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Abstract 
 
Among the many causes of an event, how do we distinguish the important ones? Are there ways 
to distinguish among causes on principled grounds that integrate both practical aims and 
objective knowledge? Psychologist Tania Lombrozo has suggested that causal explanations 
“identify factors that are ‘exportable’ in the sense that they are likely to subserve future 
prediction and intervention” (Lombrozo 2010, 327). Hence portable causes are more important 
precisely because they provide objective information to prediction and intervention as practical 
aims. However, I argue that this is only part of the epistemology of causal selection. Recent work 
on portable causes has implicitly assumed them to be portable within the same causal system at a 
later time. As a result, it has appeared that the objective content of causal selection includes only 
facts about the causal structure of that single system. In contrast, I present a case study from 
systems biology in which scientists are searching for causal factors that are portable across rather 
than within causal systems. By paying careful attention to how these biologists find portable 
causes, I show that the objective content of causal selection can extend beyond the immediate 
systems of interest. In particular, knowledge of the evolutionary history of gene networks is 
necessary for correctly identifying causal patterns in these networks that explain cellular 
behavior in a portable way. 
 
 
 
Keywords: systems biology, causal selection, motif, explanation, mechanism, gene network, 
null model, top-down method, teleology, contingency.
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1. Introduction 
 

Among the many causes for an event, how do we distinguish the important ones? Finding 

principled grounds for drawing this distinction is the problem of causal selection. When we ask 

for a causal explanation, for instance, we are interested in why one thing happened rather than 

something else, and we expect the answer to feature the relevant, objective causal relationships 

between events. The notion of importance here is partly interest-relative but also depends on 

objective facts about the world (Woodward 2011). Psychologist Tania Lombrozo has recently 

suggested that causal explanations “identify factors that are ‘exportable’ in the sense that they are 

likely to subserve future prediction and intervention” (Lombrozo:2010gz p.327; see also 

Hitchcock 2012; Lombrozo and Carey 2006). Hence portable causes are more important 

precisely because they provide objective information to prediction and intervention as practical 

aims.  

However, I argue that this is only part of the epistemology of causal selection. Finding 

portable causes may offer a principled ground for distinguishing among causes, but the goal 

itself does not tell us how to find portable causes. When we consider this other dimension of the 

problem, it becomes clear that the recent literature on causal selection harbors a crucial 

ambiguity. 

In specific, is the aim to predict and intervene on the same system later in time or a 

different system of the same kind? In the first case, the portability of a cause can be understood 

in terms of its insensitivity to background conditions (Hitchcock 2012; Woodward 2006). That 

is, the cause would be an important part of an explanation because it will behave the same way in 

that system even if other things have changed. The second case is more complex. As an example, 

imagine that we find some species of bacteria that tends to move toward higher concentrations of 
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food over time. Biologists call this behavior chemotaxis. Suppose that we also find that some 

kind of component in the cell, a signal transducer, affects chemotaxis and is insensitive to 

background conditions. What must be true for the causal relationship between the transducer and 

chemotaxis in this species to export to transducers and chemotaxis in new species? It cannot be 

the insensitivity of the relationship between transducer X and chemotaxis in the first species, 

because this alone fails to even imply a causal relationship between X and chemotaxis in the new 

species. Something more is needed than knowledge about the first species and its characteristic 

causal structure.  

What we need to know will also depend on the nature of the causal systems themselves. 

Why would it be the case that a causal relationship in one system generalizes to other instances 

of the kind? For one thing, it will matter whether the causal relationship is a necessary or 

contingent feature of the systems we generalize over. If it is contingent, then historical accidents 

are possible that would introduce noise into the process of selecting portable causes across a 

large domain. Separating signal from noise often requires additional knowledge about why the 

noise occurs that is only indirectly relevant to our goal of prediction and intervention. As we will 

see, this matters crucially for causal selection in systems with a teleological history where our 

goal is to identify factors responsible for satisfying imposed functional constraints. 

Furthermore, scientists rely on multiple strategies for identifying exportable causal 

factors. For example, biologists often distinguish between bottom-up and top-down research 

strategies: bottom-up methods proceed inductively from individual cases to more general classes, 

while top-down methods presuppose a universal theory that is specialized and tested against 

individual cases (Boogerd et al. 2007). The two methods differ crucially in how and when they 

define the domain over which portability should hold. A top-down approach must define its 
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domain in advance in order to acquire potential empirical content, while a bottom-up approach 

can specify domains a posteriori based on observed patterns.  

This paper presents a case study that demonstrates why these each of these underanalyzed 

factors matter for studying causal selection: dimension of portability, nature of the causal system, 

and practical methodology. I argue that these factors are not always separable and can interact to 

shape what objective information is needed to carry out causal selection correctly. In particular, I 

show that knowledge of current causal structure in a system is sometimes insufficient: we may 

also need to know about the causal processes that produced the system of interest. 

The case study focuses on a recent research program in systems biology that aims to 

explain kinds of cell behaviors, such as chemotaxis, in terms of patterns of internal molecular 

interactions (Milo 2002; Alon 2007b; Alon 2007a). The biologists call these causal patterns 

“motifs,” and they hope to discover a small set of motifs that form the universal building blocks 

for cellular functions. In other words, these biologists are searching for an engineering 

vocabulary composed of patterns of molecular interactions in order to find “design principles” 

for the functional organization of cells. The project of identifying motifs has proceeded in a top-

down manner using only knowledge of the contemporary causal structure of cells. Following 

critiques by other biologists, I argue that knowledge about the evolutionary history of cells is 

also necessary for correctly judging the portability of motifs. The contingent role that motifs play 

in causing cell behaviors therefore demands a broader range of background knowledge than 

previous discussions of causal selection have acknowledged. A bottom-up approach to motifs 

could potentially avoid this requirement, but at the cost of identifying portable causes at a slower 

rate. 

