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INTRODUCTION 

An important problem in statistics inference consists of deciding which of m alternative 
models, /^(x, v/j;), more adequately fits a given dataset. When the candidate models fk 
have distinct (unrelated) functional forms, it is usual to call them "separate" models 
(or hypotheses). Many discriminate models have been developed, which counterpoise a 
(null) model /i(x, \yi) against one alternative model /2(x, v/2), providing a measure of 
evidence in data favoring model 1 over model 2 [1,18]. However, these methods are not 
capable of give a straight answer when neither candidate model individually describes 
well the data. Non-parametric tests (e.g. Goodness-of-fit and Kolmogorov-Smimov), on 
the other hand, have a comparatively slow convergence rate. 

In this article we analyze this problem in the context of mixture models, see [14]. The 
basic distribution of this statistical model is a weighted sum of two or more candidate 
pdf's. Deciding if the data comes from a specific distribution is to test if the other distri
butions weights equal 0. Under this formulation, if neither model describes adequately 
the data, the test is capable of give a direct answer - a high evidence against all candidate 
models. As a numerical example we use a classical problem in reliability analysis, the 
Gompertz vs. WeibuU life span, see [11,12]. 

The Fully Bayesian Significance Test (FBST) is presented by Pereira and Stem [19] 
as a coherent Bayesian significance test. The FBST is intuitive and has a geometric 
characterization. In this article the parameter space, 0, is a subset of /?", and the 
hypothesis is defined as a further restricted subset defined by vector valued inequality 
and equality constraints: H : 9 e @H where @H = {9 € @\g{9) <0Ah{9) = 0 } . 
For simplicity, we often use H for @H- We are interested in precise hypotheses, with 
dim(/f) < dim(0) . / ( 0 ) is the posterior probabihty density function. 

The computation of the evidence measure used on the FBST is performed in two 
steps: The optimization step consists of finding /* and / , the constrained (over H) and 
unconstrained maxima of the posterior. The integration step consists of integrating the 
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posterior density over the Tangential Set, T where the posterior is higher than anywhere 
mH, i.e., T = {ee@: / (0 ) > / * } , /* = maxH/(0) = /(0*), / = max0/(0) = / ( 0 ) , 
Ey{H)=Vx{deT\x)=kf{0)de. _ 

Ev(/f) is the evidence against H, and Ev(/f) = 1 — Ev(/f) is the evidence supporting 
(or in favor of) H. Intuitively, if Ev(/f) is "large", T is "heavy", and the hypothesis set 
is in a region of "low" posterior density, meaning a "strong" evidence against H. 

Let us consider the cumulative distribution of the evidence value against the hypoth
esis, V{z) = Pr(Ev < T), given 0°, the true value of the parameter. Under appropriate 
regularity conditions, for increasing sample size, « ^ 0°, we can state the following: 
- If/f is false, 0° ^ H, then Ev converges (in probability) to one, that is, V{T) -^ 5(1). 
- If/f is true, 0° G H, then V(T) , the confidence level, is approximated by the function 
W{t,h, T) = Chi2 {t - /j,Chi2-i {t,c)), where t = dim(0), h = dim(/f) and Chi2(fe,x) is 
the cumulative chi-square distribution with k degrees of freedom. 

Hence, for large n, to reject H with a level of significance 5, we set T = W (?, /j, 1 — 5), 
i.e. set T such that W(?, /J ,T) = 1 — 5. 

Several FBST apphcations and examples, efficient computational implementation, 
interpretations, and comparisons with other techniques for testing sharp hypotheses, can 
be found in the authors' papers in the reference list. For a FBST review see the on line 
document [21]. 

WEIBULL AND GOMPERTZ DISTRIBUTIONS 

In this paper we analyze the Gompertz vs. Weibull hfe span model selection problem. 
For the importance and interpretation of this problem see [11]. 

The Weibull hazard and probability density functions, for a failure time x > 0, given 
the shape and characteristic life (or scale) parameters, /3 > 0,7 > 0, are: 

hw{x\li,Y) = PxP-'/r^ , /w(x|i3,7) = ( i3x^-V/)exp(-(x/7)^) . 

