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Abstract: Simultaneous hypothesis tests can fail to provide results that meet logical requirements.
For example, if A and B are two statements such that A implies B, there exist tests that, based on the
same data, reject B but not A. Such outcomes are generally inconvenient to statisticians (who want
to communicate the results to practitioners in a simple fashion) and non-statisticians (confused by
conflicting pieces of information). Based on this inconvenience, one might want to use tests that satisfy
logical requirements. However, Izbicki and Esteves shows that the only tests that are in accordance
with three logical requirements (monotonicity, invertibility and consonance) are trivial tests based on
point estimation, which generally lack statistical optimality. As a possible solution to this dilemma,
this paper adapts the above logical requirements to agnostic tests, in which one can accept, reject or
remain agnostic with respect to a given hypothesis. Each of the logical requirements is characterized
in terms of a Bayesian decision theoretic perspective. Contrary to the results obtained for regular
hypothesis tests, there exist agnostic tests that satisfy all logical requirements and also perform well
statistically. In particular, agnostic tests that fulfill all logical requirements are characterized as region
estimator-based tests. Examples of such tests are provided.

Keywords: agnostic tests; multiple hypothesis testing; logical consistency; decision theory;
loss functions

1. Introduction

One of the practical shortcomings of simultaneous test procedures is that they can lack logical
consistency [1,2]. As a result, recent papers have discussed minimum logical requirements and
methods that achieve these requirements [3–7]. For example, it has been argued that simultaneous
tests ought to be in agreement with the following criterion: if hypothesis A implies hypothesis B,
a procedure that rejects B should also reject A.

In particular, Izbicki and Esteves [3] and da Silva et al. [7] examine classical and bayesian
simultaneous tests with respect to four consistency properties:

• Monotonicity: if A implies B, then a test that does not reject A should not reject B.
• Invertibility: A test should reject A if and only if it does not reject not-A.
• Union consonance: If a test rejects A and B, then it should reject AY B.
• Intersection consonance: If a test does not reject A and does not reject B, then it should not

reject AX B.

Izbicki and Esteves [3] prove that the only tests that are fully coherent are trivial tests based
on point estimation, which are generally void of statistical optimality. This finding suggests that
alternatives to the standard “reject versus accept” tests should be explored.
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Such an alternative are agnostic tests [8], which can take the following decisions: (i) accept an
hypothesis (decision 0); (ii) reject it (decision 1); or (iii) noncommittally neither accept or reject it; thus
abstaining or remaining agnostic about the other two actions (decision 1

2 ). Decision (iii) is also called a
no-decision classification. The set of samples, x P X , for which one abstains from making a decision about
a given hypothesis is called a no-decision region [8]. An agnostic test enables one to explicitly deal
with the difference between “accepting a hypothesis H” and “not rejecting H (remaining agnostic)”.
This distinction will be made clearer in Section 5, which derives agnostic tests under a Bayesian
decision-theoretic standpoint by means of specific penalties for false rejection, false acceptance and
excessive abstinence.

We use the above framework to revisit the logical consistency of simultaneous hypothesis tests.
Section 2 defines agnostic testing scheme (ATS), a transformation that assigns to each statistical hypothesis
an agnostic test function. This definition is illustrated with bayesian and frequentist examples,
using both existing and novel agnostic tests. Section 3 generalizes the logical requirements in [3] to
agnostic testing schemes. Section 4 presents tests that satisfy all of these logical requirements. Section 5
obtains, under the Bayesian decision-theoretic paradigm, necessary and sufficient conditions on loss
functions to ensure that Bayes tests meet each of the logical requirements. All theorems are proved in
the Appendix.

2. Agnostic Testing Schemes

This section describes the mathematical setup for agnostic testing schemes. Let X denote the
sample space, Θ the parameter space and Lxpθq the likelihood function at the point θ P Θ generated by
the data x P X . We denote by D “ t0, 1

2 , 1u the set of all decisions that can be taken when testing a
hypothesis: accept (0), remain agnostic ( 1

2 ) and reject (1). By an agnostic hypothesis test (or simply
agnostic test) we mean a decision function from X to D [8,9]. Similar tests are commonly used in
machine learning in the context of classification [1,2]. Moreover, let Φ “ tφ : φ : X ÝÑ Du be the set
of all (agnostic) hypothesis tests. The following definition adapts testing schemes [3] to agnostic tests.

Definition 1 (Agnostic Testing Scheme; ATS). Let σpΘq, a σ-field of subsets of the parameter space
Θ, be the set of hypotheses to be tested. An ATS is a function L : σpΘq Ñ Φ that, for each hypothesis
A P σpΘq, assigns the test LpAq P Φ for testing A.

A way of creating an agnostic testing scheme is to find a collection of statistics and to compare
them to thresholds:

Example 1. For every A P σpΘq, let sA : X ÝÑ R be a statistic. Let c1, c2 P R, with c1 ě c2, be fixed
thresholds. For each A P σpΘq, one can define LpAq : X Ñ D by

LpAqpxq “

$

’

&

’

%

0 if sApxq ą c1
1
2 if c1 ě sApxq ą c2

1 if c2 ě sApxq

The ATS in Example 1 rejects a hypothesis if the value of the statistic sA is small, accepts it if this
value is large, and remains agnostic otherwise. If sApxq is a measure of how much evidence that x
brings about A, then this ATS rejects a hypothesis if the evidence brought by the data is small, accepts it
if this evidence is large, and remains agnostic otherwise. The next examples present particular cases of
this ATS These examples will be explored in the following sections.
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Example 2 (ATS based on posterior probabilities). Let Θ “ Rd and σpΘq “ BpΘq, the Borelians of
Rd. Assume that a prior probability P in σpΘq is fixed, and let c1, c2 P p0, 1q, with c1 ě c2, be fixed
thresholds. For each A P σpΘq, let LpAq : X Ñ D be defined by

LpAqpxq “

$

’

&

’

%

0 if PpA|xq ą c1
1
2 if c1 ě PpA|xq ą c2

1 if c2 ě PpA|xq

where Pp.|xq is the posterior distribution of θ, given x. This is essentially the test that Ripley [10]
proposed in the context of classification, which was also investigated by Babb et al. [9]. When c1 “ c2,
this ATS is a standard (non-agnostic) Bayesian testing scheme.

Example 3 (Likelihood Ratio Tests with fixed threshold). Let Θ “ Rd and σpΘq “ PpΘq, the set
of the parts of Rd. Let c1, c2 P p0, 1q, with c1 ě c2, be fixed thresholds. For each A P σpΘq,

let λxpAq “
supθPA Lxpθq

supθPΘ Lxpθq
be the likelihood ratio statistic for sample x P X . Define L by

LpAqpxq “

$

’

&

’

%

0 if λxpAq ą c1
1
2 if c1 ě λxpAq ą c2

1 if c2 ě λxpAq

When c1 “ c2, this is the standard likelihood ratio with fixed threshold (non-agnostic) testing
scheme [3].

A similar test to that of Example 3 is developed by Berg [8]; however, the values of the cutoffs c1

and c2 are allowed to change with the hypothesis of interest, and they are chosen so as to control the
level of significance and the power of each of the tests.

Example 4 (FBST ATS). Let Θ “ Rd, σpΘq “ BpRdq, and f pθq be the prior probability density function
(p.d.f.) for θ. Suppose that, for each x P X , there exists f pθ|xq, the p.d.f. of the posterior distribution of
θ, given x. For each hypothesis A P σpΘq, let

TA
x “

#

θ P Θ : f pθ|xq ą sup
θPA

f pθ|xq

+

be the set tangent to the null hypothesis and let evxpAq “ 1´ Ppθ P TA
x |xq be the Pereira–Stern evidence

value for A [11]. Let c1, c2 P p0, 1q, with c1 ě c2, be fixed thresholds. One can define an ATS L by

LpAqpxq “

$

’

&

’

%

0 if evxpAq ą c1
1
2 if c1 ě evxpAq ą c2

1 if c2 ě evxpAq

When c1 “ c2, this ATS reduces to the standard (non-agnostic) FBST testing scheme [3].

The following example presents a novel ATS based on region estimators.

Example 5 (Region Estimator-based ATS). Let R : X ÝÑ PpΘq be a region estimator of θ. For every
A P σpΘq and x P X , one can define an ATS L via

LpAqpxq “

$

’

&

’

%

0 if Rpxq Ď A
1 if Rpxq Ď Ac

1
2 otherwise
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Hence, LpAqpxq “ IpRpxqĎAcq`IpRpxqĘAq
2 . See Figure 1 for an illustration of this procedure.

