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Abstract

A new Evidence Test is applied to the problem of testing whether two Poisson random variables are
dependent. The dependence structure is that of Holgate’s bivariate distribution. These bivariate distribution
depends on three parameters, 0¡�1; �2 ¡∞, and 06 �36min(�1; �2).

The Evidence Test was originally developed as a Bayesian test, but in the present paper it is compared
to the best known test of the hypothesis of independence in a frequentist framework. It is shown that the
Evidence Test is considerably more powerful when the correlation is not too close to zero, even for small
samples.
c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Multivariate discrete random variables are important in reliability, spatial statistics, applied stochas-
tic processes, and other areas of statistics. A good introduction and motivation for the Holgate and
other discrete bivariate processes can be found in Barlow and Prochan (1981, Chapter 5, Multivariate
distributions for dependent components), and Kocherlakota and Kocherlakota (1992). For testing
whether Poisson random variables are independent, one needs a dependence structure as an
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alternative to the null hypothesis. In the present paper we consider the Holgate bivariate distribution
of W =(X; Y ), see Holgate (1964), Irwin (1963), Karilis and Ntzoufras (1998), McKendrick (1926),
and Teicher (1954). In this bivariate distribution, X and Y have marginal Poisson distributions with
means �1 and �2. Let p(j; �) denote the pdf of a Poisson distribution with mean �. The pdf of the
Holgate bivariate Poisson distribution can be derived by considering independent Poisson random
variables J1, J2, J3 with means, 
1, 
2, 
3. Let X = J1 + J3, Y = J2 + J3 and Z = J3. The marginal
bivariate distribution of W=(X; Y ) is the Holgate distribution with parameters �1=
1+
3, �2=
2+
3,
�3 = 
3; 0¡�1 ¡∞, 0¡�2 ¡∞, 06 �3 ¡min(�1; �2).

Thus, the pdf of the Holgate distribution is

f(x; y; �1; �2; �3) =
min(x;y)∑

l=0

p(x − l; �1 − �3)p(y − l; �2 − �3)p(l; �3): (1.1)

Notice that p(l; 0) = I{l= 0}, where I{ } is the indicator function of the set. Thus, (1.1) yields
immediately that f(x; y; �1; �2; 0) =p(x; �1)p(y; �2). On the other hand, since the marginal pdf’s of
X and Y are p(x; �1) and p(y; �2), respectively, writing (1.1) as

f(x; y; �1; �2; �3) = e−�3p(x; �1 − �3)p(y; �2 − �3)

+ I{min(x; y)¿ 1}e−(�1+�2−�3)
min(x;y)∑

l=0

(�1 − �3)x−l(�2 − �3)y−l�l
3

(x − l)!(y − l)!l!
; (1.2)

we immediately obtain that f(x; y; �)=p(x; �1)p(y; �2) for all x; y∈{0; 1; : : :} only if �3 = 0. Thus,
X and Y are independent if and only if �3 = 0.

The problem studied in the present paper is to test the composite hypothesis H0 : �3 = 0; �1, �2,
arbitrary (positive), against the alternative composite hypothesis, H1 : �3 ¿ 0; �1, �2, arbitrary.
Let � denote the correlation between X and Y . Since �= �3=

√
�1�2, a test of independence of X

and Y is equivalent to a test whether �= 0 versus �¿ 0.
Paul and Ho (1989) compared the power of six alternative tests statistics of H0 against H1. They

established by numerical simulations that a modiLed-F test (MF) based on the sample correlation,
rn, is more powerful than the other tests.

We show that the Evidence Test is considerably more powerful than the MF test of Paul and Ho
in certain parts of the parameter space. The general deLnition of Evidence Against a Hypothesis,
and respective test is given in Section 2. This test is based on the developments of Irony et al.
(2001), Madruga et al. (2001), Pereira and Stern (1999, 2001) and Stern (2001). The Evidence Test
is called in these papers Full Bayesian SigniLcance Test (FBST). We use the acronym FBST to
designate this test.

As will be shown, the determination of the FBST is computationally intensive. In particular, one
has to determine the (1 − �) quantiles of the null distributions of the evidence tests. This problem
and some of its computational aspects are discussed in Section 3. Finally, we present in Section 4
the power of the FBST, computed at the same points of the parameter space, as those in Paul and
Ho (1989). As shown in Tables 2 and 3 of Section 4, if the sample of bivariate observations is of
size 20 or more, the power of the FBST is greater than that of the MF test, whenever the parameter
�3 is not too close to zero. We see that the diNerence in power is more than 0:2 around a correlation
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of �= 0:45 for a sample of size n= 20. Even in small samples, n= 10, the diNerence in power is
considerable if the correlation �¿ 0:45.

