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Abstract

We review the definition of the Full Bayesian
Significance Test (FBST), and summarize its
main statistical and epistemological charac-
teristics. We review also the Abstract Belief
Calculus (ABC) of Darwiche and Ginsberg,
and use it to analyze the FBST’s value of
evidence. This analysis helps us understand
the FBST properties and interpretation. The
definition of value of evidence against a sharp
hypothesis, in the FBST setup, was moti-
vated by applications of Bayesian statistical
reasoning to legal matters where the sharp
hypotheses were defendants statements, to be
judged according to the Onus Probandi ju-
ridical principle.

1 Introduction and Summary

The Full Bayesian Significance Test (FBST), first pre-
sented in (Pereira and Stern 1999) as a coherent
Bayesian significance test for sharp hypothesis, is a
test based on a value of evidence concept, whose def-
inition was originally motivated by practical, juridi-
cal and epistemological requirements. These require-
ments, however, even though mentioned in the au-
thor’s previous papers, have never been formally ana-
lyzed. This analysis, which we pursue in sections 4, 6
and 7 below with the aid of the Abstract Belief Cal-
culus (ABC) formalism, as defined in (Darwiche and
Ginsberg 1992) and (Darwiche 1993), constitutes the
main objective of the present article. For clarity and
completeness: the FBST is defined in section 2; the
value of evidence concept and its motivating require-
ments are presented in sections 4, 6 and 7; and, the
ABC formalism is presented in sections 3 and 5.

2 The FBST Value of Evidence

Let θ ∈ Θ ⊆ Rp be a vector parameter of interest,
and L(θ |x) be the likelihood associated to the ob-
served data x, a standard statistical model. Under
the Bayesian paradigm the posterior density, px(θ), is
proportional to the product of the likelihood and a
prior density,

px(θ) ∝ L(θ |x) p(θ).

The (null) hypothesis H states that the parameter lies
in the null set, defined by inequality and equality con-
straints given by vector functions g and h in the pa-
rameter space,

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}

We are particularly interested in sharp (precise) hy-
potheses, i.e., those in which dim(ΘH) < dim(Θ).

The FBST value of evidence against the hypothesis,
Ev(H), is defined by

Ev(H) =
∫

TH

px(θ) dθ , where

TH = {θ ∈ Θ | s(θ) > sH}
sH = sup

θ ∈ ΘH

s(θ)

s(θ) =
(

px(θ)
r(θ)

)

The function s(θ) is known as the posterior surprise
relative to a given reference density, r(θ). The surprise
function was used, among other statisticians, by (Good
1983), (Evans 1997) and (Royall 1997). Its role in
the FBST is to make Ev(H) explicitly invariant under
suitable transformations on the coordinate system of
the parameter space (see appendix).

The tangential set TH is a Highest Relative Surprise
Set (HRSS). It contains the points of the parameter



space with higher surprise, relative to the reference
density, than any point in the null set ΘH . When
r(θ) ∝ 1, TH is the Posterior’s Highest Density Prob-
ability Set (HDPS) tangential to the null set ΘH .

The posterior probability of TH gives an indication of
inconsistency between the posterior and the hypoth-
esis: “Small” values of Ev(H) indicate that the hy-
pothesis traverses high density regions, providing weak
evidence against the hypothesis. On the other hand,
if the posterior probability of TH is “large”, the null
set is in a region of low posterior density, and the data
provides strong evidence, large Ev(H), against the hy-
pothesis.

The value of evidence, defined above, has a simple and
intuitive geometric characterization. Fig. 1 shows the
null set ΘH , the tangential HRSS TH , and the point of
constrained maximum, θ∗, for testing Hardy-Weinberg
equilibrium law in a population genetics problem, as
discussed in (Pereira and Stern 1999).
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Figure 1: H-W: Hypothesis and Tangential Set

In this biological application n is the sample size,
x1 and x3 are the two homozygote sample counts
and x2 = n − x1 − x3 is heterozygote sample count.
θ = [θ1, θ2, θ3] is the parameter vector. The posterior
and reference densities for this trinomial model, the
parameter space and the null set are:

px(θ | x) ∝ θx1
1 θx2

2 θx3
3 , r(θ) ∝ 1

Θ = {θ ≥ 0 | θ1 + θ2 + θ3 = 1}
ΘH = {θ ∈ Θ | θ3 = (1−

√
θ1)2}

Several other applications of the FBST, details of its
numerical implementation, suggestive remarks on its
epistemological implications, and an extensive list of
references can be found in the author’s previous pa-
pers, including several examples of software certifica-
tion and verification based on black-box simulation.