Rpxq

AΘ

Accept A

Rpxq

A

Θ

Reject A

Rpxq

A

Θ

Remain Agnostic

Figure 1. Agnostic test based on the region estimate Rpxq from Example 5.

Notice that for continuous Θ, Example 5 does not accept precise (i.e., null Lebesgue measure)
hypotheses, yielding either rejection or abstinence (unless region estimates are themselves precise).
Therefore, the performance of region estimator-based ATS’s is in agreement with the prevailing position
among both bayesian and frequentist statisticians: to accept a precise hypothesis is inappropriate.
From a Bayesian perspective, precise null hypothesis usually have zero posterior probabilities, and thus
should not be accepted. From a Frequentist perspective, not rejecting a hypothesis is not the same
as accepting it. See Berger and Delampady [12] and references therein for a detailed account on the
controversial problem of testing precise hypotheses.

In principle, R can be any region estimator. However, some choices of R lead to better statistical
performance. For example, from a frequentist, one might choose R to be a confidence region.
This choice is explored in the next example.

Example 6. From a frequentist perspective, one might choose R in Example 5 to be a confidence region:
if the region estimator has confidence at least 1´ α, then type I error probability, supθPA PpLpAqpXq “ 1|θq,
is smaller than α for each of the hypothesis tests. Indeed,

sup
θPA

PpLpAqpXq “ 1|θq “ sup
θPA

Ppθ1 R RpXq for every θ1 P A|θq ď sup
θPA

Ppθ R RpXq|θq ď α.

If R is a confidence region, then this ATS also controls the Family Wise Error Rate (FWER, [13]),
as shown in Section 3.1.

Consider X1, . . . , X20|µ
i.i.d.
„ Normalpµ, 1q. In Figure 2, we illustrate how the probability of each

decision, PpLpAqpXq “ d|µq for d P t0, 1
2 , 1u, varies as a function of µ for three hypotheses: (i) µ ă 0;

(ii) µ “ 0; and (iii) 0 ă µ ă 1. We consider the standard region estimator for µ, RpXq “ rX̄ ´
z1´α{2

1?
n ; X̄` z1´α{2

1?
n swith α “ 5%. These curves represent the generalization of the standard power

function to agnostic hypothesis tests. Notice that µ “ 0 is never accepted, and that, under the null
hypothesis, all tests have at most 5% of probability of rejecting H.
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Figure 2. Illustrations of the performance of the agnostic region testing scheme (Example 5) for three
different hypotheses (specified on the top of each picture). The pictures present the probability of each
decision, PpLpAqpXq “ d|µq for d P t0, 1

2 , 1u, as a function of the mean, µ.

The next two examples show other cases of the ATS in Example 5 that use region estimators based
on the measures of evidence in Examples 3 and 4.

Example 7 (Region Likelihood Ratio ATS). For a fixed value c P p0, 1q, define the region estimate
Rcpxq “ tθ P Θ : λxptθuq ě cu, where λx is the likelihood ratio statistics from Example 3. For every
A P σpΘq and x P X , the ATS based on this region estimator (Example 5) satisfies LpAqpxq “ 1 ðñ

A
Ş

Rcpxq “ H, and LpAqpxq “ 0 ðñ Ac Ş

Rcpxq “ H. It follows that this ATS can be written as

LpAqpxq “

$

’

&

’

%

0 if λxpAcq ă c
1 if λxpAq ă c
1
2 otherwise

Example 8 (Region FBST ATS). For a fixed value of c P p0, 1q, let HPDx
c be the Highest Posterior

Probability Density region with probability 1´ c, based on observation x [3,14]. For every A P σpΘq and
x P X , the ATS based on this region estimator (Example 5) satisfies LpAqpxq “ 1 ðñ A

Ş

HPDx
c “ H,

and LpAqpxq “ 0 ðñ Ac Ş

HPDx
c “ H. It follows that this ATS can be written as

LpAqpxq “

$

’

&

’

%

0 if evxpAcq ă c
1 if evxpAq ă c
1
2 otherwise

In the sequence, we introduce four logical coherence properties for agnostic testing schemes and
investigate which tests satisfy them.
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3. Coherence Properties

3.1. Monotonicity

Monotonicity restricts the decisions that are available for nested hypotheses. If hypothesis A
implies hypothesis B (i.e., A Ď B), then a testing scheme that rejects B should also reject A. Monotonicity
has received a lot of attention in the literature (e.g., [5,6,15–19]). It can be extended to ATS’s in the
following way.

Definition 2 (Monotonicity). L : σpΘq Ñ Φ is monotonic if, for every A, B P σpΘq, A Ă B implies
that LpAq ě LpBq.

L is monotonic if, for every hypotheses A Ă B,

1. if L accepts A, then it also accepts B.
2. if L remains agnostic about A, then it either remains agnostic about B or accepts B.

Next, we illustrate some monotonic agnostic testing schemes.

Example 9 (Tests based on posterior probabilities). The ATS from Example 2 is monotonic.
Indeed, A Ă B implies that PpA|xq ď PpB|xq @x P X , and hence PpA|xq ą ci implies that PpB|xq ą ci
for i “ 1, 2.

Example 10 (Likelihood Ratio Tests with fixed threshold). The ATS from Example 3 is monotonic.
This is because if A, B P σpΘq are such that A Ă B, then supθPA Lxpθq ď supθPB Lxpθq, @x P X ,
which implies that λxpAq ď λxpBq. It follows that λxpAq ą ci implies that λxpBq ą ci for i “ 1, 2.

Example 11 (FBST). The ATS from Example 4 is monotonic. In fact, let A, B P σpΘq be such that
A Ă B. We have supB f pθ|xq ě supA f pθ|xq @x P X . Hence, TB

x Ď TA
x , and, therefore, evxpAq ď evxpBq.

It follows that evxpAq ą ci implies that evxpBq ą ci for i “ 1, 2.

Notice that p-values and Bayes factors are not (coherent) measures of support for hypotheses [19,20],
and therefore using them in a similar fashion as in Examples 2–4 would not lead to monotonic agnostic
testing schemes. On the other hand, any monotonic statistic sA does, however, provide a monotonic
ATS, because, if A Ď B, sApxq ą ci implies that sBpxq ą ci for i “ 1, 2. Another example of such
statistic is the s-value defined by Patriota [6]. As a matter of fact, every ATS is, in a sense, associated to
monotonic statistics as shown in the next theorem.

Theorem 1. Let L be an agnostic testing scheme. L is monotonic if, and only if, there exist a sequence of test
statistics psAqAPσpΘq, sA : X ÝÑ I Ď R, with sA ď sB whenever A Ă B, A, B P σpΘq, and cutoffs c1, c2 P I,
c1 ě c2, such that for every A P σpΘq and x P X ,

LpAqpxq “

$

’

&

’

%

0 if sApxq ą c1
1
2 if c1 ě sApxq ą c2

1 if c2 ě sApxq
(1)

Example 12 (Region Estimator). The ATS from Example 5 is monotonic, because if A Ď B,
A, B P σpΘq, then

LpAqpxq “ IpRpxq Ď Acq ` IpRpxq Ę Aq
2

ě
IpRpxq Ď Bcq ` IpRpxq Ę Bq

2
“ LpBqpxq,

as IpRpxq Ď Bcq ď IpRpxq Ď Acq and IpRpxq Ę Bq ď IpRpxq Ę Aq. Because this ATS is monotonic,
it also controls Family Wise Error Rate [21].
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3.2. Union Consonance

Finner and Strassburger [4] and Izbicki and Esteves [3] investigated the following logical property,
named union consonance: if a (non-agnostic) testing scheme rejects each of the hypotheses A and B,
it should also reject their union AY B. In other words, a TS cannot accept the union while rejecting
its components. In this section, we adapt the concept of union consonance to the framework of
agnostic testing schemes by considering two extensions for such desideratum: the weak and the strong
union consonance.

Definition 3 (Weak Union Consonance). An ATS L : σpΘq Ñ Φ is weakly consonant with the union
if, for every A, B P σpΘq, and for every x P X ,

LpAqpxq “ 1 and LpBqpxq “ 1 implies LpAY Bqpxq ‰ 0

This is exactly the definition of union consonance for non-agnostic testing schemes. Notice that,
according to such definition, it is possible to remain agnostic about AY B while rejecting A and B.

