
The Economics and Philosophy of Risk

H. Orri Stefánsson
Stockholm University

and Swedish Collegium for Advanced Study
orri.stefansson@philosophy.su.se

www.orristefansson.is

Abstract

Neoclassical economists use expected utility theory to explain, predict, and pre-
scribe choices under risk, that is, choices where the decision-maker knows—or at
least deems suitable to act as if she knew—the relevant probabilities. Expected
utility theory has been subject to both empirical and conceptual criticism. This
chapter reviews expected utility theory and the main criticism it has faced. It ends
with a brief discussion of subjective expected utility theory, which is the theory
neoclassical economists use to explain, predict, and prescribe choices under un-
certainty, that is, choices where the decision-maker cannot act on the basis of
objective probabilities but must instead consult her own subjective probabilities.
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1 Introduction

Decisions often have to be made without knowing for sure which outcome will result
from her choice. When deciding between taking the train and driving to work, for
instance, one may be unsure about several factors that could determine the outcome
of these choices, such as whether the train will be on time and whether an accident
will cause congestion on the road. Similarly, important economic decisions, such as
choosing between pension-plans, have to be made with imperfect knowledge of cru-
cial factors, for instance, how long one will live and the actual returns of the different
pension-plans. A common way to put this, is that decisions such as these are not made
in situations of certainty.
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Decisions that are not made in situations of certainty however differ widely in terms
of how much or little the decision-maker knows. The extent of a decision-makers
knowledge, in a particular situation, can be usefully characterised with reference to the
elements of the decision-maker’s decision-problem. A decision-problem, as I shall be
using the term, consists of two or more options, a set of outcomes that each of these
options could result in, and a set of states of the world (or simply states), that determine
which outcome results from each option. In the above transport decision-problem, for
instance, the options include driving and taking the train, the states include facts about
how well the trains run and how much traffic there is on the road, and the outcomes
include arriving on time and arriving late.

If the decision-maker is fortunate enough to know which state obtains, then her de-
cision is made in a situation of certainty. When she does not know which state obtains,
we can nevertheless draw important distinctions depending on how much the decision-
maker knows about the states of the world. Sometimes, for instance, a decision-maker
knows—or at least “deems suitable to act as if” she knew (Luce and Raiffa 1989/1957:
277)—the probabilities of the different states of the world. A game of roulette would
typically be treated as a situation where the gambler knows the probabilities of the rele-
vant states, and, by implication, the probabilities of the possible outcomes of choosing
each option. For instance, a player of a European roulette knows that there is a prob-
ability of 1/37 that the ball ends up in pocket numbered 5 (“state”); hence, she knows
that if she chooses to bet on number 5 (“option”) then there is a 1/37 probability that
she wins (“outcome”). Following Knight (1921), economic theorists typically use the
term “risk”, for such choices; and say that the roulette gambler is making a decision
under risk.

In contrast, when betting on a soccer match, one does not know all the relevant
probabilities. The outcome of the match may, for instance, depend on whether the
hot-headed midfielder of the home-team gets a red card, whether the star-striker of the
away-team gets injured, and so on. But the probability that the midfielder gets a red
card is hard to know. We might know that he has so far received a red card in 10% of
all games she has played, but we do not know whether her mood on the day in question
will be better or worse than normal. And it might be even less plausible to say that we
can know the probability with which the star-striker gets injured on the day in question.
We might, however, know all the states of the world that could determine which of the
(say, three) outcomes (home-team wins, away team wins, draw) obtains. In that case,
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economic theorists, again following Knight (1921), would use the term “uncertainty”;
and they would say that the bettor is making a decision under uncertainty (but not under
risk).

In some decision-problems a decision-maker’s lack of knowledge is more severe
than in either of the above two examples. In particular, sometimes a decision-maker
might not even know all of the states of the world that could determine the outcome of
her decision, and/or shemight not be aware of all the possible outcomes that could result
from her decisions. When evaluating the option of implementing solar geo-engineering
as a response to the climate crisis, for instance, there plausibly are important states of
the world and potential outcomes that we have not yet considered. More generally,
when considering new technologies and radical policies we may suspect—e.g. based
on past experience of similar decisions—that there are important contingencies that we
cannot yet articulate. In addition, one might often not even know about all the available
options; for instance, there presumably are some options for responding to the climate
crisis that nobody has yet considered. Decisions where an agent lacks knowledge of
some of the possible states, outcomes, ore options, are said to be made in situations
of “unawareness” (for recent overviews of this literature, see e.g. Schipper 2015 and
Steele & Stefánsson 2021).

This chapter will be almost exclusively concerned with how economic theorists
(in particular, so-called “neoclassical” or “orthodox” economic theorists) treat risk, as
previously defined. I shall start, in the next section, by outlining the theory that neo-
classical economists use to predict, explain, and guide choices in situations of risk. In
section 3 I then discuss some of the main challenges, both empirical and philosoph-
ical, to this orthodox treatment of risk. In section 4, I however briefly discuss how
neoclassical economists tend to approach decision-making under uncertainty, and an
important challenge faced by this approach. Section 5 concludes the chapter.

2 Risk in Economic Theory

Recall that a decision under risk is one where the relevant decision-maker knows, or
acts as if she knew, the probabilities with which the available options deliver the possi-
ble outcomes. This is often described as decision-making with objective probabilities.
But that terminology may be misleading. For instance, assuming that the behaviour
of roulette wheels is deterministic, the arguably most common-sensical account of ob-
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jective probabilities1 would entail that the ball has a probability of 0 of ending up in
any pocket except one, namely, the one that it will actually end up in, for which the
probability is 1.

Nevertheless, betting on a roulette wheel is an archetypical example of decision-
making under risk in economic theory, where the decision-maker is modelled as acting
on the basis of knowledge of a non-trivial probability distribution, where “non-trivial”
means that more than one outcome is assigned a positive probability. Hence, I shall use
the term “known probabilities” rather than “objective probabilities” when describing
decision-making under risk.

Now, my preferred terminology might be misleading too, since some might not
find it appropriate to describe the roulette gambler as “knowing” the probabilities of
the various outcomes. For instance, the epistemic sceptic might complain that given
my terminology, nobody ever makes decisions under risk; while the determinist could
argue that since one can only know that which is true, decisions under risk only involve
trivial probabilities. So, the reader should keep in mind that when I speak of known
probabilities, what I really mean is that the decision-maker finds it suitable to act as if
she knew the relevant probabilities (Luce & Raiffa 1989/1957, ibid.).

