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Unit Roots: Bayesian Significance Test
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The unit root problem plays a central role in empirical applications in the
time series econometric literature. However, significance tests developed under the
frequentist tradition present various conceptual problems that jeopardize the power
of these tests, especially for small samples. Bayesian alternatives, although having
interesting interpretations and being precisely defined, experience problems due
to the fact that that the hypothesis of interest in this case is sharp or precise.
The Bayesian significance test used in this article, for the unit root hypothesis, is
based solely on the posterior density function, without the need of imposing positive
probabilities to sets of zero Lebesgue measure. Furthermore, it is conducted under
strict observance of the likelihood principle. It was designed mainly for testing sharp
null hypotheses and it is called FBST for Full Bayesian Significance Test.

Keywords Bayesian inference; Hypothesis testing; Time series; Unit roots.

Mathematics Subject Classification Primary 62P20; Secondary 62F03, 62F15.

1. Introduction

Testing precise or sharp hypotheses, particularly in nonenumerable parameter
spaces, has been one of the major difficulties in the field of statistics in either the
frequentist or Bayesian paradigm. We refer to the following as important situations:
(i) the need for nuisance parameter elimination, (Basu, 1977); and (ii) Lindley
paradox, (Lindley, 1957). A hypothesis is called sharp if its dimension is smaller
than the dimension of the whole parameter space.

The Full Bayesian Significance Test, FBST, developed by Pereira and Stern
(1999) was designed mainly to deal properly with sharp hypotheses. For a recent
review, see Pereira et al. (2008). For the absolutely continuous case, the FBST
is solely based on posterior densities without the need of one of the following
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practices: elimination of nuisance parameters or adoption of positive probabilities
in zero Lebesgue measure sets.

Challenged by econometrists, the authors applied the FBST to an important
Time Series Econometric problem: inference on unit roots. The frequentist
alternative tests may have questionable interpretations and other known problems1.
The results obtained by this application of the FBST seem to be quite suitable and
convincing. The FBST is compared with both Bayesian and frequentist alternative
tests.

Section 2 describes briefly the FBST and discusses how to implement it
computationally. Section 3 discusses the Bayesian alternatives already known in the
literature. Section 4 presents numerical examples of the literature and compares the
FBST with its alternatives. Section 5 is a discussion on some deeper issues and fine
details.

2. FBST

The FBST was introduced by Pereira and Stern (1999). It was created mainly to
test sharp hypotheses which is a matter of discussion and controversies. This article
assumes that one accept and is interested in testing sharp hypotheses.

Let us now consider general statistical spaces, where the parameter space is � ⊂
�m and the sample space Xk ⊂ �. A sharp hypothesis H states that � belongs to
a sub-manifold �H of smaller dimension than �. The subset �H has null Lebesgue
measure whenever H is sharp.

In the FBST construction the posterior probability density on the parameter
space is used as an ordering system and all sets of the same nature are dealt with
accordingly in the same way. As a consequence, the sets that define sharp hypotheses
keep having null probabilities. Instead of changing the nature of H by assigning
positive probability to it, we consider the tangential set T of points having posterior
density values higher than any � in �H . We then reject H if the posterior probability
of T is large. We will formalize these ideas in the sequel.

Let us consider a standard parametric statistical model: � ∈ � ⊂ �m is the
parameter, g�·� a probability prior density over �, x is the observation (a scalar or a
vector), and Lx�·� is the likelihood generated by data x. Posterior to the observation
of x, the sole relevant entity for the evaluation of the Bayesian evidence, ev, is the
posterior probability density for � given x, denoted by

gx��� = g�� � x� ∝ g���Lx����

We are of course restricted to the case where the posterior probability
distribution over � is absolutely continuous, that is, gx��� is a density over �. For
simplicity, we may use H for �H in the sequel. Now, let r��� be a reference density
on � such that the function s��� = gx���/r��� is called the “relative surprise”2.

