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as eigen-solutions” is a key metaphor of the cognitive constructivism epistemological
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some objections to the concepts of probability, statistics and randomization posed by George
Spencer-Brown, a figure of great influence in the field of radical constructivism.
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1. Introduction

In several already published articles, I defend the use of Bayesian Statistics in the epistemological
framework of cognitive constructivism. In particular, I show how the FBST—The Full Bayesian
Significance Test for precise hypotheses—can be used as a tool for detection, recognition and
validation of eigen-solutions, see [1–12]. “Objects as eigen-solutions” is a key metaphor of cognitive
constructivism as developed by the Austrian-American philosopher Heinz von Foerster, see [13]. For
some recent applications in empirical science, see [14–20].

In Statistics, specially in the design of statistical experiments, Randomization plays a role which
is in the very core of objective-subjective complementarity, a concept of great significance in the
epistemological framework of cognitive constructivism as well as in the theory of Bayesian statistics.
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The pivotal role of randomization in a well designed statistical experiment is that of a decoupling
operation used to sever illegitimate functional links, thus avoiding spurious associations, breaking false
influences, separating confounding variables, etc., see [10] and [21].

The use of randomization in Statistics is an original idea of Charles Saunders Peirce and Joseph
Jastrow, see [22,23]. Randomization is now a standard requirement for many scientific studies. In [8]
and [10] I consider the position of C.S.Peirce as a forerunner of cognitive constructivism, based on
the importance, relevance and coherence of his philosophical and scientific work. Among his several
contributions, the introduction of randomization in statistical design stands indubitably out. In future
articles, I hope to further expand the analysis of the role of Bayesian statistics in cognitive constructivism
and provide other interesting applications.

I shall herein analyze some objections to the concepts of probability, statistics and randomization
posed by George Spencer-Brown, a figure of great influence in the field of radical constructivism.
Abstinence from statistical analysis and related quantitative methods may, at first glance, look like
an idyllic fantasy island where many beautiful dreams come true. However, in my personal opinion,
this position threatens to exile the cognitive constructivism epistemological framework to a limbo of
powerless theories. In this article, entropy is presented as a cornerstone concept for the precise analysis
and a key idea for the correct understanding of several important topics in probability and statistics. This
understanding should help to clear the way for establishing Bayesian statistics as a preferred tool for
scientific inference in mainstream cognitive constructivism.

In what follows, Section 2 corresponds to the first part of this article’s title and elaborates upon
“the case of Spencer-Brown vs. probability and statistics”. Corresponding to the second part of the
title, Section 3 provides “the testimony of entropy on subjective randomness”. Section 4 gives “the
testimony of entropy on objective randomness”, presenting several mathematical definitions, theorems
and algorithms. In this article, entropy based informational analysis is the key used to “solve” all
the probability paradoxes and objections to statistical science posed by Spencer Brown. Section 4 is
completely self-contained. Hence, a reader preferring to be exposed first to intuitions and motivations,
can read the sections of this article in the order they are presented; meanwhile, a reader seeking a more
axiomatic approach can start with Section 4. Section 5 presents our final conclusions.

2. Spencer-Brown, Probability and Statistics

In [24–26], Spencer-Brown analyzed some apparent paradoxes involving the concept of randomness,
and concluded that the language of probability and statistics was inappropriate for the practice of
scientific inference. In subsequent work, [27], he reformulates classical logic using only a generalized
nor operator (marked not-or, unmarked or), that he represents à la mode of Charles Saunders Peirce or
John Venn, by a graphical boundary or distinction mark, see [28–34].

Making (or arbitrating) distinctions is, according to Spencer-Brown, the basic (if not the only)
operation of human knowledge, an idea that has either influenced or been directly explored by several
authors in the radical constructivist movement. The following quotations, from [26] p. 23, p. 66 and
p. 105, are typical arguments used by Spencer-Brown in his rejection of probability and statistics:
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Retroactive reclassification of observations in one of the scientist’s most important tools,
and we shall meet it again when we consider statistical arguments. (p. 23)

We have found so far that the concept of probability used in statistical science is
meaningless in its own terms; but we have found also that, however meaningful it might
have been, its meaningfulness would nevertheless have remained fruitless because of the
impossibility of gaining information from experimental results, however significant. This
final paradox, in some ways the most beautiful, I shall call the Experimental Paradox (p. 66).

The essence of randomness has been taken to be absence of pattern. But what has not
hitherto been faced is that the absence of one pattern logically demands the presence of
another. It is a mathematical contradiction to say that a series has no pattern; the most we
can say is that it has no pattern that anyone is likely to look for. The concept of randomness
bears meaning only in relation to the observer: If two observers habitually look for different
kinds of pattern they are bound to disagree upon the series which they call random (p. 105).

Several authors concur, at least in part, with my opinion about Spencer-Brown’s technical analysis of
probability and statistics, see [35–39]. In Section 3, I carefully explain why I disagree with it. In some
of my arguments, which are are based on information theory and the notion of entropy, I dissent from
Spencer-Brown’s interpretation of measures of order-disorder in sequential signals. In [40–44], some
of the basic concepts in this area are reviewed with a minimum of mathematics. For more advanced
developments see [45–47].

I also disapprove some of Spencer Brown’s proposed methodologies to detect “relevant” event
sequences, that is, his criteria to “mark distinct patterns” in empirical observations. My objections
have a lot in common with the standard caveats against ex post facto “fishing expeditions” for interesting
outcomes, or simple post hoc “sub-group analysis” in experimental data banks. This kind of retroactive
or retrospective data analyses is considered a questionable statistical practice, and pointed as the culprit
of many misconceived studies, misleading arguments and mistaken conclusions. The literature on
statistical methodology for clinical trials has been particularly keen in warning against this kind of
practice. See [48,49] for two interesting papers addressing this specific issue and published in high
impact medicine journals less than a year before I wrote this text. When consulting for pharmaceutical
companies or advising in the design of statistical experiments, I often find it useful to quote Conan
Doyle’s Sherlock Holmes, in The Adventure of Wisteria Lodge:

Still, it is an error to argue in front of your data. You find yourself insensibly twisting them
around to fit your theories.

