0 as no activation, so that u corresponds to no activation at all. Neu-
ral networks are now conceived of as consisting of two isomorphic coupled layers, one layer
doing the computations for true, the other for false, and where the coupling is inhibitory to pre-
vent pairs (1,l) from occurring.

With this in mind, a three-valued binary AND can then be represented as a pair of units as in
Fig. 6.

What we see here is two coupled neural nets, labelled + (above the separating sheet) and –
(below the sheet). Each proposition letter is represented by a pair of units, one in the + net, and
one in the – net. Each such pair will be called a node. The thick vertical lines indicate inhibitory
connections between units in the + and – nets; the horizontal arrows represent excitatory con-
nections. The threshold of the AND+ unit is 2, and that of the AND– unit is 1.

As an example, suppose the two truth values (1,0) and (0,0) are fed into the unit. The sum of
the plus components is 1, hence AND+ does not fire. The sum of the – components is 0, so
AND– likewise does not fire. The output is therefore (0,0), as it should be. There is an inhibi-
tory link between the + and – units belonging to the same proposition letter (or logic gate) be-
cause we do not want the truth value (1,1), i. e., both units firing simultaneously.

We obtain an AND-gate with n inputs for n ≥ 2 if the threshold for the plus-unit is set to n,
and the threshold for the minus-unit is set to 1. Similarly, we obtain an OR-gate if the threshold
of the plus-unit is set to 1, and that for the minus-unit to n. The reader may check that these con-
ventions correspond to Kleene’s truth tables (see Fig. 4), reformulated in terms of pairs (i, j) .
We also need a unit for negation, which is given in the Fig. 7, where each unit has threshold 1.

Now consider the logic program P we used to explain the suppression effect:

P = {p, p ∧ ¬ab → q, r ∧ ¬ab′ → q, ¬r → ab, ¬p → ab′, � → ab, � → ab′}.
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For the sake of readability, in Fig. 8 we give only the + net; the diagram should be extended
with a – net as in the diagram for AND (Fig. 6)

In this picture, the links of the form 0 → ab represent the + part of the link from � to the pair
of units corresponding to ab. A NOT written across a link indicates that the link passes through
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a node which reverses (1,0) and (0,1), and leaves (0,0) in place. AND indicates a three-valued
conjunction as depicted above. The output node q implicitly contains an OR gate: its + thresh-
old is 1, its – threshold equals the number of incoming links. The abnormality nodes likewise
contain an implicit OR.

Before we examine how such networks could be set up in working memory, we trace the
course of the computation of a stable state of this network, showing that q is not true in the min-
imal model of the program. Initially all nodes have activation (0,0). Then the input p is fed into
the network, i.e., (1,0) is fed into the p node. This causes the ab‘ node to update its signal from
(0,0) to (0,1), so that ¬ab′ changes its signal to (1,0). But no further updates occur and a stable
state has been reached, in which q outputs (0,0). If we view this state of activation as a
(three-valued) model, we see that p is true, and the proposition letters r and q are undecided.
Not surprisingly, this model is also the least fixed point of the three-valued consequence opera-
tor associated to the program.

5.3. Constructing the nets

We will now indicate briefly how such networks may be set up in working memory, follow-
ing the highly suggestive treatment in the series of papers (Bienenstock & von der Malsburg,
1987; von der Malsburg & Bienenstock, 1987; von der Malsburg, 1988). Here we will only
sketch a hypothesis to be developed more fully elsewhere. There are two issues to be distin-
guished: (1) the representation of conditionals as links, and (2) the structure of the network as a
pair of isomorphic graphs. It seems that the work of Bienenstock and von der Malsburg is rele-
vant to both issues.