Remark 1. Izbicki and Esteves [3] show that if a non agnostic testing scheme L satisfies union
consonance, then for every finite set of indices I and for every tAiuiPI Ď σpΘq, mintLpAiquiPI “ 1
implies that LpYiPI Aiq ‰ 0. This is not the case for weak union consonant agnostic testing schemes;
we leave further details to Section 4.3.

The second definition of union consonance is more stringent than the first one:

Definition 4 (Strong Union Consonance). An L : σpΘq Ñ Φ is strongly consonant with the union
if, for every arbitrary set of indices I and for every tAiuiPI Ď σpΘq such that YiPI Ai P σpΘq, and for
every x P X ,

mintLpAiqpxquiPI “ 1 implies LpYiPI Aiqpxq “ 1

Definition 3 is less stringent than Definition 4 in two senses: (i) the latter imposes the (strict)
rejection of a union of hypotheses whenever each of them is rejected while the former imposes just
non-acceptance (rejection or abstention) of the union is such circumstances; and (ii) in Definition 4
consonance is required to hold for every set (possibly infinite) of hypotheses as opposed to Definition 3
which applies only to pairs of hypotheses. Notice that if an ATS is strongly consonant with union,
it is also weakly consonant with union, and that both definitions are indeed extensions of the concept
presented by Izbicki and Esteves [3].

The following examples show ATSs that are consonant with union.

Example 13 (Tests based on posterior probabilities). Consider again Example 2 with the restriction
c1 ě 2c2. If A and B are rejected after observing x P X , then

PpAY B|xq ď PpA|xq ` PpB|xq ď 2c2 ď c1,

and therefore AY B cannot be accepted. Thus, with this restrictions, that ATS is weakly consonant with
union. The restriction c1 ě 2c2 is not only sufficient to ensure weak union consonance, but it is actually
necessary to ensure it holds for every prior distribution (see Theorem 2). Notice, however, that this
ATS is not strongly consonant with union in general.

Example 14 (Likelihood Ratio Tests with fixed threshold). The ATS of Example 3 is strongly
consonant with union. Indeed, let I be an arbitrary set of indices and tAiuiPI Ď σpΘq be such that
YiPI Ai P σpΘq. For every x P X , λxpYiPI Aiq “ supiPItλxpAiqu [3]. It follows that if λxpAiq ď c2 for
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every i P I, then λxpYiPI Aiq ď c2. Thus, if L rejects all hypotheses Ai after x is observed, it also rejects
YiPI Ai. In addition, L is also weakly consonant with union.

Example 15 (FBST). The ATS from Example 4 is also strongly consonant with union. Indeed, let I
be an arbitrary set of indices and tAiuiPI Ď σpΘq be such that YiPI Ai P σpΘq. For every x P X ,
evxpYiPI Aiq “ supiPItevxpAiqu [22]. Strong union consonance holds due to the same argument from
Example 14. It follows that L is also weakly consonant with union.

Example 16 (Region Estimator). The TS from Example 5 satisfies strong union consonance.
Indeed, let I be an arbitrary set of indices and tAiuiPI Ď σpΘq be such that YiPI Ai P σpΘq.
If LpAiqpxq “ 1, then Rpxq Ď Ac

i . Hence, if LpAiqpxq “ 1 for every i P I, Rpxq Ď
Ş

iPI Ac
i “ p

Ť

iPI Aiq
c,

and, therefore,
Ť

iPI Ai is rejected. It follows that L is also weakly consonant with union.

3.3. Intersection Consonance

The third property we investigate, named intersection consonance [3], states that if a (non agnostic)
testing scheme cannot accept hypotheses A and B while rejecting its intersection. We consider
two extensions of such definition to agnostic testing schemes.

Definition 5 (Weak Intersection Consonance). An ATS L : σpΘq Ñ Φ is consonant with the
intersection if, for every A, B P σpΘq and x P X ,

LpAqpxq “ 0 and LpBqpxq “ 0 implies LpAX Bqpxq ‰ 1.

This is exactly the definition of intersection consonance for non-agnostic testing schemes.
Notice that it is possible to accept A and B while being agnostic about AX B.

The second definition of intersection consonance is more stringent:

Definition 6 (Strong Intersection Consonance). An ATS L : σpΘq Ñ Φ is strongly consonant with the
intersection if, for every arbitrary set of indices I and for every tAiuiPI Ď σpΘq such thatXiPI Ai P σpΘq,
and for every x P X ,

maxtLpAiqpxquiPI “ 0 implies LpXiPI Aiqpxq “ 0.

As in the case of union consonance, Definition 5 is less stringent than Definition 6 in two senses:
(i) the latter imposes the (strict) acceptance of an intersection of hypotheses whenever each of
them is accepted while the former imposes just non-rejection (acceptance or abstention) of the
intersection is such circumstances; and (ii) in Definition 6 consonance is required to hold for every set
(possibly infinite) of hypotheses as opposed to Definition 5 which applies only to pairs of hypotheses.
Notice that if an ATS is strongly consonant with intersection, it is also weakly consonant with
intersection, and that both definitions are indeed extensions of the concept presented by Izbicki
and Esteves [3].

Example 17 (Tests based on posterior probabilities). Consider Example 2 with the restriction
c2 ď 2c1 ´ 1. If A and B are accepted when x P X is sampled, then PpA|xq ą c1 and PpB|xq ą c1.
By Fréchet inequality, it follows that

PpAX B|xq ě PpA|xq ` PpB|xq ´ 1 ą 2c1 ´ 1 ě c2

and, therefore, A X B cannot be rejected. It follows that weak intersection consonance holds.
The restriction c2 ď 2c1 ´ 1 is not only sufficient to ensure weak intersection consonance, but it
is actually necessary to ensure this property holds for every prior distribution; see Theorem 2.
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Notice, however, that this ATS is not strongly consonant with intersection in general (Take, for
example, Θ “ r0, 1s, P “ λ (the Lebesgue measure), A “ r0, 2{3s, B “ r1{3, 1s, and c1 “ 3{5).

The ATS based on the likelihood ratio statistic from Example 3 does not satisfy intersection
consonance, because there are examples in which λxpAX Bq “ 0, while λxpAq ą 0 and λxpBq ą 0
(Consider, for example, that every θ P Θ has the same likelihood and AX B “ H). Similarly, the ATS
based on FBST from Example 4 is not consonant with intersection, because there are examples such
that evxpAX Bq “ 0, while evxpAq ą 0 and evxpBq ą 0. ATSs based on region estimators are consonant
with intersection.

Example 18 (Region Estimator). The TS from Example 5 satisfies both strong and weak intersection
consonance. Indeed, let I be an arbitrary set of indices and tAiuiPI Ď σpΘq be such that XiPI Ai P σpΘq.
If LpAiqpxq “ 0 for every i P I, then Rpxq Ď Ai for every i P I. It follows that Rpxq Ď XiPI Ai, and hence
XiPI Ai is accepted.

It follows that the ATSs from Examples 7 and 8 are also consonant with intersection. Hence, it is
possible to use e-values and likelihood ratio statistics to define ATS that are consonant with intersection.

Example 19 (ANOVA). In [3], the authors present an example which we now revisit. Suppose that
X1, . . . , X20 are i.i.d. Npµ1, σ2q; X21, . . . , X40 are i.i.d. Npµ2, σ2q and X41, . . . , X60 are i.i.d. Npµ3, σ2q.
Consider the following hypotheses:

Hp1,2,3q
0 : µ1 “ µ2 “ µ3 Hp1,2q

0 : µ1 “ µ2 Hp1,3q
0 : µ1 “ µ3

and suppose that we observe the following means and standard-deviations on the data:
X1 “ 0.15; S1 “ 1.09; X2 “ ´0.13; S2 “ 0.5 X3 “ ´0.38; S3 “ 0.79. Using the likelihood ratio
statistics, we have the following p-values for these hypotheses:

p
Hp1,2,3q

0
“ 0.0498 p

Hp1,2q
0

“ 0.2564 p
Hp1,3q

0
“ 0.0920

Therefore, the testing scheme given by the likelihood ratio tests with common level of significance
α “ 5% rejects Hp1,2,3q

0 but does not reject either Hp1,2q
0 or Hp1,3q

0 . It follows intersection consonance
does not hold. Now, consider the region estimator ATS based on the region estimate given by [23] for
this setting,

Rpxq “

#

pµ1, µ2, µ3q P R3 : µ1 ´ µ2 P r´1.65, 2.21s , µ2 ´ µ3 P r´1.68, 2.18s , µ1 ´ µ3 P r´1.40, 2.46s

+

All hypotheses Hp1,2,3q
0 , Hp1,2q

0 , and Hp1,3q
0 intercept both Rpxq and its complement, so that one

remains agnostic about all of them. As expected, intersection consonance holds using this ATS.