It it also worth noting that a decision-maker may quite reasonably find it suitable to
act as if she knew the relevant probabilities even when these are in fact not knowable.
For instance, suppose that a patient is considering undergoing a surgery and learns that
one million patients “like here”, in the physiologically relevant sense, have undergone
the surgery, and that the surgery has been successful in 99% of these cases. Or, suppose
instead that a person is considering investing in government bonds and finds that all
experts agree that there is at least a 90% chance that the bonds will yield a return of
at least 5%. In these cases the true probabilities in question may not be knowable—
for instance, perhaps the true probability with which a particular patient will have a
successful surgery cannot be known. Nevertheless, it would seem reasonable for these
decision-makers to act as if they knew the relevant probabilities: in the first case, that
there is a 99% chance that the surgery will be a success; in the second case, that there
is at least a 90% chance that the bonds will yield a return of at least 5%. So, I will treat
examples like these as decision-making under risk.

The orthodox (neoclassical) approach in economics when it comes to explaining,
predicting and guiding decision-making under risk is a theory that is often called objec-

1However, for a sophisticated account of objective probabilities that does not entail this, see Hoefer
(2007) and Frigg & Hoefer (2010).
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tive expected utility theory. “Objective” here refers to the probabilities assumed by the
theory, rather than the utility. In what follows I shall simply call the theory in question
“expected utility theory”; but later I shall consider subjective expected utility theory
(where the probabilities are subjective).

Informally, expected utility theory says that the value of a risky option equals the
option’s expectation of utility, where “utility” is a measure of the desirability of the
option’s potential outcomes, and the expectation is calculated by multiplying each out-
come’s utility with its probability, and then adding up all of these probability-weighted
utilities. To state this more precisely we need to introduce some formal definitions and
notation.

2.1 The vNM theory

Let Li be a “lottery” from the set L of lotteries, and Ok the outcome, or “prize”, of
lottery Li that arises with probability pik (where, of course,

∑
j pi j = 1). It is important

to stress that the term “lottery” is a technical one; informally, it can be any risky option,
that is, an option that could result in different outcomes, for which the decision-maker
of interest knows (or acts as if she knows) the probabilities. The representation result
that I discuss below requires the set L of lotteries to be rather extensive: it is closed
under “probability mixture”, which means that if Li,L j ∈ L, then compound lotteries
that have Li and L j as possible “outcomes” are also in L. The expected utility of Li is
defined as:

vNM expected utility equation. EU(Li) =
∑

k u(Ok) · pik

According to expected utility theory, a rational preference between lotteries corre-
sponds to the lottery’s expected utilities, in the sense that the one lottery is preferred
over another just in case the one offers a higher expectation of utility than the other.
When this relationship between preference and expected utility holds, we say that the
preference can be represented as maximising expected utility. (Why only “represented
as”? Because the utility is simply a way of numerically describing the preference; no
claim is made about utility corresponding to anything that the agent recognises. We
shall get back to this issue soon.)

To state more formally the aforementioned relationship between rational preference
and expected utility, we need some additional notiation. Let≾ denote aweak preference
relation. So A ≾ B means that the agent we are interested in considers option B to be
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at least as preferable as option A. From the weak preference relation we can define
the strict preference relation, ≺, as follows: A ≺ B =def A ≾ B & ¬(B ≾ A), where
¬X means “it is not the case that X”. So, A ≺ B means that the agent prefers B to A.
Finally, indifference, ∼, is defined as: A ∼ B =def A ≾ B & B ≾ A. This means that the
agent we are interested in considers A and B to be equally preferable.

Economists and decision theorists generally take there to be a close conceptual con-
nection between preference and choice. Least controversially, a rational person who
prefers B to A has a tendency to choose B over A, if given the option. More contro-
versially, some economists have wanted to define preference (or “revealed preference”;
Samuelson 1938, 1948) in terms of choice; to prefer B over A means having a tendency
to choose B over A. How closely to tie preference to choice is an issue that we will
have reasons to revisit.

We say that there is an expected utility function that represents the agent’s prefer-
ence ≾ between lotteries in L just in case there is a utility function u and a probability
function p such that for anyLi,L j ∈ L:

Li ≾ L j ⇔ EU(Li) =
∑

k

u(Ok) · pik ≤ EU(L j) =
∑

k

u(Ok) · p jk

Economist are, at least by tradition, skeptical of claims about people’s attitudes
that cannot, in principle at least, be reframed as claims about choice-behaviour.2 For-
tunately, claims about preferences can, at least in theory, be reframed as claims about
(hypothetical) choice-behaviour, assuming that people generally (or at least rationally)
choose what they prefer. Hence, there is no wonder that economists were impressed
when vonNeumann andMorgenstern (vNM) demonstrated that claims about utilities—
for instance, the claim that a person maximises expected utility—can be reformulated
as claims about a person’s preferences between lotteries.3 In particular, vNM proved
that if a person’s preferences between lotteries satisfy a number of constraints, or ax-

2Robbins (1932), Samuelson (1938, 1948), and Friedman (1953) are some influential works in this
behaviourist tradition; for an overview, see Angner & Loewenstein (2012), in particular section 2.2.

3Ramsey (1990/1926) had actually already suggested a stronger result, that is, one that simultane-
ously derives a probability function and a utility function from the agent’s preference (a project later
continued by e.g. Savage 1972/1954 and Jeffrey 1990/1965). Nevertheless, this result of Ramsey’s was
never nearly as influential in economics as vNM’s, perhaps partly since Ramsey neither gave a full proof
of his result nor provided much detail of how it would go, but probably also partly since Ramsey’s con-
struction assumes certain psychological facts about agents (in particular, which prospects are consider
“ethically neutral”, that is, neither of negative nor positive value) that are prior to the expected utility
representation (for a discussion, see Bradley 2001).
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ioms, then she can be represented as maximising expected utility.
The following notation will be used to introduce the vNM axioms4 of preference:

{pA, (1 − p)B} denotes a lottery that results either in A, with probability p, or B, with
probability 1 − p. p ∈ [0, 1] means that p takes a value between 0 and 1 (inclusive)
whereas p ∈ (0, 1) means that p takes a value strictly between 0 and 1 (so, excluding 0
and 1). Note that the set the set L of lotteries contains “trivial” lotteries—that is, lotter-
ies with only trivial probabilities—in addition to non-trivial ones. Since the “expected”
utility of a trivial lottery equals, by the expected utility equation, the utility of the only
outcome that it might result in, it follows, from a theorem we are about to state, that
since these axioms hold for any lottery, they also hold for any outcome. The set of all
possible outcomes is denoted O.