Concerning the first issue, they observed that, apart from the “permanent’ connection
strengths between nodes created during storage in declarative memory, one also needs variable
connection strengths, which vary on the psychological time scale of large fractions of a second.
The strength of these so-called dynamical links increases when the nodes which a link con-
nects have the same state of activation; networks of this type are therefore described by a modi-
fied Hopfield equation. Applied to the suppression task, we get something like the following.
Declarative memory, usually modelled by some kind of spreading activation network, contains
a node representing the concept “library,” with links to nodes representing concepts like
“open” , “study,” “essay” and “book.” These links have positive weights. Upon being presented
with the conditional “if she has an essay, she will study late in the library”, these links become
temporarily reinforced, and the system of nodes and links thereby becomes part of working
memory, forming a network like the ones studied above. Working memory then computes the
stable state of the network, and the state of the output node is passed on to the language produc-
tion system. Modification of the connection strengths is an automatic (albeit in part probabilis-
tic) process, and therefore the whole process, from reading the premisses to producing an an-
swer, proceeds automatically.

The second intriguing issue is how the two layers of neurons become isomorphically wired
up through inhibitory interconnections. We believe this can be achieved using Bienenstock and
van der Malsburg’s algorithm, since this is precisely concerned with establishing graph
isomorphism. Unfortunately these brief indications must suffice here.
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5.4. Backward reasoning and closed world reasoning for rules

We now have to consider the computations that correspond to the inferences AC and MT.
We have analyzed these by means of integrity constraints, that is, statements of the form “if
query ?ϕ succeeds/fails, then query ?ψ succeeds/fails.” From a neural point of view, this is
reminiscent of a form of backpropagation, except that in our case inputs, not weights are being
updated. This distinction is however not absolute, and we will rephrase the construction in
terms of the updating of weights. We propose that this difference between the processes of for-
ward and backward reasoning can play a part in explaining various observations of the diffi-
culty of backward reasoning such as MT. We will do only one example, AC for a single condi-
tional premiss; this suffices to illustrate the main idea. We are given the premisses q and p ∧
¬ab → q. The corresponding network is given in Fig. 9.

In this network, if q becomes activated, then, provided nothing happens to maintain the acti-
vation, it will decay to a state of no activation. It follows that the only state of the network
which will maintain the activation at q is one where p is (and remains) activated, and ab is not.
One may rephrase this as an abductive learning problem: given an output (namely q active), the
inputs have to be readjusted so that they yield the output. Now usually the input is given, and
the weights in the network are readjusted. But since we are concerned with units which fire
continuously, a reformulation in terms of the updating of weights is possible. For this purpose
we replace what was previously an input node p by the configuration of Fig. 10.

Here, the bottom nodes always fire: the bold 1 indicates that this node stands for the true (or
�); likewise 0 stands for the always false (or �). Both nodes are taken to fire continuously. The
links from the bottom nodes to the p-nodes have weights 0 or 1. Activation of p with (1, 0) is
now modelled as the left link having weight 1, and the right link having weight 0, and analo-
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gously for (0, 1), with “left” and “right” interchanged. Nonactivation of p corresponds to both
links having weight 0. In terms of this view of input nodes, the links previously described as 0
→ ab now have the structure as in Fig. 11, where the weights are fixed.

Consider again the network of Fig. 9, and think of this as the + part of a net as in Fig. 6. As-
sume the inputs are as given by Figs 10 and 11. In this network, the inputs always fire, and the
output may, or may not, fire. Reaching a stable state now corresponds to readjusting the
weights to match the observed input/output pattern. For instance, if q is activated, simple
perceptron learning will update p‘s initial weight configuration (left : 0, right : 0) to (left : 1,
right : 0).

In conclusion of this discussion of how the networks compute, we may thus note that the rel-
atively easy forward reasoning patterns such as MP and DA correspond to simple feedforward
networks, in which no learning occurs, whereas backward reasoning patterns such as AC and
MT, which subjects typically find harder, necessitate the computational overhead of readjust-
ing the network by an (albeit simple) form of backpropagation.
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6. Discussion

The purpose of this paper has been to show that studies of reasoning, once taken beyond the
“mental rules” versus “mental models” debate, may begin to address the important issue of the
cognitive capabilities underpinning reasoning.

The first step consisted in clearing the ground, by showing that the imposition of logical
form on natural language utterances involves a process of parameter-setting far more complex
than, say, associating a material implication to “if … then.” This process was dubbed reasoning
to an interpretation; it was postulated to underlie credulous interpretation of discourse, in
which the hearer tries to construct a model for the speaker’s discourse. We saw that the logical
form assigned to the conditional introduces a parameter (namely ab), which plays an important
role in integrating the conditionals with knowledge already present in declarative memory.