3.4. Invertibility

Invertibility formalizes the notion of simultaneous tests free from the labels “null” and “alternative”
for the hypotheses of interest and has been suggested by several authors, specially under a Bayesian
perspective [3,24,25].

Definition 7 (Invertibility). An ATS L : σpΘq Ñ Φ is invertible if, for every A P σpΘq,

LpAcq “ 1´LpAq
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Example 20 (Tests based on posterior probabilities). The ATS from Example 2 is invertible for every
prior distribution if and only if c2 “ 1´ c1.

Example 21 (Region Estimator). The ATS from Example 5 is invertible. Indeed,

LpAqpxq “ IpRpxq Ď Acq ` IpRpxq Ę Aqq
2

“
p1´ IpRpxq Ę Acqq ` p1´ IpRpxq Ď Aqq

2
“ 1´LpAcqpxq

It follows that the ATS from Examples 7 and 8 are also invertible.

4. Satisfying All Properties

Is it possible to construct non-trivial agnostic testing schemes that satisfy all consistency properties
simultaneously? Contrary to the case of non agnostic testing schemes [3], the answer is yes. We next
examine this question considering three desiderata: the weak desiderata (Section 4.1), the strong
desiderata (Section 4.2), and the n-weak desiderata (Section 4.3).

4.1. Weak Desiderata

Definition 8 (Weakly Consistent ATS). An ATS, L, is said to be weakly consistent if L is monotonic
(Definition 2), invertible (Definition 7), weakly consonant with the union (Definition 3), and weakly
consonant with the intersection (Definition 5).

Example 22 (Region Estimator). The ATS from Example 5 was already shown to satisfy all consistency
properties from Definition 8 (Examples 12, 16, 18 and 21). Thus, it is a weakly consistent ATS.

It follows that the ATSs from Examples 7 and 8, based on measures of support (likelihood ratio
statistics and e-values), are weakly consistent ATSs.

Example 23 (Tests based on posterior probabilities). Consider Example 2. We have seen that
the following restrictions are sufficient to guarantee union weak consonance (Example 13),
weak intersection consonance (Example 17) and invertibility (Example 20), respectively: c1 ě 2c2,
2c1 ´ 1 ě c2 and c2 “ 1´ c1. It follows from these relations and the fact that this ATS is monotonic
(Example 9) that if c1 ą 2{3 and c2 “ 1´ c1, then it is weakly consistent, whatever the prior distribution
for θ is.

The next theorem shows necessary and sufficient conditions for agnostic tests based on posterior
distribution (with possibly different thresholds c1 and c2 for each hypothesis of interest) to satisfy each
of the coherence properties.

Theorem 2. Let Θ “ Rd and σpΘq “ BpΘq, the Borelians of Rd. Let P be a prior probability measure in σpΘq.
For each A P σpΘq, let LpAq : X Ñ D be defined by

LpAqpxq “

$

’

&

’

%

0 if PpA|xq ą cA
1

1
2 if cA

1 ě PpA|xq ą cA
2

1 if cA
2 ě PpA|xq

where Pp.|xq is the posterior distribution of θ, given x, and 0 ď cA
2 ď cA

1 ď 1. This is a generalization of the ATS
of Example 2. Assume that the likelihood function is positive for every x P X and θ P Θ. Such ATS satisfies:

1. Monotonicity for every prior distribution if, and only if, for every A, B P σpΘq with A Ď B, cA
2 ě cB

2
and cA

1 ě cB
1

2. Weak union consonance for every prior distribution if, and only if, for every A, B P σpΘq such that A ‰ B,
cA

2 ` cB
2 ď cAYB

1
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3. Weak intersection consonance for every prior distribution if, and only if, for every A, B P σpΘq such that
A ‰ B, cA

1 ` cB
1 ´ 1 ě cAXB

2
4. Invertibility for every prior distribution if, and only if, for every A P σpΘq, cA

1 “ 1´ cAc

2

It follows from Theorem 2 that if the cutoffs used in each of the tests (c1 and c2) are required to be
the same for all hypothesis of interest, then the conditions in Example 23 are not only sufficient, but they
are also necessary to ensure that all (weak) consistency properties hold for every prior distribution
for θ.

4.2. Strong Desiderata

Definition 9 (Fully Consistent ATS). An ATS, L, is said to be fully consistent if L is monotonic
(Definition 2), invertible (Definition 7), strongly consonant with the union (Definition 4), and strongly
consonant with the intersection (Definition 6).

The following theorem shows that, under mild assumptions, the only ATSs that are fully consistent
are those based on region estimators.

Theorem 3. Assume that for every θ P Θ, tθu P σpΘq. An ATS is fully consistent if, and only if, it is a region
estimator-based ATS (Example 5).

Hence, the only way to create a fully consistent ATS is by designing an appropriate region
estimator and using Example 5. In particular, ATSs based on posterior probabilities (Example 2) are
typically not fully consistent. It should be emphasized that when the region estimator that characterizes
a fully consistent ATS Lmaps X to singletons of Θ, no sample point will lead to abstention, as either
Rpxq Ď A or Rpxq Ď Ac, for every A P σpΘq. In such situations, region estimators reduce to point
estimator which charaterize full consistent non-agnostic TSs [3].

In the next section, we consider a desiderata for simultaneous tests which is not as strong as that
of Definition 9, but which is more stringent that that of Definition 8.

4.3. n-Weak Desiderata

In Sections 3.2 and 3.3, weak consonance was defined for two hypotheses only. It is however
possible to define it for n ă 8 hypotheses:

Definition 10 (Weak n-union Consonance). An A-TS L : σpΘq Ñ Φ satisfies weak n-union consonant
if, for every finite set of indices I, with |I| ď n, for every tAiuiPI Ď σpΘq, and for every x P X

mintLpAiqpxquiPI “ 1 implies LpYiPI Aiqpxq ‰ 0.

Definition 11 (Weak n-intersection Consonance). An ATS L : σpΘq Ñ Φ is weak n-intersection
consonant if, for every finite set of indices I, with |I| ď n, for every tAiuiPI Ď σpΘq, and for every x P X

maxtLpAiqpxquiPI “ 0 implies LpXiPI Aiqpxq ‰ 1.

Although in the context of non agnostic testing schemes (union or intersection) consonance holds
for n “ 2 if, and only if, it holds for every n P N [3], this is not the case in the agnostic setting.
We hence define

Definition 12 (n-Weakly Consistent ATS). An ATS, L, is said to be n-weakly consistent if L is
monotonic (Definition 2), invertible (Definition 7), n-weakly consonant with the union (Definition 10),
and n-weakly consonant with the intersection (Definition 11).
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Example 24 (Region Estimator). The ATS from Example 5 satisfies weak n-union and weak
n-intersection consonance. The argument is the same as that presented in Examples 16 and 18.
It follows that this is a n-weakly consistent ATS.

Example 25 (Tests based on posterior probabilities). Consider Example 2. In order to guarantee
weak n-union consonance for every prior, it is necessary and sufficient to have c1 ě nc2.
Moreover, to guarantee weak n-intersection consonance for every prior, it is necessary and sufficient to
have c2 ď nc1´ pn´ 1q. It follows from these conditions and Example 20 that the following restrictions
are necessary and sufficient to guarantee monotonicity, n-union consonance, n-intersection consonance
and invertibility: c1 ą n{pn` 1q and c2 “ 1´ c1. Hence, these conditions are sufficient to guarantee
this ATS is n-weakly consistent. Now, because these conditions are also necessary, it follows that this
ATS is n-weakly consistent for every n ą 1 if, and only if, it remains agnostic about every hypothesis
which has probability in p0, 1q.

5. Decision-Theoretic Perspective

In this section, we investigate agnostic testing schemes from a Bayesian decision-theoretic
perspective. First, we define an ATS generated by a family of loss functions. Note that, in the
context of agnostic tests, a loss function is a function L : D ˆΘ Ñ R that assigns to each θ P Θ the loss
Lpd, θq for making the decision d P t0, 1

2 , 1u.