Finally, I am also suspicious or skeptical about the intention behind some applications of
Spencer-Brown’s research program, including the use of extrasensory empathic perception for coded
message communication, exercises on object manipulation using paranormal powers, etc. Unable
to reconcile his psychic research program with statistical science, Spencer-Brown had no regrets
in disqualifying the later, as he clearly stated in the prestigious scientific journal Nature, see
pp. 594–595 of [25]:
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[On telepathy:] Taking the psychical research data (that is, the residuum when fraud and
incompetence are excluded), I tried to show that these now threw more doubt upon existing
pre-suppositions in the theory of probability than in the theory of communication.

[On psychokinesis:] If such an ‘agency’ could thus ‘upset’ a process of randomizing,
then all our conclusions drawn through the statistical tests of significance would be equally
affected, including the conclusions about the ‘psychokinesis’ experiments themselves. (How
are the target numbers for the die throws to be randomly chosen? By more die throws?) To
speak of an ‘agency’ which can ‘upset’ any process of randomization in an uncontrollable
manner is logically equivalent to speaking of an inadequacy in the theoretical model for
empirical randomness, like the luminiferous ether of an earlier controversy, becomes, with
the obsolescence of the calculus in which it occurs, a superfluous term.

Spencer-Brown’s conclusions in [24–26], including his analysis of probability, were considered to
be controversial (if not unreasonable or extravagant) even by his own colleagues at the Society of
Psychical Research, see [50,51]. It seems that current research in this area, even not being free (or
afraid) of criticism, has abandoned the path of naı̈ve confrontation with statistical science, see [52,53].
For additional comments, see [54–57].

Curiously, Charles Saunders Peirce and his student Joseph Jastrow, who introduced the idea of
randomization in statistical trials, also struggled with some of the very same dilemmas faced by
Spencer-Brown, namely, the eventual detection of distinct patterns or seemingly ordered (sub)strings
in a long random sequence. Peirce and Jastrow did not have at their disposal the heavy mathematical
artillery I have quoted in the previous paragraphs. Nevertheless, as experienced explorers that are not
easily lured, when traveling in desert sands, by the mirage of a misplaced oasis, these intrepid pioneers
were able to avoid the conceptual pitfalls that lead Spencer-Brown so far astray. For more details
see [10], [22,23] and [58–60].

As stated in the introduction, the cognitive constructivist framework can be supported by the FBST,
a non-decision theoretic formalism drawn from Bayesian statistics, see [1] and [3–5]. The FBST was
conceived as a tool for validating objective knowledge of eigen-solutions and, as such, can be easily
integrated to the epistemological framework of cognitive constructivism in scientific research practice.
Contrasting our distinct views of cognitive constructivism, it is not at all surprising that I have come to
conclusions concerning the use of probability and statistics, and also to the relation between probability
and logic, that are fundamentally different from those of Spencer-Brown.

3. Pseudo, Quasi and Subjective Randomness

The focus of the present section are the properties of “natural” and “artificial” random sequences.
The implementation of probabilistic algorithms require good random number generators, (RNGs). These
algorithms include: Numerical integration methods such as Monte Carlo or Markov Chain Monte Carlo
(MCMC); evolutionary computing and stochastic optimization methods such as genetic programming
and simulated annealing; and also, of course, the efficient implementation of randomization methods.

The most basic random number generator replicates i.i.d. (independent and identically distributed)
random variables uniformly distributed in the unit interval, [0, 1]. From this basic uniform generator one
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gets a uniform generator in the d-dimensional unit box, [0, 1]d, and, from the later, non-linear generators
for many other multivariate distributions, see [61,62].

Historically, the technology of random number generators was developed in the context of
Monte Carlo methods. The nature of Monte Carlo algorithms makes them very sensitive to
correlations, auto-correlations and other statistical properties of the random number generator used in
its implementation. Hence, in this context, the statistical properties of “natural” and “artificial” random
sequences came to close scrutiny. For the aforementioned historical and technological reasons, Monte
Carlo methods are frequently used as a benchmark for testing the properties of these generators. Hence,
although Monte Carlo methods proper lie outside the scope of this article, we shall keep them as a
standard application benchmark in our discussions.

The clever ideas and also the caveats of engineering good random number generators are in the core
of many paradoxes found by Spencer-Brown. The objective of this section is to explain the basic ideas
behind these generators and, in so doing, avoid the conceptual traps and pitfalls that took Spencer-Brown
analyses so much off course.

3.1. Random and Pseudo-Random Number Generators

The concept of randomness is usually applied to a variable or a process (to be generated or observed)
involving some uncertainty. The following definition is presented at p. 10 of [61]:

A random event is an event which has a chance of happening, and probability is a
numerical measure of that chance.

Monte Carlo, and several other probabilistic algorithms, require a random number generator. With
the last definition in mind, engineering devices based on sophisticated physical processes have been
built in the hope of offering a source of “true” random numbers. However, these special devices were
cumbersome, expensive, not portable nor easily available, and often unreliable. Moreover, practitioners
soon realized that simple deterministic sequences could successfully be used to emulate a random
generator, as stated in the following quotes (our emphasis) at p. 26 of [61] and p. 15 of [62]:

For electronic digital computers it is most convenient to calculate a sequence of numbers
one at a time as required, by a completely specified rule which is, however, so devised that
no reasonable statistical test will detect any significant departure from randomness. Such
a sequence is called pseudorandom. The great advantage of a specified rule is that the
sequence can be exactly reproduced for purposes of computational checking.

A sequence of pseudorandom numbers (Ui) is a deterministic sequence of numbers
in [0, 1] having the same relevant statistical properties as a sequence of random numbers.