3 Abstract Belief Calculus

The FBST was originally motivated by some require-
ments on what constitutes a valid value of evidence
against a hypothetical statement. Under appropriate
circumstances, these requirements are commonsense in
juridical reasoning. These requirements will be pre-
cisely stated in the next section, using the ABC for-
malism presented below.

Abstract Belief Calculus (ABC) is defined in (Dar-
wiche and Ginsberg 1992) and (Darwiche, 1993) as a
symbolic generalization of Probability calculus. ABC
is a powerful tool. Besides being capable of handling
both numerical and symbolic beliefs, it also sets the
foundations for computational algorithms for abstract
belief propagation. ABC also unifies a number of con-
crete uncertainty calculi proposed in the literature. It
is in this particular context that we will use ABC to
analyze the value of evidence concept in the FBST
setup.

The first concept in ABC is that of an abstract Support
Function, Φ, which attributes abstract support values
to statements in a universe U , closed under disjunc-
tion, negation and conjunction. We use conventional
set theory notation to denote the range of statements
support values by Φ(U). Axioms A1 to A5, below,
impose coherence conditions on support states.

A1: Under any support function, equivalent state-
ments must have the same support value, i.e.,

(A ⇔ B) ⇒ Φ(A) = Φ(B)

A2: There exists a Support Summation,

⊕ : Φ(U)× Φ(U) 7→ Φ(U)

such that, under any support function, the support
value of the disjunction of any two logically disjoint
statements is a function of their individual support
values.

¬(A ∧B) ⇒ Φ(A ∨B) = Φ(A)⊕ Φ(B)

A3: Under any support function, if statement A im-
plies statement B, which, in turn, implies statement C,
and statements A and C have the same support value,
then all three statements have the same support value,

((A ⇒ B ⇒ C) ∧ (Φ(A) = Φ(C))) ⇒ Φ(B) = Φ(A)

A4: Under any support function, false statements
have zero support value, i.e.,

A false ⇒ Φ(A) = 0



A5: Under any support function, tautological state-
ments have full support value

A true ⇒ Φ(A) = 1

It can be shown, see (Darwiche 1993), that under Ax-
ioms A1 to A5 the support summation is a partial
function defined for each a, b ∈ Φ(U) which are sup-
port values of logically disjoint statements. More pre-
cisely, for each a, b ∈ Φ(U) such that there are state-
ments A,B ∈ U for which a = Φ(A), b = Φ(B) and
¬(A ∧ B). Moreover, support summation has the fol-
lowing algebraic properties:

X0: Symmetry,

a⊕ b = b⊕ a

X1: Transitivity,

(a⊕ b)⊕ c = a⊕ (b⊕ c)

X2: Convexity,

if a⊕ b⊕ c = a then a⊕ b = a

X3: There is a unique element 0 ∈ Φ(U) such that

∀a ∈ Φ(U), a⊕ 0 = a

X4: There is a unique element 1 ∈ Φ(U) such that
1 6= 0 and

∀a ∈ Φ(U),∃! b ∈ Φ(U) | a⊕ b = 1

The pair support function and support summation,
〈Φ,⊕〉 is called a Partial Support Structure. Par-
tial support structures for some uncertainty calculi,
namely, classical logic, probability calculus, possibility
calculus, and disbelief calculus, are given in table 1.

Table 1: Examples of partial support structures
Φ(U) a⊕ b 0 1 a � b Calculus
{0, 1} max(a, b) 0 1 a ≤ b Cl. Logic
[0, 1] a + b 0 1 a ≤ b Probablty
[0, 1] max(a, b) 0 1 a ≤ b Possiblty
{0..∞} min(a, b) ∞ 0 b ≤ a Disbelief

The support value of a statement does not determine,
in general, the support value of its negation. For any
support function Φ, however ABC defines the belief
function

Φ̈(A) = 〈Φ(A),Φ(¬A)〉

for which the belief value of a statement does deter-
mine the belief value of its negation.