 
2. Causal selection 
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The philosophical problem of causal selection lies at the intersection of human practical 

interest and metaphysical reality. Given a commitment to the ontological reality of causation, 

what basis is there for distinguishing among the causes of an event? Are there principled grounds 

for causal selection that integrate practical relevance and objective knowledge? The last ten years 

have seen increasing interest in these question among philosophers and scientists (Hitchcock 

2012; Rose and Danks 2012; Lombrozo 2011; Halpern 2008), in contrast to past skepticism 

among philosophers about the relevance of causal selection. With this interest have also come 

new approaches to investigating philosophical problems that draw evidence from what people 

actually think and do, including how causation figures in scientific practices. A core question for 

this work is to what extent people incorporate subjective and objective grounds in their 

distinctions among causes. The case study I present articulates new dimensions within this 

question by focusing on a critique of how some systems biologists have distinguished among 

causes in practice. 

Many philosophers have argued that causal selection is a mistake because it involves 

drawing distinctions between metaphysically equivalent causes. David Lewis, for example, 

wrote,  

“We sometimes single out one among all the causes of some event and call it ‘the’ 
cause, as if there were no others. Or we single out a few as the ‘causes’, calling 
the rest mere ‘causal factors’ or ‘causal conditions’… We may select the 
abnormal or extraordinary causes, or those under human control, or those we 
deem good or bad, or just those we want to talk about. I have nothing to say about 
these principles of invidious discrimination” (Lewis 1987, 162).  

As Lewis frame the issue, there is nothing more to say about the relation between two events 

beyond whether it is causal or not. Causation should be one thing that holds in the same way 
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everywhere. Adding that a cause is a background condition draws an unjustifiable distinction. 

The concept of causation should be indifferent to how we use it and why we care about it. 

Methodologically, philosophers working on causation several decades ago assumed that 

it would be possible to directly state and test such an account of causation. How people used 

causation in practice was irrelevant to this philosophical project. For better or worse, this 

approach to the problem did not succeed in producing an account that satisfied all standards. This 

lack of consensus has motivated new interest in studying how people actually use or think about 

causation. As a philosophical topic, then, causation has broadened to include metaphysical, 

epistemological, and methodological dimensions (c.f. Cartwright 2007). In this regard, how 

people select among causes for practical purposes may constrain or illuminate what causation 

could be.1 

Recent work on causal selection has approached the problem from several directions. 

One angle investigates the issue in terms of philosophical intuitions about hypothetical test cases, 

such as causal preemption (Hall 2007; Halpern and Hitchcock 2010; Hitchcock 2007). This 

traditional approach has recently expanded to include eliciting the intuitions of philosophers and 

people more generally using surveys and experiments (Knobe and Fraser 2008; Hitchcock and 

Knobe 2009; Knobe 2009; Lombrozo and Carey 2006; Lombrozo 2006). Another angle is to 

examine the role that causation and related concepts play in scientific practices, such as 

experiment (Waters 2007; Woodward 2010).  

The case study I present here from systems biology falls within this latter angle on causal 

selection, but it introduces new dimensions that were not addressed by Waters and Woodward. 

                                                
1 A number of philosophers have also endorsed the idea of pluralism about causation in one form 
or another. The argument I make here does not depend on a commitment to a singular or 
pluralistic view of causation at the metaphysical level. 
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Waters (2007) focused on causal selection in the setting of an individual experiment, where a 

scientist manipulates independent variables in the target system and measures the values of 

dependent variables over a set of initial conditions. Waters argued that we can draw an 

ontological distinction between the causes of the observed effects based on whether the causes 

were actually or only potentially responsible for real variation in the results. The distinction 

between actual and potential responsibility depends on whether the results would have changed 

if the independent variable were manipulated to take on different values. Selecting among causes 

on this basis depends on how the scientist designed the experiment as well as the objective causal 

processes at work. 

Woodward (2010) focused on the epistemological value of causal stability, 

proportionality, and specificity for biological research. I briefly summarize the accounts he gives 

here: if we know that X causes Y, then stability refers to the range of conditions under which that 

relationship holds. Proportionality describes what we can think of as the looseness or slack 

between variation in X and variation in Y. That is, the level of resolution at which we define X 

and Y, including the properties we ascribe to their different states, should include all and only 

relevant details. Specificity is a combination of X having a fine-grained effect on Y and there 

being a one-to-one mapping between states of X and states of Y. In this way, manipulating X 

should ideally allow us to achieve any possible state of Y without any redundancy in the values 

of X. 

The project of motif identification differs from the contexts considered by Waters and 

Woodward because it follows a top-down rather than bottom-up method that selects among 

causal patterns rather than individual causal relationships. Systems biologists studying motifs 

begin with a pre-defined space of possible explanatory causal patterns and select among these 
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options only those patterns that are wide ranging and have distinctive, context-independent 

behaviors. By contrast, Waters’ distinction among actual and potential difference makers 

emerges bottom-up out of the particular set of initial conditions used in that experiment. If there 

are more generalized relationships between the experimental variables, these could be discovered 

only inductively through further application of experiments that generate actual versus potential 

difference makers.   

In a related fashion, the project of identifying motifs aims to discover a general set of 

causal patterns in the molecular interactions within cells, not to sequentially describe the 

properties of these interactions one at a time. Stability, proportionality, and specificity do matter 

for identifying motifs but at a higher-order level: motifs need to be causal patterns that regularly 

combine to form stable, proportional, and specific mechanisms within and across gene networks. 