The Gompertz hazard and probability density functions, for a failure time x > 0, given 
the parameters, a > 1, A > 0, are: 

/jG(x|a,A) = Aa-^, /G(x|a,A) = Aa-^exp(-(a-^- l)A/loga) . 

The Gompertz distribution exhibits a strong nonlinear correlation between the param
eters a and A, see Figure lA. This correlation explains the compensation law of mortal
ity, which states that higher values for the parameter a are compensated by lower values 
of parameter A in different populations of a given species: ln{X) = ln{M) — Ba, where 
B and M are universal species-specific invariants, see [11]. As a result, the Gompertz 
density in its original form is not log-concave. As we shall discuss later, we use adaptive 
samplers for the parameters, which depend on the shape of the density function - prefer
ably log-concave distributions. In order to separate the parameters a and A, diminishing 
this nonlinear dependence and enhancing the shape of density function for sampling, we 
adopt the reparameterization M = 1/ log a and v = log (log a)/A), suggested by Meeker 
and Escobar [17], see Figure IB. 
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The log-likelihoods of Weibull and (reparameterized) Gompertz models and their 
respective gradients (used for maximum likelihood estimation) are: 

LwiliMX) = nlogli-nlilogr+{li + l)'£jlogx-'£.{xj/rf , 

dLw/dl3 = n/l3-nlogr+Y,j^ogxj-Y,j{xj/rflog{xj/r), 

dLw/dr = -nli/r+li/rY,j{xj/rf, 
LQ{U,V\X) = —nlogu — nv + ^.Xj/u + n/exp{v) — ^.exp{xj/u — v), 

dLo/du = —n/u — '^.Xj/u^ + '^.Xj/u^exp(xj/u — v) , 

dLo/dv = —n — n/exp{v)+^.exp{xj/u — v). 

MIXTURES OF SEPARATE MODELS 

Given a dataset X = {xi,X2...x„} and distinct alternative probabihty densities, 
/ i (X| v/i),/2(X I v^i),. ..,/m(X| v̂ m), where \j/k are (vector) parameters, the prob
lem of interest is to measure the evidence in favour of each model for fitting the dataset. 
In this paper, the consider a general model including all candidate distributions, where 
the choice of a specific distribution is a special case. The origin of this model comes in 
the work of Cox [7], who suggested that, in the presence of two alternative models, the 
p.d.f of data could be taken proportional to 

f{x\w, YuWl) - Mx\Wirf2{x\W2r' , W > 0 | Wl = Wi +W2 = 1 , 

Then, deciding if the model 1 is adequate to describe the data is to test the hypothesis 
Hi -.Wl = I against the hypothesis w ^ I. Atkinson [2] developed this idea for some 
distributions of the exponential class, writing the density as 

IMy\¥i)'''f2{y\¥2)''^dy 

In this paper, we consider that the p.d.f. of data is a convex linear combination of the 
fixed candidate densities: denoting 9 = [w,\j/i,...\j/m ym\. 

f{x\e) = Wlfl{x\Wl) + --- + Wmfm{x\Wm) , W>0\wl= 1 . 

The likelihood then is 

Here it is important to remember some key concepts of mixture models. In mixture 
analysis for unsupervised classification, we assume that the data come from one or more 
subpopulations (classes), distributed under distinct densities. The evidence in favor of 
the existence of more than one subpopulation will be higher if some subsets of data are 
more adequately fitted by a particular component of the mixture, where other subsets are 
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better fitted by another components. In order to detect this situation, the mixture model 
must be able to infer the (probability of) data classifications. The real classifications 
are considered non observable and, for this reason, called hidden or latent variables. 
The problem of deciding if one single candidate distribution fits adequately the data 
is analogous to decide the number of components in a traditional mixture model, and 
the behavior of the system will be also similar: if the candidate model does not fit well 
the data, some observed points may be better described by a particular component of 
mixture, where the remaining will be better fitted by other components. 