Definition 13 (ATS generated by a family of loss functions). Let pX ˆΘ, σpX ˆΘq,Pq be a Bayesian
statistical model. Let pLAqAPσpΘq be a family of loss functions, where LA : D ˆΘ Ñ R is the loss
function to be used to test A P σpΘq. An ATS generated by the family of loss functions pLAqAPσpΘq is
any ATS L defined over the elements of σpΘq such that, @A P σpΘq, LpAq is a Bayes test for hypothesis
A against P.

Example 26 (Bayesian ATS generated by a family of error-wise constant loss functions). For
A P σpΘq, consider the loss function LA of the form of Table 1, where all entries are assumed to
be non negative. This is a generalization of standard 0´ 1´ c loss functions to agnostic tests in the
sense that it penalizes not only false acceptance and false rejection with constant losses bA and dA,
respectively, but also an eventual abstention from deciding between accepting and rejecting A with
the values aA and cA. If bAdA ą aAbA ` cAdA, then the Bayes test against LA consists in rejecting A if
PpA|xq ă cA

dA`cA´aA
, accept A if PpA|xq ą bA´cA

aA`bA´cA
, and remain agnostic otherwise. It follows that

the following ATS is generated by the family of loss functions pLAqAPσpΘq:

LpAqpxq “

$

’

&

’

%

0 if PpA|xq ą bA´cA
aA`bA´cA

1
2 if bA´cA

aA`bA´cA
ě PpA|xq ą cA

dA`cA´aA

1 if cA
dA`cA´aA

ě PpA|xq

Notice that if, for every A, B P σpΘq, aA “ aB, bA “ bB, cA “ cB, and dA “ dB, this ATS matches
that from Example 2 for a particular value of c1 and c2.

Table 1. The loss function for the hypothesis θ P A used in Example 26.

Decision State of Nature
θ P A θ R A

0 (accept A) 0 bA
1
2 (remain agnostic about A) aA cA
1 (reject A) dA 0
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We restrict out attention to ATSs generated by proper losses, a concept we adapt from [3] to
agnostic tests:

Definition 14 (Proper losses). A family of loss functions pLAqAPσpΘq has proper losses if

$

’

’

&

’

’

%

LAp0, θq ă LAp
1
2 , θq ă LAp1, θq , if θ P A

LAp0, θq ą LAp
1
2 , θq ą LAp1, θq , if θ R A

LAp
1
2 , θq ă

LAp0,θq`LAp1,θq
2 , for all θ

Definition 14 states that (i) by taking a correct decision we lose less than by taking a wrong
decision; (ii) by remaining agnostic we do not lose as much as when taking a wrong decision, but we
lose more than by taking a correct decision; and (iii) it is better to remain agnostic about A than to flip
a coin to decide if we reject or accept this hypothesis.

Example 27 (Bayesian ATS generated by a family of error-wise constant loss functions). In order
to ensure that the loss in Example 26 is proper, the following restrictions must be satisfied: 0 ă aA ă

dA{2 and 0 ă cA ă bA{2. In particular, these conditions imply those stated in Example 26.

5.1. Monotonicity

We now turn our attention towards characterizing Bayesian monotonic ATS using a
decision-theoretic framework. In order to do this, we first adapt the concept of relative losses [3] to the
context of agnostic testing schemes.

Definition 15 (Relative Loss). Let LA be a loss function for testing hypothesis A. The relative losses

rp1, 1
2 q

A : Θ Ñ R and rp
1
2 ,0q

A : Θ Ñ R are defined by

$

&

%

rp1, 1
2 q

A pθq “ LAp1, θq ´ LAp
1
2 , θq

rp
1
2 ,0q

A pθq “ LAp
1
2 , θq ´ LAp0, θq

The relative losses thus measure the difference between the losses of rejecting a given hypothesis
and remaining agnostic about it, as well as the difference between the losses of remaining agnostic and
accepting it. In order to guarantee that a Bayesian ATS is monotonic, certain constraints on the relative
losses must be imposed. The next definition presents one of such assumptions, which we interpret in
the sequence.

Definition 16 (Monotonic Relative Loss). Let D2
ą “ tp1, 1

2 q, p
1
2 , 0qu. pLAqAPσpΘq has monotonic relative

losses if the family pLAqAPσpΘq is proper and, for all A, B P σpΘq such that A Ă B and for all pi, jq P D2
ą,

rpi,jqB pθq ě rpi,jqA pθq @θ P Θ

Let A, B P σpΘq with A Ď B. If θ P A, both A and B are true, so pLAqAPσpΘq having monotonic
relative losses reflects the situation in which the rougher error of rejecting B compared to rejecting
A (with respect to remaining agnostic about these hypotheses) should be assigned a larger relative
loss. Similarly, the rougher error of remaining agnostic about B should be assigned a larger relative
loss than remaining agnostic about A (with respect to correctly accepting these hypotheses). If θ P B
but θ R A, these conditions are a consequence of the assumption that the family pLAqAPσpΘq is proper.
The case θ R B can be interpreted in a similar fashion as the case θ P A.

The following example presents necessary and sufficient conditions to ensure that the loss
functions from Example 26 yield monotonic relative losses.
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Example 28. Consider the losses presented in Example 26. Assuming the losses are proper
(see Example 27), the conditions required to ensure pLAqAPσpΘq has monotonic relative losses are

aA ď aB, cB ď cA, cB ´ bB ě cA ´ bA and dB ´ aB ě dA ´ aA

Notice that these restrictions imply that bA ě bB.
As a particular example, let k ą 2 and λ be a finite measure in σpΘqwith λpΘq ą 0. The following

assignments yield a proper and monotonic loss: for every A P σpΘq, bA “ λpAcq, aA “ λpAq{k,
cA “ λpAcq{k, and dA “ λpAq. Another particular case is when aA “ aB, bA “ bB, cA “ cB,
and dA “ dB for every A, B P σpΘq.

Another concept that helps us characterizing the Bayesian monotonic agnostic testing schemes is
that of balanced relative losses, which we adapt from [7].

Definition 17 (Balanced Relative Loss). pLAqAPσpΘq has balanced relative losses if, for all A, B P σpΘq
such that A Ă B, for all θ1 P A and θ2 P Bc, and for all pi, jq P D2

ą,

rpi,jqA pθ1q

rpi,jqA pθ2q
ě

rpi,jqB pθ1q

rpi,jqB pθ2q

Lemma 1. If pLAqAPσpΘq has monotonic relative losses, then pLAqAPσpΘq has balanced relative losses.

The following result shows that balanced relative losses characterize Bayesian monotonic ATS.

Theorem 4. Let pLAqAPσpΘq be a family of proper loss functions. Assume that for every θ P Θ and x P X ,
Lxpθq ą 0. For every prior π for θ, let Lπ denote a Bayesian ATS generated by pLAqAPσpΘq. There exists a
monotonic Lπ for every prior π if, and only if, pLAqAPσpΘq has balanced relative losses.

Example 29. In Example 28, we obtained conditions on the loss functions pLAqAPσpΘq from Example 26
in order to guarantee that family to have monotonic relative losses. From Lemma 1 and Theorem 4,
it follows that such family of loss functions yield monotonic Bayesian ATSs whatever the prior
for θ is. In other words, there are family of loss functions that induce monotonic tests based on
posterior probabilities.

5.2. Union Consonance

We now turn our attention towards characterizing union consonant Bayesian ATS using a decision
theoretic framework.

Definition 18. pLAqAPσpΘq is compatible with weak union consonance if there exists no A, B P σpΘq,
θ1, θ2, θ3 P Θ and p1, p2, p3 ě 0 such that p1 ` p2 ` p3 “ 1 and

$

’

’

’

&

’

’

’

%

p1 ¨ r
p1, 1

2 q

A pθ1q ` p2 ¨ r
p1, 1

2 q

A pθ2q ` p3 ¨ r
p1, 1

2 q

A pθ3q ă 0

p1 ¨ r
p1, 1

2 q

B pθ1q ` p2 ¨ r
p1, 1

2 q

B pθ2q ` p3 ¨ r
p1, 1

2 q

B pθ3q ă 0

p1 ¨ r
p 1

2 ,0q
AYBpθ1q ` p2 ¨ r

p 1
2 ,0q

AYBpθ2q ` p3 ¨ r
p 1

2 ,0q
AYBpθ3q ą 0

Definition 18 states that the family of loss functions pLAqAPσpΘq being compatible with weak union
consonance cannot induce any Bayesian ATS on the basis of which one may prefer rejecting both
hypotheses A and B over remaining agnostic about them while accepting AY B rather than abstaining.