In the second step, we identified a logic that is a natural candidate for discourse integration:
closed world reasoning, here treated formally as logic programming with negation as failure.
Closed world reasoning is much easier on working memory than classical logic: a single model
of the premisses suffices, and this model can be generated very efficiently. We showed that the
phenomena observed in the suppression task conform to the pattern predicted by logic pro-
gramming.

In the third step we showed that logic programming, unlike classical logic, has an appealing
neural implementation. On our proposals working memory maintains a minimal preferred
model of the world under description in a form in which at any point the model can be effi-
ciently revised in the light of new information. This is the kind of system required for an organ-
ism to plan, and is the kind of system which might be developed by an organism evolved for
planning which then turned its architecture to the performance of intentional communication.

Reflecting back on the psychology of reasoning literature, the computational properties of
this logic are highly suggestive as candidates for “System 1 processes” much discussed in dual
process theories of reasoning, e.g., (Pollock, 1991), (Stanovich, 1999) and (Evans, 2003)

System 1 is … a form of universal cognition shared between animals and humans. It is actually not a
single system but a set of subsystems that operate with some autonomy. System 1 includes instinctive
behaviours that are innately programmed and would include any innate input modules of the kind
proposed by Fodor … The System 1 processes that are most often described, however, are those that
are formed by associate learning of the kind produced by neural networks. … System 1 processes are
rapid, parallel and automatic in nature; only their final product is posted in consciousness. (Evans,
2003, p. 454)

In these theories, logical reasoning is considered to belong to “System 2” which is “slow and
sequential in nature and makes use of the central working memory system (Evans, 2003, p.
454).” Our proposals certainly challenge the idea that fast and automatic processes are thereby
not logical processes, thus drawing a slightly different boundary between System 1 and System
2 processes.

Our proposals are for implementation in spreading activation networks and it is perhaps worth
comparing the strengths and weaknesses of these to connectionist networks. In some ways
spreading activation networks are more immediately neurally plausible than connectionist net-
works. If activation of a node is interpreted as representing sustained firing of neurons, possibly
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with gradual decay of firing rate or intensity, then spreading activation networks more directly
mimic neural activity than do connectionist networks. For the latter, it is not so clear how individ-
ual spikes or bursts of spikes are represented in the network simulations.

However, spreading activation networks are localist representations and are therefore not
primitively capable of pattern completion, fault tolerance, etc. Connectionist networks are
mainly designed for learning applications, but the process which constructs the networks pro-
posed here, on the basis of discourse comprehension is not a conventional learning process. The
process that most closely corresponds to learning in that construction is the “wiring” between the
pairs of nodes representing propositions, and the setting of thresholds to represent connectives.
We have suggested how this process can be achieved in a neurally plausible fashion.

One last issue concerns a charge frequently brought against nonmonotonic reasoning,
namely that its high computational complexity rules it out as a formal description of actual hu-
man reasoning. There are in fact two issues here, one pertaining to search for possible excep-
tions or abnormalities in the mental database, the other to the computational complexity of the
derivability relation of a given nonmonotonic logic. The first issue can be illustrated by a quote
from Politzer (2004, p. 10)

Nonmonotonicity is highly difficult to manage by Artificial Intelligence systems because of the ne-
cessity of looking for possible exceptions through an entire database. What I have suggested is a
some kind of reversal of the burden of proof for human cognition: at least for conditionals (but this
could generalise) looking for exceptions is itself an exception because conditional information co-
mes with an implicit guarantee of normality.

Translated to our formalism, the difficulty hinted at by Politzer concerns tabulating all clauses
of the form ϕ → ab which are present in memory. But here we do not have a knowledge base in
the sense of AI, with its huge number of clauses which are all on an equal footing. The discus-
sion of the neural implementation in section 5 has hopefully made clear that what counts is the
number of links of the form ϕ → ab which are activated in working memory by means of a
mechanism such as Bienenstock and von der Malsburg’s “fast functional links.” This search
space will be very much smaller. There remains the issue of how relevant information in long
term memory is recruited into working memory, though we assume this is achieved efficiently
through the organisation of long-term memory. We do not pretend to have solved the problem,
but equally we do not believe the A1 experience of its intractability is entirely relevant.