Definition 2.1 (Evidence). Consider a sharp hypothesis H � � ∈ �H and let

s∗ = sup
�∈H

s��� (1)

1See Phillips and Xiao (1998).
2See Good (1983).
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and

T = �� ∈ � � s��� > s∗�� (2)

The Bayesian evidence value against H is defined as the posterior probability of
the tangential set, i.e., ev = Pr�� ∈ T � x� = ∫

T
gx���d�.

Notice that the tangential set T is the highest relative surprise set. It is the set
of points � ∈ � with higher relative surprise s��� than any point in H . Therefore,
the set is “tangential” to H . This approach does not exclude or avoid the model
considered in the hypothesis being tested but just uses the concept of “tangent” to
define an evidential measure favoring the hypothesis.

One must also note that the evidence value supporting H , ev = 1− ev, is
not evidence against A, the alternative hypothesis (which is not sharp anyway).
Equivalently, ev is not evidence in favor of A, although it is against H .

Definition 2.2 (TEST). The FBST (Full Bayesian Significance Test) is the
procedure that rejects H whenever ev = 1− ev is smaller than a critical level, evc.

Being a statistic, ev has a sampling distribution. For well-behaved likelihood
and posterior densities3, Pereira et al. (2008) showed that, asymptotically, the
evidence follows a 	2 distribution with degrees of freedom given by the dimension
of the parameter space. This fact gives a way to define, at least asymptotically, a
critical level to reject the hypothesis being tested.

A major practical issue for the use of the FBST is the determination of the
critical level. Ev being a statistic defined on a zero to one scale does not ease the
matter (the same occurs with p-values). The formal identification of the FBST as a
Bayes test of hypothesis yields critical values derived from loss functions allowing
this identification. In fact, Madruga et al. (2001) showed that there are loss functions
the minimization of which makes ev a Bayes estimator of 
 = I�� ∈ H�. Hence, the
FBST is in fact a Bayes procedure in the formal sense of Wald (1950).

By using a reference density in the definition of the tangential set T , the
FBST formulation above presented is explicit invariant under general coordinate
transformations of the parameter space4. For the FBST application on unit root
tests discussed in the sequel, we will use the (improper) uniform density as reference
density on �. Madruga et al. (2003) remarked that it is possible to generalize the
procedure using other reference densities such as neutral or reference priors if one is
available.

2.1. Numerical Calculus

The evidence calculus supporting H defined in the last section is performed
numerically in two steps. The first one involves the optimization of s��� under H
and, the second one, the integration of the posterior, gx���, over T .

The optimization step consists of finding the parameter space point in H that
maximizes s���. It is, therefore, a maximization under constraint problem:

�∗ = argmax
�∈�H

s���� s∗ = s��∗�

3See (Schervish, 1995, p. 436).
4See the Appendix.
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To solve this problem, we use a numerical optimizer. To calculate the integral,
it is possible to use various numerical techniques. We introduce a method based on
Laplace approximation and Monte Carlo techniques that were able to deal with the
majority of the problems under discussion.

Let � be the parameter vector and x the observations vector as above. The
posterior distribution is given by:

g�� � x� = g���Lx���∫
�
g���Lx���d�

�

To calculate the e-value we need to integrate the posterior over the tangential
set, i.e., T = �� ∈ � � s��� ≥ s∗�:

∫
��∈� � s���≥s∗�

gx���d� =
∫
T
g���Lx���d�∫

�
g���Lx���d�

� (3)

One way to approximate integrals like the denominator above is to use the
Laplace approximation. Consider the integral

I =
∫
�
b���exp�−Nh���d�

in which N is the sample size, � is �k× 1�, � = �k, and −h�·� is a twice
differentiable function with only one maximum in �̂, �h���/����=�̂ = 0, and H��� =
�2h���

����′ is positive definite. Furthermore, b�·� is continuous on the neighborhoods of
�̂ with b��̂� �= 0. Expanding h��� as a second-order Taylor series for �̂ we have an
approximation of exp�−Nh��� proportional to a normal density. By doing the same
with b��� we arrive at the following approximation for the above integral:

Î = �2��k/2b��̂��NH��̂��−1/2exp�−Nh��̂�

since the O�N−1/2� terms from the expansions of b��� and h��� disappear when we
integrate.