Many deterministic random emulators used today are Linear Congruential Pseudo-Random
Generators (LCPRG), as in the following example:

xi+1 = (axi + c) modm

where the multiplier a, the increment c and the modulus m should obey the conditions: (i) c and m are
relatively prime; (ii) a − 1 is divisible by all prime factors of m; (iii) a − 1 is a multiple of 4 if m is
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a multiple of 4. LCPRG’s are fast and easy to implement if m is taken as the computer’s word range,
2s, where s is the computer’s word size, typically s = 32 or s = 64. The LCPRG’s starting point, x0,
is called the seed. Given the same seed the LCPG will reproduce the same sequence, a very convenient
feature for tracing, debugging and verifying application programs.

However, LCPRG’s are not an universal solution. For example, it is trivial to devise some statistics
whose behaviour will be far from random, see [63]. There the importance of the words reasonable
and relevant in the last quotations becomes clear: For most practical applications these statistics are
irrelevant. LCPRG’s can also exhibit very long range auto-correlations and, unfortunately, these are
more likely to affect long simulated time series required in some special applications. The composition
of several LCPRG’s by periodic seed refresh may mitigate some of these difficulties, see [62]. LCPRG’s
are also not appropriate to some special applications in cryptography, see [64]. Current state of the art
generators are given in [65,66].

3.2. Chance is Lumpy—Quasi-Random Generators

“Chance is Lumpy” is Robert Abelson’s First Law of Statistics, stated in p. XV of [67]. The
probabilistic expectation is a linear operator, that is, E(Ax + b) = AE(x) + b, where x in random
vector and A and b are a determined matrix and vector. The Covariance operator is defined as
Cov(x) = E((x − E(x)) ⊗ (x − E(x))). Hence, Cov(Ax + b) = ACov(x)A′. Therefore, given n
i.i.d. scalar variables, xi |Var(xi) = σ2, the variance of their mean, m = (1/n)1′x (notice the simplified
vector notation 1 = [1, 1 . . . , 1]), is given by

1

n
1′ diag(σ21)

1

n
1 =

[
1
n

1
n

. . . 1
n

]

σ2 0 . . . 0

0 σ2 . . . 0
...

... . . . ...
0 0 . . . σ2





1
n
1
n
...
1
n

 = σ2/n

Hence, mean values of iid random variables converge to their expected values at a rate of 1/
√

(n).
Quasi-random sequences are deterministic sequences built not to emulate random sequences, as

pseudo-random sequences do, but to achieve faster convergence rates. For d-dimensional quasi-random
sequences, an appropriate measure of fluctuation, called discrepancy, only grows at a rate of log(n)d,
hence growing much slower than

√
(n). Therefore, the convergence rate corresponding to quasi-random

sequences, log(n)d/n, is much faster than the one corresponding to (pseudo) random sequences,√
(n)/n. Figure 1 allows the visual comparison of typical (pseudo) random (left) and quasi-random

(right) sequences in [0, 1]2. By visual inspection we see that the points of the quasi-random sequence
are more “homogeneously scattered”, that is, they do not “clump together”, as the point of the (pseudo)
random sequence often do.

Let us consider an axis-parallel rectangles in the unit box,

R = [a1, b1] × [a2, b2] × . . . [ad, bd] ⊆ [0, 1]d

The discrepancy of the sequence s1:n in boxR, and the overall discrepancy of the sequence are defined as

D(s1:n, R) = nVol(R)− |s1:n ∩R| , D(s1:n) = sup
R⊆[0,1[d

|D(s1:n, R)|



Information 2011, 2 283

It is possible to prove that the discrepancy of the Halton-Hammersley sequence, defined next, is of order
O(log(n)d−1), see chapter 2 of [68].

Halton-Hammersley sets: Given d− 1 distinct prime numbers, p(1), p(2), . . . p(d− 1), the i-th point,
xi, in the Halton-Hammersley set, {x1, x2, . . . xn}, is

xi =
[
i/n, rp(1)(i), rp(2)(i), . . . rp(d−1)(i)

]′
, for i = 1 : n− 1 , where,

i = a0 + p(k)a1 + p(k)2a2 + p(k)3a3 + . . . , rp(k)(1) =
a0
p(k)

+
a1

p(k)2
+

a2
p(k)3

+ . . .

That is, the (k + 1)-th coordinate of xi, xik+1 = rp(k)(i), is obtained by the bit (or digit) reversal of i
written in p(k)-adic or base p(k) notation.

The Halton-Hammersley set is a generalization of van der Corput set, built in the bidimensional unit
square, d = 2, using the first prime number, p = 2. The following example, from p. 33 of [61] and
p. 117 of [69], builds the 8-point van der Corput set, expressed in binary and decimal notation.

function x= corput(n,b)

% size n base b v.d.corput set

m=floor(log(n)/log(b));

u=1:n; D=[];

for i=0:m

d= rem(u,b);

u= (u-d)/b;

D= [D; d];

end

x=((1./b’).ˆ(1:(m\ma1)))*D;

Decimal Binary
i r2(i) i r2(i)

1 0.5 1 0.1
2 0.21 10 0.01
3 0.75 11 0.11
4 0.125 100 0.001
5 0.625 101 0.101
6 0.375 110 0.011
7 0.875 111 0.111
8 0.0625 1000 0.0001

Quasi-random sequences, also known as low-discrepancy sequences, can substitute pseudo-random
sequences in some applications of Monte Carlo methods, achieving higher accuracy with less
computational effort, see [70–72]. Nevertheless, since by design the points of a quasi-random sequence
tend to avoid each other, strong (negative) correlations are expected to appear. In this way, the very
reason that can make quasi-random sequences so helpful, can ultimately impose some limits to their
applicability. Some of these problems are commented in p. 766 of [73]:

First, quasi-Monte Carlo methods are valid for integration problems, but may not
be directly applicable to simulations, due to the correlations between the points of a
quasi-random sequence. ... A second limitation: the improved accuracy of quasi-Monte
Carlo methods is generally lost for problems of high dimension or problems in which the
integrand is not smooth.

