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Why Numbers are Sets* 
 
Eric Steinhart 
 
ABSTRACT: I follow standard mathematical practice and theory to argue that the natural 
numbers are the finite von Neumann ordinals.  I present the reasons standardly given for 
identifying the natural numbers with the finite von Neumann's (e.g. recursiveness; well-
ordering principles; continuity at transfinite limits; minimality, and identification of n 
with the set of all numbers less than n).  I give a detailed mathematical demonstration that 
0 is {} and for every natural number n, n is the set of all natural numbers less than n.  
Natural numbers are sets.  They are the finite von Neumann ordinals.   
 
1. Introduction 
 
I challenge Benacerraf's (1965) argument that natural numbers cannot be sets.  It is 
surprising that Benacerraf's argument has seen so much philosophical discussion but so 
little mathematical criticism.1  The argument is not mathematically sound.  Benacerraf 
(1965: 277; 1996: 21) says that any reduction of the natural numbers to sets has two and 
only two parts: (1) the part that enables us to formulate the laws of arithmetic and (2) the 
part that enables us to analyze cardinality in terms of counting.  Lest there be any doubt: 
"Everything else is extraneous" (1996: 21).  An informal analysis of cardinality in terms 
of counting says that we determine the cardinality of a set by taking "its elements one by 
one as we say the numbers one by one" (1965: 274 - 275).  More formally: the cardinal 
number of a set S is n if and only if there is a 1-1 correspondence between S and the set 
of numbers less than n (1996: 21, 46).  Although it is usually thought that infinitely many 
progressions satisfy the conditions that Benacerraf articulates for being the natural 
numbers, I will argue that in fact one and only one progression satisfies those conditions.  
I will show that the conditions that Benacerraf articulates determine an association of 
natural numbers with sets of natural numbers in such a way that 0 is {} and n is {0, . . . n-
1} for every n > 0.  I will produce a mathematical demonstration that if α is any 
progression that satisfies Benacerraf's conditions, then α is the finite von Neumann 
ordinals.  If Benacerraf is right about the natural numbers, then as a matter of 
mathematical fact every number does indeed have a certain specific internal set-
theoretical structure.  Benacerraf should not have concluded that numbers cannot be sets.  
He should have concluded that they must be the finite von Neumann ordinals.  If 
Benacerraf's analysis of what it means to be the natural numbers is correct, then the 
natural numbers are the finite von Neumann ordinals. 
 
 
2. Mathematics versus the Non-Uniqueness Argument 
 
The natural numbers are intuitively familiar as 0, 1, 2, 3, and so on.  More precisely: the 
natural number system N consists of the set of entities {0, 1, 2, 3, . . .}; a successor 
function +1; an initial number 0; and a less than relation <.  Technically: N is the 4-tuple 
({0, 1, 2, 3, . . .}, +1, 0, <).  An ontological reduction of the natural number system N to 
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some set-theoretic structure α = (ω, ƒ, e,   p ) identifies each part of N with the 
corresponding part of α.  Specifically: if N = α, then the numbers{0, 1, 2, 3, . . .} = ω, the 
successor function +1 = ƒ, the initial number 0 = e, and the less than relation < =   p .   
 
According to Benacerraf (1965: 277; 1996: 21), a set theoretic structure α = (ω, ƒ, e,   p ) 
is the natural numbers N if and only if it satisfies both (1) an arithmetical condition and 
(2) a cardinality condition.  A set-theoretic structure (ω, ƒ, e,   p ) satisfies the arithmetical 
condition if and only if (ω, ƒ, e) is a model of the Dedekind-Peano Axioms (Hamilton, 
1982: 9).  A structure (ω, ƒ, e,   p ) satisfies the cardinality condition if and only if it 
identifies the numerical less than relation < with some set theoretic relation   p  such that 
the cardinality of set S is n if and only if there is a 1-1 correspondence between S and { m 
| n   p  m}.  While Benacerraf (1965: 275 - 277) initially argues that (3) it must be 
effectively decidable for any n and m whether n   p  m (i.e. the less than relation is 
"recursive"), he later (1996: Appendix) retracts the recursiveness condition.  Letting 
"NN" stand for "Natural Number", I'll refer to the conjoined arithmetical and cardinality 
conditions as the NN-conditions.  Benacerraf (1965: 279 - 281) insists that the NN-
conditions are correct: satisfaction of the NN-conditions is both necessary and sufficient 
for being the natural numbers. If α satisfies the NN-conditions, then N = α.  For 
convenience I refer to any set-theoretic structure of the form (ω, ƒ, e,   p ) as a ω-series. 
 
Benacerraf alleges there are many ω-series that satisfy the NN-conditions.  He claims that 
the Zermelo ω-series and the von Neumann ω-series (and infinitely many others) all 
satisfy the NN-conditions.  The Zermelo ω-series allegedly satisfies the NN-conditions 
like this: (1) it identifies 0 with {}; for any number n, it defines the successor n+1 as the 
set {n}; (2) it identifies the less than relation < with the ancestral [∈] of ∈ and says that 
the cardinality of set S is n if and only if there is a 1-1 correspondence between S and { m 
∈ ω | n [∈] m}.  The Zermelo reduction says: 0 = {}, 1 = {{}}, 2 = {{{}}}, 3 = 
{{{{}}}}, and so on.  The von Neumann ω-series allegedly satisfies the NN-conditions 
like this: (1) it identifies 0 with {}; for any n, it defines n+1 as the set (n ∪ {n}); (2) it 
identifies the less than relation < with ∈ and says that the cardinality of set S is n if and 
only if there is a 1-1 correspondence between S and { m ∈ ω | n ∈ m}.  The von 
Neumann reduction says: 0 = {}, 1 = {{}}, 2 = {{} {{}}}, 3 = {{} {{}} {{}{{}}}}, and 
so on.  
 