Now we use the Tierney and Kadane (1986) method to calculate (3). Let us
consider b��� = 1 and the restriction exp�−Nh��� = g���Lx���. If h��� satisfy the
conditons given above, we have that the value of (3) is approximated by:

= exp�−Nh��̂�
∫
T���

exp
[− N

2 ��− �̂�′H��̂���− �̂�
]
d�

exp�−Nh��̂��2��k/2�NH��̂��−1/2

= �2��−k/2�NH��̂��1/2
∫
T���

exp
[
− N

2
��− �̂�′H��̂���− �̂�

]
d��

The last expression is the integral over the tangential set of the � multivariate
normal density with mean �̂ and variance �NH��̂��−1. Therefore, to evaluate the
integral we can generate a large number of vectors with this distribution and
evaluate the posterior with these vectors. The proportion of them that belongs to T

is the approximate value for (3).
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3. Bayesian Unit Root Tests

Bayesians seem to have started the investigation of unit root problems in the late
1980s. Sims (1988) and Sims and Uhlig (1991), as far as we know, published the first
Bayesian articles to carefully deal with the unit root problem of hypothesis testing.
The frequentist critics of these works received a proper answer in Phillips (1991a,b).
This was the starting point of a fruitful debate that generates a long list of articles
in the literature of Bayesian Time Series.

The present section introduces the main Bayesian procedures that have been
used to test unit roots. The notation is of Bauwens et al. (1999), who also presented
a great summary of Bayesian articles on the subject.

Consider the model:

yt = � + �t + �1− ��yt−1 + �1�yt−1 + · · · + �p−1�yt−p+1 + �t (4)

with �t i.i.d. N�0� �2� for t = 1� � � � � T . This is a complete model tested by the
ADF. Being � = ��� a∗� the parameters vector, in which � = ∑p

i=1 �i and a∗ =
��� �� �1� � � � � �p−1�, and assuming �2 fixed, the prior density of � can be factorized as

p��� = p���p�a∗ � ���

The marginal likelihood for � is:

l�� �D� ∝
∫

l���D�p�a∗ � ��da∗�

where D is the observations vector. This function, associated with a prior for � is the
main ingredient used by standard Bayesian procedures to test the existence of unit
roots. Even though the procedure varies among authors according to some specfic
aspects, mentioned below, basically all of them use Bayes factors and posterior
probabilities.

One issue is about the specification of the null hypothesis: some authors,
starting from Schotman and van Dijk (1991), consider H0 � � = 1 against H1 � � < 1.
This is the way the frequentist school addresses the problem, as do Dickey and
Fuller (1979). The main problem is that no explosive value for � is considered.
The problem is solved by the standard Bayesian approach using the posterior
probabilities ratio:

B01 =
l�� = 1 �D�∫ 1

0 l�� �D�p���d�
�

It is said that one of the advantages of this approach is that the null and
the alternative hypotheses are treated equally weighted: with equal probabilities.
However, the expression above is not defined if p��� is not a proper density since
the Bayes factor denominator is equal to the predictive density, defined just if p���
is a proper density. There are also problems if l�� = 1 �D� is zero or infinite.

Other authors like Phillips (1991a) and Lubrano (1995) considered the problem
as being the test of H0 � � ≥ 1 against H1 � � < 1, considering explicitly explosive
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values for �. The main advantage of this approach is the possibility to calculate
posterior probabilities like

P�� > 1 �D� =
∫ 	

1
p�� �D�d�

defined to whatever prior over �. Some authors, like DeJong and Whiteman (1991),
did not choose � as the parameter of interest. They examine the largest value in
module of the roots of the characteristic equation concerning the autoregressive part
of the model, i.e.,

1−
p∑

i=1

�iL
i = 0�

and verify if it is smaller or bigger than one. Usually, this value is slightly smaller
than �. The authors argue that this small difference can be important. When this
approach is used, unit roots are found less frequently. For an AR(3) model with a
constant and trend, DeJong and Whiteman (1991) derived the posterior density for
the dominant root for the 14 series used by Nelson and Plosser (1982) and concluded
the following: for 11 of them, the dominant root was smaller than one, that is to
say, the series were trend-stationary. These results were based on a flat prior for the
autoregressive parameters and the deterministic trend coefficient.