3.3. Subjective Randomness and Its Paradoxes

When asked to look at patterns like those in Figure 1, many subjects perceive the quasi-random set as
“more random” than the (pseudo) random set. How can this paradox be explained? This was the topic of
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many psychological studies in the field of subjective randomness. The quotation in the next paragraph is
from one of these studies, p. 306 in [36], emphasis are ours:

One major source of confusion is the fact that randomness involves two distinct ideas:
process and pattern, [74]. It is natural to think of randomness as a process that generates
unpredictable outcomes (stochastic process according to [75]). Randomness of a process
refers to the unpredictability of the individual event in the series [76,77]. This is what
Spencer Brown [26] calls primary randomness. However, one usually determines the
randomness of the process by means of its output, which is supposed to be patternless. This
kind of randomness refers, by definition, to a sequence. It is labeled secondary randomness
by Spencer Brown. It requires that all symbol types, as well as all ordered pairs (diagrams),
ordered triplets (trigrams)... n-grams in the sequence be equiprobable. This definition could
be valid for any n only in infinite sequences, and it may be approximated in finite sequences
only up to ns much smaller than the sequence’s length. The entropy measure of randomness
is based on this definition, see chapter 1 and 2 of [41].

These two aspects of randomness are closely related. We ordinarily expect outcomes
generated by a random process to be patternless. Most of them are. Conversely, a
sequence whose order is random supports the hypothesis that it was generated by a random
mechanism, whereas sequences whose order is not random cast doubt on the random nature
of the generating process.

Figure 1. (Pseudo)—random and quasi-random point sets on the unit box.

0 1
0

1

0 1
0

1

Spencer-Brown was intrigued by the apparent incompatibility of the notions of primary and secondary
randomness. The apparent collision of these two notions generates several interesting paradoxes, taking
Spencer-Brown to question the applicability of the concept of randomness in particular and probability
and statistical analysis in general, see [24–26], and also [35], [38,39], [54–57] and [78], In fact,
several subsequent psychological studies were able to confirm that, for many subjects, the intuitive



Information 2011, 2 285

or common-sense perception of primary and secondary randomness are quite discrepant. However, a
careful mathematical analysis makes it possible to reconcile the two notions of randomness. These are
the topics discussed in this section.

The relation between the joint and conditional entropy for a pair of random variables, see Section 4,

H(i, j) = H(j) +H(i | j) = H(i) +H(j | i)

motivates the definition of first, second and higher order entropies, defined over the distribution of words
of size m in a string of letters from an alphabet of size a.

H1 =
∑
j

p(j) log p(j) , H2 =
∑
i,j

p(i)p(j | i) log p(j | i)

H3 =
∑
i,j,k

p(i)p(j | i)p(k | i, j) log p(k | i, j) . . .

It is possible to use these entropy measures to assess the disorder or lack of pattern in a given finite
sequence, using the empirical probability distributions of single letters, pairs, triplets, etc. However, in
order to have a significant empirical distribution ofm-plets, any possiblem-plet must be well represented
in the sequence, that is, the word size, m, is required to be very short relative to the sequence log-size,
that is, m << loga(n).

In the article [36], Figure 2 displays the typical perceived or apparent randomness of Boolean (0-1)
bit sequences, represented as black-and-white pixel in linear arrays, versus the second order entropy of
the same strings, see also [41]. Clearly, there is a remarkable bias of the apparent randomness relative to
the entropic measure.

Figure 2. EN, H2-entropy vs. AR, apparent randomness. Probability of black-white
pixel alternation.

This effect is known as the gambler’s fallacy when betting on cool spots. It consists of expecting the
random sequence to “compensate” finite average fluctuations from expected values. This effect is also
described in p. 303 of [36]:

When people invent superfluous explanations because they perceive patterns in random
phenomena, they commit what is known in statistical parlance as Type I error. The other
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way of going awry, known as Type II error, occurs when one dismisses stimuli showing
some regularity as random. The numerous randomization studies in which participants
generated too many alternations and viewed this output as random, as well as the judgments
of overalternating sets as maximally random in the perception studies, were all instances of
type II error in research results.

It is known that other gamblers exhibit the opposite behavior, preferring to bet on hot spots, expecting
the same fluctuations to occur repeatedly. These effects are the consequence of a perceived coupling,
by a negative or positive correlation or other measure of association, between non overlapping segments
that are in fact supposed to be decoupled, uncorrelated or have no association, that is, to be independent.
For a statistical analysis, see [58,59]. A possible psychological explanation of the gambler’s fallacy is
given by the constructivist theory of Jean Piaget, see [79], as quoted in p. 316 of [36], in which any
“lump” in the sequence is (miss) perceived as non-random order:

In analogy to Piaget’s operations, which are conceived as internalized actions, perceived
randomness might emerge from hypothetical action, that is, from a thought experiment in
which one describes, predicts, or abbreviates the sequence. The harder the task in such a
thought experiment, the more random the sequence is judged to be.

The same hierarchical decomposition scheme used for higher order conditional entropy measures can
be adapted to measure the disorder or patternless of a sequence, relative to a given subject’s model of
“computer” or generation mechanism. In the case of a discrete string, this generation model could be,
for example, a deterministic or probabilistic Turing machine, a fixed or variable length Markov chain,
etc. It is assumed that the model is regulated by a code, program or vector parameter, θ, and outputs a
data vector or observed string, x. The hierarchical complexity measure of such a model emulates the
Bayesian prior and conditional likelihood decomposition, H(p(θ, x)) = H(p(θ)) + H(p(x | θ)), that
is, the total complexity is given by the complexity of the program plus the complexity of the output
given the program. This is the starting point for several complexity models, like Andrey Kolmogorov,
Ray Solomonoff and Gregory Chaitin’s computational complexity models, Jorma Rissanen’s Minimum
Description Length (MDL), and Chris Wallace and David Boulton’s Minimum Message Length (MML).
All these alternative complexity models can also be used to successfully reconcile the notions of primary
and secondary randomness, showing that they are asymptotically equivalent, see [80–85].