If both the Zermelo and von Neumann ω-series satisfy the NN-conditions, then we get a 
contradiction.  The argument goes like this:2 (1) the Zermelo ω-series satisfies the NN-
conditions; (2) since the Zermelo ω-series satisfies the NN-conditions, the set {0, 1, 2, . . 
.} = {{}, {{}}, {{{}}}, . . .},  the successor function n+1 = {n}, the initial number 0 = {}, 
and the less than relation < = [∈]; (3) so 2 = {{{}}}; (4) the von Neumann ω-series 
satisfies the NN-conditions; (5) since the von Neumann ω-series satisfies the NN-
conditions, the set {0, 1, 2, . . .} = {{}, {{}}, {{}{{}}}, . . .},  the successor function n+1 
= (n ∪ {n}), the initial number 0 = {}, and the less than relation < = ∈; (6) so 2 = 
{{}{{}}}; (7) but then 2 = {{{}}} and 2 = {{}{{}}}; (8) hence {{{}}} = {{}{{}}}; (9) 
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but alas {{{}}} = {{}{{}}} is a set-theoretic contradiction.  Since infinitely many ω-
series seem to satisfy the NN-conditions equally well, and since they all cancel each other 
out, Benacerraf concludes that numbers can't be sets.  Most philosophers appear to agree 
with this non-uniqueness argument and to stand together on the thesis that numbers are 
not sets.3  Balaguer (1998: 65) summarizes mainstream philosophical thinking when he 
says: "I think it is more or less beyond doubt that no sequence of sets stands out as the 
sequence of natural numbers".4  Mathematicians as a rule do not share this opinion. 
 
One good reason to doubt the soundness of the Benacerrafian argument is that there is 
one set of sets that stands out very clearly for the mathematicians as the natural numbers.  
The mathematicians standardly identify the natural numbers with the finite von Neumann 
ordinals.5  They make the identification because not all apparent reductions satisfy the 
NN-conditions equally well.  The von Neumann reduction is best.  Benacerraf says: "If 
the numbers constitute one particular set of sets, and not another, then there must be 
arguments to indicate which" (1965: 281).  The mathematicians do give arguments for 
the superiority of the von Neumann ω-series.  If their arguments are right, then the choice 
of the von Neumann ω-series is neither arbitrary nor conventional.  The von Neumann ω-
series obviously satisfies the NN-conditions.  I show in section 3 that it is the only ω-
series that also satisfies all these extra conditions: (1) it is recursively defined; (2) its sets 
uniquely satisfy certain ordering conditions; (3) it is uniformly extendible to the 
transfinite; (4) it is a minimal ω-series; (5) its n-th member is the set of all m less than n.  
I have taken these conditions from the mathematicians themselves.  Since the von 
Neumann ω-series is the only one that satisfies (1) through (5), it is superior to the 
Zermelo ω-series and to every other ω-series.  Either these extra mathematical conditions 
are not relevant to the analysis of number or (exclusively) the natural numbers are the 
finite von Neumann ordinals. 
 
I suspect that the hardcore Benacerrafian will reply that these extra conditions are not 
relevant: they are merely superfluous "stylistic preferences" (1965: 284 - 285).  Since 
these extra conditions are highly relevant to mathematical practice and theory, they are 
certainly mathematically relevant.  So if the Benacerrafian says they are irrelevant to the 
analysis of number, then they must be irrelevant in some non-mathematical way.  
Benacerraf is often said to be arguing against an ontological reduction of numbers to sets.  
He is said to be arguing against the metaphysical identification of numbers with sets.  
Balaguer (1998: 63 - 64) aptly comments that the Benacerrafian non-uniqueness 
argument entails that there is nothing "metaphysically special" about any of the ω-series 
that makes it stand out as "the sequence of natural numbers".  I'll suppose then that the 
Benacerrafian is arguing for the metaphysical relevance of the NN-conditions and against 
the metaphysical relevance of any extra conditions.  I know of one and only one 
mathematically precise way to handle metaphysical relevance: if some condition is 
metaphysically relevant, then it is formalized as an existence condition.  If all and only 
the NN-conditions are relevant to the existence of the natural numbers, then the NN-
conditions exactly specify the conditions in which we can make existence assertions in 
our arguments about natural numbers.  They specify the available existence axioms for 
the "natural number universe" (the NN-universe).  I do not suppose that the NN-universe 
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is the whole mathematical universe.  The NN-conditions specify that part of the 
mathematical universe to which we may ontologically reduce the natural numbers.  I will 
give a mathematical demonstration in section 4 that if the NN-conditions exactly specify 
the NN-universe, then the natural numbers are the finite von Neumann ordinals.6   If this 
is right, then the natural numbers are sets.     
 
3. Mathematical Advantages of the Finite Von Neumann Ordinals 
 
I agree with Benacerraf that if any series of sets is the natural numbers, then it satisfies 
the NN-conditions.  I will argue in addition that (1) the series ought to be defined 
recursively; (2a) the series ought to identify < with ∈; (2b) the series ought to identify  ≤ 
with subset-inclusion; (2c) the members of the series ought to be internally well-ordered; 
(2d) the relation that internally well-orders each member of the series ought to be the 
relation that well-orders the whole series; (3) the series ought to be uniformly extendible 
to the transfinite; (4) the series ought to be set-theoretically minimal; and finally (5) the 
n-th set in the series ought to be the set of all m less than n.  Since the only ω-series that 
has all these properties is the von Neumann ω-series, these are all good reasons to 
identify the natural numbers with the finite von Neumann ordinals.  These are all good 
reasons why mathematicians ignore the non-uniqueness problem. 
 
(1) Benacerraf (1965: 275 - 277) says that the relation < ought to be recursive.  It might 
be better to say that the relation < ought to be effectively decidable (i.e. that there ought 
to be an effective procedure for deciding, for any x and y in the ω-series, whether or not x 
< y).7  Benacerraf (1996: Appendix) has since hardened his position.  He recants his 
recursiveness requirement and declares that "Any old ω-sequence would do after all".  I 
think he should have stuck with recursiveness (or at least some kind of recursive 
definition).  Counting at its purest involves pure repetition: again.  So any natural number 
series ought to be defined by repetition alone.  The formalists (Korner, 1968: IV) 
expressed this pure repetition by means of recursively defined stroke sequences: | is (the 
first) stroke sequence; if X is a stroke sequence, then X| is (the next) stroke sequence.  If 
you prefer to start with 0, then you might prefer to recursively define stroke sequences 
like this: # is (the zeroth) stroke sequence; if X is a stroke sequence, then X| is (the next) 
stroke sequence.8  One might use a recursive definition of < to rule out non-standard 
models of arithmetic.9  Every natural number series must satisfy the NN-conditions and 
ought to be defined recursively.  So if any series of sets is the natural number series, then 
it will be recursively defined; if it is not, then it does not adequately capture the formal 
concept of counting.  If the series of sets is defined recursively, then < will be recursive.   
So, for all n, n+1 ought to be ƒ(n) where ƒ is defined by some set-theoretic formula or 
rule.  For instance: for the Zermelo's, ƒ(n) = {n}; for the von Neumann's, ƒ(n) = n ∪ {n}.  
We could also define ƒ(n) = n ∪ {{n}} or ƒ(n) = POW( n) where POW produces the 
power set. 
 