As we will see in the next theorem, proper loss functions compatible with weak union consonance
characterize Bayesian ATSs that are weakly consonant with the union.
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Theorem 5. Let pLAqAPσpΘq be a family of proper loss functions. Assume that for every θ P Θ and x P X ,
Lxpθq ą 0. For every prior π for θ, let Lπ denote a Bayesian ATS generated by pLAqAPσpΘq. There exists an
ATS Lπ that is weakly consonant with the union for every priori π if, and only if, pLAqAPσpΘq is compatible
with weak union consonance.

Example 30. We saw that the ATS from Example 2 is a Bayes test against a particular proper loss
(Examples 26 and 27) and that it is weakly consonant with the union (Example 13). It follows
from Theorem 5 that the family of loss functions that lead to this ATS are compatible with weak
union consonance.

Definition 19 (Union consonance-balanced relative losses [7]). pLAqAPσpΘq has union
consonance-balanced relative losses if, for every A, B P σpΘq, θ1 P AY B and θ2 P pAY Bqc,

rp1, 1
2 q

A pθ1q

rp1, 1
2 q

A pθ2q

ď
rp

1
2 ,0q

AYBpθ1q

rp
1
2 ,0q

AYBpθ2q

, or

rp1, 1
2 q

B pθ1q

rp1, 1
2 q

B pθ2q

ď
rp

1
2 ,0q

AYBpθ1q

rp
1
2 ,0q

AYBpθ2q

Corollary 1. Let pLAqAPσpΘq be a family of proper loss functions. Assume that for every θ P Θ and x P X ,
Lxpθq ą 0. If pLAqAPσpΘq does not have union consonance-balanced relative losses, then there exists a prior π

such that every Bayesian ATS, Lπ , is not weakly consonant with the union.

5.3. Intersection Consonance

Next, we characterize intersection consonant Bayesian ATS under a Bayesian perspective.

Definition 20. pLAqAPσpΘq is compatible with weak intersection consonance if there exists no A, B P σpΘq,
θ1, θ2, θ3 P Θ and p1, p2, p3 ě 0 such that p1 ` p2 ` p3 “ 1 and

$

’

’

’

&

’

’

’

%

p1 ¨ r
p 1

2 ,0q
A pθ1q ` p2 ¨ r

p 1
2 ,0q

A pθ2q ` p3 ¨ r
p 1

2 ,0q
A pθ3q ą 0

p1 ¨ r
p 1

2 ,0q
B pθ1q ` p2 ¨ r

p 1
2 ,0q

B pθ2q ` p3 ¨ r
p 1

2 ,0q
B pθ3q ą 0

p1 ¨ r
p1, 1

2 q

AXBpθ1q ` p2 ¨ r
p1, 1

2 q

AXBpθ2q ` p3 ¨ r
p1, 1

2 q

AXBpθ3q ă 0

Definition 20 states that the family of loss functions pLAqAPσpΘq being compatible with weak
intersection consonance cannot induce any Bayesian ATS on the basis of which one may prefer
accepting both hypotheses A and B to remaining agnostic about them while rejecting AX B rather
than abstaining.

As we will see in the next theorem, proper loss functions compatible with weak intersection
consonance characterize Bayesian ATSs that are weakly consonant with the intersection .

Theorem 6. Let pLAqAPσpΘq be a family of proper loss functions. Assume that for every θ P Θ and x P X ,
Lxpθq ą 0. For every prior π for θ, let Lπ denote a Bayesian ATS generated by pLAqAPσpΘq. There exists an
ATS Lπ that is weakly consonant with the intersection for every prior π if, and only if, pLAqAPσpΘq is compatible
with weak intersection consonance.

Example 31. We saw that the ATS from Example 2 is a Bayes test against a particular proper loss
(Examples 26 and 27) and that it is weakly consonant with the intersection (Example 17). It follows
from Theorem 6 that the family of loss functions that lead to this ATS are compatible with weak
intersection consonance.
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Definition 21 (Intersection consonance-balanced relative losses [7]). pLAqAPσpΘq has intersection
consonance-balanced relative losses if, for every A, B P σpΘq, θ1 P AX B and θ2 P pAX Bqc,

rp1, 1
2 q

AXBpθ1q

rp1, 1
2 q

AXBpθ2q

ď
rp

1
2 ,0q

A pθ1q

rp
1
2 ,0q

A pθ2q

, or

rp1, 1
2 q

AXBpθ1q

rp1, 1
2 q

AXBpθ2q

ď
rp

1
2 ,0q

B pθ1q

rp
1
2 ,0q

B pθ2q

Corollary 2. Let pLAqAPσpΘq be a family of proper loss functions. Assume that for every θ P Θ and x P X ,
Lxpθq ą 0. If pLAqAPσpΘq does not have intersection consonance-balanced relative losses, then there exists a
prior π such that every Bayesian ATS, Lπ , is not weakly consonant with the intersection.

We end this section by noting that although we focused our results on weak consonance, they can
be extended to strong consonance using the same techniques presented in the Appendix.

5.4. Invertibility

Finally, we examine invertible Bayesian ATSs from a decision-theoretic standpoint.

Definition 22 (Invertible Relative Losses). pLAqAPσpΘq has invertible relative losses if, for every
A P σpΘq, for all θ1 P A, θ2 P Ac and pi, jq P D2

ą,

rpi,jqA pθ1q

rpi,jqA pθ2q
“

rpi,jqAc pθ1q

rpi,jqAc pθ2q

We end this section by showing that invertible Bayesian ATSs are determined by family of loss
functions that fulfill the conditions of Definition 22.

Theorem 7. Let pLAqAPσpΘq be a family of proper loss functions. Assume that for every θ P Θ and x P X ,
Lxpθq ą 0. For every prior π for θ, let Lπ denote a Bayesian ATS generated by pLAqAPσpΘq. There exists an
ATS Lπ that is invertible for every prior π if, and only if, pLAqAPσpΘq has invertible relative losses.

Example 32. For every A P σpΘq, let pLAqAPσpΘq be such that LAp1, θq “ LAcp0, θq and LAp
1
2 , θq “

LAcp 1
2 , θq. It is easily seen that the conditions from Definition 22 hold. Theorem 7 then implies that any

Bayesian ATS generated by pLAqAPσpΘq is invertible.

6. Final Remarks

Agnostic tests allow one to explicitly capture the difference between “not rejecting” and “accepting”
a null hypothesis. When the agnostic decision is chosen, the null hypothesis is neither rejected or
accepted. This possibility aligns with the idea that although precise null hypotheses can be tested, they
shouldn’t be accepted. This idea is followed by the region based agnostic tests derived in this paper,
which can either remain agnostic or reject precise null hypotheses.

This distinction provides a solution to the problem raised by Izbicki and Esteves [3], in which all
(non-agnostic) logically coherent tests were shown to be based on point estimators which lack statistical
optimality. We show that agnostic tests based on region estimators satisfy logical consistency and
also allow statistical optimality. For example, agnostic tests based on frequentist confidence intervals
control family wise error. Similarly, agnostic tests based on posterior density regions are shown to be
an extension of the Full Bayesian Significance Test [11].

Future research includes investigating the consequences and generalizations of the logical
requirements in this paper. For example, one could study what kinds of trivariate logic derive from



Entropy 2016, 18, 256 17 of 22

the different definition of logical consistency studied in this paper. One could also generalize these
logical requirements to generalized agnostic tests, in which one can decide among different degrees of
agnosticism. The scale of such degrees can be either discrete or continuous. One could also investigate
region estimator-based ATSs with respect to other optimality criteria such as statistical power.

The results of this paper can also be tied to the philosophical literature that studies the
consequences and importance of precise hypothesis. Agnostic tests can be used to revisit the role of
testing precise hypotheses in science. Agnostic tests also provide a framework to interpret the scientific
meaning of measures of possibility or significance of precise hypotheses.
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Appendix A

Proof of Theorem 1. The sufficiency is immediate. Let I “ t0, 1
2 , 1u Ď R, c1 “

1
2 and c2 “ 0. For

A P σpΘq, let sA “ 1 ´ LpAq, psAqAPσpΘq is such that sApxq ď sBpxq, @x P X , if A Ă B and it is
straightforward to verify Equation (1).