The partial support structures can also be used to de-
fine partial orders on Φ(U) and on Φ̈(U). The symbol
� is used for the support order, and the symbol v is
used for the belief order.

a � b ⇔ ∃ c | a⊕ c = b

〈a, b〉 v 〈c, d〉 ⇔ a � c and d � b

The extreme, minimal and maximal, states of support
and belief, with respect to these orders are, respec-
tively, 0 and 1 for the support order, and 〈0, 1〉 and
〈1, 0〉 for the belief order. Statements with minimal
and maximal belief are said to be, respectively, Re-
jected and Accepted.

4 Evidence and Onus Probandi

The definition of value of evidence against a hypoth-
esis, in the Full Bayesian Significance Testing setup,
was motivated by applications of Bayesian statistical
reasoning to legal matters where the sharp hypotheses
were defendants statements, to be judged according
to the Onus Probandi principle, (Pereira and Stern
1999). In this setup, our interpretation of the Onus
Probandi principle in the Bayesian statistics context
establishes some basic requirements for the support
value, Φ(H) = Ev(H) = 1 − Ev(H), of a hypothesis,
H : θ ∈ ΘH ⊆ Θ. Namely:

R1, Value of Evidence as a Probability: The
value of evidence against a hypothesis, H, must be
defined by a posterior probability on a (measurable)
subset ΓH of the parameter space, i.e.,

Ev(H) =
∫

ΓH

px(θ)dθ

If a parameter point θ ∈ Θ is in the evidence set ΓH we
say that θ constitutes evidence against the hypothesis
H. If θ is in the null ΘH we say that θ is compatible
with (or admissible, legal or valid by) hypothesis H.

R2, Relative Surprise: Whether a parameter point
θ constitutes or not evidence against H depends only
on the order in the parameter space established by
the value of the posterior surprise relative to a given
reference density, s(θ) = px(θ)/r(θ).

R3, No Self Incrimination: A parameter point
compatible with an hypothesis can not constitute evi-
dence against the same hypothesis, i.e.,

ΘH ∩ ΓH = ∅

R4, De Morgan’s Law: A parameter point con-
stitutes evidence against a composite hypothesis iff it
constitutes evidence against all of its terms, i.e.,

if H = A ∨B then ΓH = ΓA ∩ ΓB



R5, Most Favorable Interpretation: The evi-
dence in favor of a composite hypothesis is the most
favorable evidence in favor of its terms, i.e.,

if H = A ∨B then Ev(H) = max(Ev(A),Ev(B))

R6, Coherent Support: 〈Ev,max〉 must be a par-
tial support structure.

R7, Continuity: If the posterior density px(θ) and
the constraints defining the null set,

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0},

are smooth (continuous, differentiable, etc.) functions
on its arguments, then so is Ev(H).

R8, Invariance: Ev(H) must be invariant under
bijective smooth reparameterizations, i.e. transforma-
tions of the parameter space coordinate system, see
appendix.

R9, Consistency: Ev(H) must be a consistent ac-
ceptance / rejection indicator for the hypothesis being
tested, in the sense that Ev(H) converges to 0 or 1,
according to whether H is true or false, as the infor-
mation given by data increases.

Defining value of evidence by means of a probability
measure is common to most statistical theories of sig-
nificance. In frequentist statistics, for example, a p-
value is defined as the probability that, under the hy-
pothesis, a sample point is at least as “extreme” as
the observed data. This is a probability on the sample
space. The concept of p-value also requires an order in
the sample space to define how extreme a point is. For
a critical analysis of p-values, see (Kempthorne 1980)
and (Pereira and Wechsler 1993).

In Bayesian statistics, a value of evidence is usually
defined as a probability on the parameter space, as re-
quired in R1. According to (Basu 1988), (Good 1983)
and other statisticians, requiring Ev(H) to depend on
the observed data only though the likelihood function
is in the essence of the Likelihood Principle. This is
enforced by R2.

