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Abstract. The Fully Bayesian Significance Test (FBST) is a coherent Bayesian sig-
nificance test for sharp hypotheses. This paper explores the FBST as a model selec-
tion tool for general mixture models, and gives some computational experiments
for Multinomial-Dirichlet-Normal-Wishart models.
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1. FBST and Model Selection

The Fully Bayesian Significance Test (FBST) is presented by Pereira and Stern, [1], as a
coherent Bayesian significance test. The FBST is intuitive and has a geometric character-
ization. In this article the parameter space,Θ, is a subset ofRn, and the hypothesis is de-
fined as a further restricted subset defined by vector valued inequality and equality con-
straints:H : θ ∈ ΘH whereΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}. For simplicity, we
often useH for ΘH . We are interested in precise hypotheses, withdim(Θ0) < dim(Θ) .
f(θ) is the posterior probability density function.

The computation of the evidence measure used on the FBST is performed in two
steps: The optimization step consists of findingf∗, the maximum (supremum) of the
posterior under the null hypothesis. The integration step consists of integrating the pos-
terior density over the Tangential Set,T where the posterior is higher than anywhere in
the hypothesis, i.e.,

Ev(H) = Pr(θ ∈ T |x) =
∫

T

f(θ)dθ , where

T = {θ ∈ Θ : f(θ) > f∗} and f∗ = supH f(θ)

Ev(H) is the evidence againstH, andEv(H) = 1−Ev(H) is the evidence support-
ing (or in favour of)H. Intuitively, if Ev(H) is “large”,T is “heavy”, and the hypothesis
set is in a region of “low” posterior density, meaning a “strong” evidence againstH.

Several FBST applications and examples, efficient computational implementation,
interpretations, and comparisons with other techniques for testing sharp hypotheses, can
be found in the authors’ papers in the reference list.

2. Dirichlet-Normal-Wishart Mixtures

In a d-dimensional multivariate finite mixture model withm components (or classes),
and sample sizen, any given samplexj is of classk with probabilitywk; the weights,



wk, give the probability that a new observation is of classk. A samplej of classk = c(j)
is distributed with densityf(xj |ψk).

This paragraph defines some general matrix notation. Letr:s:t indicate either the
vector[r, r + s, r + 2s, . . . t] or the corresponding index range fromr to t with steps;
r:t is a short hand forr:1:t. A matrix array has a superscript index, likeS1 . . . Sm. So
Skh,i is theh-row, i-column element of matrixSk. We may write a rectangular matrix,X,
with the row (or shorter range) index subscript, and the column (or longer range) index
superscript. Soxi, xj , andxji are rowi, columnj, and element(i, j) of matrixX. 0 and
1 are matrices of zeros and ones which dimensions are given by the context.V > 0 is a
positive definite matrix. In this paper, leth, i be indices in the range1:d, k in 1:m, andj
in 1:n.

The classificationszjk are boolean variables indicating whether or notxj is of class
k, i.e. zjk = 1 iff c(j) = k. Z is not observed, being therefore named latent variable or
missing data. Conditioning on the missing data, we get:

f(xj | θ) =
∑m

k=1
f(xj | θ, zjk)f(zjk | θ) =

∑m

k=1
wkf(xj |ψk)

f(X | θ) =
∏n

j=1
f(xj | θ) =

∏n

j=1

∑m

k=1
wkf(xj |ψk)

Given the mixture parameters,θ, and the observed data,X, the conditional classifi-
cation probabilities,P = f(Z |X, θ), are:

pjk = f(zjk |xj , θ) =
f(zjk, x

j | θ)
f(xj | θ) =

wkf(xj |ψk)∑m
k=1wkf(xj |ψk)

We useyk for the number of samples of classk, i.e. yk =
∑
j z

j
k, or y = Z1. The

likelihood for the “completed” data,X,Z, is:

f(X,Z | θ) =
∏n

j=1
f(xj |ψc(j))f(zjk | θ) =

∏m

k=1

(
wk

yk
∏

j | c(j)=k
f(xj |ψk)

)

We will see in the following sections that considering the missing dataZ, and the
conditional classification probabilitiesP , is the key for successfully solving the numer-
ical integration and optimization steps of the FBST. In this article we will focus on
Gaussian finite mixture models, wheref(xj |ψk) = N(xj | bk, Rk), a normal density
with meanbk and variance matrixV k, or precisionRk = (V k)−1. Next we specialize
the theory of general mixture models to the Dirichlet-Normal-Wishart case.