Another controversy is about the prior over �. Phillips (1991a) argued that the
difference between the results given by the frequentist and Bayesian inferences is due
to the fact that the flat prior proposed by Sims (1988) overweights the stationary
region. Hence, he derived a Jeffreys prior for the AR(1) model: this prior quickly
tends to infinite as � raises and becomes bigger than one. The obtained posterior
produces the same results as Nelson and Plosser (1982). The next section discusses
these results in detail. The critics of Phillips approach5 judged the Jeffreys prior as
unrealistic, from a subjective point of view.

A final controversial point concerns the modeling of the initial observations.
If they are directly included in the likelihood, implicitly, the process is considered
stationary. In fact, when one is sure about it and it is believed that the data
generating process is working for a long period, it is reasonable to assume that
the dynamic model parameters determine the marginal distribution of the initial
observations. In the simplest AR(1) model, this would imply that y1 ∼ N�0� �2/�1−
�2��. In this case, to perform the inference conditional on the first observation would
discard relevant information. On the other hand, in a non stationary model there is
no marginal distribution defined for y1. Then, it is valid to conditionate on initial
oservations. For the models presented here, we always work with the conditional
likelihood – conditional on the initial observations. As argued by Sims (1988),
inferences for stationary models are little affected by considering these conditional
likekelihoods, especially for large samples. He compared these inferences with the
ones based on the exact likelihoods under explicit modeling for intial observations.

5See Bauwens et al. (1992, p. 162) and comments about Phillips (1991a).
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4. Applications

Now we show how to implement the FBST for unit roots. First, we describe the way
the procedure is implemented to test unit roots in a real data set and then perform
simulations to compare the power of the two tests: FBST and ADF.

Consider a time series generated by an AR(p) process with constant and
deterministic trend:

yt = � + �t + �1yt−1 + · · · + �pyt−p + �t� (5)

with and �t ∼ N�0� �2� ∀t = 1� � � � � T . Alternatively, the process can be written as:

yt = � + �t + �0yt−1 + �1�yt−1 + · · · + �p−1�yt−p+1 + �t� (6)

where �yt = yt − yt−1, �0 = �1 + · · · + �p − 1, and �i = −∑p
j=i+1 �j , for i = 1� � � � �

p− 1. So, the series has a unit root if �0 = 0.
Considering � = ��� �� �0� � � � � �p−1� and Yp = �y1� � � � � yp� the first p

observations, we have that the likelihood function is

f��p� � � � � �T � �� �� Yp� = �2��−T/2�−Texp

{
−�1/2�2�

T∑
t=p+1

�2
t

}
� (7)

in which �t = �yt − � − � t − �0yt−1 − �1�yt−1 − · · · − �p−1�yt−p+1.
Assuming a flat prior for ��� log�� we obtain the following non informative

prior for ��� ��:

���� �� ∝ 1/�� (8)

We are aware of the problems surrounding this kind of prior applied to this
problem, as mentioned by Bauwens et al. (1999). However, one of our goals here is
to show how the FBST can be implemented even for an improper and controversial
prior like this one. To write the joint posterior we use the following notation:

Y =


�yp+1

�yp+2
���

�yT



X =


1 1 yp �yp � � � �y2
1 2 yp+1 �yp+1 � � � �y3
� � � � � � � � � � � � � � � � � �
1 T yT−1 �yT−1 � � � �yT−p+1



� =


�
�
�0
���

�p−1


being Y of dimension �T − p× 1�, X, �T − p× p+ 2�, and �, �p+ 2× 1�.
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Using this matrix notation, the sum of squared errors is given by �Y − X��′�Y −
X��. By the fact that the least squares estimator of � is given by �̂ = �X′X�−1X′Y
and the predicted values by Ŷ = X�̂, it is possible to observe that:

�Y − X��′�Y − X�� = �Y − Ŷ �′�Y − Ŷ �+ ��− �̂�′X′X��− �̂�� (9)

Equation (9) is useful to write the joint posterior:

f��� � � Y� Yp� ∝ �−�T+1�exp
{
− 1
2�2

��Y − Ŷ �′�Y − Ŷ �+ ��− �̂�′X′X��− �̂�

}
� (10)

This is the Normal-Gamma density that simplifies the use of the Gibbs sampler.
Using the above posterior and the uniform density as reference density on

the parameter space6, we test for unit roots 14 U.S. macroeconomic time series
first mentioned in Nelson and Plosser (1982). Here, we use the extended series of
Schotman and van Dijk (1991).

The following table lists the FBST e-values and the ADF p-values for the
aforementioned time series. We have used the computer procedure described in
MacKinnon (1994) to find the ADF p-values. In order to obtain comparable results,
we follow the specification given by Bauwens et al. (1999) for all models.

As can be seen from the posterior expression, the conditional posteriors
are ������ Y� Yp� ∝ N��̂� �2V� and ��1/�2��� Y� Yp� ∝ �

(
T−p+3

2 � B
)
, where B = 0�5�Y −

Ŷ �′�Y − Ŷ �+ ��− �̂�′X′X��− �̂� and V = �X′X�−1. For the FBST computations,
various solvers can be used in the optimization step, as those developed by Birgin
et al. (2004), Corana et al. (1987), or Goffe et al. (1994). For the integration step we
used standard Monte Carlo sampling, see Lauretto et al. (2003)7.

Table 1 shows that the nonstationary posterior probabilities are quite distant
from the ADF p-values. These results were highlighted by Sims (1988) and Sims
and Uhlig (1991). Considering the simplest AR(1) model, they argued that, once
classical inference is based on the distribution of �̂ � � = 1, it reaches counterintuitive
conclusions because the referred distribution is skewed. Their argument is as
follows: Bayesian inference uses the distribution which is not skewed.

As said before, Phillips (1991a) claimed that the difference in results between
classical and Bayesian approaches is due to the flat prior that puts much weight
on the stationary region. He proposed the use of Jeffreys priors, which restored
the conclusions drawn by the classical test. Phillips argued that the flat prior was,
actually, informative when used in time series models like those for unit root tests.
Using simulations he shows that:

“ [the use of a] flat prior has a tendency to bias the posterior towards
stationarity. � � � even when [the estimator] is close to unity, there may still be a non
negligible downward bias in the [flat] posterior probabilities”.

Tables 2 and 3 display some maximum likelihood estimators and the respective
standard errors assuming unit roots. Tables 4 and 5 show the maximum likelihood
estimators for the same series for the unrestricted model. Tables 6 and 7 give the
number of series which rejected the unit root hypothesis in 100 generated samples

6Our reference density is, therefore, the improper density, r��� �� ∝ 1.
7In the simulations described below, we combined Monte Carlo sampling with the

Laplace approximation techniques described in Sec. 2 to perform the integration step.
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Table 1
Unit root tests for Nelson and Plosser data

Series Start p Trend ADF p-value P��0 ≥ 0 � Y� e-value

Real GNP 1909 2 yes −3.52 0.044 0.0005 0.040
Nominal GNP 1909 2 yes −2.06 0.559 0.0238 0.523
Real GNP per capita 1909 2 yes −3.59 0.037 0.0004 0.034
Industrial prod. 1860 2 yes −3.62 0.032 0.0003 0.028
Employment 1890 2 yes −3.47 0.048 0.0004 0.043
Unemployment rate 1890 4 no −4.04 0.019 0.0001 0.020
GNP deflator 1889 2 yes −1.62 0.778 0.0584 0.762
Consumer prices 1860 4 yes −1.22 0.902 0.1154 0.983
Nominal wages 1900 2 yes −2.40 0.377 0.0106 0.341
Real wages 1900 2 yes −1.71 0.739 0.0475 0.715
Money stock 1889 2 yes −2.91 0.164 0.0029 0.147
Velocity 1869 2 yes −1.62 0.779 0.0620 0.777
Bond yield 1900 4 no −1.35 0.602 0.0962 0.936
Stock prices 1871 2 yes −2.44 0.357 0.0103 0.349

