
DOI 10.1515/jisys-2013-0028      Journal of Intelligent Systems 2013; 22(4): 503–525

Brien Smith-Martinez, Arvin Agah* and James M. Stiles
A Genetic Algorithm for Generating Radar
Transmit Codes to Minimize the Target
Profile Estimation Error
Abstract: This article presents the design and development of a genetic algo-
rithm (GA) to generate long-range transmit codes with low autocorrelation side
lobes for radar to minimize target profile estimation error. The GA described in
this work has a parallel processing design and has been used to generate codes
with multiple constellations for various code lengths with low estimated error of
a radar target profile.

Keywords: Evolutionary computing, genetic algorithms, radar transmit codes.

*Corresponding author: Arvin Agah, Department of Electrical Engineering and Computer
Science, University of Kansas, Lawrence, KS 66045-7621, USA, e-mail: agah@ku.edu
Brien Smith-Martinez, Arvin Agah and James M. Stiles: Department of Electrical Engineering
and Computer Science, University of Kansas, Lawrence, KS, USA

1 Introduction
Radar coding is an extensively studied topic. Barker codes, polyphase Barker
codes, and minimum peak side lobe level (PSL) codes are some of the more
popular transmit signals used for radar [7]. Although total integrated side lobe
(TISL) and PSL are two criteria commonly used in rating radar code quality,
the purpose of radar is to estimate a target profile with as little error as pos-
sible. To this end, a radar code should be designed to minimize target profile
estimation error. Given a function that computes the mean squared error (MSE)
of a given transmit code, it is possible to design search algorithms that use the
target profile estimation error as a heuristic and attempt to find optimal codes.
There have been attempts to minimize target profile estimation error using a
greedy algorithm. That approach has yielded good results. In this work, a
genetic algorithm (GA) is developed to find transmit codes, and the quality of
these codes is compared with the quality of the codes found using the available
greedy method [7].

504      B. Smith-Martinez et al.

2 Motivation: Radar Problem
Perhaps the most fundamental of radar problems is that of estimating a range
profile, i.e., determining the backscattered energy of objects as a function of their
distance from the radar. However, the accuracy of this estimate is fundamentally
constrained by the temporal function propagated by the radar transmitter.

A standard processing tool for range profile estimation is the matched filter
(i.e., correlation processor). For this processor, the resulting profile estimate is
simply the convolution of the true range profile with the autocorrelation func-
tion of the transmit signal. Thus, the resulting estimate can be precisely accurate
only when this autocorrelation function – otherwise known as the imaging point-
spread function – approaches an impulse (i.e., thumbtack) response. However,
such a perfect imaging function would require an infinite signal bandwidth.
Instead, a realizable transmit function (with finite bandwidth) would result in
an autocorrelation function with a center lobe, one whose width is inversely pro-
portional to the transmit signal bandwidth. The wider the signal bandwidth, the
narrower the autocorrelation main lobe and the closer to the optimal imaging
function. As a result, the most important characteristic of a radar transmit signal
is bandwidth because this parameter effectively determines the capability of the
sensor to resolve adjacent objects along the range profile.

In addition to bandwidth, another fundamental characteristic of an effec-
tive transmit signal is its energy. Receiver noise will corrupt radar measurement,
and thus, to diminish this deleterious effect on profile accuracy, the transmit
signal energy should be made as large as possible. The problem is that these
two characteristics – bandwidth and energy – can be in conflict with each other.
For example, the simplest and most traditional of radar transmit signals is an
unmodulated pulse. The energy of this signal is proportional to its time width
(i.e., pulse width), whereas the signal bandwidth is inversely proportional to this
same value. As the bandwidth of a pulse increases, its energy will decrease (and
vice versa).

As a result, high-performance radar systems seldom use unmodulated pulses;
instead, they use phase-modulated signals that allow for increased time width –
and thus increased energy – without altering the signal bandwidth. Yet, a signal
with a specified energy, bandwidth, and time width does not uniquely define it –
there are an unaccountably infinite number of functions that can simultaneously
exhibit the same three characteristics. The criterion for selecting the optimum of
these infinite possibilities is their resulting autocorrelation function – the function
whose autocorrelation is most similar to the optimal “thumbtack” imaging func-
tion. Of course, for all signals, at the center of their autocorrelation function will
be a lobe whose width is inversely proportional to the transmit signal bandwidth.

GA for Minimizing Target Profile Error      505

The issue concerning optimality is instead the size of the autocorrelation “side
lobes” – that is, the energy of the autocorrelation function outside of the center
“main lobe.” For optimal range profile estimation, these autocorrelation side lobes
are ideally zero, which, however, is unachievable. Thus, we seek an optimal radar
transmit function with the smallest possible correlation side lobes.