A sample j of class k = c{j) is distributed with density fk{xj \ \j/k)- The boolean 
classification matrix Z indicates whether or not Xj is of class k, i.e. z'j = I iff c{j) = k. 
Conditioning on the latent variables we can rewrite: 

n^j\^) = i:t,Mxj\94)nz''j\9) = i^ti'^kfkixjin), 
f{x\e) = n;.i/(x,-i0) = u%ii.ti''Mxj\wk) • 

Given the mixture parameters, 9, and the observed data, X, the conditional classifica
tion probabihty matrix, P = f{Z\X, 0), is given by: 

p, ntj\x,,6) ^^_^,|^^ - LT.,Wkf{xj\Yk) • 

We use jk for the number of samples of class k, i.e. jk = L ; 4 ' or y = Zl. 
The density for the "completed" data, X,Z, is: 

nx,Z\9) = U%JYAj)i^j\'^cU))nz'j\9) = Utii^k''I\Mj)^kM^j\'^^^) • 

In the remaining of this section we discuss the FBST formulation for the Weibull 
vs. Gompertz mixture model. The conjugate prior for a multinomial distribution is a 
Dirichlet distribution: 

M{y\n,w) = n\/{yi\...yJ.)wi^K..wJ"' , 

D{w\y) = T{y, + ...+yk)/{ny,)...T{yk))Y\;^,Wk'^-\ 

with w > 0 and wl = 1. Prior information given by y, and observation y, result in the 
posterior parameter y = y + y. Here we take the non-informative prior given by j = 1. 
We also consider a improper uniform prior for (/3,7, M , v). Therefore, the posteriori is 

f{9\X) - f{X\9) = Y{]^^{p)wifw{xj\^,Y)+p)w2fG{xj\a,X)) , 

1 ^ wifw{xj\^,y) v^ = l-v^ 
^' wi/w(x,-|i3,7) + w2/G(x,-|a,A) ' ^^ ^'• 

The hypotheses of interest are /fi : wi = 1 A W2 = 0 and /f2 : wi = 0 A W2 = 1. The 
FBST procedure for testing Hk,k= 1,2 consists of two steps: 
- Estimate the maximum of the log-likelihood L| under Hk, which corresponds to the 
maximum log-likelihood under the corresponding single component distribution. 
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- Estimate the e-value supporting the hypothesis / 4 , that is, the ratio 

fr,f(e\x)de 

Notice that since the likehhood normahzation constant is the same for both numerator 
and denominator, so it is cancelled and can therefore be ignored in the computational 
procedure. For the optimization step, we used the Algencan-Tango solver, which 
source code and detailed description are freely distributed (see internet link at the 
reference), see [4,5]. 

In order to perform the integration over the posterior measure, we used a Gibbs 
sampling Markov Chain Monte Carlo algorithm, MCMC. Given the current vector 
parameter 9\ we compute P. Given P, we draw Z from f{zj \pj), a simple multinomial 
distribution. Given the latent variables, Z, we separate the samples of classes 1 and 2. In 
the WeibuU component, we draw a parameter value [/3'+\ / + ^ ] with density proportional 
to the partial likelihood Ylj\c(j)=ifw{xj \ fi,Y). The same idea is applied to draw the 
Gompertz parameters [a '+ \ A'+^]. Given y = Z\ +>>, we can draw a new weight vector 
[wj+^Wĵ ^] using a Dirichlet distribution P>{w\y\-,y2)- At the end of iteration (/), we 
have a new vector parameter 0'+^ = [wj+^Wj^^/^'+^y+^a'+^A'+^J, and can begin 
iteration (/+1). 

We do not know a direct method to draw the parameters from the WeibuU or Gompertz 
likelihood. For this purpose we used the adaptive sampler HITRO, see [13,20,22]. 
HITRO combines the multivariate Ratio-of-Uniforms method with the Hit-and-Run 
sampler. The Ratio-of-Uniforms transformation maps the region below the p.d.f / , i.e. 
G(/) = {{x,y): 0 < y < /(x)} into the region 

A ( / ) = A , , „ ( / ) = | ( M , v ) : 0 < v < / ( ^ + m ) 

by means of the transformation 

The vector m must be a point near the mode (in our implementation, we set m as the 
mode). The method rehes on the theorem that, if (M,V) is uniformly distributed over 
A(/), then x = u/v'' + m has probability density function f{x)/ J f{z)dz. The Hit-and-
run sampler is used for generating points (M, v) uniformly over A(/). 