Finding motifs in the molecular interactions of a cell does not in itself add new empirical details 

to our knowledge of these interactions; instead, it identifies which kinds of interactions are most 

important in understanding the evolved organization of the cell. 

Let me now give some background on systems biology in order to develop these points 

further. 

 
3. The problem structure of systems biology 
 

The project of motif identification selects causal patterns that are portable across rather 

than within systems. In other words, the ultimate aim is not to identify sets of causal 

relationships within a single system that will be informative for predicting and controlling the 

same system at a later time, although this may be an incidental benefit. Instead, the ultimate aim 

is to find causal patterns that explain kinds of behaviors shared in common by many systems and 

thereby contribute to prediction and control of a whole range of phenomena. This goal fits within 
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the larger problem facing systems biology today: is there a general theory of living systems and 

how would one discover it? While motifs have been used to address this problem at the largest 

scale (Milo 2002), I will focus only on their use for theorizing about the organization of cells, 

which is also where most experimental work on motifs has been done. This section provides the 

theoretical background for motif identification, within which we can make sense of portability 

across systems as a concrete challenge for causal selection. 

Systems biology is a complex field at the intersection of an old tradition of mathematical 

systems theory and a recent explosion of molecular level data about cells (Boogerd et al. 2007; 

O'Malley and Dupré 2005). One gloss on the field is that biologists have finally acquired enough 

data, on the order of all the molecular parts of a cell, that they can model whole cells at a 

molecular level in an empirically concrete way. Nonetheless, biologists disagree about how to 

decompose the structure of whole cells into molecular systems that can be used to predict, 

explain, and manipulate behavior. My discussion here will focus on systems biologists working 

with gene networks, a recent and prominent approach. Gene networks are new enough in biology 

that their ultimate usefulness and limitations as a mode of representation are still uncertain.  

The relevance of systems biology for causal selection will therefore not be as an 

exemplar of scientific success or failure. Instead, the case will illustrate a kind of problem: what 

are the right wholes and parts biologists should use to find important causal explanations? 

Systems biology articulates this general problem in its own, characteristic way as a result of its 

aims, data, methods, and theoretical assumptions, among other things. 

The best place to begin is hypostatizing the cell as a unit and level of analysis. The single 

cell is commonly conceived as the basic building block of life. However, cells are by no means 

causally isolated units: they are non-equilibrium systems that engage in a variety of signaling 
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interactions, stick to each other, get eaten, move around, etc. The strand of systems biology I 

focus on is committed to searching for explanations using methodological reductionism. The 

idea is fairly simple: take all the complex cellular behaviors we can observe, such as moving 

toward food in a directed fashion, and describe these behaviors as causal dispositions whose 

relevant properties are determined by the internal organization of the cells. In other words, 

hypostatize that there is a stable internal organization that can be abstracted from ongoing 

evolutionary and developmental processes. The hope is that this internal organization has a 

principled structure that will support general explanations of the functional organization of life. 

Systems biologists working in the molecular tradition also stipulate that this reduction 

will be to the level of individual molecules as parts. The organization of these molecules is 

cashed out in terms of the collective structure of their pair-wise physico-chemical interactions. In 

other words, cellular organization becomes a network representing the physical interactions of all 

the molecules in the cell. There are various ways of describing this network. The dominant 

representation in systems biology today idealizes away the three dimensional location and spatial 

extension of the molecules in order to describe only their average concentration as kinds of 

molecules across the cell. The idealization also typically ignores constraints such as 

stoichiometry that matter more for metabolic models and less for gene regulation. The edges in 

the network then refer to rates of change in the concentration of these chemical species, averaged 

over all their individual interactions. We should expect this idealization to work, for example, in 

relative equilibrium situations where diffusion doesn’t matter and the number of molecules of 

each kind is large.  

The methodological reduction is hence a part-whole, interlevel reduction (Wimsatt 2006). 

See Figure 1 for a visualization. It asserts for the sake of research that all of the interesting 
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dispositions of the cell are realized by various causal structures within the molecular network. 

For instance, the holistic behavior of “moving in a directed fashion toward food” will get broken 

down into specific patterns of molecular interactions in some part of the network. If the aim is to 

find a theory of cells as organized systems, then the success of this reductive commitment hinges 

on whether one can find generalizable explanatory principles for similar behaviors across 

concrete networks. 

Systems biologists are also typically committed to search for these explanatory principles 

using only the contemporary causal structure of the networks. This focuses research on the 

question of how the cells work today instead of asking why they work that way. The biologists 

want to understand a general type of cell disposition, e.g. chemotaxis, in terms of causal patterns 

among the interactions of molecular parts. They are not — at least initially! — inquiring into the 

processes that caused, organized, and maintained these parts as heritable properties in the first 

place. 

Building a theory of cellular organization in systems biology is therefore a problem of 

finding systematic causal relationships between kinds of behavior at the cellular level and kinds 

of interactions at the molecular level. It is at once more general and more specific than 

demonstrating that any one kind of molecular interaction has the property of stability or 

specificity. Most or all of the molecular interactions should be subsumable under patterns of 

interactions that exhibit specificity or stability in different ways. Ideally, the unique features of 

each causal pattern should combine to form a general vocabulary for explaining common cell 

behaviors across all life. In this way, motifs form a leading proposal for a general systems theory 

of cells. 