Requirements R3, R4 and R5 try to capture the Onus
Probandi principle, as it presented itself in the author’s
research and consulting practice, reported in previous
and forthcomming papers. A simple example and its
discussion is presented in section 6. Onus Probandi
is a basic principle of legal reasoning, also known as
Burden of Proof, see (Gaskins 1992), (Kokott 1998).
It also manifests itself in accounting through the Safe
Harbor Liability Rule. The principle can be stated as:

“There is no liability as long as there is a reasonable
basis for belief, effectively placing the burden of proof
(Onus Probandi) on the plaintiff, who, in a lawsuit,

must prove false a defendant’s misstatement, without
making any assumption not explicitly stated by the
defendant, or tacitly implied by an existing law or reg-
ulatory requirement.”

The Most Favorable Interpretation principle, which,
depending on the context, is also known as Benefit of
the Doubt, In Dubito Pro Reo, or Presumption of In-
nocence, is a consequence of the Onus Probandi prin-
ciple, and requires the court to consider the evidence
in the light of what is most favorable to the defendant,
see (Ruta v. Breckenridge-Remy Co. 1982).

“Moreover, the party against whom the motion is di-
rected is entitled to have the trial court construe the
evidence in support of its claim as truthful, giving it
its most favorable interpretation, as well as having the
benefit of all reasonable inferences drawn from that
evidence.”

R6 requires 〈Ev(H),max〉 to be a partial support
structure, see appendix. (Darwiche 1993) gives a thor-
ough analysis of why R6 establishes the minimal logi-
cal conditions for a support function. R7, R8 and R9
are standard desirable properties in statistical testing
theory.

Invariance requirement R8 means that two observers,
each one using a different measuring system (rules,
clocks, etc.), will have different measurement figures,
but they must agree on the support value for an hy-
pothesis correctly translated into each system. Con-
sider for example Einstein’s (sharp) hypothesis, H:
“The speed of any light wave, measured in any in-
ertial frame, is a constant.” The support value of H,
Ev(H), given by Michelson and Morley experimental
data, Ev(H), must be the same, whether they used
the English or the International Metric System (186K
miles per second or 300K kilometers per second).

Consistency requirement R9 is a corollary of the con-
vergence theory of posterior distributions, see (DeG-
root 1970, chap. 10). Consistency means that, as we
keep making more and more observations, Ev(H) must
converge to 0 or 1, according to whether the hypothesis
is false or truth.

As pointed out to the author, instead of establishing
some requirements on Ev(H), we could consider only
requirements given directly on the function λ : ΓH =
λ (ΘH | s(θ)), like:

S1, Total Order: λ’s range is totally ordered by ⊆,
that is, ΓA ⊆ ΓB ∨ ΓB ⊆ ΓA

S2, Antimonotony: if A ⊆ B then ΓB ⊆ ΓA

It is not hard to check that requirements R1 to R9 are
fulfilled in the case of FBST, i.e. taking ΓH = TH , see
appendix. Further interpretations of the FBST and its



partial support structure are given in sections 6 and
7. Before that, however, we shall introduce additional
facts on the ABC formalism.

5 Conditionalization

ABC’s formalism also establishes a set of axioms for
Conditionalization, i.e. on how to update a support
function Φ to a “posterior” support function ΦA, after
accepting a non-rejected statement A. (Darwiche and
Ginsberg 1992) and (Darwiche 1993) define as Plausi-
ble Conditionalizations those given by a (partial) func-
tion,

� : Φ(U)× Φ(U) 7→ Φ(U)

attending Axioms A6 to A11 bellow. For ease of writ-
ing we will refer to Φ(B) and ΦA(B), respectively, as
the unconditional support value of B and the condi-
tional support value of B given (the acceptance of) A.
The function � is called Support Scaling.

A6: The conditional support value of B given A∨B
is a function of the unconditional support values of B
and A ∨B, i.e.,

ΦA∨B(B) = Φ(B)� Φ(A ∨B)

It can be seen that axiom 6 is equivalent to

ΦA(B) = Φ(A ∧B)� Φ(A)

A7: Accepting a non-rejected statement retains all
accepted statements, i.e.,

(Φ(A) 6= 0 ∧ Φ(B) = 0) ⇒ ΦA(B) = 0

A8: Accepting an accepted statement leads to no
change in the conditional support function, i.e.,