(2) Mathematicians use the ordering properties of the finite von Neumann ordinals to 
argue that they are the natural numbers.  Suppes (1972: 127 - 130) identifies the natural 
numbers with the finite von Neumann ordinals and gives a mathematical argument (taken 
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from Dana Scott) for the superiority of the von Neumann ordinals based on well-ordering 
principles.  Hamilton (1982: 192-3) and Devlin (1991: 22 - 24) also use well-ordering to 
motivate the identification of the natural numbers with the von Neumann's.  Some 
mathematicians use ordering principles to define the natural numbers.  For these 
mathematicians, the ordering principles are logically prior to the NN-conditions.  Say set 
x is transitive if and only if for all y ∈ x, y is a subset of x; let ∈x denote ∈ restricted to x.  
Hrbacek & Jech (1978: 51) now define natural numbers like this: "A set x is a natural 
number if (a) x is transitive, (b) ∈x is a strict linear ordering of x, (c) every non-empty 
subset of x has a least and a greatest element in the ordering ∈x."  Hrbacek & Jech (52 - 
56) proceed to deduce that the set of natural numbers is the finite von Neumann ordinals 
and that it satisfies the NN-conditions.  Order conditions are not mathematically 
irrelevant.  Consider: (2a) we ought to identify < with ∈.  If the numerical relation < is 
identified with ∈, then < is the simplest set-theoretic relation ∈.  So if < is ∈ for some ω-
series, then that ω-series is simpler than any for which < is not ∈.  So any ω-series that 
identifies < with ∈ is superior to one that does not (see Hamilton, 1982: 141).  (2b) we 
ought to identify ≤ with subset-inclusion ⊆ .  If we are going to identify numbers with 
sets, then we ought to identify the ordering relation on numbers with some ordering 
relation on sets.  Since ⊆  (partially) orders the universe of sets (i.e. the universe V of the 
iterative hierarchy), any ω-series whose numbers are ordered by ⊆  is a superior to one 
that is not.  (2c) The members of the ω-series ought to be internally well-ordered.  If the 
numbers in the ω-series are internally well-ordered, then they can be used to well-order 
other finite sets.  If we construct a 1-1 map from n to some set S, we have thereby well-
ordered the members of S without doing any extra work.  If all the numbers are internally 
well-ordered, then counting is equivalent to well-ordering.  Finally: (2d) The relation that 
internally well-orders each number ought to be the relation that well-orders the whole ω-
series.  If (2d) is true of some ω-series, then each number partly reflects the whole series.  
Property (2d) is both deeply beautiful and highly practical.  It enables us to think of every 
number in the ω-series as some initial segment of the whole ω-series.  It underwrites the 
theorems that (i) the union of any set of numbers is a number; (ii) an initial segment of 
any number is a number; (iii) every member of a number is a number; (iv) if n is any 
number, n is the set of all numbers less than n.  So natural numbers are indeed ordinals.  
These order properties are mathematically significant; they are all found in the von 
Neumann series but not in the Zermelo's.   
 
(3) All natural numbers are finite.  But modern mathematics recognizes a vast Cantorian 
paradise of transfinite numbers.  What if we want to extend the natural numbers into the 
transfinite?  Is there some set theoretic structure (ω, ƒ, e,   p ) that enables us to do this in a 
regular way, so that we can define generalized transfinite counting procedures and 
naturally extend recursion and arithmetic to the transfinite?  Yes: if the natural numbers 
are the finite von Neumann ordinals, we can uniformly extend our counting procedures 
and proof techniques to the transfinite.  Maddy (1992: 84, fn. 13) recognizes this: "there 
are reasons why Zermelo's version isn't as good as von Neumann's.  For example, von 
Neumann's account works just as well for infinite numbers as for finite". The fact that the 
von Neumann ordinals are uniformly extendible into the transfinite is one of the main 
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reasons why the natural numbers are standardly identified with the finite von Neumann 
ordinals.  There is, moreover, a deep difference between the von Neumann and Zermelo 
ordinals: the endlessly increasing series of finite von Neumann ordinals converges to the 
von Neumann ω, while the endlessly increasing series of finite Zermelo ordinals does not 
converge to the Zermelo ω; in general, the series of von Neumann ordinals is continuous 
at limits, while the series of Zermelo ordinals is not.  The von Neumann's provide a 
uniformly increasing series of numbers from 0 through the alephs and up into the large 
cardinals.  Uniformity is extremely valuable in mathematics: it is the very basis for 
abstraction.  Of all the sequences that satisfy the NN-conditions, von Neumann's is the 
simplest with this property. 
 
(4) Some ω-series are simpler than others.  Some ω-series are simpler than all the others: 
they are minimal in the iterative hierarchy of sets.  Minimal ω-series are surely 
distinguished from non-minimal ω-series.  I discuss minimality informally.  Say the 
depth of any set n is the length of the longest ∈-chain that extends from 0 to n.   The 
depth of {{} {{}} {{} {{}}}} is 3, since {} ∈ {{}} ∈ {{}{{}}} ∈ {{}{{}}{{}{{}}}}.  I 
say that ω-series N is minimal if and only if, for all n ∈ N, the depth of n is n.  The n-th 
number in a minimal ω-series starts from {} and counts n steps along the ∈ relation.  
Every minimal ω-series identifies 0 with {} and identifies 1 with {0}.  The series {}, 
{{}} satisfies both n+1 = {n} and n+1 = n ∪ {n}.  We now have two minimal choices for 
2.  These are: 2 = {{{}}} = {1} or 2 = {{}{{}}} = 1 ∪ {1}.  Here is where the Zermelo 
and von Neumann series divide.  If we choose 2 = {{}{{}}}, then we have three choices 
for 3.  The von Neumann 3 is {{} {{}} {{}{{}}}}.  If we identify the successor operation 
with the power set operation, then the Powerset 3 is {{} {{}} {{{}}} {{}{{}}}}.  
Another possibility is to combine the von Neumann and Zermelo successor operations to 
form what I'll call the "von Zermano" series.  The von Zermano 3 is {{} {{}} {{{}}}}.  
The Zermelo, von Zermano, von Neumann, and Powerset series are all minimal ω-series.  
Figure 1 shows these 4 series.   We ought to prefer minimal ω-series because (1) if we 
start counting from 0, then we ought to start counting from {}; and (2) if we count from 
any n to the next number (and there are none in between), then we ought to count from 
any set n to the next set (where next is directly defined in terms of ∈). We ought to prefer 
to count sets by starting from {} and counting up links of ∈-chains.  We can do this only 
in minimal ω-series. The von Zermano, von Neumann, and Powerset series converge to 
their limits; only the von Zermano and von Neumann permit counting by 1-1 maps; only 
the von Neumann and the Powerset series have all the desired order properties.  But the 
von Neumann series alone satisfies all these conditions.  It is therefore the best minimal 
ω-series. 
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Figure 1. Beginnings of four minimal ω-series. 
 