The second issue is concerned with the computational complexity of the decision problem
for the relation “ψ is derivable from ϕ1, … , ϕn, in nonmonotonic logic L,” where we may re-
strict attention to propositional logics only. For example, one well-known nonmonotonic logic,
Reiter’s default logic is computationally more complex than classical propositional logic,
which is NP-complete, so in practice exponential (see (Gottlob, 1992) for relevant definitions
and a sample of results in this area). By contrast, if L is propositional logic programming with
negation as failure, the corresponding decision problem is P-complete, hence less complex
than classical propositional logic (see Dantsin, Eiter, Gottlob and Voronkov, 2001 and refer-
ences given therein for discussion). This difference is mainly due to a restriction in the syntac-
tic form of the rules, which have to be of the form ϕ → A, where ϕ can be arbitrary, but A must
be atomic. This restriction, whose main effect is to rule out disjunctions in the consequent, is
harmless in the case of the suppression task. We do not deny that there may be other
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nonmonotonic reasoning tasks where this restriction causes problems; it should be noticed,
however, that logicprogramming has a certain track record in problem solving in AI, which
provides further evidence of this logic’s expressiveness.

Notes

1. As we shall see, classical derivational fallacies are often valid in nonmonotonic logics
of interpretation. This is a cognitively important insight. Rather than having to model
fallacies as arbitrarily introduced rules of inference (or reject rules altogether), or for
example speculate about “real world conditionals often being biconditionals” seeing
fallacies as valid patterns in contrasting logics provides scope for an explanation of why
a subject with a different construal of the task may have a different notion of validity and
so draw different inferences.

2. We are skeptical, but also think probabilistic approaches to reasoning only make sense
under this assumption. In the following we assume subjects are able to construct
Bayesian networks as a form of qualitative probabilistic models.

3. In principle, a counterexample is different from an exception: the former falsifies a rule,
the latter does not. It seems however that Byrne et al. reinterpret counterexamples as ex-
ceptions, as the next quotations indicate. This terminological confusion is revealing of
the lack of clarity whether mental models is to be interpreted as a classical or as a
non-monotonic logic, and of the model-theoretic rhetoric inducing talk of “examples”
where what is involved are generic rules about boundary conditions.

4. This system is originally due to Kowalski and Sergot (1986), with improvements by
Shanahan (1995), Shanahan (1996), Shanahan (1990), Shanahan (1997), and van Lam-
balgen and Hamm (2004).

5. See (Pelletier and Elio, 1997) for a plea for more extensive investigations into the psy-
chological reality of nonmonotonic logics. The present paper proposes that the suppres-
sion effect may be used as a testbed.

6. This is because it does not involve the consistency checks necessary for other non-
monotonic logics, such as Reiter’s default logic (Reiter, 1980). This point is further
elaborated in section 6 below.

7. Consider for instance the defeasible planner OSCAR developed by Pollock (see e.g.,
Pollock, 1998). This planner is built on top of a theorem prover for classical predicate
logic, and is thus more expressive than logic programming. But the gain in expressive-
ness is paid for by less pleasing computational properties, since such a system cannot be
interpreted semantically by iterations of a fixed point operator, a prerequisite for an effi-
cient neural implementation.