Consider the random matrixXj
i , i in 1:d, j in 1:n, n > d, where each column

contains a sample element from ad-multivariate normal distribution with parametersb
(mean) andV (covariance), orR = V −1 (precision). Letu andS denote the statistics:

u = (1/n)
∑n

j=1
xj = (1/n)X1

S =
∑n

j=1
(xj − b)⊗ (xj − b)′ = (X − b)(X − b)′

The random vectoru has normal distribution with meanb and precisionnR. The random
matrixS has Wishart distribution withn degrees of freedom and precision matrixR. The
Normal, Wishart and Normal-Wishart pdfs have expressions:



N(u |n, b,R) = ( n2π )d/2|R|1/2 exp (−(n/2)(u− b)′R(u− b) )

W (S | e,R) = c−1 |S|(e−d−1)/2 exp (−(1/2)tr(S R) )

with normalization constantc = |R|−e/2 2ed/2 πd(d−1)/4
∏d
i=1 Γ((e− i+ 1)/2) .

Now consider the matrixX as above, with unknown meanb and unknown precision
matrixR, and the statistic

S =
∑n

j=1
(xj − u)⊗ (xj − u)′ = (X − u)(X − u)′

The conjugate family of priors for multivariate normal distributions is the Normal-
Wishart, see [2]. For the precision matrixR, take as prior the wishart distribution with
ė > d− 1 degrees of freedom and precision matrixṠ and, givenR, take as prior forb a
multivariate normal with meaṅu and precisioṅnR, i.e. let us take the Normal-Wishart
prior NW (b,R | ṅ, ė, u̇, Ṡ). Then, the posterior distribution forR is a Wishart distrib-
ution with ë degrees of freedom and precision̈S, and the posterior forb, givenR, is
k-Normal with mean̈u and precision̈nR, i.e., we have the Normal-Wishart posterior:

NW (b, R | n̈, ë, ü, S̈) = W (R | ë, S̈) N(b | n̈, ü, R)

n̈ = ṅ+ n , ë = ė+ n , ü = (nu+ ṅu̇)/n̈

S̈ = S + Ṡ + (nṅ/n̈)(u− u̇)⊗ (u− u̇)′

All covariance and precision matrices are supposed to be positive definite, and proper
priors haveė ≥ d, and ṅ ≥ 1. Non-informative Normal-Wishart improper priors are
given byṅ = 0, u̇ = 0, ė = 0, Ṡ = 0, i.e. we take a Wishart with0 degrees of freedom
as prior forR, and a constant prior forb, see [2]. Then, the posterior forR is a Wishart
with n degrees of freedom and precisionS, and the posterior forb, givenR, isd-Normal
with meanu and precisionnR.

The conjugate prior for a multinomial distribution is a Dirichlet distribution:

M(y |n,w) =
(
n!
/
y1! . . . ym!

)
w1

y1 . . . wm
ym

D(w | y) =
(
Γ(y1 + . . .+ yk)

/
Γ(y1) . . .Γ(yk)

) ∏m

k=1
wk

yk−1

with w > 0 andw1 = 1. Prior information given bẏy, and observationy, result in the
posterior parameter̈y = ẏ + y. A non-informative prior is given bẏy = 1.

Finally, we can write the posterior and completed posterior for the model as:

f(θ |X, θ̇) = f(X | θ)f(θ | θ̇)

f(X | θ) =
∏n

j=1

∑m

k=1
pjkwkN(xj | bk, Rk)

f(θ | θ̇) = D(w | ẏ)
∏m

k=1
NW (bk, Rk | ṅk, ėk, u̇k, Ṡk)

pjk = wkN(xj | bk, Rk)
/∑m

k=1
wkN(xj | bk, Rk)

f(θ|X,Z, θ̇) = f(θ|X,Z)f(θ|θ̇) = D(w|ÿ)
∏m

k=1
NW (bk, Rk | n̈k, ëk, ük, S̈k)



y = Z1 , ÿ = ẏ + y , n̈ = ṅ+ y , ë = ė+ y

uk = (1/yk)
∑n

j=1
zjkx

j , Sk =
∑n

j=1
zjk(xj − uk)⊗ (xj − uk)′

ük = (1/ÿk)(ṅku̇k + yku
k)

S̈k = Sk + Ṡk + (ṅkyk
/
n̈k)(uk − u̇k)⊗ (uk − u̇k)′

3. Gibbs Sampling, Integration and Optimization

In order to integrate a function over the posterior measure, we use an ergodic Markov
Chain. The form of the Chain below is known as Gibbs sampling, and its use for numer-
ical integration is known as Markov Chain Monte Carlo, or MCMC.