(5) According to Benacerraf, an account of number has two and only two parts: (1) the 
part that enables us to formulate the laws of arithmetic and (2) the part that enables us to 
explain cardinality (1965: 277; 1996: 21).  Lest there be any doubt: "Everything else is 
extraneous" (1996: 21; see note 6).  Benacerraf says "the account of cardinality must 
explicitly be included in the account of number" (1965: 293).  He contends that "The 
explanation of cardinality — i.e. of the use of numbers for 'transitive counting', as I have 
called it — is part and parcel of the explication of number" (1965: 275; note 2).  We 
transitively count the members of some set by taking "its elements one by one as we say 
the numbers one by one" (1965: 275).  We need to attend to the details of this account of 
cardinality.  Benacerraf (1965: 275, 280) says that "a set has n members if and only if it 
can be put into one-to-one correspondence with the set of numbers less than or equal to 
n".  However: there are plenty of collections that have no members.10  0 is a perfectly 
good cardinal number.  Benacerraf later decides to count from 0 (1996: 21).  He says: 
"For there are n platypuses iff there is a 1-1 correspondence between the platypuses and 
the cardinal numbers < n" (1996: 46).11  So: a set has n members if and only if it can be 
put into 1-1 correspondence with the set of numbers less than n.  If the account of 
numbers includes an account of cardinality, and if cardinality is analyzed in terms of 1-1 
correspondence (if "to count the members of a set is to determine the cardinality of the 
set" (1965: 275)), then we must work with sets of numbers in order to define cardinality.   
 
Suppose we identify the natural number system N with some set-theoretic structure α = 
(ω, ƒ, e,   p ).  We say that N = α.  If we choose any objects of any kind for the members of 
ω (whatever those objects might be), then the cardinality part of the NN-conditions 
compels us to form certain definite sets of those objects.  Specifically: we have to form, 
for each n in ω, the set of all numbers less than n.  For every number n, we must form the 
set n* = { m ∈ ω | m   p  n}.  For example: 0* = {}, 1* = {0}, 2* = {0, 1}, 3* = {0, 1, 2}, 
and so on.  We cannot avoid forming all these sets of numbers.  Since the account of 
number includes an account of cardinality, the account of number includes these sets.  Let 
ω* = { n* | n ∈ ω }.  The set ω* is neither external nor incidental to the analysis of 
number.  It is internal and it is essential.  Since we can easily define successor and less 
than relations on ω*, we can easily define a ω-series for ω*.  Let the zero element of ω* 
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be e* = {}; let the successor function ƒ*(n*) = (n* ∪ {n}); let the less than relation   p * 
be ⊂ .  So the structure  α* = (ω*, ƒ*, e*,   p*) satisfies the NN-conditions.  Now consider 
the following informal argument: (1) α satisfies the NN-conditions; (2) since α satisfies 
the NN-conditions, N = α; (3) if α satisfies the NN-conditions, then α* satisfies the NN-
conditions; (4) so α* satisfies the NN-conditions; (5) since α* satisfies the NN-
conditions, N = α*; (6) so since α = N = α*, it follows that (ω, ƒ, e,   p ) = (ω*, ƒ*, e*, 
  p*); (7) so ω = ω* hence n equals n* for every n in ω; (8) if n equals n* for every n in ω, 
then 0 = {} and for every n, n = {0, . . . n-1}; (9) but if 0 = {} and for every n, n = {0, . . . 
n-1}, then α is the finite von Neumann ordinals; consequently: (10) if α satisfies the NN-
conditions, then α is the finite von Neumann ordinals.   
 
This argument is mathematically significant.  The equation of n with n* is the main 
mathematical motivation for the identification of the natural numbers with the finite von 
Neumann ordinals (see Halmos, 1960: sec. 11; Pinter 1971: 124 - 5; Hrbacek & Jech, 
1978: 50; Hamilton, 1982: 134; Devlin, 1991: 66; Just & Weese, 1996: 44 - 45; 
Ciesielski, 1997: 25 - 26).  If this is right, then the von Neumann sequence of sets stands 
out as the natural numbers because it is the only sequence of objects of any kind for 
which n equals n* for all n.12  So far the argument that n is n* for every n is merely 
suggestive.  Section 4 makes the argument mathematically precise. 
 
4. The Natural Numbers are the Finite Von Neumann Ordinals 
 
I suspect the hardcore Benacerrafian might well agree with all my points (1) to (5) while 
still denying that numbers are sets.  My points (1) through (5), whatever their 
mathematical merits, merely indicate my "stylistic preferences" (1965: 285). While the 
advantages I attribute to the von Neumann series are doubtless mathematically useful, 
they do not show that numbers are the von Neumann ordinals.  They do not justify the 
metaphysical conclusion that numbers are sets.  I suppose that the hardcore Benacerrafian 
affirms the metaphysical relevance of the NN-conditions and denies the metaphysical 
relevance of any other conditions (e.g. denies the metaphysical relevance of my points (1) 
to (5)). 
 