4. Entropy and Its Use in Mathematical Statistics

Entropy is the cornerstone concept of the preceding section, used as a central idea in the understanding
of order and disorder in stochastic processes. Entropy is the key that allowed us to unlock the mysteries
and solve the paradoxes of subjective randomness, making it possible to reconcile the notions of
unpredictability of stochastic process and patternless of randomly generated sequences. Similar entropy
based arguments reappear, in more abstract, subtle or intricate forms, in the analysis of technical aspects
of Bayesian statistics like, for example, the use of prior and posterior distributions and the interpretation
of their informational content. This section gives a short review covering the definition of entropy, its
main properties, and some of its most important uses in mathematical statistics.
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The origins of the entropy concept lay in the fields of Thermodynamics and Statistical Physics, but
its applications have extended far and wide to many other phenomena, physical or not. The entropy
of a probability distribution, H(p(x)), is a measure of uncertainty (or impurity, confusion) in a system
whose states, x ∈ X , have p(x) as probability distribution. We follow closely the presentation in the
following references. For the basic concepts, see [42] and [86–89]. For maximum entropy (MaxEnt)
characterizations, see [45] and [90]. For numerical optimization methods for MaxEnt problems,
see [91–95]. For posterior asymptotic convergence, see [96]. For a detailed analysis of the connection
between MaxEnt optimization and Bayesian statistics’ formalisms, that is, for a deeper view of the
relation between MaxEnt and Bayes’ rule updates, see [97].

4.1. Convexity

This section introduces the notion of convexity, a concept at the heart of the definition of entropy
and generalized directed divergences. Convexity arguments are also needed to prove, in the following
sections, important properties of entropy and its generalizations. In this section we use the following
notations: 0 and 1 are the origin and unit vector of appropriate dimension. Subscripts are used as an
element index in a vector or as a row index in a matrix, and superscripts are used as an index for distinct
vectors or as a column index in a matrix.

Definition: A region S ∈ Rn is Convex iff, for any two points, x1, x2 ∈ S, and weights 0 ≤ l1,

l2 ≤ 1 | l1 + l2 = 1, the convex combination of these two points remains in S, i.e. l1x1 + l2x
2 ∈ S.

Theorem: Finite Convex Combination: A region S ∈ Rn is Convex iff any (finite) convex combination
of its points remains in the region, i.e., ∀ 0 ≤ l ≤ 1 | 1′l = 1, X = [x1, x2, . . . xm], xj ∈ S,

X l =


x11 x21 . . . xm1
x12 x22 . . . xm2
...

... . . . ...
x1n x2n . . . xmn




l1

l2

. . .

lm

 ∈ S

Proof: By induction in the number of points, m.

Definition: The Epigraph of the function ϕ : Rn → R is the region of X “above the graph” of ϕ, i.e.,

Epi (ϕ) =
{
x ∈ Rn+1 |xn+1 ≥ ϕ

(
[x1, x2, . . . , xn]′

)}
Definition: A function ϕ is convex iff its epigraph is convex. A function ϕ is concave iff −ϕ is convex.

Theorem: A differentiable function, ϕ : R→ R, with non negative second derivative is convex.

Proof: Consider x0 = l1x
1 + l2x

2, and the Taylor expansion around x0,

ϕ(x) = ϕ(x0) + ϕ′(x0)(x− x0) + (1/2)ϕ′′(x∗)(x− x0)2

where x∗ is an appropriate intermediate point. If ϕ′′(x∗) > 0 the last term is positive. Now,
making x = x1 and x = x2 we have, respectively, that ϕ(x1) ≥ ϕ(x0) + ϕ′(x0)l1(x

1 − x2)
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and ϕ(x2) ≥ ϕ(x0) + ϕ′(x0)l2(x
2 − x1) multipying the first inequality by l1, the second by l2, and

adding them, we obtain the desired result.

Theorem: Jensen Inequality: If ϕ is a convex function,

E (ϕ(x)) ≥ ϕ ( E(X))

For discrete distributions the Jensen inequality is a special case of the finite convex combination
theorem. Arguments of Analysis allow us to extend the result to continuous distributions.

4.2. Boltzmann-Gibbs-Shannon Entropy

If H(p(x)) is to be a measure of uncertainty, it is reasonable that it should satisfy the following list of
requirements. For the sake of simplicity, we present several aspects of the theory in finite spaces.

(1) If the system has n possible states, x1, . . . xn, the entropy of the system with a given distribution,
pi ≡ p(xi), is a function

H = Hn(p1, . . . , pn)

(2) H is a continuous function.
(3) H is a function symmetric in its arguments.
(4) The entropy is unchanged if an impossible state is added to the system, i.e.,

Hn(p1, . . . pn) = Hn+1(p1, . . . pn, 0)

(5) The system’s entropy is minimal and null when the system is fully determined, i.e.,

Hn(0, . . . , 0, 1, 0, . . . 0) = 0

(6) The system’s entropy is maximal when all states are equally probable, i.e.,

{ 1

n
1 } = arg maxHn

(7) A system maximal entropy increases with the number of states, i.e.,

Hn+1

(
1

n+ 1
1
)
> Hn

(
1

n
1
)

(8) Entropy is an extensive quantity, i.e., given two independent systems, with distributions p and q,
the entropy of the composite system is additive, i.e.,

Hnm(r) = Hn(p) +Hm(q) , ri,j = pi qj

The Boltzmann-Gibbs-Shannon measure of entropy,

Hn(p) = −In(p) = −
∑n

i=1
pi log(pi) = −Ei log(pi) , 0 log(0) ≡ 0

satisfies requirements (1) to (8), and is the most usual measure of entropy. In Physics it is usual to take
the logarithm in Napier base, while in Computer Science it is usual to take base 2 and in Engineering it
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is usual to take base 10. The opposite of the entropy, I(p) = −H(p), the Negentropy, is a measure of
Information available about the system.

For the Boltzmann-Gibbs-Shannon entropy we can extend requirement 8, and compute the composite
Negentopy even without independence:

Inm(r) =
∑n,m

i=1,j=1
ri,j log(ri,j) =

∑n,m

i=1,j=1
piPr(j | i) log (piPr(j | i))

=
∑n

i=1
pi log(pi)

∑m

j=1
Pr(j | i) +

∑n

i=1
pi
∑m

j=1
Pr(j | i) log (Pr(j | i))

= In(p) +
∑n

i=1
pi Im(qi) where , qij = Pr(j | i)

If we add this last identity as item number 9 in the list of requirements, we have a characterization of
Boltzmann-Gibbs-Shannon entropy, see [87–89].