Axiom 1 (Completeness). For any Li,L j ∈ L, either Li ≾ L j or L j ≾ Li.

Axiom 2 (Transitivity). For any Li,L j,Lk ∈ L, if Li ≾ L j and L j ≾ Lk then Li ≾ Lk.

Axiom 3 (Continuity). For any Li,L j,Lk ∈ L, if Li ≺ L j ≺ Lk then there is a p ∈ (0, 1)
such that:

{pLi, (1 − p)Lk} ∼ L j

Axiom 4 (Independence). For any Li,L j ∈ L, if Li ≾ L j then for any Lk ∈ L, and any
p ∈ [0, 1]:

{pLi, (1 − p)Lk} ≾ {pL j, (1 − p)Lk}

Axiom 5 (Reduction of compound lotteries). For any Li,L j ∈ L, if for any Ok ∈ O,
pik = p jk, then Li ∼ L j.

The Completeness axiom says that an agent can compare, in terms of the weak prefer-
ence relation, all pairs of options (i.e., lotteries) in L and, by implication, all outcomes
in O. Whether or not Completeness is a plausible rationality constraint depends, for
instance, on what sort of options are under consideration, and how we interpret pref-
erences over these options. If O includes all kinds of outcomes—e.g. curing cancer
and eradicating poverty—then Completeness is not immediately compelling. If, on the
other hand, all options in the set are quite similar to each other, say, all options are
pension plans, then Completeness is more compelling.

4The axioms I present are not exactly the one’s vNM presented. In fact, my choice of axioms is
determined mainly by pedagogical reasons.
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The plausibility of Completeness also depends on how closely we tie the interpre-
tation of preference to actual choices, that is, choices that a person is actually faced
with. As Gilboa (2009) notes, after having defined Completeness as a property of a
weak preference relation:

If we take a descriptive interpretation, completeness is almost a matter
of definition: the choice that we observe is defined to be the preferred
one. ... Taking a normative interpretation, the completeness axiom is quite
compelling. It suggests that a certain choice has to be made. (51-52)

Here Gilboa is clearly thinking of preference in relation to decisions that the agent
actually faces. As previously mentioned, however, the domain of for instance the pref-
erence relation in the vNM theory is far from containing only decisions that a person
will actually face. Due to this, Aumann (1962) claimed that:

Of all the axioms of utility theory, the completeness axiom is perhaps the
most questionable. Like others of the axioms, it is inaccurate as a descrip-
tion of real life; but unlike them, we find it hard to accept even from the
normative viewpoint. Does “rationality” demand that an individual make
definite preference comparisons between all possible lotteries [...]? For
example, certain decisions that our individual is asked to make might in-
volve highly hypothetical stations, which he will never face in real life; he
might feel that he cannot reach an “honest” decision in such cases. (446)

Few people would however question the plausibility of Transitivity as a require-
ment of rationality.5 Informally, Transitivity says that if one option is at least as prefer-
able as another option which is at least as preferable as a third option, then the first
option is at least as preferable as the third option. To see why preference must be tran-
sitive for it to be possible to numerically represent it, it suffices to notice that if the
first option gets assigned at least as high a number as the second option which gets
assigned at least as high a number as the third option, then, necessarily, the first option
gets assigned at least as high a number as the third option.

There is a straightforward defence of Transitivity that hinges on the sure losses that
may befall anyone who violates the axiom (Davidson et al. 1955). This is the so-called

5But of course, for almost any claim, one can find a philosopher arguing against it. Notable philoso-
phers who question the claim that Transitivity is a requirement of rationality include Temkin (1987,
1996, 2012) and Rachels (1998)
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money pump argument. It is based on the assumption that if you find one option at
least as preferable as another, then you should be happy to trade the one for the other.
Suppose you violate Transitivity; for you: Li ≾ L j, L j ≾ Lk but Lk ≺ Li.6 Moreover,
suppose you presently have Li. Then you should be willing to trade Li for L j. The same
goes for L j and Lk: you should be willing to trade L j for Lk. You strictly prefer Li to Lk,
so you should be willing to trade in Lk plus some sum £x for Li. But now you are in the
same situation as you started, having Li but neither L j nor Lk, except that you have lost
£x! This process could be repeated, the argument goes, thus turning you into a “money
pump”.

Continuity implies that no outcome is so bad that you should not be willing to take
some gamble that might result in you ending up with that outcome, but might otherwise
result in you ending up with a marginal improvement on your status quo, provided the
chances of the better outcome are good enough. Intuitively, Continuity guarantees that
an agent’s evaluations of lotteries are appropriately sensitive to the probabilities of the
lotteries’ outcomes.

Some people find the Continuity axiom too strong. Is there any probability p such
that you would be willing to accept a gamble that has that probability of you losing
your life and probability (1 − p) of you winning £10? (Luce & Raiffa 1989/1957, 27)
Many people think there is not. However, the very same people would presumably
cross the street to pick up a £10 bill they had dropped. But that is just taking a gamble
that has a very small probability of being killed by a car but a much higher probability
of gaining £10.

Reduction of compound lotteries is an often forgotten axiom of expected utility
theory. Perhaps the reason for this is that it seems on the face of it so compelling. In-
formally, the axiom simply ensures that two lotteries that confer the exact same prob-
abilities on the possible outcomes get assigned the same value. For instance, a lottery
that delivers £5,000 if a fair coin comes up heads three times in a row (but otherwise de-
livers £0) gets assigned the same value as a lottery that delivers £5,000 if a yellow ball
is randomly drawn from an urn containing seven white balls and one yellow ball. And
that may seem very plausible. However, note that the axiom implies it does not matter
whether the probability of an outcome is the result of the probability of a sequence of
events (e.g. the coin coming up heads three times in a row) or a single event (e.g. a

6Here I am assuming Completeness. After all, if Completeness is not assumed, then onemight violate
Transitivity by weakly preferring L j to Li and weakly preferring Lk to L j, while having no preference
when it comes to on Li vs. Lk.
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yellow ball being drawn). And some have complained that this rules out assigning any
(dis)value to gambling as such, an issue to which we shall return in section 3.3.

Independence implies that when two alternatives have the same probability for
some particular outcome, our evaluation of the two alternatives should be indepen-
dent of our opinion of that particular outcome. Intuitively, this means that preferences
between lotteries should be governed only by the features of the lotteries that differ;
the commonalities between the lotteries should be ignored. A preference ordering must
satisfy some version of the Independence axiom for it to be possible to represent it as
maximising what is called an additively separable function; for instance, a function ac-
cording towhich the value (i.e., expected utility) of an option is a (probability weighted)
sum of the values of the option’s possible outcomes.