I suppose that metaphysically relevant conditions determine the boundaries of the natural 
number universe (the NN-universe).  They determine the boundaries of the universe of 
objects to which we may ontologically reduce the natural numbers.  Since all and only the 
NN-conditions are metaphysically relevant, they and they alone specify the available 
existence axioms for the NN-universe.  The arithmetical part of the NN-conditions 
contains the Dedekind-Peano Axioms.  The Dedekind-Peano Axioms contain the 
following existence axioms: (A1) there exists a number 0; (A2) for all x, if x is a number 
then there exists another number y such that y is the successor of x; (A3) there does not 
exist any number x such that 0 is the successor of x; (A4) there exists a set ω of all and 
only the natural numbers.  Other Dedekind-Peano Axioms define the identity conditions 
for numbers and the set of all numbers.13  The cardinality part of the NN-conditions 
involves one existence axiom: (C1) for all x, if x is in ω, then there exists a set x* = { z ∈ 
ω | z < x}.  The cardinality part also contains the following definition: (C2) the 
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cardinality of any set S is x if and only if there exists some 1-1 correspondence between x 
and x*.  The definition of cardinality in terms of 1-1 correspondence does not assert the 
existence of any sets; it does not say that for every set S, there exists some x and there 
exists some M such that M is a 1-1 correspondence between S and x*.  The definition of 
cardinality in (C2) does not say that at all.  Although the cardinality relation holds among 
any sets that are in the NN-universe, it does not put any sets into the NN-universe. 
 
Suppose you choose some progression of objects to serve as your natural numbers.  I do 
not presume that these objects are sets.  They may be any objects at all that satisfy the 
NN-conditions.   Call your choice the α-progression.  Your α-progression includes a set 
of α-numbers ω = { α0, α1, α2, . . .}, a successor function ƒ, some zero object e, and 
some less than relation   p .  It is the system (ω, ƒ, e,   p ).  The NN-universe contains ω, ƒ, 
e,   p , and every member of those objects if they have members.  So it includes (for 
example) every a-number α0, α1, α2, and so on.  Since the NN-conditions include the 
cardinality condition, it follows that, for each α-number αn, the set of α-numbers less 
than αn is in the NN-universe.  The cardinality condition says that: for all x, if x is in ω, 
then there exists a set y = { z ∈ ω | z   p  x}.  Consequently: for each α-number αn, there 
exists the set of all αm   p  αn.  If you assume that α is the natural numbers, then the NN-
universe contains the cardinality sets {}, {α0}, {α0, α1}, {α0, α1, α2}, and so on.   The 
NN-conditions do not allow you to form any other sets of α-numbers.  They do not assert 
or imply that the NN-universe contains any other sets built from α-numbers.   
 
The cardinality condition asserts the rule (C1): for all x, if x is in ω, then there exists a set 
y = { z ∈ ω | z   p  x}.  If the NN-conditions assert some rule R, then the NN-universe 
contains the domain of R, the range of R, the extension of R, and nothing else.  For if we 
cannot reason to the existence of those objects in the NN-universe, then that rule is 
meaningless (it plays no role in determining the models of the NN-conditions).  The 
domain of the cardinality rule is just ω.  We already know that ω is in the NN-universe.  
For any x in ω, recall that  x* = { z ∈ ω | z   p  x}.  Now let ω* = { x* | x ∈ ω}.  The range 
of the cardinality rule is ω*.  So ω* is metaphysically relevant.  The NN-conditions entail 
that ω* is in the NN-universe.   Let Q be the extension of the cardinality rule.  Q is a 
function from ω to ω*.  For any α-number x in ω, Q(x) is x*.  Q maps the α-numbers 
onto metaphysically relevant sets of α-numbers.  Since the cardinality condition defines 
Q, Q is relevant.  Q is in the NN-universe.  The analysis of the being of the natural 
numbers includes ω, ω*, and the function Q: ω → ω*.  Since the account of cardinality 
makes 0* relevant, and since 0* is the zero e* of ω*, the zero e* of ω* is in the NN-
universe. 
 
The cardinality condition says that the cardinality of any set S is the number x if and only 
if there is a 1-1 function from S onto x*.  Benacerraf uses "C" to denote this function 
(1996: 21).  So C(S) = x if and only if there is a 1-1 function from S onto x*.  The 
cardinality relation holds among any sets that are in the NN-universe.  In particular: since 
the identity function is a 1-1 correspondence between x* and x*, C(x*) = x.  I let K 
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denote the restriction of C to the NN-universe.  Since the composition of any two 
arithmetical functions is an arithmetical function, functional composition preserves 
metaphysical relevance.  If functions g and h stay in the NN-universe, then their 
composition stays in the NN-universe.  If functions g and h are included in the analysis of 
the being of the natural numbers (if they stay in the NN-universe), then the NN-universe 
also includes (g°h) and (h°g).  Since K and ƒ are in the NN-universe, (ƒ°K) is relevant; 
since Q and (ƒ°K) are in the NN-universe, (Q°(ƒ°K)) is in the NN-universe.14  Let ƒ* = 
(Q°(ƒ°K)).  The function ƒ* is in the NN-universe.  Since K maps x* onto x, and ƒ maps 
x onto (x+1), and Q maps (x+1) onto (x+1)*, ƒ* maps x* onto (x+1)*.  It is clear that ƒ* 
is a successor function for the cardinality sets.  ƒ* is the successor function for ω*.  Say 
x*   p* y* if and only if K(x*)   p  K(y*).  Since the less than relation   p  on α-numbers is 
relevant, and since K and Q are relevant, all their compositions are relevant.   Since   p* is 
formed by the composition of Q, K, and   p , the relation   p * is in the NN-universe. 
 
The analysis of the being of the natural numbers includes ω*, ƒ*, e*, and   p*.  Say that 
"(ω*, ƒ*, e*,   p*) is in the NN-universe" is true if and only if ω* and ƒ* and e* and   p * 
are in the NN-universe.  Since ω*, ƒ*, e*, and   p* are all in the NN-universe, the system 
(ω*, ƒ*, e*,   p*) is in the NN-universe.  Let (ω*, ƒ*, e*,   p*) be α*.  I have taken some 
care to show that the NN-conditions permit us to reason from the existence of α = (ω, ƒ, 
e,   p ) to the existence of α* = (ω*, ƒ*, e*,   p*).   The NN-conditions entail that the 
analysis of the being of the natural numbers includes α*.  I have taken some care to show 
that if α is in the NN-universe, then  α* is in the NN-universe.  So: for any α, if α 
satisfies the NN-conditions, then there is some α* in the NN-universe such that α* also 
satisfies the NN-conditions.  The α* system is a perfectly fine natural number system.  
 