NUMERICAL EXPERIMENTS AND FINAL REMARKS 

We run some numerical experiments in order to evaluate the FBST performance on 
our problem of separate models. The experiments were based on the IBGE data bank 
for the mortahty of Brazilian male population in the year of 2005, available on line at 
http://www.ibge.gov.br/home/estatistica/populacao/tabuadevida/2005/default.shtm.We 
used the mortahty rate table from ages 5 to 80, hence avoiding the early infancy or bum-
in period, see [3,17]. 
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The experiments were based on simulated data, drawn from four distributions, the 
parameters of which have always been chosen to provide the best fit to the IBGE data 
bank. The distributions fitted were: (l)-Weibull, (2)-Gompertz, (3)-Ganmia, and (4)-
Beta (rescaled), see Figure 2. Our main interest was to measure the convergence rate 
of correct decisions, concerning the acceptance / rejection of the WeibuU vs. Gompertz 
hypotheses, when using the FEST on the mixture model. Of course, in cases (1) and (2) 
we want to accept the correct hypothesis and reject the false one, whereas in cases (3) 
and (4) we want to reject them both. 

As acceptance / rejection threshold, we adopted the critical level T according to 
criterion presented in section 1, with a significance level of 5%. Since the mixture 
model and the restricted model have 5 and 2 degrees of freedom, respectively, we have 
T = W"^(5,2,0.95) = 0.83. Therefore, we reject H if Ev(/f) > 0.83, or equivalently if 
Ev(/f) < 0.17. Using each of the four fitted distributions we generated 500 samples of 
size n = 30, 50, 75, 100, 150, 200, 300, 400 and 500. 

We have compared the performance of the FBST with the Kolmogorov-Smimov (KS) 
test, [9]. In this test, the goodness of fit measure is taken to be the Kolmogorov distance 
D* = D{Fn,F*) = supx\Fn{x) —F*{x\ 9)\, where F„ denotes the sample (empirical) dis
tribution and F* denotes the theoretical distribution to be tested. Due to difficulty in 
estimate 9 which minimizes D(F„,F*), it is usually adopted the maximum likelihood es
timator for 9. Kolmogorov and Smimov demonstrated in 1930's that, if the null hypothe
sis F{X) =F*{X\ 9), then limn^ooPr{^/nDl <t) = \ - 2 i : ^ i ( - l ) ' - i exp(-2/2;2). The 
distribution at the right side of this equation allows one to compute the significance 
(p-value) of D*. For a meaningful comparison, we also used a 5% significance level. 

The hole batch of 500 simulations for each of the 4 cases and 9 sample sizes, took 
about 2 day of computation on a Intel Pentium server, or about 10 seconds per test. 
Computing time was dominated by Hiiro, a flexible and robust but generic subroutine. 
Hence, its substitution by a tailor made and more efficient sampler could enhance the 
program computational performance. 

Figure 3 summarized the correct decision rates in the numerical simulations. The 
WeibuU distribution can approximate very well a Gamma distribution. This explains 
the relatively slow convergence in the decision to reject the WeibuU hypothesis in the 
simulations from the Gamma. 

As expected, the FBST had a good performance. Moreover its implementation is 
straightforward, following the guidelines presented in [19,21]. It would be interesting 
to replace the Kolmogorov-Smimov benchmark with a parametric alternative, like some 
form of jump MCMC. However, as far as the authors know, none is available at this 
time. The authors intend to collaborate with other research groups in order to develop 
and implement such algorithms. 
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Figure 1: IBGE Brazilian mortality rates and fitted distributions. 
Figure 2A,B: Contour plots for Gompertz density and reparameterization. 

Figure 3: Correct decision rates on numerical simulations. 
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