Φ(A) = 1 ⇒ ΦA = Φ

A9: When A∨B is equally supported by two support
functions, conditioning on A∨B in either case does not
introduce equality or order between the unconditional
supports of A, i.e., if Φ and Ψ are support functions
and Φ(A ∨B) = Ψ(A ∨B), then

ΦA∨B(A) � (=)ΨA∨B(A) ⇒ Φ(A) � (=)Ψ(A)

A10: After accepting the logical consequences of a
statement, A, the conditional support of A either in-
creases or does not change, i.e.,

Φ(A ∨B) 6= 0 ⇒ Φ(A) � ΦA∨B(A)

A11: If the conditional support of A given C equals
its conditional support given B ∧ C, then the condi-
tional support of B given C equals its conditional sup-
port given A ∧ C, i.e.,

(Φ(A ∧B ∧ C) 6= 0 ∧ ΦC(A) = ΦB∧C(A))

⇒ ΦC(B) = ΦA∧C(B)

〈Φ(U),⊕,�〉 is called a Support Structure. For the
examples in table 1, the scaling functions are:

ΦA(B) = min (Φ(A ∧B),Φ(A))

for classical logic;

ΦA(B) =
Φ(A ∧B)

Φ(A)

for probability and possibility calculus; and

ΦA(B) = Φ(A ∧B)− Φ(A)

for disbelief calculus.

6 Coexistent Belief Calculi

A critical interpretation of FBST’s value of evidence,
in the context set by the previous sections, can help us
elucidate the benefits and some apparent paradoxes of
using the FBST in statistical testing.

In the FBST, the support values, Ev(H), are com-
puted using standard probability calculus on Θ which
has an intrinsic conditionalization operator. The com-
puted evidences, on the other hand, form a possibilistic
partial support structure, the evidence calculus. It is
impossible however to define a scaling function for the
evidence calculus that is compatible with the FBST’s
support, Ev, as it is defined. Therefore, two belief
calculi are in simultaneous use in the Full Bayesian
Testing setup: probability and evidence calculus.

Most standard (frequentist or Bayesian) theories of
statistical testing try to use a single belief calculus.
Namely: probability calculus. In order to do so they
try to use the probability of the null set as a support
value for the hypothesis. This can also take an indi-
rect form, such as integrating a utility or loss function.
In many legal applications with a composite sharp hy-
pothesis, H, neither a probability distribution giving
the probability measure of the null set, Pr(ΘH), nor
the odds ratio Pr(ΘH)/Pr(ΘH), is explicitly stated by
the defendant, or tacitly implied by an existing law
or regulatory requirement. According to requirement
R2, if no such probabilities are given, then no such
probabilities can be used. This statement contradicts
many practices of standard Bayesian approaches to hy-
pothesis testing, including some tests based on Bayes
factors, see (Good 1983).

As a subterfuge to obtain an artificial probability for
a sharp (zero measure) ΘH , many standard Bayesian



statistical tests use a particular parameterization of
the hypothesis, and probability measures on the (sub-
manifold representing the) sharp hypothesis derived
from this parameterization, in conjunction with mea-
sures defined on ΘH and/or a prior mass for sharp
hypothesis, see (DeGroot 1970). Another device often
used by standard statistical tests for sharp hypothesis
is the sometimes cumbersome procedure of nuisance
parameter elimination, see (Basu 1988), (Rubin 1984).
The FBST does not need to follow the nuisance pa-
rameter elimination paradigm. In fact, staying in the
original parameter space, in its full dimension, explains
the “Intrinsic Regularization” property of the FBST,
when it is used for model selection (Pereira and Stern
2001).

The FBST is based on the probability of the tan-
gential set, and not directly on a probability of the
null set. Therefore it can overcome several concep-
tual and practical difficulties of well known sharp hy-
pothesis testing theories, both in frequentist and stan-
dard Bayesian Statistics, related to the direct or in-
direct use of Pr(ΘH), see (Basu 1988), (Good 1983),
(Kempthorne 1980), and the author’s previous papers.

Let us examine some aspects of the partial support
structure of FBST’s evidence. The most favorable in-
terpretation requirement implies that the evidence cal-
culus should have a possibilistic rather than a proba-
bilistic partial support structure. Once again, this re-
quirement contradicts many approaches in frequentist
and standard Bayesian theories of hypothesis testing,
that directly use a probabistic support structure.