Now, let A, B P σpΘq, with A Ă B. If L is given by Equation (1), it follows that:

1. LApxq “ 0 ùñ sApxq ą c1 ùñ sBpxq ą c1 ùñ LBpxq “ 0.
2. LApxq “ 1

2 ùñ c1 ě sApxq ą c2 ùñ sBpxq ą c2 ùñ LBpxq P t0, 1
2u.

3. LApxq “ 1 ùñ LBpxq ď LApxq “ 1.

From p1q, p2q, p3q it follows that LApxq ě LBpxq, thus L is monotonic.

Proof of Theorem 2. We start by proving the sufficiency of these conditions.

1. If for every A, B P σpΘqwith A Ď B, cA
2 ě cB

2 and cA
1 ě cB

1 , then for every x P X , PpA|xq ą cA
2 ùñ

PpB|xq ą cB
2 , and PpA|xq ą cA

1 ùñ PpB|xq ą cB
1 . It follows that monotonicity holds.

2. If for every A, B P σpΘq such that A ‰ B, cA
2 ` cB

2 ď cAYB
1 , then for every x P X , PpA|xq ď cA

2 and
PpB|xq ď cB

2 implies that PpAY B|xq ď PpA|xq ` PpB|xq “ cA
2 ` cB

2 ď cAYB
1 . It follows that union

consonance holds.
3. If for every A, B P σpΘq such that A ‰ B, cA

1 ` cB
1 ´ 1 ě cAXB

2 , then for every x P X , PpA|xq ą cA
1

and PpB|xq ą cB
1 implies that PpAX B|xq ě PpA|xq ` PpB|xq ´ 1 ą cA

1 ` cB
1 ´ 1 ě cAXB

2 . It follows
that intersection consonance holds.

4. If for every A P σpΘq, cA
1 “ 1´ cAc

2 , then for every x P X , PpA|xq ď cA
1 if, and only if, PpAc|xq ě

1´ cA
1 “ cAc

2 . Similarly, PpA|xq ď cA
2 if, and only if, PpAc|xq ě 1´ cA

2 “ cAc

1 . It follows that
invertibility holds.

We prove the necessary condition only for union consonance; the other statements have a
similar proof. Suppose there are A, B P σpΘq, A ‰ B, such that cA

2 ` cB
2 ą cAYB

1 . Let θ1 P A X Bc

and θ2 P BX Ac.
First, assume cA

2 ` cB
2 ď 1. Let ε ą 0 be such that ε ď pcA

2 ` cB
2 ´ cAYB

1 q{2 and ε ă mintcA
2 , cB

2 u.
Assume that the posterior distribution on Θ given x is such that

PpA|xq “ Pptθ1u|xq “ cA
2 ´ ε and PpB|xq “ Pptθ2u|xq “ cB

2 ´ ε

(see the Appendix of [3] for a prior distribution that leads to such posterior). It follows that
PpA|xq “ Pptθ1u|xq ď cA

2 , PpB|xq “ Pptθ2u|xq ď cB
2 , and

PpAY B|xq “ Pptθ1u|xq ` Pptθ2u|xq “ cA
2 ` cB

2 ´ 2ε ą cA
2 ` cB

2 ´ pc
A
2 ` cB

2 ´ cAYB
1 q “ cAYB

1
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Hence A and B are rejected, but AY B is accepted.
Now, assume cA

2 ` cB
2 ą 1. Let bA

2 ă cA
2 and bB

2 ă cB
2 be such that bA

2 ` bB
2 “ 1. Assume that the

posterior distribution on Θ is such that

PpA|xq “ Pptθ1u|xq “ bA
2 and PpB|xq “ Pptθ2u|xq “ bB

2

It follows that PpA|xq “ Pptθ1u|xq ă bA
2 ă cA

2 , PpB|xq “ Pptθ2u|xq ă bB
2 ă cB

2 , and

PpAY B|xq “ Pptθ1u, tθ2u|xq “ bA
2 ` bB

2 “ 1 ě cAYB
1

Hence A and B are rejected, but AY B is not.

Lemma A1. Let L be an invertible ATS. If, for every x, there exists Rpxq Ă Θ such that @A P σpΘq
LpAqpxq “ 0 if and only if Rpxq Ă A, then L is a region estimator-based ATS (Example 5).

Proof of Lemma A1. It follows from definition that, for every A P σpΘq such that Rpxq Ă A,
LpAqpxq “ 0. Furthermore, for every A P σpΘq such that Rpxq Ă Ac, LpAcqpxq “ 0. Therefore, it follows
from invertibility that LpAqpxq “ 1. Finally, let A P σpΘq be such that A X Rpxq ‰ H and
AC X Rpxq ‰ H. Since A X Rpxq ‰ Rpxq and Ac X Rpxq ‰ Rpxq it follows that LpAqpxq ě 1

2 and
LpAcqpxq ě 1

2 . Conclude from invertibility that LpAqpxq “ 1
2 .

Proof of Theorem 3. It follows from definition that a region estimator ATS is fully consistent. In order
to prove the reverse implication, consider the following notation. For every x P X and θ P Θ,
let Aθ “ Θ´ tθu. Let Rpxq “

Ş

tAθ : LpAθqpxq “ 0u.
Next, we prove that, for every B P σpΘq, LpBqpxq “ 0 if and only if Rpxq Ă B. Let B P σpΘq

be such that Rpxq Ă B. Therefore, it follows from the definition of Rpxq that, for every θ P Bc,
LpAθq “ 0. Since B “

Ş

tAθ : θ P Bcu, it follows from strong intersection consonance (Definition 6)
that LpBqpxq “ 0. Let B P σpΘq be such that LpBqpxq “ 0. It follows from the monotonicity of L
(Definition 2) that, for every θ P Bc, LpAθqpxq “ 0 as B Ď Aθ . Therefore,

Rpxq “
č

tAθ : LpAθqpxq “ 0u Ă
č

tAθ : θ P Bcu “ B

Conclude that for every B P σpΘq, LpBqpxq “ 0 if and only if Rpxq Ă B.
Since L is invertible (Definition 7), it follows from the above conclusion and Lemma A1 that L is

a region estimator-based ATS.

Lemma A2. Let, for i P Θ, tiu P σpΘq and f1, . . . , fm be σpΘq{R-measurable bounded functions. If there
exists a probability P on σpΘq such that, for all 1 ď i ď m,

ş

fidP ą 0, then are A P σpΘq, A finite, and a
probability P˚ with a finite support such that P˚pAq “ 1 and such that, for all 1 ď i ď m,

ş

fidP˚ ą 0.

Proof. Let εi ą 0 be such that,
ż

fidP ą εi (A1)

Since fi are bounded, there exist simple measurable functions, gi, such that

sup
xPΘ

|gipxq ´ fipxq| ă
mini εi

2
(A2)

Therefore,
ż

gidP ą
εi
2

(A3)
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Let Gi “ tg´1
i ptjuq : j P gipΘqu. Observe that Gi is a finite partition of Θ. Let G˚ be the coarsest

partition that is finer than every Gi. Since every Gi is finite, G˚ is finite. Let h : G˚ Ñ Θ be
such that hpGq P G. Define P˚ : σpΘq Ñ R˚ by P˚pAq “

ř

GPG˚ PpGqIAphpGqq. P˚ is such that
P˚pthpGquq “ PpGq,@G P G˚, and that P˚phpG˚qqq “ 1, where hpG˚q is a finite subset of Θ. Also,
conclude from the definition of G˚ and Equation (A3) that

ż

gidP˚ “
ż

gidP ą
εi
2

(A4)

Conclude from Equations (A2) and (A4) that
ż

fidP˚ ą 0, i “ 1, . . . , m

Lemma A3. Let, for i P Θ, tiu P σpΘq and f1, . . . , fm be σpΘq{R-measurable bounded functions. If there
exists a probability P on σpΘq such that P has a finite support and, for all 1 ď i ď m,

ş

fidP ą 0, then there
exists a probability P˚ with a support of size smaller or equal than m such that, for all 1 ď i ď m,

ş

fidP˚ ą 0.

Proof. Let εi ą 0 be such that
ż

fidP ě εi

Let ΘP denote the support of P. Let θ1, . . . , θ|ΘP|
be an ordering of the elements of ΘP. Let F

be a mˆ |ΘP| matrix such that Fi,j “ fipθjq. Let p P R|ΘP| be such that pj “ Pptθjuq, j “ 1, . . . , |ΘP|.
Observe that

Fp ě ε; p ě 0

Therefore, the set C “ tp˚ P R|ΘP| : p ě 0, Fp ě εu is a non-empty polyhedron. Conclude that

there exists a vertex p˚ P C such that |ti : p˚i “ 0u| ě |ΘP| ´m. Define P˚ptθiuq “
p˚i
}p˚}1

.