To see this, suppose Li and L j are two alternatives, or lotteries, such that Li will
either result in outcome A, which has probability p, or C, which has probability q, and
L j will either result in outcome B, which has probability p, or C, which has probability
q. Then EU(Li) ≤ EU(L j) just in case pu(A) + qu(C) ≤ pu(B) + qu(C). And the
latter of course holds when, and only when, pu(A) ≤ pu(B). So an expected utility
representation implies that when two alternatives have the same probability of some
particular outcome, our evaluation of the two alternatives should be independent of
what we think of that particular outcome, which is exactly what Independence requires.

Independence has however been extensively criticises. We shall look at that crit-
icism in more detail in section 3.1. For now, we focus on the representation theorem
that von Neumann & Morgenstern (2007/1944)’s axioms give rise to:7

Theorem (von Neumann-Morgenstern). Let O be a finite set of outcomes, L a set of
corresponding lotteries that is closed under probability mixture and ≾ a weak prefer-
ence relation on L. Then ≾ satisfies axioms 1-4 if and only if there exists a function u,
fromO into the set of real numbers, that is unique up to positive linear transformation,8

and relative to which ≾ can be represented as maximising expected utility.

One important implication of the above theorem is that, in principle at least, talk
about a person’s “utilities” can now be translated into talk about the person’s prefer-
ences and thus her tendency to choose. Moreover, the result shows that the assumption

7Kreps (1988) and Peterson (2009) each provide accessible but different illustrations of how the
theorem can be proven.

8That u is unique up to a positive linear transformation means that, for the purposes of the represen-
tation, u is considered equivalent to all and only those functions u′ that satisfy u′ = a + ub for some
number a and positive number b.
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that a rational person acts so as to maximise expected utility can be stated as an as-
sumption about the person’s choice tendencies. In light of the behaviourist inclination
that has dominated neoclassical economics (recall fn. 2), there is thus no wonder that
economists embraced vNM’s result.

For instance, note that vNM’s theorem establishes that it is meaningful to ask about
how the difference in utility between, say, two outcomes compares to the difference in
utility between some other two outcomes. For instance, suppose we know that some
agent prefers apples (A) to bananas (B) which she prefers to citrus fruit (C). We might
be interested in knowing how the difference, according to her—i.e., the difference in
utility—between A and B compares to the difference between B and C. And vNM’s
result seems to ensure that we can indeed meaningfully ask such questions.

The way to answer the above question, according to vNM’s theory, is to construct
a lottery between A and C, and find out what probability the lottery has to confer on
A for the agent to be indifferent between on the one hand this lottery and on the other
hand getting B for sure. The higher this probability, the greater the difference in utility
between B and C compared to the difference between A and B. Intuitively, the higher
this indifference probability, the less risks the person is willing to take in her pursuit
for A rather than B when the risk can also result in C; which in turns suggests that she
does not deem A amuch better than B compared how much worse she considers C than
B. For instance, if the person requires this probability to be 0.75, then that implies, by
vNM’s theory, that B is three quarters on the way up a utility interval that has A on the
top and C on the bottom.

So, it would seem that vNM’s result ensures that we can ask how the strength of a
person’s preference between one pair of risk free outcomes compares to the strength of
her preference between another pair of risk free outcomes; and the way to answer this
questions is to look at the person’s preferences between risky lotteries. However, this
inference from attitudes to risky lotteries to attitudes to risk-free outcomes has been a
topic of hot debate, which will be reviewed in section 3.

2.2 Risk aversion

A noticeable feature of the expected utility equation, that has given rise to much discus-
sion and debate, is that it assumes risk neutrality with respect to utility. If Li is a non-
trivial lottery whose expected utility is x, and L j is a trivial lottery whose “expected”
utility is also x, then an agent whose preferences maximise expected utility—that is,
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an agent whose preferences satisfy axioms 1-5—is indifferent between Li and L j. In
other words, such a person is indifferent between any lottery whose expected utility is
x and a sure outcome whose utility is x.

In contrast, the expected utility formula does not assume risk neutrality with respect
to the outcomes to which utilities are attached. Suppose for instance that O is a set of
possible wealth levels. Then the expected utility equation is consistent with the agent of
interest being either risk averse or risk seekingwith respect towealth levels; and, in fact,
consistent with the agent being risk averse when it comes to levels of wealths within
some ranges while being risk seeking when it comes to levels of wealth within other
ranges. Which is fortunate, since universal risk neutrality would be neither empirically
nor normatively plausible.

Let’s take an example to illustrate the claims in the last paragraph. Suppose that
some person is offered a 50-50 gamble between winning £5,000 and losing £5,000.
This lottery, or gamble, is what is called “actuarially fair”: its expectedmonetary payoff
is 0. Now let’s say that the person in question has a pre-gamble wealth of w. If the
person is risk neutralwith respect to monetary amounts in the range fromw−£5, 000 to
w+ £5, 000 then she is indifferent between accepting and rejecting this 50-50 gamble.
However, if the person is risk averse when it comes to monetary amounts in this range,
then she will turn down the gamble (and would continue to do so even if the potential
gain were slightly increased). In contrast, if she is risk seeking, then she will accept the
gamble (and would continue to do so even if the potential gain were slightly decreased).

Let us however focus on risk aversion. To make sense of a person turning down the
50-50 gamble between winning £5,000 and losing £5,000, within the vNM framework,
we assume that the person has a utility function over quantities of money that is concave
over the relevant interval, which means that its graph has the shape depicted in figure 1.
Informally, this means that, within this range, an additional pound results in a smaller
increase in utility as we move up within this range. Even less formally, this means that
a pound is worth less (in utility) the more pounds the person already has; or, as it is
often put, pounds have diminishing marginal utility (within this range). And that surely
seems like a common psychological phenomena. Whether it explains risk aversion is
however an issue to which we shall return in the next section.

So, the von Neumann & Morgenstern (2007/1944) framework seems to be able to
account for risk aversion. And it can account for risk seeking behaviour too; for a risk
seeking person, the utility function is convex rather than concave, as in the graph in
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Figure 1: diminishing marginal utility
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Figure 2: Increasing marginal utility

figure 2. Informally, this means that, for amounts within the relevant range, a pound is
worth more (in utility) the more pounds the person already has.