 
4. Motifs and gene networks 
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Before describing in technical terms what a motif is, let me first back up and talk about 

gene networks as a framework for representing causal structure in cells. Gene networks extend 

the traditional molecular theory of protein synthesis to include dynamic regulatory interactions 

between genes, RNA, proteins, and other molecules such as metabolites. Emmert-Streib and 

Glazko give a convenient definition: “A gene network is a graph whose nodes represent genes, 

gene products, or metabolites and edges correspond to molecular interactions which can be 

observed experimentally” (Emmert-Streib and Glazko 2010). The network is called a gene 

network because the effects of genes are assumed to be central to understanding changes in other 

molecules’ concentrations over time. See Figure 2 for an example of a gene network from E. 

coli. 

In the network, each kind of molecule forms one node that also represents the 

concentration of that molecule across the cell. So glucose would have its own node, as would the 

protein DNA polymerase. The edges of the network represent directed causal interactions 

between kinds of molecules that increase or decrease the concentration of the target molecule. 

For example, an RNA molecule might bind to a gene’s promoter region and inhibit expression of 

its protein product. Alternatively, an enzyme might catalyze the phosphorylation of a signaling 

protein, changing the concentrations of the modified and unmodified versions. Gene networks 

typically abstract away differences in mechanisms and represent interactions generically as 

directed edges. Each edge of the network is also associated with a parameter describing the 

average rate of change the interaction produces in the concentration of the affected molecule. 

The experimental data behind gene networks is a messy and complicated affair. 

Biologists can’t measure causal interactions directly, of course, so they have to infer them to 

produce gene networks. Microarrays are a common experimental technique that measure changes 
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in molecular concentrations over time when applied across multiple samples (for a critical 

review in a clinical context see Keating and Cambrosio 2012). There is a range of computer 

algorithms now available that compute correlations between the concentrations and use 

heuristics to infer genuine causal interactions (Markowetz and Spang 2007; Bansal et al. 2007). 

Indeed, some of them use the same Bayes networks underlying Woodward’s interventionist 

theory of causation (e.g. Friedman et al. 2000). Nonetheless, these algorithms are heuristics and 

sometimes have high error rates. For our purposes we are interested only in the problem of 

whole-part decomposition that biologists would face if they did get good data. This problem is 

relevant to causal selection in all areas of biology, so I will set aside issues of data quality and 

proceed by just presuming that one can get reasonably accurate gene networks. 

Given this framework of gene networks, we can then define motifs as distinctive patterns 

of edges connecting a predetermined number of nodes within a gene network. Figure 3, for 

example, shows all the possible motifs with three nodes (Milo 2002). In paradigmatic work, Uri 

Alon and collaborators developed dynamic models for one class of motifs called feed-forward 

loops, or FFLs (Mangan and Alon 2003; Mangan, Zaslaver, and Alon 2003; Alon 2007b). As 

shown in Figure 4, a three-node feed forward loop can come in eight different varieties, 

depending on whether the interactions cause an increase or decrease in concentration. Alon et al. 

have split these varieties into two groups, called coherent FFLs and incoherent FFLs, based on 

whether the direct effect of X on Z is in the same direction as its indirect effect via Y. In 

(Mangan and Alon 2003), Alon et al. used mathematical modeling to argue that all incoherent 

FFLs can function as accelerators for transcription response to input changes. For the type-1 

coherent FFL, (Mangan, Zaslaver, and Alon 2003) offered in vivo experimental evidence that the 

motif functioned to filter out positive bursts from inputs to X while responding sensitively to 
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negative inputs. They called this pattern a “sign-sensitive delay element” and a “persistence 

detector” for positive signals to X. Following this example, motifs serve to organize the causal 

interactions of a gene net into a selection of circuit elements that contribute distinctive features to 

the cell’s overall functional dynamics. 

A variety of other motifs have also turned up as important. An important example for our 

later discussion below is the bifan motif, which can be seen in Figure 1. The bifan has four nodes 

organized into two pairs. Each of the upstream pair has a causal effect on both nodes in the 

downstream pair. One can distinguish bifans into coherent and incoherent types in a parallel way 

as FFLs based on whether the two upstream nodes regulate each downstream node in the same 

way. (One can also have partial incoherence here if one downstream node is regulated coherently 

but the other is not.)  Bifans can be generalized topologically to involve an indefinite number of 

nodes arranged on two tiers with dense connecting edges. Alon et al. call this generalized motif a 

dense overlapping regulon (DOR), where a regulon is a set of genes regulated by a single 

transcription factor (Shen-Orr et al. 2002; Alon 2007a). Finding generalized motifs in gene 

networks involves a somewhat different technical procedure since the number of nodes is not 

fixed in advance (Shen-Orr et al. 2002). 

Obviously there are many more motifs one could find in gene networks. The space of 

motifs grows exponentially with the number of nodes, and simply enumerating all the nodes of 

size ten in some gene network is almost prohibitively expensive in computing resources. In order 

to select just those motifs that are generally valuable for explaining cell behavior, Alon et al. 

have imposed several additional criteria. FFLs and other important motifs are supposed to have 

fixed causal dispositions no matter the structure of the larger network. In other words, input 

levels to the motifs may vary, but the mapping each motif establishes between inputs and outputs 
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should not. Which genes or molecules realize the motif as a causal pattern and what the rate 

constants are for the reactions involved should be less important than the formal structure of the 

motif in determining relevant causal effects. For example, variations in the rate constants might 

modulate the behavior of the motif, accelerating its dynamics or minimizing absolute changes in 

concentrations, but the structure of the mathematical mapping between input and output states 

should remain invariant. 

However, it is impossible in practical terms to select motifs one by one based on whether 

they exhibit distinctive functions based on context-independent causal mappings. Instead, Alon 

et al. apply a prior condition: the motif must be statistically enriched in a gene network compared 

to a background distribution. Only if this holds is it worth investigating the motif’s causal 

structure in detail. In the next section, I describe the process of selecting among motifs as 

applying an iterative sequence of filters that winnow down the initial, huge space of possibilities. 