2. The evidence test

The FBST was developed to test a precise hypothesis H0 against the negation of H0. The FBST
was originally developed as a Bayesian test, but in the present paper it is compared to the best
known test of the hypothesis of independence in a frequentist framework. A hypothesis is called
precise if the points satisfying H0 belong to a manifold

�0 = {�∈� | h(�) = 0}: (2.1)

The manifold �0 is speciLed by a constraint function, h(�), so that the dimension of �0 is
smaller than that of �. In the present problem of testing independence, �0 = {�∈� | �3 = 0}, is a
two-dimensional manifold corresponding to a precise hypothesis, H0, in the original three-dimensional
parameter space.

Let X1; X2; : : : be i.i.d. random variables (or vectors) having a common density f(X ; �), with
respect to a �-Lnite measure �. Let X1; X2; : : : ; Xn be a random sample, and let L(�;X )= p̃(T (X ); �)
be a version of the likelihood function of � on �. X is the vector (matrix) of i.i.d. random variables
(vectors) X1; X2; : : : ; Xn, and T (X ) is the likelihood statistics. Let p(�) be a prior density of � in �,
with respect to a �-Lnite measure 
. The posterior density of �, given T (X ), is

p(� |T (X )) =
p̃(T (x); �)p(�)∫

� p̃(T (X ); �)p(�) d
(�)
: (2.2)

Let

� ∗ = argmax
�∈�0

p(� |T (X )); (2.3)

p∗ = p(� ∗ |T (X )): (2.4)

The evidence against H0 is deLned as the credibility of the highest probability density set (HPDS)
on which p(� |T (X ))¿p∗. We denote this evidence by Ev(T (X )). In other words, the evidence
against H0 is the posterior probability of the HPDS �∗, where

�∗ = {�∈� |p(� |T (X ))¿p∗}; (2.5)

Ev(T (X )) =
∫
�∈�∗

p(� |T (X )) d
(�): (2.6)

Ev(T (X )) is a measurable function of T (X ) that can be used as a test statistic for H0. Common
Bayesian tests, see Box and Tiao (1973), Good (1983), Lindley (1978), and Zellner (1971), accept
H0 if the HDPS of a given credibility intersects �0. Notice that according to the above deLnition, the
HPDS �∗ is tangential to �0 at � ∗. Thus, a test based on Ev(T (X )) rejects H0 if Ev(T (X )¿� for
some 0¡�¡ 1. We determine � from a frequentist point of view. Thus, for �∈�0, the probability
of type I error is

�(�; �) =
∫

I{Ev(T (X ))¿�}
n∏

i=1

f(Xi; �) d�(Xi): (2.7)
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For a given level of signiLcance, �, �(�; �)6 � if �¿ q�;n(�), where q�;n(�) is the (1−�) quantile
of the distribution of Ev(T (X )) under �. Accordingly, the test is of size � if �= ��, where,

�� = sup
�∈�0

q�;n(�): (2.8)

The power function of this test, for �∈�\�0, is

 n(�) = Pr�{Ev(T (X ))¿��}

=
∫

I{Ev(T (X ))¿��}
n∏

i=1

f(Xi; �) d�(Xi): (2.9)

In order to make the FBST free, as much as possible, of subjective choice of prior distributions,
we shall try to determine p(� |T (X )) as a normalized likelihood function. This is possible if we
have a normalizing constant

c =
∫
�
p̃(T (X ); �) d
(�)¡∞: (2.10)

If we do not have a Lnite normalizing constant, we have to choose a “regulating” prior density
p(�), so that the denominator of (2.2) is Lnite. In many testing problems a uniformly most powerful
test does not exist. If a prudent choice of prior increase the power of the FBST in a certain subset
of the parameter space, so much the better.

3. The evidence test of independence for the Holgate bivariate Poisson

The composite hypothesis H0: �3 = 0; �1; �2¿ 0 is a precise two-dimensional hypothesis in the
three-dimensional parameter space, �. Let Wi=(Xi; Yi); i=1 : : : n be i.i.d. vectors, having a common
joint Holgate pdf, as in Section 1. Let hi=min(Xi; Yi). On the parameter space �, deLne the functions

Li(�;Wi) = f(Wi | �); i = 1 : : : n; (3.1)

where the parameter vector is �= (�1; �2; �3).
The likelihood function, given W = (W1; : : : ; Wn), is

L(�;W ) =
n∏

i=1

Li(�;Wi): (3.2)

A recursive form of the likelihood function, useful for large values of n, can be found in Kocherlakota
and Kocherlakota (1992).