While the NN-conditions enable you to reason from the fact that α is in the NN-universe 
to the fact that α* is in the NN-universe, they do not enable you to reason from the fact 
that α is in the NN-universe to the fact that any other natural number system is in the 
NN-universe.  Suppose you choose some system of objects (any objects) as α =  (ω, ƒ, e, 
  p ).  You then define 0^ as {}.  For each non-zero n in ω, you define n^ as {n-1}.  You 
define the set ω^ as { n^ | n ∈ ω}.  You define the function ƒ^ like this: for all n^ in ω^, 
ƒ^(n^) = {n^}.  You let e^ be 0^.  You define   p ^ like this: n   p^ m if and only if n   p  m.  
Finally you define α^ as (ω^, ƒ^, e^,   p ^).   Although you are free to define α^, the NN-
conditions do not permit you to infer that α^ is in the NN-universe.  Since only 0^ and 1^ 
are in the NN-universe, n^ is not generally in the NN-universe; so ω^ is not in the NN-
universe; since ω^ is not in the NN-universe, ƒ^ and   p^ are not in the NN-universe.  So 
α^ is not in NN-universe.  Analogous reasoning shows that no other system that satisfies 
the NN-conditions is in the NN-universe.  So: α and α* are the only systems in the NN-
universe that satisfy the NN-conditions.  Choose any system of objects you like for (ω, ƒ, 
e,   p ); the NN-conditions entail that (ω*, ƒ*, e*,   p *) is the only other natural number 
system in the NN-universe.  Recall that N is the natural number system ({0, 1, 2, 3, . . .}, 
+1, 0, <).  You can see where this is going: (1) suppose α = N; (2) if α = N, then α 
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satisfies the NN-conditions; (3) if α satisfies the NN-conditions, then α* satisfies the 
NN-conditions; (3) if α* satisfies the NN-conditions, then α* = N; so (4) α = α*. 
 
If my reasoning so far is right, then there is a precise mathematical demonstration that the 
natural numbers are the finite von Neumann ordinals.  Let FVNO abbreviate "the finite 
von Neumann ordinals".  Let α be (ω, ƒ, e,   p ).  I demonstrate that α is the natural 
numbers if and only if α is the FVNO.  I show sufficiency and necessity.  For sufficiency 
I show that if α is the natural numbers, then α is the FVNO.  Suppose that α is the natural 
numbers.  Since α is the natural numbers, N = α.  If α is the natural numbers, then α 
satisfies the NN-conditions.  So α satisfies the NN-conditions.  Let α* be (ω*, ƒ*, e*, 
  p*) as defined above.  If α satisfies the NN-conditions, then α* satisfies the NN-
conditions.  So: α* is the natural numbers.  Since α* is the natural numbers, N = α*.  
Therefore: α = N = α*; hence α = α*.   If α = (ω, ƒ, e,   p ) and α* = (ω*, ƒ*, e*,   p*), 
then α = α* means exactly that ω = ω*, ƒ = ƒ*, e = e*, and   p  =   p*.  If ω = ω*, then n 
equals n* for every n in ω.  If n equals n* for every n in ω, then 0 = {} and n = {0, . . . n-
1} for every n.  If 0 = {} and n = {0, . . . n-1} for every n, then 0 = {} and n+1 = (n ∪ 
{n}) for all n.  If 0 = {} and n+1 = (n ∪ {n}) for all n, then α is the FVNO.  Therefore: if 
α is the natural numbers, then α is the finite von Neumann ordinals.  For necessity I show 
that if α is the FVNO, then α is the natural numbers.  Suppose α is the FVNO.  If α is the 
FVNO, then α satisfies the NN-conditions.  If α satisfies the NN-conditions, then α is the 
natural numbers.  Therefore: if α is the finite von Neumann ordinals, then α is the natural 
numbers.  Sufficiency and necessity are thus demonstrated.  Consequently: α is the 
natural numbers if and only if α is the finite von Neumann ordinals. 
 
Consider the Zermelo ordinals.  They are eager little sets; they certainly seem like they 
are fit to serve as the natural numbers.  The Zermelo structure ζ is the 4-tuple (Z, E, S, L).  
The set Z is defined like this: {} is in Z; for all x, if x is in Z, then {x} is in Z; no other 
sets are in Z.  The sets in Z are: {}, {{}}, {{{}}}, {{{{}}}}, and so on.  The initial object 
E is {}.  The successor function S maps every x in Z onto {x}.  The less than function L 
is the ancestral [∈] of ∈.  The natural number structure N is the 4-tuple ({0, 1, 2, 3, . . .}, 
+1, 0, <).  If N is ζ, then 0 = {}, 1 = {{}}, 2 = {{{}}}, 3 = {{{{}}}}, and so on.   For 
every x in Z, the account of cardinality forces us to form the set x* = { m ∈ Z | L(m, x) }.  
For example: 0* = {}, 1* = {0} = {{}}, 2* = {0, 1} = {{} {{}}}, 3* = {0, 1, 2} = {{} 
{{}} {{{}}}}.  The sets in Z* "must explicitly be included in the account of number" 
(1965: 293); they are "part and parcel of the explication of number" (1965: 275; note 2).  
Let Z* = { x* | x ∈ Z}.   It is easy to see that {} is the initial object of Z*.  Let E* = {}.  
The successor function S* on Z* is: S*(n*) = (n* ∪ {n}).  The less than relation L* is ⊂ .  
If ζ is fit to serve as the natural numbers, then ζ* is equally fit to serve.  The sets and 
relations in ζ* are neither external to nor incidental to the analysis: if N is ζ, then N is ζ*.  
So if N is ζ, then ζ is ζ*.  If ζ is ζ*, then for every n in Z, n = n*.  Therefore: 2 is 2*.  But 
2 = {{{}}} while 2* = {{}{{}}}.  So if N is ζ, then {{{}}} = {{}{{}}}.  But it is not the 
case that {{{}}} = {{}{{}}}.  Consequently: N is not ζ.  Since the n-th Zermelo set is not 
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equal to the set of all Zermelo sets less than n, the natural numbers are not the Zermelo 
ordinals.  The Zermelo's are not fit to serve.  The natural numbers have an internal set-
theoretical structure; the Zermelo sets do not share that structure.  Analogous reasoning 
shows that no sets besides the von Neumann's are fit to serve.  Only the finite von 
Neumann ordinals have the internal set-theoretic structure that the arithmetic and 
cardinality conditions require.  The natural numbers are the finite von Neumann ordinals.   
 