 
5. The search for motifs 

 
The idea that motifs are the engineering vocabulary of cellular structure is a hypothesis. 

In order to test the claim’s adequacy, one must go to experimental data about actual gene 

networks. By definition, any gene network will contain motifs: they are minimally just formal 

patterns of causal interactions after all. The question is whether the behavior of cells is best 

explained in terms of these patterns and no others. In order to answer this, systems biologists 

must choose a practical method for ascertaining whether any motifs do indeed meet their 

explanatory aims. As I already noted, Alon et al. have chosen a top-down method that uses a 

statistical procedure for selecting among motifs. 

The promise of motif identification as a research program is that it would deliver a big 

theoretical payoff using an efficient research strategy. In order to achieve both requirements, 
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motifs need to meet several important conditions, which I will list here. The most important 

methodological constraints are: 1) it must be possible to identify a motif by a low-cost diagnostic 

character, in this case the formal pattern of nodes and edges in the network, and 2) it must be 

possible to test the explanatory importance of a motif without needing to know how it affects the 

surrounding gene network. As I noted, there are too many motifs for systems biologists to first 

characterize each motif in terms of its causal behaviors under all conditions and only then turn to 

see which of these motifs occur in real gene networks. The other problem is that scientists 

typically lack empirical data about the rate parameters in gene networks. This makes it very 

difficult to model or simulate the precise differences any motif makes. Experimental testing of 

motifs is possible but again highly time intensive (Mangan, Zaslaver, and Alon 2003). 

On the theoretical end, I have already discussed a couple constraints: 3) Motifs must have 

distinctive invariant behaviors that characterize their effects on the network. For example, 

coherent FFLs serve as a “sign sensitive delay element.” 4) These invariant behaviors should 

depend solely on the internal causal structure of the interactions in the motif, so that the effects 

of some motif are independent from its context in the network. 

Further constraints come from the explanatory aims of motifs as a general theoretical 

vocabulary for systems biology: 5) There have to be motifs fitting the above four constraints that 

make a causal difference to the behaviors of cells across many species. For convenience, let’s 

call these “large-scope motifs.” One might find that coherent FFLs always figure in causal 

explanations of chemotaxis in single-celled microorganisms, for example. 6) It should be 

possible to organize the motifs fitting the first four constraints into “design vocabularies” that 

have a stable composition over domains of life or kinds of cellular functions. 7) For any given 

gene network, the set of large-scope motifs should be sufficient to cover most of the network’s 
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functionally important behaviors. In other words, we can use one engineering vocabulary to 

analyze many different design features across gene networks. 

As a research program, work on motifs can be broken down along several directions. The 

third and fourth conditions above can be investigated for each possible motif using experiments 

and mathematical modeling (Mangan et al. 2006; Mangan, Zaslaver, and Alon 2003; Mangan 

and Alon 2003; Kremling, Bettenbrock, and Gilles 2008). The first condition, however, limits the 

need for this work by allowing Alon et al. to design computer programs that can efficiently 

identify and count motifs within and across gene networks. It is in this filtering step that we will 

see how the history of the gene network becomes relevant for causal selection. 

The short answer for how this first step works is statistics: given all the modules or motifs 

that can be enumerated in a network, are there statistically significant patterns in how they 

occur? The long answer requires specifying what counts as “statistically significant.” In 

particular, it involves designing and validating a null model against which the occurrence of 

some motifs will stand out as important. I want to emphasize that statistics is not serving here to 

discover causal relationships, since these have already been determined experimentally and are 

given in the structure of the gene network. (So I have granted for the sake of argument.) The role 

of the null model is solely to select important patterns of causal relationships from those 

interactions already given. 

The overall search for motifs thus proceeds as follows: given an experimentally 

determined gene network, measure the frequency of different motifs of a particular size 

occurring in the network. Randomize the network many times under certain constraints and 

calculate a null distribution using these randomized networks for the background frequencies of 

each motif. Calculate the statistical likelihood of the actually observed motif frequencies given 
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the null distribution. Then, any motifs that stand out as significant will be candidates for further 

examination using mathematical modeling and experiments to study their internal causal 

structure and dynamic behavior. Once a set of motifs have been found to be statistically 

overrepresented and to possess the appropriate causal structure, one can look for general “design 

principles” that use motifs to explain cellular behaviors (e.g. Milo, Itzkovitz, Kashtan, Levitt, 

Shen-Orr, et al. 2004).  

The null model is computed using random re-arrangements of the actual, experimentally-

determined network. As Kashtan et al. (2004) put it: “There are therefore two main tasks in 

detecting network motifs: (1) generating an ensemble of proper random networks… and (2) 

counting the subgraphs [motifs] in the real network and in random networks.” The second task is 

primarily a challenge of efficiently estimating motif frequencies in networks and has little 

biological interest.2 I will therefore focus on the procedure for generating the random networks. 

The biological content of the null model is implicit in the constraints placed on the 

randomization process. One wants to compare the actually observed frequency of motifs with 

frequencies in a population of similar but different networks. What properties of the actual 

network are held invariant under randomization affects the distribution of frequencies in the 

simulated population. Due in part to limitations of knowledge and computing power, systems 

biologists have chosen to preserve only certain formal (topological) properties of the network, 

such as the number of incoming and outgoing edges at each node. The computational procedure 

for the randomization involves probabilistically swapping edges between pairs of nodes, so that 

if node A points to B and node C to D, then the edges are switched so A points to D and C to B 

                                                
2 The complexity of the counting problem increases prohibitively with the dimensions of the 
graph unless one can find statistical sampling heuristics that estimate the true value without 
needing to count every motif exhaustively. 
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(Shen-Orr et al. 2002). The networks are therefore similar in the degree of connectedness of their 

nodes but different with regard to how they are connected.  