Like many important concepts, this measure of entropy was discovered and re-discovered several
times in different contexts, and sometimes the uniqueness and identity of the concept was not
immediately recognized. A well known anecdote refers the answer given by von Neumann, after
Shannon asked him how to call a “newly” discovered concept in Information Theory. As reported by
Shannon in p. 180 of [98]:

“My greatest concern was what to call it. I thought of calling it information, but the
word was overly used, so I decided to call it uncertainty. When I discussed it with John von
Neumann, he had a better idea. Von Neumann told me, You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, nobody
knows what entropy really is, so in a debate you will always have the advantage.”

4.3. Csiszar’s Divergence

In order to check that requirement (6) is satisfied, we can use (with q ∝ 1) the following lemma:

Lemma: Shannon Inequality.
If p and q are two distributions over a system with n possible states, and qi 6= 0, then the Information

of p Relative to q, In(p, q), is positive, except if p = q, when it is null,

In(p, q) ≡
∑n

i=1
pi log

(
pi
qi

)
, In(p, q) ≥ 0 , In(p, q) = 0⇒ p = q

Proof: By Jensen inequality, if ϕ is a convex function,

E (ϕ(x)) ≥ ϕ ( E(X))

Taking

ϕ(t) = t ln(t) and ti =
pi
qi

Eq (t) =
∑n

i=1
qi
pi
qi

= 1

In(p, q) =
∑

qi ti log ti ≥ 1 log(1) = 0



Information 2011, 2 290

Shannon’s inequality motivates the use of the Relative Information as a measure of (non symmetric)
“distance” between distributions. In Statistics this measure is known as the Kullback-Leibler distance.
The denominations Directed Divergence or Cross Information are used in Engineering. The proof of
Shannon inequality motivates the following generalization of divergence:

Definition: Csiszar’s ϕ-divergence.
Given a convex function ϕ,

dϕ(p, q) =
∑n

i=1
qi ϕ

(
pi
qi

)

0ϕ
(

0

0

)
= 0 , 0ϕ

(
c

0

)
= c lim

t→∞

ϕ(t)

t

For example, we can define the quadratic and the absolute divergence as

χ2(p, q) =
∑ (pi − qi)2

qi
, for ϕ(t) = (t− 1)2

Ab(p, q) =
∑ |pi − qi|

qi
, for ϕ(t) = |t− 1|

4.4. Maximum Entropy under Constraints

This section analyzes solution techniques for some problems formulated as entropy maximization.
The results obtained in this section are needed to obtain some fundamental principles of Bayesian
statistics, presented in the following sections. This section also presents the Bregman algorithm for
solving constrained maxent problems on finite distributions. The analysis of small problems (far from
asymptotic conditions) poses many interesting questions in the study of subjective randomness, an area
so far neglected in the literature.

Given a prior distribution, q, we would like to find a vector p that minimizes the Relative Information
In(p, q), where p is under the constraint of being a probability distribution, and maybe also under
additional constraints over the expectation of functions taking values on the system’s states, that is,
we want

{p∗} = arg min In(p, q) , p ≥ 0 | 1′p = 1 and Ap = b , A (m− 1)× n

p∗ is the Minimum Information or Maximum Entropy (MaxEnt) distribution, relative to q, given the
constraints {A, b}. We can write the probability normalization constraint as a generic linear constraint,
including 1 and 1 as the m-th (or 0-th) rows of matrix A and vector b. So doing, we do not need to keep
any distinction between the normalization and the other constraints. In this article, the operators � and
� indicate the point (element) wise product and division between matrices of same dimension.

The Lagrangian function of this optimization problem, and its derivatives are:

L(p, w) = p′ log(p� q) + w′(b− Ap)

∂ L

∂ pi
= log(pi/qi) + 1− w′Ai ,

∂ L

∂ wk

= bk − Akp
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Equating the n+m derivatives to zero, we have a system with n+m unknowns and equations, giving
viability and optimality conditions (VOCs) for the problem:

pi = qi exp
(
w′Ai − 1

)
or p = q � exp ((w′A)′ − 1)

Akp = bk, p ≥ 0

We can further replace the unknown probabilities, pi, writing the VOCs only on w, the dual variables
(Lagrange multipliers),

hk(w) ≡ Ak (q � exp ((w′A)′ − 1))− bk = 0

The last form of the VOCs motivates the use of iterative algorithms of Gauss-Seidel type, solving the
problem by cyclic iteration. In this type of algorithm, one cyclically “fits” one equation of the system,
for the current value of the other variables. For a detailed analysis of this type of algorithm, see [91–95]
and [99].

Bregman Algorithm:

Initialization: Take t = 0, wt ∈ Rm, and

pti = qi exp
(
wt′Ai − 1

)
Iteration step: for t = 1, 2, . . ., Take

k = (t mod m) and ν |ϕ(ν) = 0 , where

wt+1 =
[
wt

1, . . . w
t
k−1, w

t
k + ν, wt

k+1, . . . w
t
m

]′
pt+1
i = qi exp(wt+1′Ai − 1) = pti exp(νAi

k)

ϕ(ν) = Akp
t+1 − bk

From our discussion of Entropy optimization under linear constraints, it should be clear that the
maximum relative entropy distribution for a system under constraints on the expectation of functions
taking values on the system’s states,

Ep(x)ak(x) =
∫
ak(x)p(x)dx = bk

(including the normalization constraint, a0 = 1, b0 = 1) has the form

p(x) = q(x) exp (−θ0 − θ1 a1(x)− θ2 a2(x) . . .)

Notice that we took θ0 = −(w0 − 1), θk = −wk, and we have also indexed the state i by variable x, so
to write the last equation in the standard form used in the statistical literature.