5. Conclusion 
 
If Benacerraf's natural number conditions are correct, then the natural numbers are the 
finite von Neumann ordinals.  Anyone who wants to deny that the natural numbers are 
the finite von Neumann ordinals must either deny (1) the arithmetical part of the NN-
conditions or (2) the cardinality part of the NN-conditions.  The natural numbers 
assuredly satisfy the laws of arithmetic.  So anyone who wants to deny that the natural 
numbers are the finite von Neumann ordinals will have to argue that (1) the analysis of 
cardinality in terms of counting is not adequate; and (2) some distinct alternative account 
is superior.  I am not aware of any inadequacies in the analysis of cardinality in terms of 
counting.  I am not aware of any superior alternative analysis of cardinality.15  So, if 
satisfaction of the NN-conditions is necessary and sufficient for being the natural 
numbers, then the natural numbers are the finite von Neumann ordinals.  The other 
systems of objects (e.g. the Zermelo's) that appear to satisfy the NN-conditions are at 
most arithmetical counterparts or simulations of the finite von Neumann ordinals.16  For 
all the reasons I have given, the mathematicians identify the natural numbers with the 
finite von Neumann ordinals. So, contrary to received wisdom, I suggest that 
philosophers follow mathematical practice and identify the natural numbers with the 
finite von Neumann ordinals.  The Benacerrafian non-uniqueness argument is not sound.  
Numbers are sets. 
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1Wetzel (1989), Katz (1996) and Balaguer (1998) philosophically criticize Benacerraf's 

argument; but it has seen very little mathematically motivated criticism. 
2Benacerraf later (1996: 25) summarizes his argument like this: "(1) that indefinitely 

many [reductions of numbers to sets] satisfied all the conditions [laid out in 1965]; (2) 

that, because [the number n = the object o] is an identity, at most one such [reduction of 

numbers to sets] could be correct; (3) that there was no principled way to choose among 

them — to decide which sets (or whatever surrogate you might put for sets) the numbers 

really were, . . . (4) that if one of the accounts were the correct one, there would be a way 

to discern which one it was . . .; and therefore (5) any claim identifying of a number with 

a set is a superfluous feature of the account . . . ; consequently (6) 'numbers . . . could not 

be sets at all'."  Benacerraf (1996: 28) suggest that one could either try to weaken premise 

(3) by defending the old Frege-Russell analysis (against his criticisms in 1965) or deny 

premise (4) or adopt a kind of set-theoretic holism.  I argue, against (3), that there are 

principled ways to choose among the different reductions of numbers to sets. 
3Benacerraf's arguments have given rise to structuralism (Resnik, 1997; Shapiro, 1997).  I 

am not arguing against structuralism.  There may be good arguments for structuralism; I 

only claim that the non-uniqueness argument for numbers is not among them.  
4Balaguer (1998) presents a powerful and general solution to non-uniqueness problems in 

mathematics.  My work here is consistent with his broad approach even though we differ 

on some of the details.  Balaguer argues (sections 1 & 2) that it is sometimes not the case 

that our mathematical theories truly describe unique systems of objects; he argues 

(section 3) that structuralism does not solve the problems associated with non-

uniqueness; he argues (section 4) that our mathematical theories need not be descriptions 



 14 

 

of unique systems of objects and that our mathematical singular terms need not have 

unique referents.  Since Balaguer  (1998: 68) says that his solution to the non-uniqueness 

problem is consistent with the assertion that some ω-sequence does stand out as the 

natural numbers, my special argument that the natural numbers are the finite von 

Neumann ordinals is perfectly consistent with Balaguer's more general view of 

mathematics.  For even if one series of sets does stand out as the natural numbers, non-

uniqueness threatens elsewhere.  So some larger strategy for handling non-uniqueness is 

needed. Balaguer's strategy is general and is worthy of further development.  Balaguer 

advocates a view of mathematics as the science of logical plentitude: "all the 

mathematical objects that (logically) possibly could exist actually do exist" (1998: 75, 78, 

83).  This is an important alternative to structuralism.  I agree that mathematics is the 

science of logical plentitude. 
5Since the identification of the natural numbers with the finite von Neumann ordinals is 

mathematically standard, the list of authors who make it is enormous.  Here is a partial 

list of authors who give arguments for the identification of the natural numbers with the 

finite von Neumann ordinals: Halmos (1960: sec. 11); Eisenberg (1971: 80 - 81); Krivine, 

J.-L. (1971: 27 - 28); Pinter (1971: 124 - 5); Suppes (1972: 127 - 130); Drake (1974: 25 - 

26); Enderton (1977: 67);  Hrbacek & Jech (1978: 50); Hamilton (1982: 134, 141, 192 - 

193); Devlin (1991: 23 - 24); Just & Weese (1996: 44 - 45); Ciesielski (1997: 25 - 26).  
6Benacerraf (1965: 281) says the determination of which sets are the natural numbers is 

not amenable to proof.  Since the NN-conditions are mathematical premises that logically 

entail mathematical consequences, they can be used in proofs. 
7Benacerraf (1996: 57; note 34) clarifies his usage of the term "recursive" as follows: 

"Strictly speaking, when dealing with sequences of non-numbers, it may be best to speak, 

instead of recursive sequences, of sequences whose ordering relations have characteristic 

functions that are decidable, since 'recursive,' on most renderings, applies to numerical 
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functions, sets, and relations.  Also, for the cognoscenti, we are assuming Church's 

Thesis."   Benacerraf (1965: 276 - 277) invokes Turing machines.   
8If the Hilbert stroke-sequence numbers are extended to include an initial zero, then they 

gain a structure similar to that of the finite von Neumann ordinals.   Define extended 

stroke sequences like this:  # is (the zeroth) stroke sequence; if X is a stroke sequence, 

then X| is (the next ) stroke sequence.  So: 0 = #; 1 = #|; 2 = #||; 3 = #|||, and so on.  If 

stroke sequences are formed by adding strokes on the right, the parts of any stroke 

sequence are its initial left to right segments.  (Analogous remarks hold if strokes are 

added on the left.) The parts of #||| are #, #|, #||, and #|||.  If the numerical parts of any 

stroke sequence are all and only its proper parts, then the numerical parts of 3 are  #, #|, 

#||; but then the numerical parts of 3 are 0, 1, and 2.  The set theoretic statement 3 = {0, 1, 