Table 2
MLE under H0 � �0 = 0

Parameters Real GNP Ind. Prod. GNP def. Wage

� 0.01543 0�049427 0.00187 0.01494
� 0.00011 −0�00014 0.00027 0.00020
�1 0.33146 0�03636 0.44992 0.46687
� 0.05558 0�09682 0.04364 0.05545

assuming that there was (Table 6) or not (Table 7) a unit root. We used three criteria
to reject the hypothesis: the ADF asymptotic p-value for 5% significance, the exact
ADF p-value for 5% significance and the 5% asymptotical, as described in Sec. 2.

It is important to remember that finite sample critical values for unit root tests
depend on the assumption that the error terms are N�0� �2I�. Recall that these
simulated results were generated using this assumption. The asymptotic critical
values are valid much more generally, since they do not require normality or
homoskedasticity. Therefore, for small samples, it is safer to rely on asymptotic
critical values.

Table 3
Standard error of MLE under H0 � �0 = 0

Parameters Real GNP Ind. Prod. GNP def. Wage

� 0.01320 0�01806 0.00902 0.01247
� 0.00028 0�00024 0.00016 0.00024
�1 0.10895 0�08966 0.09163 0.09661
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Table 4
MLE – unrestricted model

Parameters Real GNP Ind. Prod. GNP def. Wage

� 0.81849 0�05221 0.09086 0.39792
� 0.00567 0�00718 0.00112 0.00309
�0 -0.17631 −0�17658 -0.03164 -0.06494
�1 0.41106 0�12432 0.46979 0.50130
� 0.05193 0�09252 0.04329 0.05392

Table 5
Standard error of MLE – unrestricted model

Parameters Real GNP Ind. Prod. GNP def. Wage

� 0.23279 0�01727 0.05667 0.16301
� 0.00163 0�00206 0.00056 0.00125
�0 0.05104 0�04941 0.01990 0.02756
�1 0.10436 0�08915 0.09175 0.09522

Table 6
Simulated series rejecting H0 in 100 generated assuming

H0

Series <ADF5%�	� <ADF5%�ex�� ev < 0�091

Real GNP 4 4 7
Ind. Prod. 7 5 10
GNP def. 6 6 8
Wage 2 2 5

Table 6 shows that the FBST, even using the flat prior, has a power similar to
the ADF test. Hence, the argument used by Phillips to criticize conclusions based
on posterior probabilities, under flat priors, does not hold for the FBST.

We perform more numerical simulations to compare the ADF and the FBST
powers. The exercise was the following. After simulating 1,000 series with the data

Table 7
Simulated series rejecting H0 in 100 generated assuming

the unrestricted model

Series <ADF5%�	� <ADF5%�ex�� ev < 0�091

Real GNP 84 83 94
Ind. Prod. 86 81 95
GNP def. 19 19 25
Wage 22 21 38
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Table 8
Number of times in which H0 � � = 1 was rejected for the

1,000 series generated by (11)

Parameters ADF Ev < 0�144 Ev < 0�145

� = 1 42 50 50
� = 0�99 65 63 63
� = 0�975 83 84 84
� = 0�95 139 132 132

Table 9
Number of times in which H0 � � = 1 was rejected for the

1,000 series generated by (12) – � = 0�5

Parameters ADF Ev < 0�15 Ev < 0�112

� = 1 10 50 30
� = 0�99 33 101 73
� = 0�975 65 188 145
� = 0�95 110 300 229

generating processes:

yt = �yt−1 + �t (11)

yt = � + �yt−1 + �t (12)

yt = � + �t + �yt−1 + �t� (13)

and 50 observations each, we calculate the ADF p-values and the FBST e-values. To
decide in favor or against the hypothesis, we used the ADF 5% significance level for
samples of 50 observations. For the FBST we used one level defined empirically, i.e.,
the e-value for the fifth percentile when the hypothesis is true (second column) and
the asymptotical 5% level described in Sec. 2 (third column). Tables 8–10 summarize
the results.