Givenθ, we can computeP . GivenP , f(zj | pj) is a simple multinomial distribution.
Given the latent variables,Z, we have simple conditional posterior density expressions
for the mixture parameters:

f(w |Z, ẏ) = D(w | ÿ) , f(Rk |X,Z, ėk, Ṡk) = W (R | ëk, S̈k)

f(bk |X,Z,Rk, ṅk, u̇k) = N(b | n̈k, ük, Rk)

Gibbs sampling is nothing but the MCMC generated by cyclically updating variables
Z, θ, andP , by drawingθ andZ from the above distributions, see [3,4]. A multinomial
variate can be drawn using a uniform generator. A Dirichlet variatew can be drawn
using a gamma generator with shape and scale parametersα andβ, see [5]. Johnson [6]
describes a simple procedure to generate the Cholesky factor of a Wishart variateW =
U ′U with n degrees of freedom, from the Cholesky factorization of the covarianceV =
R−1 = C ′C , and a chi-square generator: a)gk = G(yk, 1) ; b)wk = gk /

∑m
k=1 gk ;

c) for i < j , Bi,j = N(0, 1) ; d) Bi,i =
√
χ2(n− i+ 1) ; and e)U = BC . All

subsequent matrix computations proceed directly from the Cholesky factors, [7].
Given a mixture model, we obtain an equivalent model renumbering the compo-

nents1:m by a permutationσ([1:m]). This symmetry must be broken in order to have
an identifiable model, see [8]. Let us assume there is an order criterion that can be used
when numbering the components. If the components are not in the correct order, Label
Switching is the operation of finding permutationσ([1:m]) and renumbering the compo-
nents, so that the order criterion is satisfied. If we want to look consistently at the classi-
fications produced during a MCMC run, we must enforce a label switching to break all
non-identifiability symmetries. For example, in the Dirichlet-Normal-Mixture model, we
could choose to order the components (switch labels) according to the the rank given by:
1) A given linear combination of the vector means,c′ ∗ bk; 2) The variance determinant
|V k|. The choice of a good label switching criterion should consider not only the model
structure and the data, but also the semantics and interpretation of the model.

The semantics and interpretation of the model may also dictate that some states, like
certain configurations of the latent variablesZ, are either meaningless or invalid, and
shall not be considered as possible solutions. The MCMC can be adapted to deal with
forbidden states by implementing rejection rules, that prevent the chain from entering the
forbidden regions of the complete and/or incomplete state space, see [9,10].



The EM algorithm optimizes the log-posterior functionfl(X | θ)+fl(θ | θ̇), see [11,
12,13]. The EM is derived from the conditional log-likelihood, and the Jensen inequality:
If w, y > 0, w′1 = 1 then logw′y ≥ w′ log y. Let θ and θ̃ be our current and next
estimate of the MAP (Maximum a Posteriori), andpjk = f(zjk |xj , θ) the conditional
classification probabilities. At each iteration, the log-posterior improvement is:

δ(θ̃, θ |X, θ̇) = fl(θ̃ |X, θ̇)− fl(θ |X, θ̇) = δ(θ̃, θ |X) + δ(θ̃, θ | θ̇)

δ(θ̃, θ | θ̇) = fl(θ̃ | θ̇)− fl(θ | θ̇)

δ(θ̃, θ |X) = fl(X | θ̃)− fl(X | θ) =
∑

j
δ(θ̃, θ |xj)

δ(θ̃, θ |xj) = fl(xj | θ̃)− fl(xj | θ) = log
∑

k
w̃kf(xj | ψ̃k) − fl(xj | θ) =

= log
∑

k

pjk
pjk

w̃kf(xj | ψ̃k)
f(xj | θ) ≥ ∆(θ̃, θ |xj) =

∑
k
pjk log

w̃kf(xj | ψ̃k)
pjkf(xj | θ)

Hence,∆(θ̃, θ |X, θ̇) = ∆(θ̃, θ |X) + δ(θ̃, θ | θ̇), is a lower bound toδ(θ̃, θ |X, θ̇).
Also ∆(θ, θ |X, θ̇) = δ(θ, θ |X, θ̇) = 0. So, under mild differentiability conditions, both
surfaces are tangent, assuring convergence of EM to the nearest local maximum. But
maximizing∆(θ̃, θ |X, θ̇) over θ̃ is the same as maximizing

Q(θ̃, θ) =
∑

k,j
pjk log

(
w̃kf(xj | ψ̃k)

)
+ fl(θ̃ | θ̇)

and each iteration of the EM algorithm breaks down in two steps:
E-step: ComputeP = E(Z |X, θ) .
M-step: OptimizeQ(θ̃, θ) , givenP .

For the Gaussian mixture model, with a Dirichlet-Normal-Wishart prior,

Q(θ̃, θ) =
∑m

k=1

∑n

j=1
pjk
(
log w̃k + logN(xj | b̃k, R̃k)

)
+ fl(θ̃ | θ̇)

fl(θ̃ | θ̇) = logD(w̃ | ẏ) +
∑m

k=1
logNW (b̃k, R̃k | ṅk, ėk, u̇k, Ṡk)

Lagrange optimality conditions give a simple analytical solutions for the M-step:

y = P1 , w̃k = (yk + ẏk − 1)
/(

n−m+
∑m

k=1
ẏk

)

uk = 1
yk

∑n

j=1
pjkx

j , Sk =
∑n

j=1
pjk(xj − b̃k)⊗ (xj − b̃k)′

b̃k =
ṅku̇

k + yku
k

ṅk + yk
, Ṽ k =

Sk + ṅk(b̃k − u̇k)⊗ (b̃k − u̇k)′ + Ṡk

yk + ėk − d
In more general (non-Gaussian) mixture models, if an analytical solution for the M-step
is not available, a robust local optimization algorithm can be used, for example [14].