(Darwiche 1993) makes some interesting remarks con-
cerning support and belief orders. Namely:

1- If two statements are equally believed, then they
are equally supported; but not the converse.

2- Rejected statements are always minimally sup-
ported, and accepted statements are always maximally
supported. But although minimally supported state-
ments are rejected, maximally supported sentences are
not necessarily accepted.

3- A statement and its negation may be maximally
supported at the same time, while neither of them may
be accepted.

Consider, as an illustrative example, the hypotheses

A : θ ∈ Θ and B : θ ∈ {θ̂}

where θ̂ is the unique maximizer of a smooth proper
posterior density in the parameter space Θ = Rp,
{θ̂} = arg maxθ∈Θ px(θ). Asume a uniform reference,
r(θ) ∝ 1. We have, Ev(A) = Ev(B) = Ev(¬B) = 1
and Ev(¬A) = 0. So both A and B have full support,
but A is accepted, while B is not.

This example, or variations of it, were given to the
author as either an example of how a support function
should work in the juridical context, or as a FBST
paradox, in the context of traditional statistical tests
of significance.

In the juridical context, the interpretation is as follows:
A defendant describes a system (machine, software,
genetic code etc.) by a parameter θ, and claims that θ
has been set to a value in a legal or valid null set, ΘH .
The parameter can not be observed directly, but we
can observe a random variable whose distribution is a
function f(x; θ). The parameter θ has been set to one,
and only one value. Claiming that θ has been set at the
most likely value, θ = θ̂, (given n observed outcomes)
must give the defendant’s claim full support, for being
absolutely vague, i.e., claiming only that θ ∈ Θ, cannot
put him in a better position.

In most traditional statistical tests of significance,
Φ(ΘH) is a probability measure of the null set,
Pr(ΘH). If ΘH is a singleton in Rp, with a smooth
posterior, then it should have null support. Indeed,
the refutation of any sharp hypothesis is a price many
philosophers, see (Popper 1989), and most statisticians
are ready to pay, as explicitly stated by I.J.Good:

“If by the truth of Newtonian mechanics we mean that
it is approximately true in some appropriate well de-
fined sense we could obtain strong evidence that it is
true; but if we mean by its truth that it is exactly
true then it has already been refuted. ... Very often
the statistician doesn’t bother to make it quite clear
whether his null hypothesis is intended to be sharp or
only approximately sharp. ... It is hardly surprising
then that many Fisherians (and Popperians) say that
- you can’t get (much) evidence in favor of the null
hypothesis but can only refute it.”

Further epistemological consequences of the FBST, as
it departs from this tradition, and its capability of con-
sistently (R9) handling really sharp hypothesis, are ex-
amined in the extended version of this paper.

7 Final Remarks

In order to discuss concepts such as: testing a hy-
pothesis (acceptance / rejection) at a certain level;
test power; and optimal levels, the FBST theory must
be further developed. This is done in (Laureto et al.
2002), (Stern and Zacks 2002) and other forthcoming
papers. For an alternative view of the FBST, in the
context of decision theory, see (Madruga et al. 2001)
and (Rubin 1987).

(Darwiche and Ginsberg 1992) remark that in sev-
eral other uncertainty calculi, in particular multival-
ued logic calculi and generalizations of probability cal-



culus, at least one of the following axioms hold:

A13: The support value of a conjunction is a function
of the support values of its factors, i.e.,

Φ(A ∧B) = f∧(Φ(A),Φ(B))

A14: The support value of a statement’s negation is
a function of the statement’s support value, i.e.,

Φ(¬A) = f¬(Φ(A))

Neither axiom A13 nor axiom A14 can be imposed to
the FBST’s evidence partial support structure. Once
again, trying to impose one or both of these axioms
can be viewed as the source of many problems in tra-
ditional theories of hypothesis testing, both in the fre-
quentist and standard Bayesian approaches, see (Good
1983), (Hacking 1965), (Koopman 1940a,b).