The ADF and FBST have a similar power for the model without deterministic
terms. For either models, with only constant or with both constant and deterministic

Table 10
Number of times in which H0 � � = 1 was rejected for the

1,000 series generated by (13) – � = 0�5, � = 0�02

Parameters ADF Ev < 0�137 Ev < 0�099

� = 1 22 50 31
� = 0�99 46 221 165
� = 0�975 55 270 196
� = 0�95 55 293 232
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trend, the FBST has a better performance even if we consider the statistic
asymptotic levels.

5. Concluding Remarks

In the past few decades, the econometrics literature presented tests to identify
unit roots. The greatest advances have been made by the frequentist tradition and
just after the 1990’s, the Bayesian approach on this topic advanced and presented
interesting alternatives.

However, Bayes factor tests for unit roots have many difficulties to deal with
time series. To overcome these dificulties, various alternative Bayes factor tests
have been proposed but their performances are still in question8. There have also
been specially designed priors that show better performance. However, the use
of these priors departs from some basic paradigms of Bayesian statistics, such as
the likelihood principle. Moreover, these techniques have to be fine tuned to each
particular problem type or application.

Frequentist tests depend on hypotheses about the models used on the tests
and on the distribution of the error terms to derive the asymptotic results. The
present work shows how to use a genuine Bayesian procedure9, FBST, to test
sharp hypotheses in time series analysis: the unit root sharp hypothesis. The
FBST has showed its versatility: (a) the e-value derivation and implementation
are straightforward from its general definition; (b) it uses absolutely no artificial
restrictions, like a special prior, or a probability measure on the hypothesis set,
induced by some specific parameterization; (c) it is in strict compliance with the
likelihood principle; (d) it can conduct the test with any prior distribution; (e) it does
not need closed conjectures concerning error distributions, even for small samples;
(f) it is an exact procedure, since it does not use asymptotic restrictrions; and (g) it
is invariant with respect to the null hypothesis parameterization and with respect to
the parameter space parameterization.10

Although the authors are aware of the problems involving the prior chosen for
this work, our goal was to show the possibility to implement the test even with
this prior, because its use causes problems to other Bayesian procedures like the
Bayes factor tests. To proceed with this research agenda, it would be interesting to
do more studies with the FBST applied to unit root testing with semi-parametric
distributions. Another suggestion is to broaden the group of models used for
unit root testing. For instance, we could include moving average terms and work
with ARMA models. For the FBST, this extension is not as difficult as it is for
the frequentists. The frequentist tradition should derive another statistic with its
respective distribution and critical values.

Appendix

The definition of the evidence against some sharp hypothesis H given in Sec. 2
is invariant with respect to a proper reparameterization. For instance, let � =

��� where 
�·� is a measurable and integrable function. For purpose of

8See Bauwens et al. (1999).
9See Pereira et al. (2008).
10See the Appendix.
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illustration, assume that it is bijective and continuously differentiable. Under
the reparameterization, the Jacobian, surprise, posterior, and e-value (against the
hypothesis) are, respectively, J���, r̃���, g̃x���, and ẽv�H�, given by:

J��� =
[
��

��

]
=

[
�
−1���

��

]
=


��1
��1

� � � ��1
��n

���
� � �

���
��n
��1

� � � ��n
��n


s̃��� = g̃x���

r̃���
= gx�


−1�����J����
r�
−1�����J���� �

Let �H = 
��H�. It follows that

s̃∗ = sup
�∈�H

s̃��� = sup
�∈�H

s��� = s∗

hence, the tangential set under the reparameterization is, T �→ 
�T� = T̃ , and

ẽv�H� =
∫
T̃
g̃x���d� =

∫
T
gx���d� = ev�H��

We remark that the FBST is also invariant with respect to the null hypothesis
parameterization. This is not a trivial issue because some statistical procedures do
not satisfy this property. The reader interested in a broader discussion of the FBST
properties can see Madruga et al. (2003) and Pereira et al. (2008).
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