We performed the numerical computation of the evidence by Monte Carlo (MC) simulation, see
Liu (2001), for the estimation of the ratio

Ev(W ) =

∫
�∗ L(�;W ) d�∫
� L(�;W ) d�

: (3.3)

Since the space � is unbounded, we randomly chose the values of � = (�1; �2; �3) according to
an “importance sampling” density g(�), which is positive on �. The evidence function (3.3) is
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equivalent to

Ev(W ) =

∫
� Z∗

g (�;W )g(�) d�∫
� Zg(�;W )g(�) d�

; (3.4)

Zg(�;W ) =
L(�;W )
g(�)

(3.5)

and

Z∗
g (�;W ) = I∗(�;W )Zg(�;W ); (3.6)

I∗(�;W ) = I{L(�;W )¿ l∗}: (3.7)

Thus, a Monte Carlo estimate of (3.4) is

Êvg;m(W ) =

∑m
i=1 Z

∗
g (�i;•;W )∑m

i=1 Zg(�i;•;W )
; (3.8)

where �i;•, i=1 : : : m are i.i.d. and independently chosen in � according to the importance sampling
density g(�). Thus,

Êvg;m(W ) m→∞→ Ev(W ) a:s: [g]: (3.9)

We have found, for the present problem, that a random choice of �1 and �2 from gamma distribu-
tions, which are conjugate to the Poisson distributions, DeGroot (1970), and a random choice of �3
uniformly in (0;min(�1; �2)), yields good results. More deLnitely, let g(• | �; %) denote the gamma
density with shape parameter � and scale parameter %, then we used for the simulation

g(�) = g(�1 | �1; %1)g(�2 | �2; %2)
I{�36min(�1; �2)}

min(�1; �2)
; (3.10)

g(� | �; %) = � �−1e−%�%�=&(�): (3.11)

Furthermore, we use the conjugate posterior values

�1 = n UX ; %1 = n; �2 = n UY ; %2 = n: (3.12)

In order to control the number of points, m, used at each MC simulation, we can use the asymptotic
variance of the MC evidence estimator given by the delta method, Bickel and Doksum (2001).

4. Estimating quantiles under the null hypothesis, and power under the alternative

In Table 1, we present quantile estimates q�;n(�) for � = 0:05, for �3 = 0, �1 = 1 and values of
�2 as in the paper of Paul and Ho (1989). The values in brackets are the attained signiLcance level
of the MF test in Paul and Ho (1989). Notice that the type I error for the MF test is usually larger
than the predicted �= 0:05, so the power tables that follow have a consistent bias favoring the MF
test.
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Table 1
FBST quantiles, q�;n, for � = 0:05. MF-test signiLcance levels
appear in brackets

�1 = 1 �2

n 0.5 1.0 1.5 2.0

10 0.67 0.68 0.68 0.68
(0.05) (0.05) (0.05) (0.05)

20 0.66 0.64 0.66 0.66
(0.06) (0.06) (0.06) (0.06)

50 0.62 0.62 0.62 0.62
(0.06) (0.06) (0.06) (0.05)

Table 2
Power of FBST. MF-test power values appear in brackets

�1 = 1 �3

�2 n 0.10 0.22 0.33 0.40 0.49

0.5 10 0.10 0.23 0.41 0.57 0.80
(0.14) (0.21) (0.28) (0.33) (0.38)

0.5 20 0.14 0.38 0.67 0.86 0.99
(0.17) (0.32) (0.44) (0.52) (0.62)

0.5 50 0.25 0.69 0.96 1.00 1.00
(0.26) (0.51) (0.73) (0.82) (0.90)

The power estimates are given in Tables 2 and 3. For a given �= (�1; �2; �3), with �1 and �2 in
Table 1 and �3 ¿ 0, we had s = 103 simulation runs. At each run we generated three independent
samples of size n from Poissons p(�1 − �3), p(�2 − �3) and p(�3). By adding the Lrst sample to
the third one, and the second to the third, we obtain the X and Y samples. Next, we computed
Êvg;m(W ), initially with m= mmin = 0:5× 103 points.
The proportion of cases, out of s simulation runs in which Êvg;m(W )¿q�;n(�) is the initial

estimated power of the test at �. As in the quantile estimation, a careful estimation-reLnement
procedure is necessary to obtain the desired accuracy in reasonable computation time. As shown in
Tables 2 and 3, when the sample size is not too small or �3 is not too close to zero, the FBST is
considerably more powerful than the MF test.