Given this, the top-down character of motif identification derives from several features. 

First, the search process presupposes a universally sufficient space of possible causal patterns for 

explaining cell behaviors. Second, it selects important patterns from this space using a series of 

progressively more demanding tests that apply uniformly to each motif.3 Third, the structure of 

the target explanations are largely fixed in advance: the aim is to explain kinds of cell behaviors 

in terms of statistically unlikely motifs and their combined causal effects. In a bottom-up 

approach, each of these dimensions would be left open-ended to be determined by inductive 

evidence and abductive inferences as research progressed. For instance, one would not presume 

that small parts of gene networks with fixed internal structure would always be explanatorily 

sufficient, and the domain of generalization for some causal pattern would be determined a 

posteriori rather than in advance. To be sure, the contrast between top-down and bottom-up 

methods is a matter of degree rather than a strict dichotomy. Nonetheless, the way that Alon et 

al. select among motifs imposes and then tests a universal organization in the structure of gene 

networks. By contrast, a bottom-up approach would draw distinctions among causes on a local, 

case-by-case basis and would define domains for generalization during the course of research.  

 
6. Why evolutionary history matters for the selection of motifs 
 

Does randomizing gene networks while preserving only the number of incoming and 

outgoing edges make for the right comparison of real to simulated distributions? Does this 

randomization select all and only those motifs that can provide a theoretical vocabulary for the 

                                                
3 Ideally, one could run the above statistical test on many gene networks simultaneously and 
aggregate the results. In practice, only a few high-quality gene networks are available so the 
testing runs in a more piece-meal fashion. 
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design principles of cells? Notice that the randomization does not preserve the functionality of 

the network. Probably all of the simulated networks would be lethal for an actual cell, since 

randomization does not respect the stoichiometry, thermodynamics, or kinetics of the 

interactions.4 There is no guarantee that metabolic reactions would still flow in the correct 

direction, or that the signals from transduction mechanisms wouldn’t get jumbled together. As a 

constrast class, then, these randomized networks highlight the functional organization of the 

actual network. The parts of the actual networks that solve functional design problems will not 

be preserved under randomization and should therefore turn up as significant again the null 

distribution.  

What if the actual network became enriched in certain motifs for non-functional reasons, 

though? Simply re-arranging the edges wouldn’t account for this inflation in the frequency of 

motifs in the actual network. I’ll argue in this section, following critiques from biologists, that 

evolutionary processes affecting the past evolution of the gene network turn out to be one 

important source of such functionally neutral enrichment. As a result, we will see that the 

evolutionary contingency of the relationship between motifs and cell functions matters for the 

correctness of selecting just those motifs that are portable, explanatory causes across gene 

networks.  

Alon et al.’s published method for selecting among motifs does not directly model 

evolutionary processes or incorporate facts about the evolutionary history of gene networks. 

Prima facie, this doesn’t seem to be a problem. Motif identification proceeds by fixing its target 

domain of phenomena to be explained: cell behaviors. Then it searches within that domain to 

                                                
4 It also completely ignores the material parts of the cell that actually realize the network. One 
cannot take some kinase protein and expect it to influence the expression of any random gene, 
yet this is how the randomization operates at the level of the network’s formal structure.  
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find unexpected structural patterns, i.e. statistically over-enriched motifs. These patterns are then 

candidates for design principles if the high frequency and location of certain motifs (with their 

distinctive effects) in gene networks explains how cells solve some functional problem. 

However, the concept of “design principles” is grounded in the process of natural 

selection and the evolutionary history of gene networks. For instance, Alon et al. have modeled 

computationally what environmental conditions might lead to natural selection for motifs 

(Kalisky, Dekel, and Alon 2007; Kashtan and Alon 2005; Dekel, Mangan, and Alon 2005). In 

the case of the coherent feed-forward loop, they “find conditions that the environment must 

satisfy in order for the FFL to be selected over simpler circuits: the FFL is selected in 

environments where the distribution of the input pulse duration is sufficiently broad and contains 

both long and short pulses” (Dekel, Mangan, and Alon 2005, 81) Natural selection is thus the 

reason one would expect such design principles to exist, but motifs are not a necessary 

consequence of natural selection per se. Indeed, they can also be produced by evolutionary 

neutral processes such as gene duplication and genome duplication. 

Perhaps the most important problem with the network randomization used by Alon et al. 

is that it treats nodes with the same number of incoming and outgoing edges equivalently, no 

matter their detailed causal role or context in the network. Superficially, this might seem to be a 

positive feature, since one goal of the null model is to describe the network’s structure separate 

from any influence of natural selection. However, the absence of selection does not imply equal 

probabilities of attachment between topologically similar nodes. Neutral processes of evolution 

can introduce significant biases to the network structure over time due to structural constraints on 

the variation produced by mechanisms such as mutation or gene duplication. Fairly simple 

models for these neutral processes have succeeded in producing the statistical signals used to 
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identify motifs (e.g. Solé and Valverde 2006; Lynch 2007). The randomization step in detecting 

motifs is supposed to focus future research on structural elements with generalizable causal 

effects, but neutral evolutionary processes carry important information for maximizing this 

projectability. 

Heterogeneous background signal in gene networks can come from a variety of sources. 