The EM is a local optimizer, but the MCMC provides plenty of starting points, so we
have the basic elements for a global optimizer. To avoid using many starting points going
to a same local maximum, we can filter the (ranked by the posteriori) top portion of the
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Figure 1. Iris virginica data and models with one (left) and two (right) components

MCMC output using a clustering algorithm, and select a starting point from each cluster.
For better efficiency, or more complex problems, the Stochastic EM algorithm can be
used to provide starting points near each important local maximum, see [15,16,17].

4. Experimental Tests and Final Remarks

Our test case is theIris virginica data set, with sepal and petal length of 50 specimens
(1 discarded outlier), where the botanical problem consists of determining whether or
not there are two distinct subspecies in the population, [18,19]. Here, the dataX are
assumed to follow a mixture of bivariate normal distributions with unknown parameters,
including the number of components. Figure 1 presents the dataset and posterior density
level curves for the parameters,θ∗ andθ̂, optimized for the 1 and 2 component models.

In the FBST formulation of the problem, the 2 components is the base model, and
the hypothesis to be tested is the constraint of having only 1 component. The FBST
selects the 2 component model, rejectingH, if the evidence against the hypothesis is
above a given threshold, Ev(H) > τ , and selects the 1 component model, acceptingH,
otherwise. The thresholdτ is chosen by empirical power analysis, see [21,22,23]. Let
θ∗ andθ̂ represent the constrained and unconstrained (1 and 2 components) maximum a
posteriori (MAP) parameters optimized to the Iris dataset. Generate two collections oft

simulated datasets of sizen, the first collection atθ∗, and the second at̂θ. α(τ) andβ(τ)
are the empirical type 1 and type 2 statistical errors, i.e., the rejection rate in the first
collection and the acceptance rate in the second collection. A small,t = 500, calibration
run sets the thresholdτ so to minimize the total error,(α(τ) + β(τ))/2. Other methods
like sensitivity analysis, see [24,25,26], and loss functions, see [27], could also be used.

When implementing the FBST one has to be careful with trapping states on the
MCMC. These typically are states where one component has a small number of sample
points, that become (nearly) collinear, resulting in a singular posterior. This problem is
particularly serious with the Iris dataset because of the small precision, only 2 significant
digits, of the measurements. A standard way to avoid this inconvenience is to use flat or
minimally informative priors, instead of non-informative priors, see [20]. We used as flat
prior parameters:̇y = 1, ṅ = 1, u̇ = u, ė = 3, Ṡ = (1/n)S. Robert [20] uses, with
similar effects,ė = 6, Ṡ = (1.5/n)S.
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Figure 2. FBST(O), AIC(X), AIC3(+) and BIC(*): Type 1, 2 and total error rates for different sample sizes.

Biernacki and Govaert [28] studied similar mixture problems and compared several
selection criteria, pointing as the best overall performers: AIC - Akaike Information Cri-
terion, AIC3 - Bozdogan’s modified AIC, and BIC - Schwartz’ Bayesian Information
Criterion. These are regularization criteria, weighting the model fit against the number
of parameters, see [29]. Ifλ is the model log-likelihood,κ its number of parameters, and
n the sample size, then,

AIC = −2λ+ 2κ , AIC3 = −2λ+ 3κ and BIC = −2λ+ κ log(n) .

Figure 2 showsα, β, and the total error(α + β)/2. The FBST outperforms all the
regularization criteria. For small samples, BIC is very biased, always selecting the 1
component model. AIC is the second best criterion, caching up with the FBST for sample
sizes larger thann = 150.

Finally, let us point out a related topic for research: The problem of discriminating
between models consists of determining which ofm alternative models,fk(x, ψk), more
adequately fits or describes a given dataset. In general the parametersψk have distinct
dimensions, and the modelsfk have distinct functional forms. In this case it is usual to
call them “separate” models (or hypotheses). Atkinson [30], although in a very different
theoretical framework, was the first to analyse this problem using a mixture formulation,

f(x | θ) =
∑m

k=1
wkfk(x, ψk) .

The theory for mixture models presented here can be adapted to analyse the problem of
discriminating between separate hypotheses. This is the subject of the authors’ forthcom-
ing articles with Carlos Alberto de Bragança Pereira and Basílio de Bragança Pereira.
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