8. An anonymous referee asked whether it might not be possible to model the suppression
effect using assumption-based systems (see e.g., Poole, 1988). The short answer is
“yes,” because the assumption-based framework is so broad that any nonmonotonic
logic, including logic programming, can be modelled in it (see Bondarenko, Dung,
Kowalski and Toni, 1997). But the translation does not necessarily increase perspicuity.
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9. The figures we use come from the experiment reported in Dieussaert et al. (2000).
10. See Stenning and van Lambalgen (2004, section 1.11) for discussion.
l1. Byrne replaced all subjects in her sample who had taken a course in logic.
12. For a fuller introduction, consult (Doets, 1994).
13. In this respect, the conditional provides an interesting contrast to the universal quanti-

fier, with which it is often aligned. To slightly adapt an example due to Nelson Good-
man: one can say

i. All the coins in my pocket are copper.

in order to express a contingent generalisation, but one would not so readily, with the
same intent, say

ii. If a coin is in my pocket, it is copper.

precisely because it is hard to imagine the law-like connection between antecedent and
consequent which the conditional suggests. The attempt to interpret this tends to con-
jure scenarios of reverse alchemy, in which gold coins just moved into the pocket turn to
copper.

14. A connective differs from a license for inference in that a connective, in addition to li-
censing inferences, also comes with rules for inferring a formula containing that con-
nective as main logical operator.

15. The preceding considerations imply that the conditional cannot be iterated. Natural lan-
guage conditionals are notoriously hard (although not impossible) to iterate, especially
when a conditional occurs in the antecedent of another conditional—“If, if conditionals
are iterated, then they aren’t meaningful, then they aren’t material” is an example; one
more reason why “if … then” is not simply material implication.

l6. We use � for an arbitrary tautology, and � for an arbitrary contradiction
17. This is therefore different from saying that the truth value is fuzzy, which requires a lin-

ear order of truth values, between 0 and 1.
18. In the customary definitions it is assumed that if there is no such ϕ, then the expression

�→ q is added. This case cannot occur here.
19. Readers who recall McCarthy’s use of an abnormality predicate ab may wonder why we

do not use circumscription (McCarthy, 1980) instead of logic programming, since cir-
cumscription also proceeds by minimising the extension of ab. There is a technical rea-
son for this: circumscription cannot be easily used to explain the fallacies; but the main
reason is that logic programming unlike circumscription allows incremental computa-
tion of minimal models, and this computation will be seen to be related to the conver-
gence toward a stable state of a neural network. This shows why model-construction
can here proceed automatically.

20. Monotonicity in this sense is also called continuity.
21. This parallels a similar proviso in the definition of the completion.
22. We do not have a model which explains the exact distribution of frequencies of

answers. If the present analysis is correct, such a model would require variables de-
termining discourse-processing goals.
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23. As mentioned before, this definition is formulated because we do not necessarily want
to apply closed world reasoning to all proposition letters, although always to proposi-
tion letters of the form ab.

24. There is nothing sacrosanct about this starting point. It may itself be the consequence of
a reasoning process, or a different starting point, i.e., a different interpretation of the
conditional may be chosen. The formalisation chosen is a first approximation to the idea
that natural language conditionals allow exceptions. For other purposes more complex
formalisations may be necessary.

25. Strictly speaking l p is not an allowed clause, but we may interpret ¬p as obtained from
the allowed clause �→ p by closed world reasoning.

26. Obviously, this is one place where general knowledge of content enters into the selec-
tion of appropriate logical form. Nothing in the form of the sentence tells us that the li-
brary being open is a boundary condition on her studying late in the library.

27. Evidence for such symmetry can be found in Experiment 1 of (Byrne et al., 1999).
28. This shows that subjects may do a modus tollens inference for the “wrong,” i.e., non-

classical, reason. There may be a relation here with the interesting observation that for
children, the rate of MT seems to increase to around 74% for 10–12 year olds, only to
decrease again for older children, to the usual percentage of around 50% (see Evans et
al., 1993, for discussion) Could it be that the younger children are good at MT for the
wrong reason, and that the later decline is due to a not yet fully sufficient mastery of the
classical semantics?

29. These authors claim that Byrne’s experiment is flawed in that a subject is allowed to
judge only for an atomic proposition or its negation whether it follows from the
premisses supplied. This would make it impossible for the subjects that draw a conclu-
sion which pertains to both conditional premisses. Accordingly, they also allow an-
swers of the form (¬)A(∧)(∨)(¬)B, where A, B are atomic. Unfortunately, since they
also require subjects to choose only one answer among all the possibilities given, the
design is flawed. This is because there exist dependencies among the answers (consider
e.g., the set {p ∨ q, p ∧ q, p, q}) and some answers are always true (e.g., p ∨ ¬p). Thus,
the statistics yielded by the experiment are unfortunately not interpretable.