The likelihood of simple motifs such as auto-regulation (a one-node feedback loop) depends 

strongly on the size of the regulatory region of DNA in front of a gene, which varies by orders of 

magnitude across species (Lynch 2007). Alternatively, Artzy-Randrup et al. have shown that 

enrichment in FFLs can be produced simply if networks grow by preferentially attaching new 

nodes to already highly connected nodes (Artzy-Randrup et al. 2004). This simulated, 

evolutionarily neutral process did not recreate the distribution of all motifs accurately (Milo, 

Itzkovitz, Kashtan, Levitt, and Alon 2004), but it still demonstrates that mechanisms of network 

evolution can confound the signal for design principles.  

Empirical analyses of gene networks have also shown that motifs can be generated in 

aggregate groups. Figure 2 from (Dobrin et al. 2004) illustrates how the vast majority of feed-

forward loop and bifan motifs in E. coli overlap to form “homologous motif clusters.” This 

clustering raises an important question about whether each occurrence of a motif can be 

accurately taken as an independent statistical event in the network. Ward and Thornton (2007) 

analyzed the effects of an ancient genome duplication event in the Saccharomyces clade and 

argued that the aggregate clusters of FFL and bifan motifs in the clade are due both to selection 

and to neutral duplication of genes. In particular, they find that “many of the bi-fan arrays and 

the motifs within them can be attributed to the [genome duplication] event that occurred recently 

in the evolution of Saccharomyces, with the overwhelming majority of these structures arising 
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from duplication of TFs [transcription factors]” (Ward and Thornton 2007, 1999). Moreover, the 

increase in bi-fan arrays appears to have facilitated the emergence of feed-forward loops 

connecting the bi-fans.  

In other words, the enrichment of bifan and feed-forward loop motifs is not adequately 

explained by independent natural selection for each instance of the motifs. Instead, evolutionary 

mechanisms in gene networks produce motifs in a correlated, aggregate fashion, and natural 

selection may act to conserve or alter these chunks. One-off, historically contingent events such 

as genome duplications can strongly affect the future prevalence of motifs in a network. 

Randomize the network the wrong way and this background context will show up as a candidate 

design principle (or true design principles may remain hidden). 

The challenge for correctly identifying important motifs, then, is to account for these 

background influences on the structure of gene networks. In this case, the background noise 

derives from historical processes acting on the systems of interest. In order to find motifs that are 

portable as causal explanations across systems, systems biologists must incorporate knowledge 

about the mechanisms driving heritable variation in gene networks. Without this knowledge, the 

null distribution will be biased in unpredictable ways, rendering the results of the causal 

selection process suspect.  

 
8. Conclusion 
  

As a way of summarizing my argument, let me point out that the challenge I described 

for finding motifs in systems biology is an instance of a more general problem, which arises 

essentially out of a statistical conception of causal selection among systems with a teleological 
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history.5 Imagine that one has measurements of some variable for a collection of distinct 

systems. Suppose that the causal structures of these systems are known, so that one can identify 

all the causally relevant factors in each system for the measured variable. Also assume that the 

structure of each system is constrained so that it must produce a common characteristic effect in 

the measured variable. For instance, the variable must always take on some value under certain 

conditions.  

The problem, then, is whether there are general explanations for how the set of systems 

produce this effect. A top-down statistical approach would answer this question by looking for 

pre-determined kinds of causal factors or patterns of factors that occurred more often than 

expected by chance. It would then infer that these patterns are statistically enriched because they 

are consequences of the teleological constraint on the systems’ behavior. To make this inference, 

however, we must also assess how often those factors or patterns could arise by mechanisms that 

are independent of the teleological constraint. These sources of noise could be historical, like 

whole genome duplications in gene networks, or they could be acting concurrently on the 

systems as they are measured.6 In either case, accounting for these sources of noise requires 

additional knowledge about causal influences external to the original systems of interest. 

This push beyond the causal structure of the systems themselves is a joint consequence of 

the underappreciated dimensions of causal selection I introduced earlier: top-down versus 

bottom-up methodology, an across-system versus within-system explanatory target, and a 

contingent versus necessary presence of the causal factors within these systems. Also important 

                                                
5 The teleology arises for motifs in systems biology because they participate in design principles 
that solve evolutionary problems for cells, but more broadly we can also include teleology here 
in the sense of systems built or manipulated according to human goals (e.g. Lombrozo and Carey 
2006). 
6 Another source of noise would arise if the teleological constraint were only sometimes effective 
in guaranteeing the characteristic output effect. 
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in this regard is the teleological background of the causal systems of interest. Together, they 

motivate the use of statistical procedures as a tool for efficiently generalizing over noisy data, 

which imports a new issue into the process of causal selection: one must know about the noise as 

well as the signal. 

In this way, the epistemic scope of causal selection depends on the practical choice of 

methods as well as the pragmatic aim. One cannot guarantee that causal selection for the sake of 

prediction and intervention can be done correctly using only the internal structure of the target 

systems. In order to say what is needed, one must fully specify both the ends and the means of 

the selection.  
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Figures 
 

 
 

Figure 1: Motifs as an intermediate level of structure 

Motifs are higher-order units of structure between gene networks and whole cells. A hypothetical 
gene network is shown on the bottom level, where nodes are kinds of molecules and edges are 
causal interactions affecting concentration levels of those molecules. In the middle level, these 
interactions are aggregated into causal patterns called motifs. (A) Three feed forward loops 
intersecting over the same node. (B) A three-node feedback cycle. (C) A bifan. (D) A feedback 
loop. (E) A single-input module. (F) A densely overlapping regulon, defined as a generalization 
of the bifan motif to more nodes where some edges can be missing. Note that motifs can overlap 
and usually do not cover the whole network structure.  
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Figure 2: The E. coli transcriptional regulatory network 

Illustrates a gene network specialized to only show kinds of molecules directly acting on genes 
to regulate expression levels. Thick lines represent edges participating in feed-forward loops and 
bifan motifs. Thick blue lines are edges shared between multiple motifs, while thick orange lines 
are edges participating in only one motif. The remaining edges in the network are shown with 
thin green lines. Note how the motifs form an interconnected and partly overlapping aggregate 
covering the main cluster of nodes in the network. From (Dobrin et al. 2004). 
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Figure 3: Three-node motifs 

All thirteen possible motifs with three nodes and directed edges. From (Milo 2002). 