Finally, the framework can account for agents who display risk seeking behaviour
when it comes to monetary amounts within some ranges while displaying risk averse
behaviour when it comes to amounts within other ranges. Consider for instance the
fact that many people gamble in the casino—which seems to suggest risk seeking
behaviour—while at the same time insuring their house—which seems to suggest risk
averse behaviour. In a seminal application of expected utility theory, Friedman & Sav-
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age (1948) attempted to account for such behaviour by a utility function that has a con-
vex shape when relative small sums of money are involved (representing risk seeking
behaviour in the casino) while having a concave shape when larger sums of money are
involved (representing risk averse behaviour in insurance markets). A utility function
with such a shape is depicted in the graph in figure 3.

So, the framework that orthodox (neoclassical) economists use to explain, predict,
and recommend choices under risk may seem flexible enough to, formally at least, rep-
resent people’s differing attitudes to risk. However, in the next section we encounter
some arguments purporting to show that the framework is not as flexible as its propo-
nents have claimed.

3 Critiques of the Orthodox Treatment of Risk

Expected utility theory, as for instance developed by von Neumann & Morgenstern
(2007/1944), has come under heavy criticism over the last decades. Some of this criti-
cism is empirical, in that it uses experiments and other data to argue that people often
do not act as the theory predicts. Other criticism is normative, where the complaint
is that even perfectly rational people need not always act as the theory prescribes. Fi-
nally, some of the criticism is more conceptual, in that the complaint concerns attitudes
or concepts that seem important for decision-making but which the theory completely
ignores.
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3.1 Allais’ challenge

Independence is perhaps the vNM axiom that has been most critically discussed. Al-
though the axiom seems compelling—in particular from a normative point of view—
when considered in the abstract, there are famous examples where many people find
that they even on reflection violate the axiom. A particularly well-known such ex-
ample is the so-called Allais Paradox, which the French economist Allais (1953) first
introduced. The paradox turns on comparing people’s preferences over two pairs of
lotteries similar to those given in table 1. The lotteries are described in terms of the
prizes (outcomes) that are associated with particular numbered tickets, where one ticket
will be drawn randomly (for instance, L1 results in a prize of £2,500 if one of the tickets
numbered 2-34 is drawn).

1 2 − 34
L1 £0 £2,500
L2 £2,400 £2,400

1 2 − 34 35 − 100
L3 £0 £2,500 £0
L4 £2,400 £2,400 £0

Table 1: Allais’ paradox

In this situation, many people strictly prefer L2 over L1 but also L3 over L4, a pair
of preferences which I shall refer to as Allais’ preferences.9 Moreover, some scholars
argue that this is a rationally permissible combination of preference. A common way
to rationalise the preferences is that in the first choice situation, the risk of ending up
with nothing, after choosing L1, when one could have had £2,400 for sure, by choosing
L2, outweighs the chance that L1 offers of a better prize (£2,500). In the second choice
situation, however, the minimum one stands to gain is £0 no matter which choice one
makes. Therefore, one might reason that the slight extra risk of £0 that L3 carries over
L4 is worth taking due to L3’s chance of the better prize.

While the above reasoning may seem compelling, Allais’ preferences conflict with
the Independence axiom.10 For note that in the second choice scenario option L3 is a

9Kahneman & Tversky (1979) contains an influential empirical study of Allais’ preferences.
10Thus the “paradox”: many people think that Independence is a requirement of rationality, but nev-

ertheless also think that Allais’ preferences are rationally permissible.
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lottery that with probability 0.34 results in lottery L1 but that otherwise results in £0
whereas option L4 is a lottery that with probability 0.34 results in lottery L2 but that
otherwise results in £0. So, by Independence, if one prefers L2 to L1 then one should
prefer L4 to L3. And since Allais’ preferences violate Independence, it follows from
vNM’s theorem that it cannot be represented as maximising expected utility.

There is no doubt that many people do in fact have preferences such as Allais’.
Hence, some so-called behavioural economists have constructed decision theories that
are meant to capture this type of preference without being normative, that is, without
being (necessarily) intended as either guides or criteria for rational decisions. Exam-
ples of such theories include prospect theory (Kahneman & Tversky 1979, Tversky
& Kahneman 1992), regret theory (Loomes & Sugden 1982, Bell 1982), and rank-
dependent utility theory (Quiggin 1982). Since my focus here is on the orthodox (i.e.,
neoclassical) economic account of risk, I shall not discuss these behavioural theories in
detail. An overview of descriptive decision theories can be found in Chandler (2017),
while Angner (2012) is a more general introduction to behavioural economics.

Responses vary greatly when it comes to what normative lesson to draw from the
Allais’ Paradox. Leonard Savage, one of the founder of expected utility theory for
subjective probabilities (Savage 1972/1954), famously failed the Allais test—that is,
“failed” by the light of his own theory—but reported that having realised his mistake,
he reasoned himself into agreement with the theory and thus away from the Allais’
preferences (Savage 1972/1954, 101-103; for a discussion of Savage’s reasoning, see
Dietrich et al. 2020).

Others have argued that if it is in fact rationally permissible to take into account,
when evaluating L1, the regret or disappointment that one predicts one will experience
if one gets £0 when one could have chosen £2,400 for sure, then that should somehow
be accounted for in the description of L1 (see, e.g., Weirich 1986, Broome 1991b).
In particular, one should, according to this view, re-describe the £0 outcome of L1

as something like “£0 + disappointment”. But that makes the preference in question
consistent with the Independence axiom, since L4 is then no longer a lottery between
£0 and L1. Hence, the paradoxmight seem to have been resolved. Table 2 provides an
illustration, where ‘δ’ stands for whatever negative feeling that one predicts one will
experience if one ends up with £0 when one could have chosen £2,400 for sure.

Finally, some have argued that Allais’ preferences are indeed rationally permissi-
ble and are better captured by some normative alternative to (vNM’s) expected utility
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1 2 − 34
L1 £0 + δ £2500
L2 £2400 £2400

1 2 − 34 35 − 100
L3 £0 £2500 £0
L4 £2400 £2400 £0

Table 2: Allais’ “paradox” redescribed

theory. This view is particularly popular amongst philosophers, and has for instance
recently been defended by Buchak (2013) and Stefánsson & Bradley (2019). Amongst
economists, the dominant view still seems to be that although we may have to depart
from expected utility theory for descriptive purposes, that is, when explaining or pre-
dicting choices, expected utility theory is still unchallenged as a normative theory.

3.2 Rabin’s challenge

Another well-known criticism of the descriptive accuracy of expected utility theory is
based on Rabin’s (2000b) so-called calibration results, the fundamental insight behind
which is that expected utility theory cannot plausibly explain many people’s aversion to
risk when small sums of money are at stake. In short, the problem is that once a utility
function has been calibrated to capture risk aversion with respect to small stakes, it will
be so concave as to imply what Rabin thinks is “absurdly severe” risk aversion when
more is at stake (Rabin 2000a).