30. For expository purposes we consider only very simple neurons, whose thresholds are
numbers, instead of functions such as the sigmoid.

31. This assumption is customary for spreading activation networks and recurrent neural
nets, although not for feedforward nets.

32. The term “unit” is unfortunate here, since strictly speaking input units do not compute
anything; they are just nodes where data is fed into the network.

33. Section 5.4 will contain a more detailed representation of input nodes.

References

Athanasiadou, A., & Dirven, R. (1997). On conditionals again. Amsterdam: Benjamins.
Avila Garcez, A., Broda, K., & Gabbay, D. (2002). Neural-symbolic learning systems: Foundations and applications.

London: Springer.

958 K. Stenning, M. van Lambalgen/Cognitive Science 29 (2005)



Bienenstock, E., & von der Malsburg, C. (1987). A neural network for invariant pattern recognition. Europhysics
Letters, 4(1), 121–126.

Bondarenko, A., Dung, P. M., Kowalski, R., & Toni, F.(1997). An abstract: Argumentation-theoretic approach to
default reasoning. Artificial Intelligence, 93, 63–101.

Byrne, R. (1989). Suppressing valid inferences with conditionals. Cognition, 31, 61–83.
Byrne, R., Espino, O., & Santamaria, C. (1999). Counterexamples and the supression of inferences. Journal of

Memory and Language, 40, 347–373.
Chan, D., & Chua, F. (1994). Suppression of valid inferences—syntactic views, mental models and relative sa-

lience. Cognition, 53(3), 217–238.
Collins, A. (1978). Fragments of a theory of human plausible reasoning. In D. L. Waltz (Ed.), Theoretical Issues in

Natural Language Processing 11 (pp. 194–201). Urbana, IL: University of Illinois Press.
Collins, A., & Michalski, R. (1989). The logic of plausible reasoning: a core theory. Cognitive Science, 13, l–49.
Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive power of logic programming.

ACM Computing Surveys, 33, 74–425.
Dieussaert, K., Schaeken, W., Schroyen, W., & d’Ydewalle, G. (2000). Strategies during complex conditional infer-

ences. Thinking and Reasoning, 6(2), 125–161.
Doets, K. (1994). From logic to logic programming. Cambridge, MA: MIT Press.
Evans, J. (2003). In two minds: dual-process accounts of reasoning. Trends in Cognitive Sciences, 7(10), 454–459.
Evans, J., Newstead, S., & Byrne, R. (1993). Human reasoning: the pychology of deduction. Lawrence Erlbaum

Associates, Hove, Sussex.
George, C. (1995). The endorsement of premisses—assumption-based or belief-based reasoning. British Journal of

Psychology, 86, 93–111.
Gottlob, G. (1992). Complexity results for nonmonotonic logics. Journal of Logic and Computation, 2(3), 397–425.
Greenfield, P. (1991). Language, tools and the brain: the ontogeny and phylogeny of hierarchically organized se-

quential behavior. Behavioral and Brain Sciences, 14, 531–595.
Johnson-Laird, P. (1983). Mental Models. Cambridge, MA: Cambridge University Press.
Kleene, S. C. (1951). Introduction to Metamathematics. Amsterdam: North-Holland.
Kowalski, R. (1995). Using meta-logic to reconcile reactive with rational agents. In Meta-logics and logic program-

ming (pp. 227–242). Cambridge MA: MIT Press.
Kowalski, R. A., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing, 4, 65–97.
Lechler, A. (2004). Interpretation of conditionals in the suppression task. Msc thesis, HCRC, University of Edin-

burgh.
McCarthy, J. (1980). Circumscription—a form of nonmonotonic reasoning. Artficial Intelligence, 13, 27–39.
Marr, D. (1982). Vision. New York: W. H. Freeman.
McGonigle, B., Chalmers, M., & Dickinson, A. (2003). Concurrent disjoint and reciprocal classification by cebus

apella in serial ordering tasks: Evidence for hierarchical organization. Animal Cognition, 6(3), 185–197.
Oaksford, M., & Chater, N. (2003). Probabilities and pragmatics in conditional inference: Suppression and order ef-

fects. In D. Hardman, & L. Macchi (Eds.), Thinking: Psychological perspectives on reasoning, judgment and
decision (pp. 95–122). London: Wiley.