The literal interpretation of the Onus Probandi prin-
ciple suggests taking the (possibly improper) uniform
density as the reference density, in the “natural” pa-
rameter space. In the Bayesian context, this is usu-
ally the parameter space where the scientist accesses
his/her prior. We can generalize the procedure using
other reference densities. For example, we may use as
reference density the uninformative prior (also known
as neutral or reference prior), if one is available. This
possibility is suggested by the paper of (Evans 1997),
in conjunction with Jeffreys’ rules to obtain uninfor-
mative priors, (Zellner 1971, chap. 2).

One of Jeffreys’ rules to obtain an uninformative prior
is to define a transformation ω = φ(θ) of the parameter
space so that, in the new coordinate system, the uni-
form uninformative prior in Rp is “natural”. Accord-
ing to this perspective, using the uninformative prior
as reference density is equivalent to specify a trans-
formation φ of the parameter space, so that, in the
transformed parameter space, the uninformative prior
is uniform. We also observe that, in Rp, the uniform
measure and the evidence computed fixing the uni-
form reference are both invariant under proper linear
transformations, see (Klein 1997) and (Santalo 1976).

In order to be consistent with the Onus Probandi prin-
ciple, applications of the FBST generally use as refer-
ence density on Θ, the uniform density or an unin-
formative prior that yields a proper posterior density
px(θ). It is possible to use other reference densities,
although doing so may impair the adherence to the
Onus Probandi principle, or change its interpretation.
For example, the use of a precautionary prior (or a
precautionary evidence based on a convex contraction
ΓH = C(TH) ⊆ TH ), may be justified in special cir-
cumstances, as examined in the extended version of
this paper.
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Appendix: Some Proofs for Section 4

We show that for the FBST, i.e. taking ΓH = TH ,
Ev(H) satisfies requirements R6 and R8.

Proof of Coherent Support (R6): For that, Ev must
satisfy Axioms A1 to A5, which can be easily checked:

To see that A2 holds, note that if H1 : θ ∈ Θ1 ⊆ Θ
and H2 : θ ∈ Θ2 ⊆ Θ then

sup
Θ1∪Θ2

s(θ) = max
(

sup
Θ1

s(θ), sup
Θ2

s(θ)
)

⇒

Ev(H1 ∨H2) = max
(
Ev(H1),Ev(H2)

)
Notice that the assumption ¬(H1∧H2), i.e., Θ1∩Θ2 =
∅, was not necessary to prove the validity of A2.

To see that A3 holds, note that if we have Ev(H1) =
Ev(H3) and

H1 : θ ∈ Θ1 ⊆ Θ, H2 : θ ∈ Θ2 ⊆ Θ, H3 : θ ∈ Θ3 ⊆ Θ,

then Θ1 ⊆ Θ2 ⊆ Θ3 implies sH1 ≤ sH2 ≤ sH3, which,
in turn implies T3 ⊆ T2 ⊆ T1. Consequently Ev(H3) ≤
Ev(H2) ≤ Ev(H1). The result follows.

To see that A4 holds, note that

Ev(∅) = 1− Ev(∅) = 1−
∫

Θ

px(θ)dθ = 1− 1 = 0

To see that A5 holds, note that

Ev(Θ) = 1− Ev(Θ) = 1−
∫
∅
px(θ)dθ = 1− 0 = 1

Proof of invariance (R8): Consider a proper (bijec-
tive, integrable, and almost surely continuously dif-
ferentiable) reparameterization ω = φ(θ). Under the
reparameterization, the Jacobian, posterior, reference
and surprise functions are:

p̃x(ω) = px(φ−1(ω)) |J(ω)|
r̃(ω) = r(φ−1(ω)) |J(ω)|
s̃(ω) = p̃x(ω)/r̃(ω) = px(φ−1(ω))/r(φ−1(ω))



J(ω) =
[
∂ φ−1(ω)

∂ ω

]
=

[
∂ θ

∂ ω

]
=


∂ θ1
∂ ω1

. . . ∂ θ1
∂ ωn

...
. . .

...
∂ θn

∂ ω1
. . . ∂ θn

∂ ωn


Let ΩH = φ(ΘH). It follows that

s̃H = sup
ω∈ΩH

s̃(ω) = sup
θ∈ΘH

s(θ) = sH

hence, TH 7→ φ(TH) = T̃H , and

Ẽv(H) =
∫

T̃H

p̃x(ω)dω =
∫

TH

px(θ)dθ = Ev(H).
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