A similar point had been made many decades earlier, by Samuelson (1963), who
pointed out that that an expected utility maximiser who turns down a 50-50 gamble
between wining $200 and losing $100 must also (to maintain consistency) turn down a
bundle consisting of 100 such independent gambles. But the bundle would seem quite
hard to turn down: it has a monetary expectation of $5,000 and only has a 1/2,300
chance of resulting in the bettor losingmoney. “A good lawyer could have you declared
legally insane for turning down this gamble,” Rabin (2000a: 206) remarks.

Rabin in effect extended Samuelson’s observation to a general calibration theo-
rem, into which different small-scale gambles can be plugged, to see which large-scale
gambles an expected utility maximiser must reject, if she rejects the inputted small-
scale gambles. And the implications indeed do seem absurd. The theorem for instance
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establishes that an expected utility maximiser who always (i.e., irrespective of her pre-
gamble wealth) turns down a 50-50 gamble between winning $105 and losing $100 will
(if consistent) turn down a single 50-50 gamble between losing $2,000 and winning any
amount whatsoever—including an infinite amount!

Now, the above result assumes that the decision-maker turns down some particular
gamble irrespective of her wealth. But Rabin’s result in fact has implications even for
risk averse expected utility maximisers about whomwe only know that they would turn
down a particular gamble when their wealth is in some particular range. For instance,
the theorem implies that a risk averse expected utility maximiser who, when her pre-
gamble wealth is up to $300,000, turns down a 50-50 gamble between losing $100 and
winning $125, would, when her wealth is no more than $290,000, turn down a 50-50
gamble between losing $20,000 and winning $540,000,000,000,000,000,000!

Although Rain’s results may be surprising, the logic behind the result is relatively
straightforward. Recall that within expected utility theory, the form of the utility func-
tion is the only thing that can be varied to account for different attitudes to risk. In
particular, risk aversion is equated with a concave utility function, or “diminishing
marginal utility”. And, as (Rabin 2000b, 1285) nicely illustrates:

if you reject a 50-50 lose $10/gain $11 gamble because of diminishing
marginal utility, it must be that you value the eleventh dollar above your
current wealth by at most (10/11) as much as you valued the tenth-to-
last-dollar of your current wealth. Iterating this observation, if you have
the same aversion to the lose $10/gain $11 bet if you were $21 wealth-
ier, you value the thirty-second dollar above your current wealth by at
most (10/11) × (10/11) ≈ (5/6) as much as your tenth-to-last dollar.
You will value your two-hundred-twentieth dollar by at most (3/20) as
much as your last dollar, and your eight-hundred-eightieth dollar by at
most (1/2,000) of your last dollar. This is an absurd rate for the value
of money to deteriorate—and the theorem shows the rate of deterioration
implied by expected-utility theory is actually quicker than this.

A natural response to Rabin’s results—and, in fact, the response Rabin himself
suggested (Rabin 2000b, 1288-1289)—is that at least when it comes to explaining peo-
ple’s aversion to risk when little is at stake, expected utility theory should be replaced
by some theory that incorporates what is called loss aversion. The most important fea-
tures of such theories are, first, that they incorporate some status quo, and define utility
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in terms of changes in wealth relative to this status quo rather than in terms of absolute
wealth. Moreover, such theories postulate that people are more concerned by losses
than with gains relative to this status quo; informally, the disutility of losing $100 is
greater than the utility of gaining $100, relative to any status quo. Such loss aversion
is one of the key ingredients of prospect theory (Kahneman & Tversky 1979), which,
as previously mentioned, will not be discussed in any detail in this chapter.

3.3 Phenomenological challenges

Another common complaint against the vNM approach is that it mischaracterises atti-
tudes to risk. Such attitudes, the complaint goes, need to be more clearly distinguished
from attitudes to risk-free outcomes than the vNM approach allows. Recall that this
approach equates different attitudes to risk with different forms of the utility function
over quantities of risk free outcomes; for instance, risk aversion with respect to money
is equated with diminishing marginal utility of money. A problem with this equation,
according to the critics, is that attitudes to risk per se simply seem to be a different
type of psychological attitude than attitudes to quantities of risk-fee outcomes. But, as
vNM themselves pointed out, “concepts like ‘specific utility of gambling’ [i.e., what I
called attitudes to risk per se] cannot be formulated free of contradiction” within their
framework (von Neumann & Morgenstern 2007/1944: 28).

Critics of expected utility theory argue that, contrary to what the aforementioned
equation implies, it is conceptually possible that two individuals evaluate the possible
outcomes of a bet in the same way (and agree about their probabilities) but nevertheless
differ in whether they accept the bet or not, for instance due to different gambling tem-
peraments (Watkins 1977, Hansson 1988, Buchak 2013, Stefánsson & Bradley 2019).
For instance, imagine that two people both insist that they evaluate money linearly,
which for instance means that the difference (in utility) between winning £50 and win-
ning £0 is exactly as great as the difference between winning £100 and winning £50.
Nevertheless, one of them is eager to accept, while the other turns down, a 50-50 gam-
ble between winning £100 and losing £100. And the explanation they give is simply
that they have different attitudes to taking risks; one of them enjoys gambling while
the other detests it.

A standard response that economists have, historically at least, made when con-
fronted with criticism like that above, is to suggest a formalistic interpretation of ex-
pected utility, according to which the role of expected utility theory is not to cap-
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ture what actually goes on in people’s minds, when making a decision, but simply
to mathematically represent and predict choices (see, e.g., Friedman & Savage 1948
and Harsanyi 1977). If that is the aim, then as long as we can represent, say, a risk
averse decision-maker as if she were maximising the expectation of some concave
utility function, then it does not matter that we are conflating two conceptually distinct
psychological attitudes. In other words, as long as, say, diminishing marginal utility is
behaviourally indistinct from aversion to risk per se, it does not matter whether or not
these are psychologically distinct.

The formalistic interpretation has been criticised by several philosophers of eco-
nomics.11 One complaint is that we often do want to be able to explain, rather than
simply describe, behaviour in terms of the maximisation of a utility function. In other
words, we want to be able to say that a person chose an alternative because it was
the alternative with highest expected utility according to her. Moreover, when using
decision theory for decision-making purposes (such as in policy analysis), we need to
assume that the utilities on which we base the recommendations exist prior to (and in-
dependently of) the choices that the theory recommends. That is, if we want to be able
to recommend a risky option because it is the one that maximises expected utility, then
we must understand “utility” as something that is independent of the decision-makers
choices—and conceptually distinct from the representation of her preferences—between
risky options.