  

Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1*

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of

1Departments of Physics of Complex Systems and
Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Figure 4: The eight possible feed-forward loops 

Note that the directed edges in this graph contain additional information compared to Figure 3. 
The edge with an arrow indicates that one molecule causes an increase in the other, while an 
edge with a line indicates that it causes a decrease. The coherent FFLs have the same sign 
between the direct edge from X to Z and the indirect path through Y. (Positive, negative, 
negative, and positive, respectively for each of the four motifs.) The incoherent FFLs have 
opposite signs in the two paths from X to Z. From (Alon 2007). 
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PAR slows the response time because at early stages, 
when levels of X are low, production is slow. Production 
picks up only when X concentration approaches the acti-
vation threshold for its own promoter. Thus, the desired 
steady state is reached in an S-shaped curve (FIG. 1d). 
The response time is longer than in a corresponding 
simple-regulation system, as shown theoretically24 and 
experimentally by Maeda and Sano25.

PAR tends to increase cell–cell variability. If PAR is 
weak (that is, X moderately enhances its own produc-
tion rate), the cell–cell distribution of X concentration 
is expected to be broader than in the case of a simply 
regulated gene (FIG. 1f). Strong PAR can lead to bimodal 
distributions, whereby the concentration of X is low 
in some cells but high in others. In cells in which the 
concentration is high, X activates its own production 
and keeps it high indefinitely. Strong PAR can therefore 
lead to a differentiation-like partitioning of cells into 
two populations25–27 (FIG. 1f). In some cases, PAR can 
be useful as a memory to maintain gene expression, as 
mentioned below (see the section on developmental 

networks). In other cases, a bimodal distribution is 
thought to help cell populations to maintain a mixed 
phenotype so that they can better respond to a stochastic 
environment (reviewed in REF. 28).

Feedforward loops
The second family of network motifs is the feedforward 
loop (FFL). It appears in hundreds of gene systems in 
E. coli6,9 and yeast7,10, as well as in other organisms11–16. 
This motif consists of three genes: a regulator, X, which 
regulates Y, and gene Z, which is regulated by both X 
and Y. Because each of the three regulatory interactions 
in the FFL can be either activation or repression, there 
are eight possible structural types of FFL (FIG. 2a).

To understand the function of the FFLs, we need to 
understand how X and Y are integrated to regulate the 
Z promoter29,30. Two common ‘input functions’ are an 
‘AND gate’, in which both X and Y are needed to activate 
Z, and an ‘OR gate’, in which binding of either regulator 
is sufficient. Other input functions are possible, such 
as the additive input function in the flagella system24,31 
and the hybrid of AND and OR logic in the lac pro-
moter32. However, much of the essential behaviour of 
FFLs can be understood by focusing on the stereotypical 
AND and OR gates. Each of the eight FFL types can thus 
appear with at least two input functions.

In the best studied transcriptional networks (E. coli 
and yeast), two of the eight FFL types occur much more 
frequently than the other six types. These common types 
are the coherent type-1 FFL (C1-FFL) and the incoherent 
type-1 FFL (I1-FFL)33,34,36. Here I discuss their dynamical 
functions in detail; the functions of all eight FFL types 
are described in REF. 34.

The C1-FFL is a ‘sign-sensitive delay’ element and a 
persistence detector. In the C1-FFL, both X and Y are 
transcriptional activators (FIG. 2b). I will first consider 
the behaviour of the FFL when the Z promoter has an 
AND input function, and then turn to the case of the 
OR input function.

With an AND input function, the C1-FFL shows 
a delay after stimulation, but no delay when stimula-
tion stops. To see this, let’s follow the behaviour of the 
FFL. When the signal Sx appears, X becomes active 
and rapidly binds its downstream promoters. As a 
result, Y begins to accumulate. However, owing to the 
AND input function, Z production starts only when Y 
concentration crosses the activation threshold for the 
Z promoter. This results in a delay of Z expression fol-
lowing the appearance of Sx (FIG. 3a). In contrast, when 
the signal Sx is removed, X rapidly becomes inactive. As 
a result, Z production stops because deactivation of its 
promoter requires only one arm of the AND gate to be 
‘shut off ’. Hence, there is no delay in deactivation of Z 
after the signal Sx is removed (FIG. 3a).

This dynamic behaviour is called sign-sensitive delay; 
that is, delay depends on the sign of the Sx step. An ON 
step (addition of Sx) causes a delay in Z expression, but 
an OFF step (removal of Sx) causes no delay.

The duration of the delay is determined by the bio-
chemical parameters of the regulator Y; for example, the 

Figure 2 | Feedforward loops (FFLs). a | The eight types 
of feedforward loops (FFLs) are shown. In coherent FFLs, 
the sign of the direct path from transcription factor X to 
output Z is the same as the overall sign of the indirect 
path through transcription factor Y. Incoherent FFLs have 
opposite signs for the two paths. b | The coherent type-1 
FFL with an AND input function at the Z promoter. 
c | The incoherent type-1 FFL with an AND input function 
at the Z promoter. SX and SY are input signals for X and Y.
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