Pelletier, I?. and Elio, R. (1997). What should default reasoning be, by default? Computational Intelligence, l3(2),
165–187.

Politzer, G. (2004). Reasoning, judgment and pragmatics. In Noveck, I., & Sperber, D., editors, Experimental
pragmatics, chapter 4. London: Palgrave MacMillan.

Pollock, J. (1991). Oscar; a general theory of rationality. In J. Cummins & J. Pollock (Eds.), Philosophy and AI: es-
says at the interface (pp. 189–213). Cambridge, MA: MIT Press.

Pollock, J. (1998). The logical foundations of goal-regression planning in autonomous agents. Artificial Intelli-
gence, 106(4), 267–335.

Poole, D. (1988). A logical framework for default reasoning. Artificial Intelligence, 36(1), 27–47.
Reiter, R. (1980). A logic for default reasoning. Artficial Intelligence, 13, 81–132.
Rips, L. (1983). Cognitive processes in propositional reasoning. Psychological Review, 90, 38–71.
Shanahan, M. (1990). Representing continous change in the event calculus. In Proceedings ECAI 90 (pp. 598–603).
Shanahan, M. (1995). A circumscriptive calculus of events. Artificial Intelligence, 77, 249–287.

K. Stenning, M. van Lambalgen/Cognitive Science 29 (2005) 959



Shanahan, M. (1996). Robotics and the common sense informatic situation. Working Notes of Common Sense 96,
The Third Symposium on Logical Formalisation of Commonsense (pp. 186–198).

Shanahan, M. (1997). Solving the frame problem. Cambridge, MA: MIT Press.
Stanovich, K. (1999). Who is rational? Studies of individual diferences in reasoning. Mahwah, NJ: Lawrence

Erlbaum Associates, Inc.
Steedman, M. (2002). Plans, affordances and combinatory grammar. Linguistics and Philosophy, 25(5–6),

725–753.
Stenning, K. & Cox, R. (in press). Rethinking deductive tasks: Relating interpretation and reasoning through indi-

vidual differences. Quarterly Journal of Experimental Psychology.
Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: logic and imple-

mentation. Cognitive Science, 19, 97–140.
Stenning, K., & van Lambalgen, M. (2001). Semantics as a foundation for psychology. Journal of Logic, Language,

and Information, 10(3), 273–317.
Stenning, K., & van Lambalgen, M. (2004). A little logic goes a long way: basing experiment on semantic theory in

the cognitive science of conditional reasoning. Cognitive Science, 28, 481–530.
Stenning, K., & Yule, P. (1997). Image and language in human reasoning: A syllogistic illustration. Cognitive Psy-

chology, 34, 109–159.
Stevenson, R., & Over, D. (1995). Deduction from uncertain premisses. Quarterly Journal of Experimental Psy-

chology A, 48(3), 613–643.
Traugott, E., ter Meulen, A., Reilly, J., & Ferguson, C. (1982). On conditionals. Cambridge, MA: Cambridge

University Press.
van Lambalgen, M., & Hamm, F. (2004). The proper treatment of events. Oxford, England and Boston: Blackwell.
van Lambalgen, M., & Smid, H. (2004). Reasoning patterns in autism: rules and exceptions. In L. Perez Miranda, &

J. Larrazabal (Eds.), Proc. Eighth International Colloquium on Cognitive Science Donostia/San Sebastian.
Kluwer.

von der Malsburg, C. (1988). Pattern recognition by labeled graph matching. Neural Networks, 1, 141–148.
von der Malsburg, C., & Bienenstock, E. (1987). A neural network for the retrieval of superimposed connection pat-

terns. Europhysics Letters, 3(11), 1243–1249.
Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20, 273–281.

960 K. Stenning, M. van Lambalgen/Cognitive Science 29 (2005)