However, a proponent of the vNM theory might respond that the theory is only
meant to apply to persons and situations where attitudes to risk per se have no influence
on the person’s preference. And even with that limitation, the theory is very powerful;
for instance, it allows us to derive a precise utility function over quantities of goods
from the persons preference between lotteries. In fact, Binmore (2009) points out that
it is only because a vNM utility function cannot account for attitudes to risk per se
that such a function can plausibly explain the agent’s choice in situations where risk is
lacking:

It is often taken for granted that gambling can be explained [within an
expected utility framework] as rational behavior on the part of a risk-loving
agent. ... The mistake is easily made, because to speak of “attitude to risk”
is a positive invitation to regard the shape of [a person’s vNM function] as

11See, for instance, Broome (1991a), List & Dietrich (2016), Reiss (2013), Bradley (2017), and
Okasha (2016).
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embodying the thrill that she derives from the act of gambling. But if we
fall into this error, we have no answer to the critics who ask why [vNM
functions] should be thought to have any relevance to how [the person]
chooses in riskless situations. (54)

Moreover, Binmore identifies Reduction of Compound Lotteries as the reason why
the vNM framework is not equipped to represent agents who are not neutral to risk per
se.

[Reduction of Compound Lotteries ] takes for granted that [a person] is
entirely neutral about the actual act of gambling. She doesn’t bet because
she enjoys betting—she bets only when she judges that the odds are in her
favor. If she liked or disliked the act of gambling itself, we would have no
reason to assume that she is indifferent between a compound lottery and a
simple lottery in which the prizes are available with the same probabilities.
(ibid, emphasis in original)

In other words, proponents of the vNM framework face a dilemma. They can accept
that their framework cannot account for any potential thrill or anxiety that an agent
derives from the act of gambling, that is, the framework cannot account for attitudes to
risk per se. Or they can accept that the utility functions that the framework allows the
modeller to derive cannot be used to explain or predict how the modelled agent chooses
in a riskless situation. So, either the framework cannot account for attitudes to risk per
se, or it is of little relevance to choice without risk.

4 Uncertainty

So far the focus has been on decision-making under risk, that is, situations where the
agent knows—or, at least, deems suitable to act as if she knew—the relevant probabili-
ties. Betting on a roulette is a paradigm example. In contrast, when betting on a soccer
match, one does not, as previously mentioned, know all the relevant probabilities; nor
would one typically find it suitable or reasonable to act as if one knew these probabili-
ties. In the latter case, economic theorists say that the bettor is making a decision under
uncertainty.
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Leonard Savage’s (1972/1954) decision theory is without a doubt the best-known
normative theory of choice under uncertainty, in particular within neoclassical eco-
nomics. Savage formulated a set of preference axioms that guarantee the existence of
a pair of probability and utility functions relative to which the preferences can be rep-
resented as maximising expected utility. The theory is often called subjective expected
utility theory, as the probability function is assumed to be subjective (in contrast to
the previously discussed expected utility theory with “objective” or known probabili-
ties). Since the focus of this chapter is decision-making under risk, I shall only present
Savage’s theory very briefly here; a somewhat more detailed account can be found in
Steele and Stefánsson (2015).

The primitives in Savage’s theory are outcomes (or “consequences”, as Savage
called them) and states of the world, the former being whatever is of ultimate value to
the agent, while the latter are features of the world that the agent cannot control and
about which she is typically uncertain. Sets of states are called events. The options over
which the agent has preferences in Savage’s theory are a rich set of acts, that formally
are functions from the set of outcomes to the set of states of the world. So, an agent
can choose between acts, and the outcome of an act is determined by what is the true
(or the actual) state of the world.

The following notation will be used to state Savage’s representation result: f , g,
etc, are various acts, i.e., functions from the set S of states of the world to the set O
of outcomes, with F being the set of these functions. f (si) denotes the outcome of f
when state si ∈ S is actual. The subjective expected utility of f , according to Savage’s
theory, denoted U( f ), is then given by:

Savage expected utility equation. U( f ) =
∑

i u( f (si)).P(si)

The result Savage proved can be stated as follows:12

Theorem (Savage). Let ⪯ be a weak preference relation on F. If ⪯ satisfies Savage’s
axioms, then the following holds:

• The agent’s uncertainty with respect to the states in S can be represented by a
unique (and finitely additive) probability function, P;

• the strength of her desires for the sure outcomes in O can be represented by a
utility function, u, that is unique up to positive linear transformation;

12I assume that the set O is finite, but Savage proved a similar result for an infinite O.

22



• and the pair (P,u) gives rise to an expected utility function, U, that represents
her preferences for the alternatives in F; i.e. for any f , g ∈ F:

f ⪯ g⇔ U( f ) ≤ U(g)

I will not present all of Savage’s axioms. Instead, I focus on what is arguably the
cornerstone of Savage’s subjective expected utility theory, and which corresponds to
von Neumann and Morgenstern’s Independence axiom.

To state the axiom in question, we say that act f “agrees with” act g in event E if,
for any state in event E, f and g yield the same outcome.

Axiom 6 (Sure Thing Principle). If f , g, and f ′, g′ are such that:

• f agrees with g and f ′ agrees with g′ in event ¬E,

• f agrees with f ′ and g agrees with g′ in event E,

• and f ⪯ g,

then f ′ ⪯ g′.

The idea behind the Sure Thing Principle (STP) is essentially the same as that behind In-
dependence: since we should be able to evaluate each outcome independently of other
possible outcomes, we can safely ignore states of the world where two acts that we are
comparing result in the same outcome. And, for that reason, the Allais paradox—or
at least some variant of it without known probabilities—is often seen as a challenge to
the STP. Putting the principle in tabular form may make this more apparent. The setup
involves four acts with the following form:

E ¬E
f X Z
g Y Z
f ′ X W
g′ Y W

The intuition behind the STP is that if g is weakly preferred to f , then that must be
because the consequence Y is considered at least as desirable as X, which by the same
reasoning implies that g′ is weakly preferred to f ′.
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One of themost discussed challenge to Savage’s theory—in fact, a challenge to both
to STP and to Savage’s definition of comparative belief—is based on a choice situation
devised by Daniel Ellsberg (1961). The choice situation gives rise to what is often
called the Ellsberg paradox, since when confronted with the choices he presented, most
people exhibit a pair of preferences—“Ellsberg’s preferences”—that seem intuitively
rational, but nevertheless conflict with Savage’s theory.