Several distributions commonly used in Statistics can be interpreted as MaxEnt densities (relative to
the uniform distribution, if not otherwise stated) given some constraints over the expected value of state
functions. For example:

The Normal distribution:

f(x |n, β,R) = c(R) exp(−n
2

(x− β)′R(x− β) )
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is characterized as the distribution of maximum entropy on Rn, given the expected values of its first and
second moments, i.e., mean vector β and inverse covariance or precision matrix R.

The Wishart distribution:

f(S | ν, V ) = c(ν, V ) exp

(
ν − d− 1

2
log(det(S))−

∑
i,j
Vi,jSi,j

)

is characterized as the distribution of maximum entropy in the support S > 0, given the expected value
of the elements and log-determinant of matrix S. That is, writing Γ′ for the digamma function,

E(Si,j) = Vi,j , E(log(det(S))) =
∑d

k=1
Γ′
(
ν − k + 1

2

)

The Dirichlet distribution

f(x | θ) = c(θ) exp
(∑m

k=1
(θk − 1) log(xk)

)
is characterized as the distribution of maximum entropy in the simplex support, x ≥ 0 | 1′x = 1, given
the expected values of the log-coordinates, E(log(xk)). In this parameterization, E(xk) = θk.

Jeffrey’s Rule:

Richard Jeffrey considered the problem of updating an old probability distribution, q, to a new
distribution, p, given new constraints on the probabilities of a partition, that is,

∑
i∈Sk

pi = αk ,
∑

k
αk = 1 , S1 ∪ . . . ∪ Sm = {1, . . . n} , Sl ∩ Sk = ∅, l 6= k

His solution to this problem, known as the Jeffrey’s rule, coincides with the minimum information
divergence distribution, relative to q, given the new constraints. This solution can be expressed
analytically as

pi = αkqi/
∑

j∈Sk
qj, k | i ∈ Sk

4.5. Fisher’s Metric and Jeffreys’ Prior

In this section the Fisher Information Matrix is defined and used to obtain the geometrically invariant
Jeffreys’ prior distributions. These distributions also have interesting asymptotic properties concerning
the representation of vague or no information. The properties of Fisher’s metric discussed in this section
are also needed to establish further asymptotic results in the next section.

The Fisher Information Matrix, J(θ), is defined as minus the expected Hessian of the log-likelihood.
Under appropriate regularity conditions, the information geometry is defined by the metric in the
parameter space given by the Fisher information matrix, that is, the geometric length of a curve is
computed integrating the form dl2 = dθ′J(θ)dθ.

Lemma: The Fisher information matrix can also be written as the covariance matrix of the gradient
of the same likelihood, i.e.,

J(θ) ≡ −EX
∂ 2 log p(x | θ)

∂ θ2
= EX

(
∂ log p(x | θ)

∂ θ

∂ log p(x | θ)
∂ θ

)
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Proof: ∫
X
p(x | θ)dx = 1⇒

∫
X

∂ p(x | θ)
∂ θ

dx = 0⇒∫
X

∂ p(x | θ)
∂ θ

p(x | θ)
p(x | θ)

dx =
∂ log p(x | θ)

∂ θ
p(x | θ)dx = 0

differentiating again relative to the parameter,∫
X

(
∂ 2 log p(x | θ)

∂ θ2
p(x | θ) +

∂ log p(x | θ)
∂ θ

∂ p(x | θ)
∂ θ

)
dx = 0

observing that the second term can be written as∫
X

∂ log p(x | θ)
∂ θ

∂ p(x | θ)
∂ θ

p(x | θ)
p(x | θ)

dx =
∫
X

∂ log p(x | θ)
∂ θ

∂ log p(x | θ)
∂ θ

p(x | θ)dx

we obtain the lemma.
Harold Jeffreys used the Fisher metric to define a class of prior distributions, proportional to the

determinant of the information matrix,

p(θ) ∝ |J (θ)|1/2

Lemma: Jeffreys’ priors are geometric objects in the sense of being invariant by a continuous and
differentiable change of coordinates in the parameter space, η = f(θ). The proof follows pp. 41–54
of [100]:

Proof:

J(θ) =

[
∂ η

∂ θ

]
J(η)

[
∂ η

∂ θ

]′
, hence

|J (θ)|1/2 =

∣∣∣∣∣∂ η∂ θ
∣∣∣∣∣ |J (η)|1/2 , and

|J (θ)|1/2 dθ = |J (η)|1/2 dη . Q.E.D.

Example: For the multinomial distribution,

p(y | θ) = n!
∏m

i=1
θxi
i

/ ∏m

i=1
xi! , θm = 1−

∑m−1
i=1

θi , xm = n−
∑m−1

i=1
xi

L = log p(θ |x) =
∑m

i=1
xi log θi

∂ 2L

(∂ θi)2
= −xi

θ2i
+
xm
θ2m

,
∂ 2L

∂ θi∂ θj
= −xm

θ2m
, i, j = 1 . . .m− 1

−EX
∂ 2L

(∂ θi)2
=
n

θi
+

n

θm
, −EX

∂ 2L

∂ θi∂ θj
=

n

θm

|J(θ)| = (θ1θ2 . . . θm)−1 , p(θ) ∝ (θ1θ2 . . . θm)−1/2

p(θ |x) ∝ θ
x1−1/2
1 θ

x2−1/2
2 . . . θxm−1/2

m

In general Jeffrey’s priors are not minimally informative in any sense. However, in pp. 41–54 of [100],
Zellner gives the following argument (attributed to Lindley) to present Jeffreys’ priors as “knowing
little” in the sense of being asymptotically minimally informative. The following equations give several
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definitions related to the concept of information gain, that is expressed as the prior average information
associated with an observation minus the prior information measure: I(θ)—the information measure of
p(x | θ), A—the prior average information associated with an observation, G—the information gain, and
Ga—the asymptotic information gain.