We see from the tables that the quantile and power values change slowly with the parameter �2,
and smoothly with �3. So it is easy to prepare quantile and power tables for a parameter range
needed at a given application. Simple interpolation techniques can be used to obtain intermediate
values. We also see that the FBST is considerably more eVcient than the MF test when the sample
size is about 20 and � is not too close to zero. Since both tests are consistent, the diNerence in
power diminishes as the sample size n grows. This is shown for the powers when the sample size
is n= 50.
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Table 3
Power of FBST. MF-test power values appear in brackets

�1 = 1 �3

�2 n 0.11 0.22 0.45 0.67

1.0 10 0.09 0.15 0.38 0.73
(0.12) (0.16) (0.26) (0.39)

1.0 20 0.12 0.24 0.65 0.95
(0.13) (0.21) (0.43) (0.61)

1.0 50 0.19 0.45 0.95 1.00
(0.19) (0.35) (0.72) (0.90)

�2 n 0.14 0.27 0.55 0.82

1.5 10 0.09 0.15 0.39 0.76
(0.13) (0.17) (0.27) (0.37)

1.5 20 0.12 0.24 0.65 0.96
(0.13) (0.23) (0.43) (0.61)

1.5 50 0.20 0.45 0.95 1.00
(0.19) (0.37) (0.71) (0.90)

�2 n 0.16 0.31 0.63 0.95

2.0 10 0.09 0.15 0.40 0.79
(0.12) (0.17) (0.27) (0.38)

2.0 20 0.12 0.24 0.65 0.98
(0.12) (0.21) (0.43) (0.61)

2.0 50 0.20 0.46 0.95 1.00
(0.18) (0.36) (0.71) (0.89)

Acknowledgements

The authors are grateful for the support of the Department of Mathematical Sciences at the
State University of New York at Binghamton. This work was funded in part by grant FAPESP
2001-03484-1.

References

Barlow, R.E., Prochan, F., 1981. Statistical Theory of Reliability and Life Testing Probability Models. To Begin With,
Silver Spring.

Bickel, P.J., Doksum, K.A., 2001. Mathematical Statistics. Prentice-Hall, London.
Box, G.E.P., Tiao, G.C., 1973. Bayesian Inference in Statistical Analysis. Wiley, New York.
DeGroot, M.H., 1970. Optimal Statistical Decisions. McGraw-Hill, New York.
Good, I.J., 1983. Good Thinking: The Foundations of Probability and its Applications. University of Minnesota Press,

Minneapolis, MN.
Holgate, P., 1964. Estimation for the bivariate Poisson distribution. Biometrika 51, 241–245.
Irony, T.Z., Lauretto, M., Pereira, C.A.B., Stern, J.M., 2001. A Weibull wearout test: full Bayesian approach. In: Hayabawa,

Y., Irony, T., Xie, M. (Eds.), Systems and Bayesian Reliability. World ScientiLc, Singapore, pp. 287–300.



320 J.M. Stern, S. Zacks / Statistics & Probability Letters 60 (2002) 313–320

Irwin, J.O., 1963. The place of mathematics in medical and biological statistics. J. Royal Statist. Soc. Ser. A 126, 1–44.
Karilis, D., Ntzoufras, I., 1998. Statistical modeling for soccer games. Tech. Rep., Dept. Statistics, Athens University of

Economics and Business.
Kocherlakota, S., Kocherlakota, K., 1992. Bivariate Discrete Distributions. Marcel Decker, New York.
Lindley, D.V., 1978. The Bayesian approach. Scand. J. Statist. 5, 1–26.
Liu, J.S., 2001. Monte Carlo Strategies in ScientiLc Computing. Springer, New York.
Madruga, M.R., Esteves, L.G., Wechsler, S., 2001. On the Bayesianity of Pereira–Stern tests. Test 10, 291–299.
McKendrick, A.G., 1926. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 44, 98–130.
Paul, S.R., Ho, N.I., 1989. Estimation in the bivariate Poisson distribution and hypothesis testing concerning independence.

Comm. Statist.—Theory Methods 18, 1123–1133.
Pereira, C.A.B., Stern, J.M., 1999. Evidence and credibility: full Bayesian signiLcance test for precise hypotheses. Entropy

1, 69–80.
Pereira, C.A.B., Stern, J.M., 2001. Model selection: full Bayesian approach. Environmetrics 12 (6), 559–568.
Stern, J.M., 2001. The full Bayesian signiLcance test for the covariance structure problem. ISAS-2001 International

Conference on Systems Analysis and Synthesis, Orlando, FL, Vol. 7, pp. 60–65.
Teicher, H., 1954. On the multivariate Poisson distribution. Skand. Aktuar. 37, 1–9.
Zellner, A., 1971. An Introduction to Bayesian Inference in Econometrics. Wiley, New York.


	Testing the independence of Poisson variates under the Holgate bivariate distribution: the power of a new evidence test
	Introduction
	The evidence test
	The evidence test of independence for the Holgate bivariate Poisson
	Estimating quantiles under the null hypothesis, and power under the alternative
	Acknowledgements
	References