Theorem A1. Let, for i P Θ, tiu P σpΘq and f1, . . . , fm be σpΘq{R-measurable bounded functions. There exists
a probability P on σpΘq such that, for all 1 ď i ď m,

ş

fidP ą 0, if and only if there exists a probability P˚ with
a support of size smaller or equal to m such that, for all 1 ď i ď m,

ş

fidP˚ ą 0.

Proof. Follows directly from Lemmas A2 and A3.

Lemma A4. Let pLAqAPσpΘq have proper losses. For every x P X ,

• If ErLAp1, θq|xs ă ErLAp
1
2 , θq|xs, then ErLAp1, θq|xs ă ErLAp0, θq|xs.

• If ErLAp0, θq|xs ă ErLAp
1
2 , θq|xs, then ErLAp0, θq|xs ă ErLAp1, θq|xs.

Proof of Lemma A4. The proof follows directly from the monotonicity of conditional expectation.

Proof of Lemma 1. Let A Ă B, θ1 P A, θ2 P Bc and pi, jq P D2
ą. Since pLAqAPσpΘq has proper and

monotonic relative losses,

rpi,jqB pθ1q ě rpi,jqA pθ1q ą 0

rpi,jqA pθ2q ď rpi,jqB pθ2q ă 0

Conclude that pLAqAPσpΘq has balanced relative losses.
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Lemma A5. Let pLAqAPσpΘq have proper losses, LA be bounded for every A P σpΘq and Lxpθq ą 0 for every
θ P Θ and x P X . There exists a prior for θ such that, for some A Ă B and pi, jq P Dą and some x P X ,
ErLBpi, θq|xs ă ErLBpj, θq|xs and ErLApi, θq|xs ą ErLApj, θq|xs if and only if pLAqAPσpΘq does not have
balanced relative losses.

Proof of Lemma A5. Since Lxpθq ą 0, the space of posteriors is exactly the space of priors over σpΘq [3].
Therefore, there exists a prior such that ErLBpi, θq|xs ă ErLBpj, θq|xs and ErLApi, θq|xs ą ErLApj, θq|xs if
and only if there exists P such that

ż

´rpi,jqB dP ą 0 and
ż

rpi,jqA dP ą 0

It follows from Theorem A1 that there exists such a P if and only if there exists θ1, θ2 P Θ and
p P r0, 1s such that

#

p ¨ rpi,jqB pθ1q ` p1´ pq ¨ rpi,jqB pθ2q ă 0

p ¨ rpi,jqA pθ1q ` p1´ pq ¨ rpi,jqA pθ2q ą 0

Since pLAqAPσpΘq has proper losses, the above condition is satisfied if and only if p P p0, 1q, that is,
if and only if pLAqAPσpΘq doesn’t have balanced relative losses.

Proof of Theorem 4. Assume that pLAqAPσpΘq has balanced relative losses. Let Pθ be an arbitrary prior
and A, B be arbitrary sets such that A Ă B. It follows from Lemma A5 that, for every pi, jq P D2

ą,
it cannot be the case that ErLBpi, θq|xs ă ErLBpj, θq|xs and ErLApi, θq|xs ą ErLApj, θq|xs. Conclude from
Lemma A4 that there exists a monotonic Bayesian ATS.

Assume that pLAqAPσpΘq does not have balanced relative losses. It follows from Lemma A5 that
there exists a prior Pθ , A Ă B and pi, jq P D2

ą and x P χ such that ErLBpi, θq|xs ă ErLBpj, θq|xs and
ErLApi, θq|xs ą ErLApj, θq|xs. Conclude from Lemma A4 that, for every Bayesian ATS, LPθ pAqpxq ď
j ă i ď LPθ pBqpxq. Therefore there exists no monotonic Bayesian ATS against Pθ .

Proof of Theorem 5. The proof follows directly from Theorem A1 and Lemma A4.

Proof of Corollary 1. Assume that pLAqAPσpΘq doesn’t satisfy Definition 19. Therefore, there exist
A, B P σpΘq, θ1 P AY B and θ2 P pAY Bqc such that

$

’

’

’

’

&

’

’

’

’

%

r
p1, 1

2 q
A pθ1q

r
p1, 1

2 q
A pθ2q

ą
r
p 1

2 ,0q
AYB pθ1q

r
p 1

2 ,0q
AYB pθ2q

r
p1, 1

2 q
B pθ1q

r
p1, 1

2 q
B pθ2q

ą
r
p 1

2 ,0q
AYB pθ1q

r
p 1

2 ,0q
AYB pθ2q

Since pLAqAPσpΘq has proper losses, there exist q1, q2 P p0, 1q such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

q1 ¨ r
p1, 1

2q

A pθ1q` p1´ q1q ¨ r
p1, 1

2q

A pθ2q ă 0

q1 ¨ r
p 1

2 ,0q
AYBpθ1q` p1´ q1q ¨ r

p 1
2 ,0q

AYBpθ2q ą 0

q2 ¨ r
p1, 1

2q

B pθ1q` p1´ q2q ¨ r
p1, 1

2q

B pθ2q ă 0

q2 ¨ r
p 1

2 ,0q
AYBpθ1q` p1´ q2q ¨ r

p 1
2 ,0q

AYBpθ2q ą 0

(A5)

Let p1 “ minpq1, q2q, p2 “ 1´ p1, p3 “ 0 and θ3 P Θ. Since pLAqAPσpΘq has proper losses, it follows
directly from Equation (A5) that
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$

’

’

’

&

’

’

’

%

p1 ¨ r
p1, 1

2q

A pθ1q` p2 ¨ r
p1, 1

2q

A pθ2q` p3 ¨ r
p1, 1

2q

A pθ3q ă 0

p1 ¨ r
p1, 1

2q

B pθ1q` p2 ¨ r
p1, 1

2q

B pθ2q` p3 ¨ r
p1, 1

2q

B pθ3q ă 0

p1 ¨ r
p 1

2 ,0q
AYBpθ1q` p2 ¨ r

p 1
2 ,0q

AYBpθ2q` p3 ¨ r
p 1

2 ,0q
AYBpθ3q ą 0

(A6)

Equation (A6) shows that pLAqAPσpΘq is not compatible with finite union consonance.
Therefore, since pLAqAPσpΘq has proper losses, it follows from Theorem 5 that there exists a prior Pθ,
such that, against Pθ, no Bayesian ATS is consonant with pairwise union.

Proof of Theorem 6. The proof follows directly from Theorem A1 and Lemma A4.

Proof of Corollary 2. The proof follows the same steps as in Corollary 1.

Proof of Theorem 7. It follows from Theorem A1 and pLAqAPσpΘq being proper that pLAqAPσpΘq has
invertible relative losses (Definition 22) if and only if there exists no A P σpΘq, pi, jq P Dą, θ1 P A, θ2 P Ac

and p P r0, 1s such that

#

p ¨ rpi,jqA pθ1q` p1´ pqrpi,jqA pθ2q ą 0

p ¨ rpi,jqAc pθ1q` p1´ pqrpi,jqAc pθ2q ą 0
or

#

p ¨ rpi,jqA pθ1q` p1´ pqrpi,jqA pθ2q ă 0

p ¨ rpi,jqAc pθ1q` p1´ pqrpi,jqAc pθ2q ă 0
(A7)

Furthermore, Equation (A7) is equivalent to there existing no k ą 0 such that

$

’

’

&

’

’

%

k ą ´
rpi,jqA pθ2q

rpi,jqA pθ1q

k´1 ă ´
rpi,jqAc pθ1q

rpi,jqAc pθ2q

or

$

’

’

&

’

’

%

k ă ´
rpi,jqA pθ2q

rpi,jqA pθ1q

k´1 ą ´
rpi,jqAc pθ1q

rpi,jqAc pθ2q

Conclude that pLAqAPσpΘq is compatible with invertibility if and only if, for every for every
pi, jq P D2

ą, A P σpΘq, θ1 P A and θ2 P Ac,

rpi,jqA pθ2q

rpi,jqA pθ1q
“

rpi,jqAc pθ1q

rpi,jqAc pθ2q
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