2} parallels the mereological statement that the proper parts of 3 are 0, 1, and 2.  One 

might say that the commas in {0, 1, 2} match the accumulation of proper parts while 

wrapping 0, 1, and 2 up in the brackets { and } matches the addition of the rightmost |.  A 

detailed comparison of von Neumann's and Hilbert's accounts of the natural numbers is 

far beyond the scope of this article; however, if stroke sequences are anschaulich, then 

the similarities between them and the finite von Neumann ordinals suggest that stroke 

sequences may provide some form of epistemic access to the finite von Neumann 

ordinals. 
9Non-standard models of arithmetic are well-known (Enderton, 1972, ch. 3; Boolos & 

Jeffrey, 1974, ch. 17).  One might argue that the natural numbers must be anchored to 0 

by defining < recursively and then asserting that for every n, 0 < n.  Here's one way to 

define < recursively: for any natural numbers n, m, n < m if and only if either m is the 

successor of n or there is some z such that n < z and m is the successor of z.   
10It is clear that Benacerraf's (1965: 280) definition of cardinality does not work for sets 

with no members.  Since the set of numbers less than or equal to 0 is {0}, it would follow 
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that a set has 0 members if and only if it can be put into a 1-1 correspondence with {0}; 

but then {A} has 0 members; but that's absurd.  If we want to avoid that absurdity, then 

we need to use the standard definition of (finite) cardinality: for each n, a set has n 

members if and only if it can be put into 1-1 correspondence with the set of numbers < n. 
11His modification of this principle to account for non-recursive ω-sequences (1996:48) 

still starts counting from 0.  It just uses a different account of <.  
12Since ω and ω* are isomorphic, it is hard (at least for me) to see how a structuralist 

would argue against the identification of n with n* for all n.  I think even the most radical 

structuralist has to agree that n equals n* for all n.  Say N is the abstract natural number 

structure if and only if the n-th role in N equals the set of all roles less than n in N. 
13The remaining Dedekind-Peano Axioms can be stated like this: (A4) If m and n are 

numbers and the successor of m is the successor of n, then m is n; (A5) If A is any set of 

numbers such that A contains 0 and for every n in A, A contains the successor of n, then 

A is ω.  These axioms are not existence axioms; they are identity axioms. 
14Since the function ƒ is included in the NN-universe, its composition with itself any 

number of times is included.  So the ranges of these self-compositions are all included. 

The range of ƒ is {1, 2, 3, . . .}; the range of ƒ2 is {2, 3, 4, . . .}; the range of ƒn is {n, 

n+1, n+2, . . .}.  We cannot reason from the NN-conditions to the existence of the set of 

all these ranges; we cannot reason to any successor or less than function; so we cannot 

assemble the ranges of the iterated compositions of ƒ into any relevant model of the 

Peano-Dedekind Axioms.  So these ranges do not form any ω-series.  Analogously, the 

various other iterated compositions of relevant functions do not determine ω-series. 
15I am not aware of any superior alternative account of cardinality.  I am aware of only 

three available alternative accounts: the theory that numbers are properties of classes 

(Maddy, 1981); the theory that numbers are quantifiers (see Parsons, 1994: 147); the 

theory that numbers are relations between aggregates and properties (Kessler, 1980).  
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Maddy (1981: 503) says "A set S has the number property 3 if and only if (∃x)(∃y)(∃z)((x 

≠ y & y ≠ z & x ≠ z) & (x ∈ S & y ∈ S & z ∈ S) & (∀w)((w ∈ S) ⇒ (w = x or w = y or 

w = z)))."  I say that recursively binding particular members of S to the variables x, y, and 

z is equivalent to counting off those members of S.  Parson gives number-quantifiers like 

this: (∃0x)(F(x)) ⇔ ~(∃x)(F(x)) and (∃n+1x)(F(x)) ⇔ (∃y)(F(y) & (∃nz)(F(z) & z ≠ y)).  

Once again the recursive binding of particular members of S to the numerically-

quantified variables is equivalent to counting off those members of S.  Kessler defines a 

number n as a relation n(x, p) between an aggregate x and a property p.  Example: if x is 

a full deck of cards, then 52(x, is-a-card); 4(x, is-a-suite-of-cards), 1(x, is-a-deck-of-

cards).  The evaluation of Kessler's n(x, p) also requires the sequential recursive binding 

of values to variables (1980: 72); once again this is equivalent to counting.  I say Maddy 

and Kessler respectively define property-theoretic and relation-theoretic counterparts of 

numbers.  However: these counterparts of numbers are not numbers.  Benacerraf (1965: 

282 -284) is skeptical of property-theoretic accounts of number; I share his concerns.  
16Since the Zermelo ordinals satisfy the Dedekind-Peano Axioms, you can use them to do 

arithmetic.  They satisfy the arithmetical part (and only that part) of the NN-conditions.   

So they are arithmetical counterparts of the natural numbers.  The arithmetical 

counterparts of natural numbers are not natural numbers — they merely arithmetically 

simulate the natural numbers.  Arithmetical simulation is arithmetical isomorphism: the 

arithmetical part of the Zermelo structure is isomorphic to the arithmetical part (and only 

that part) of the von Neumann structure.  Arithmetical simulations of simpler number 

systems within more complex number systems are well-known in mathematics.  The 

standard definition of integers as equivalence classes of pairs of natural numbers provides 

a good example.  Roughly: any pair of natural numbers (a, b) has some difference; that 

difference is an integer.  If N is the natural numbers (the finite von Neumann ordinals), 

then the set{ (a, b) ∈ N2 | a + d = b } is the integer -d while { (a, b) ∈ N2  | a = b + d } is 
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the integer +d.   It is easy to construct a model of the Dedekind-Peano Axioms within the 

integers (Hamilton, 1982: 16).  Within such a model, the integer +d simulates the natural 

number d; it is the integer counterpart of d.  But integers are not natural numbers.  They 

have properties and relations that natural numbers do not have.  There are simulations of 

the natural numbers and integers within the rationals; all these simulations are easily 

extended into the real and complex numbers.  Maddy's (1981) properties are property-

theoretic simulations of the natural numbers; Kessler's (1980) relations are relation-

theoretic simulations of the natural numbers; Church's (1941) λ-calculus numbers are 

function-theoretic simulations of the natural numbers.  None of these simulations are the 

natural numbers. 
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