I(θ) =
∫
p(x | θ) log p(x | θ)dx ; A =

∫
I(θ)p(θ)dθ

G = A−
∫
p(θ) log p(θ)dθ ; Ga =

∫
p(θ)

√
n |J(θ)|dθ −

∫
p(θ) log p(θ)dθ

Although Jeffreys’ priors in general do not maximize the information gain, G, the asymptotic
convergence results presented in the next section imply that Jeffrey’s priors maximize the asymptotic
information gain, Ga. For further details and generalizations, see [101–110].

Comparing the several versions of noninformative priors in the multinomial example, one can say
that Jeffreys’ prior “discounts” half an observation of each kind, while the maxent prior discounts one
full observation, and the flat prior discounts none. Similarly, slightly different versions of uninformative
priors for the multivariate normal distribution are shown in [106]. This situation leads to the possible
criticism stated by Berger in p. 89 of [104]:

Perhaps the most embarrassing feature of noninformative priors, however, is simply that
there are often so many of them.

One response to this criticism, to which Berger explicitly subscribes in p. 90 of [104], is that

It is rare for the choice of a noninformative prior to markedly affect the answer... so that
any reasonable noninformative prior can be used. Indeed, if the choice of noninformative
prior does have a pronounced effect on the answer, then one is probably in a situation where
it is crucial to involve subjective prior information.

The robustness of the inference procedures to variations on the form of the uninformative prior can
be tested using sensitivity analysis, as discussed in Section 4.7 of [104]. For alternative approaches on
robustness and sensitivity analysis based on paraconsistent logic, see [4,5].

4.6. Posterior Asymptotic Convergence

Posterior convergence constitutes the principal mechanism enabling information acquisition or
learning in Bayesian statistics. Arguments based on relative information, I(p, q), can be used to prove
fundamental results concerning posterior distribution asymptotic convergence. This section presents two
of these fundamental results, following Appendix B of [96].

Theorem: Posterior Consistency for Discrete Parameters:

Consider a model where f(θ) is the prior in a discrete parameter space, Θ = {θ1, θ2, . . .},
X = [x1, . . . xn] is a series of observations, and the posterior is given by

f(θk |X) ∝ f(θk) p(X | θk) = f(θk)
∏n

i=1
p(xi | θk)
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Further, assume that this model has a unique vector parameter, θ0, giving the best approximation for
the “true” predictive distribution g(x), in the sense that it minimizes the relative information

{θ0} = arg min
k
I
(
g(x), p(x | θk)

)
I
(
g(x), p(x | θk)

)
=

∫
X
g(x) log

(
g(x)

p(x | θk)

)
dx = EX log

(
g(x)

p(x | θk)

)

Then,
lim
n→∞

f(θk |X) = δ(θk, θ0)

Heuristic Argument: Consider the logarithmic coefficient

log

(
f(θk |X)

f(θ0 |X)

)
= log

(
f(θk)

f(θ0)

)
+
∑n

i=1
log

(
p(xi | θk)

p(xi | θ0)

)

The first term is a constant, and the second term is a sum which terms have all negative expected
(relative to x, for k 6= 0) value since, by our hypotheses, θ0 is the unique argument that minimizes
I(g(x), p(x | θk)). Hence, (for k 6= 0), the right hand side goes to minus infinite as n increases.
Therefore, at the left hand side, f(θk |X) must go to zero. Since the total probability adds to one,
f(θ0 |X) must go to one, QED.

We can extend this result to continuous parameter spaces, assuming several regularity conditions, like
continuity, differentiability, and having the argument θ0 as an interior point of Θ with the appropriate
topology. In such a context, we can state that, given a pre-established small neighborhood around θ0,
like C(θ0, ε) the cube of side size ε centered at θ0, this neighborhood concentrates almost all mass of
f(θ |X), as the number of observations grows to infinite. Under the same regularity conditions, we also
have that Maximum a Posteriori (MAP) estimator is a consistent estimator, i.e., θ̂ → θ0.

The next results show the convergence in distribution of the posterior to a Normal distribution. For
that, we need the Fisher information matrix identity from the last section.

Theorem: Posterior Normal Approximation:

The posterior distribution converges to a Normal distribution with mean θ0 and precision nJ(θ0).

Proof (heuristic): We only have to write the second order log-posterior Taylor expansion centered at θ̂,

log f(θ |X) = log f(θ̂ |X) +
∂ log f(θ̂ |X)

∂ θ
(θ − θ̂)

+
1

2
(θ − θ̂)′∂

2 log f(θ̂ |X)

∂ θ2
(θ − θ̂) +O(θ − θ̂)3

The term of order zero is a constant. The linear term is null, for θ̂ is the MAP estimator at an interior
point of Θ. The Hessian in the quadratic term is

H(θ̂) =
∂ 2 log f(θ̂ |X)

∂ θ2
=

∂ 2 log f(θ̂)

∂ θ2
+
∑n

i=1

∂ 2 log p(xi | θ̂)
∂ θ2

The Hessian is negative definite, by the regularity conditions, and because θ̂ is the MAP estimator. The
first term is constant, and the second is the sum of n i.i.d. random variables. At the other hand we have
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already shown that the MAP estimator, and also that all the posterior mass concentrates around θ0. We
also see that the Hessian grows (in average) linearly with n, and that the higher order terms can not
grow super-linearly. Also for a given n and θ → θ̂, the quadratic term dominates all higher order terms.
Hence, the quadratic approximation of the log-posterior in increasingly more precise, Q.E.D.

5. Final Remarks

The objections raised by Spencer-Brown against probability and statistics, analyzed in Sections 1
and 2, are somewhat simplistic and stereotypical, possibly explaining why they had little influence
outside a close circle of admirers, most of them related to the radical constructivism movement. However,
arguments very similar to those used to demystify Spencer-Brown’s misconceptions and elucidate its
misunderstandings, reappear in more subtle or abstract forms in the analysis of far more technical matters
like, for example, the use and interpretation of prior and posterior distributions in Bayesian statistics.

In this article, entropy is presented as a cornerstone concept for the precise analysis and a key idea
for the correct understanding of several important topics in probability and statistics. This understanding
should help to clear the way for establishing Bayesian statistics as a preferred tool for scientific inference
in mainstream cognitive constructivism.
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