Imagine an urn with 90 balls, 30 of which are red, but the remaining 60 a mix
of black and yellow balls in a proportion that is unknown to the decision-maker. A
ball will be randomly drawn from the urn, but first the decision-maker is offered two
choices, each between a pair of bets. The four bets are presented in table3. First, she is
offered a choice between bet f , which results in a prize of $100 if a red ball is drawn
(but nothing otherwise), and bet g, which pays out $100 if a black ball is drawn (but
nothing otherwise). Many people, it turns out, choose f over g. Next, the decision-
maker is offered a choice between f ′, which results in a prize of $100 in the event that
a red or yellow ball is drawn (but nothing otherwise), and g′, which pays out $100 if a
black or yellow ball is drawn (but nothing otherwise). This time many people prefer g′

over f ′. In fact, many people prefer both f over g and g′ over f ′, in accordance with
Ellsberg’s preferences.

red black yellow
f $100 $0 $0
g $0 $100 $0
f ′ $100 $0 $100
g′ $0 $100 $100

Table 3: Ellsberg’s bets

The intuitive justification for this pair of preference is that when offered the choice
between f and g, people prefer the former, since they know that it has a 1/3 chance
of resulting in them receiving $100, whereas the chance that the second bet results in
them winning $100 can be anywhere from 0 to 2/3. The same type of reasoning would
lead to a choice of g′ over f ′: bet f ′ is known to have a 2/3 chance of delivering the
$100, whereas the former offers a chance anywhere between 1/3 and 1/1.

However, it is not too difficult to see that there is no single probability function over
the relevant events relative to which Ellsberg’s preference can be represented as max-
imising expected utility (assuming that table 3 correctly represent the decision prob-
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lem). The problem is that if a person prefers $100 to $0, then, by Savage’s utility
representation, the first preference, g ≺ f , reveals that the person takes it to be more
probable that a red ball is drawn than that a black ball is drawn, but the second prefer-
ence, f ′ ≺ g′, reveals that the person takes it to be more probable that a black or yellow
ball is drawn than that a red or yellow ball is drawn. But there is no probability function
such that a red ball is more probable than a black ball, yet a black or yellow ball is more
probable than a red or yellow ball. Hence, there is no probability function relative to
which a person with Ellsberg’s preferences can be represented as maximising expected
utility, as defined by Savage.

It is also easy to verify that Ellsberg’s preference is inconsistent with Savage’s Sure
Thing Principle. The principle entails that since f and g yield the same outcome in the
event that a yellow ball is drawn, we can ignore this event when choosing between f
and g. The same holds when choosing between f ′ and g′. But when we ignore this
event in both choices, f becomes identical to f ′ and g to g′. Therefore, a preference
for f over g is, according to the STP, only consistent with a preference for f ′ over g′.
So Ellsberg’s preference ( f over g and g′ over f ′) is inconsistent with the STP.

The perhaps most common rationalisation of Ellsberg’s preference, at least within
economics, is to suggest that people are using a maximin expectation rule,13 which
tells you to choose an alternative whose worst possible expectation is better than (or
at least as good as) the worst possible expectation of any other alternative (Gilboa
and Schmeidler 1989 axiomatised this rule and, to some extent, popularised it within
economics).

Recall that in the first of Ellsberg’s choice situations, the monetary expectation of
betting on read is known to be $33.33 (since one knows that 30 balls out of 90 are red).
However, the monetary expectation of betting on black could be anywhere between $0
and $66.67. So it might make sense for a person who is averse to uncertainty (or averse
to ambiguity, as it is often called) to bet on red, since it concerns no uncertainty about
the expectation, which is precisely what maximin expectation prescribes. Analogous
reasoning would lead to a a bet on black or yellow (bet g′) in the second of Ellsberg’s
choice situation. So, the maximin expectation rule prescribes choices in accordance
with Ellsberg’s preference.

An alternative rationalisation of Ellsberg’s preferences, which was recently pro-
13This is a variant of the maximin decision rule, which tells you to choose an alternative whose worst

possible outcome is better than (or at least as good as) the worst possible outcome from any other alter-
native.
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posed by the philosopher Richard Bradley (2016) but has not been as influential in
economics, is that people with Ellsberg’s preferences take quantities of chances to
have decreasing marginal utility, such that, for instance, the difference in utility be-
tween no chance of $100 and 1/3 chance of $100 is greater than the difference in utility
between 2/3 chance of $100 and the certainty of $100. The question of how (and, in
fact, whether) to rationalise Ellsberg’s preference—and, more generally, how to think
of rational decisions under uncertainty—is a matter of active debate, that will not be
settled here.

5 Concluding remarks

Neoclassical economists use expected utility theory to explain, predict, and guide choices
in situations of risk, and the similar theory of subjective expected utility theory to ex-
plain, predict, and guide choices in situations of uncertainty. Themain aim of this chap-
ter has been to, first, describe these theories, and, second, discuss some of challenges
that these theories face. Since a considerable part of the chapter has been devoted to
the challenges, I would like to end on two remarks in expected utility theory’s favour;
remarks that both support the objective (vNM) and the subjective (Savage) versions of
the theory.

First, when it comes to descriptive purposes, some economists have forcefully ar-
gued that we do not yet have a good reason for giving up on expected utility theory.
The reason is that although we have found that in some experimental settings, different
descriptive theories have better predictive success than expected utility theory, there is
no single descriptive theory that does better than expected utility theory across these
different experimental settings. Hence, some economists suggest that we should favour
simplicity over complexity and stick with expected utility theory (e.g. Binmore 2009:
58-59).

Second, a forceful argument for the normative plausibility of expected utility theory
comes from considerations that are similar to themoney pump argument that we already
encountered when discussing the axiom of Transitivity. For instance, a money-pump-
like “dynamic consistency” argument can be made in favour of both Independence
and the Sure Thing Principle—the axioms of respectively objective and subjective ex-
pected utility theory that has received most criticism. In particular, it can be shown
that a decision-maker who violates either Independence or the Sure Thing Principle
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would do better, by her own lights, if she satisfied the axiom (for a recent overview,
see Gustafsson ta.). In fact, expected utility theory as a whole can be derived from
what may seem to be nothing but dynamic consistency constraints (Hammond 1987,
1988). So, while some think that examples such as the paradoxes of Allais and Ellsberg
undermine the normative standing of expected utility theory, we still have compelling
dynamic and practical arguments in favour of the theory.14
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