There has been much work directed to finding functions – with both wide
bandwidth and time width – that have these desired autocorrelation properties
(i.e., low side lobes). Many of these solutions are continuous phase-modulated
signals, but another particularly useful strategy has been to consider discretely
modulated signals. For this method, the transmit signal time is divided into an
integer number of “chips,” whose time width is equal to the inverse of the signal
bandwidth. As a result, the number of chips is approximately equal to the time–
bandwidth product of the transmit signal. The relative phase of each chip can be
one of a set of discrete values (all between 0 and 2π radians). This way, the coher-
ent transmit signal is a sequence of discrete phase-modulated states. If M is the
number of chips and N is the number of discrete phase values, then the number
of possible sequences is then NM. For a typical case where M  =  128 and N  =  8,
the resulting value of 8128 renders an exhaustive search impractical. Instead,
search algorithms such as simulated annealing or GAs have been implemented
for finding phase sequences with good autocorrelation properties. Of course, the
mathematical definition of “good” must be specified for these search algorithms.
Typically, the algorithms attempt to minimize either the maximum autocorrela-
tion side lobe level (the min-max criteria) or the average autocorrelation side lobe
level. However, other criteria can be used, for example, information theoretic
measures such as Fisher’s information.

Fisher’s information allows the determination of the Cramer–Rao lower
bound, a lower bound on the mean-squared estimation error of – in this case – the
range profile estimate. Maximizing the Fisher’s information thus directly results
in maximizing the accuracy of the range profile estimate – ultimately the goal
of this design optimization. Moreover, Fisher’s information can be used to drive
the search algorithm. A variant called marginal Fisher’s information (MFI) can
be determined for each possible elemental change in the transmit sequence. The
elemental change with the largest MFI results in the greatest possible decrease
in estimation error and so is selected as the optimal sequence modification. An
iterative repletion of these optimal changes will result in a transmit sequence
that informationally converges – no one element of the transmit phase sequence
can be altered in a manner that would further increase estimation accuracy. This
search method is in contrast to GAs, wherein the change in the sequence (the
mutation) is randomly (as opposed to optimally) determined, and the search has
no specific convergence criteria.

506      B. Smith-Martinez et al.

3 Background and Related Work

3.1 Genetic Algorithms

GAs are search algorithms that use the principles of natural selection and evolu-
tion to find a population of solutions to a given problem. GAs can be used to find
near-optimal solutions in domains too complex for exhaustive search. During the
course of a GA, multiple solutions are kept in what is called a population. In the
classic simple genetic algorithm (SGA), an individual solution (or simply, indi-
vidual) is represented by a string of bits (i.e., chromosome). Every individual in
the population is given a fitness value according to how well the candidate solu-
tion it represents solves the problem at hand. As the GA runs, the population of
solutions is modified in an iterative, generational process [4].

The evolutionary process is carried out by three main operations: selection,
crossover, and mutation. Selection is a process by which members of the current
population are chosen for reproduction; crossover is the process by which sub-
strings of the chosen individuals are exchanged to create a new population of
individuals; and finally, mutation is necessary to prevent the permanent loss of
values at any given string position.

Selection is performed by biased roulette wheel selection. In this parent
selection method, each individual is assigned a percent chance to be selected
proportional to its fitness value. In this manner, pairs of individuals are selected
from the population to undergo crossover.

Crossover is performed by randomly selecting a position in the strings of two
individuals dividing each into two substrings and exchanging the substrings. The
point in the strings at which they are divided into substrings is called a cut-point.
Versions of the crossover operator that have multiple cut-points, and therefore
exchange multiple substrings, have been shown to behave like a random shuffle
and degrade the performance of a GA in comparison to single-point crossover
operations [4].

The mutation operator in the SGA randomly selects a bit in the string to flip.
Crossover and selection alone are sufficient to explore recombinations of exist-
ing solutions but can cause the loss of genetic information. Mutation allows a
random change of value at a random string location. The mutation operator is
applied to newly created strings at a low probability per bit. If the probability of
mutation is low, it does not destructively interfere with selection and crossover
and provides a mechanism to recover lost genetic information. A mutation rate of
one mutation per thousand bits transferred to the offspring in the SGA has been
shown to obtain good results in empirical studies [4].

GA for Minimizing Target Profile Error      507

After parent selection, crossover, and mutation are complete, the result-
ing population of offspring must be combined with the previous population to
produce the next generation of survivors, of which there is a set number. The
method by which this is done is called survival selection. In the SGA, the selec-
tion is generational. The entire population is replaced by the offspring popula-
tion each generation.

3.2 Transmit Code Problem

The definition of the transmit code problem used in this article is given by Jenshak
[7]. TISL and PSL are two criteria commonly used in rating radar code quality; the
purpose of radar is to estimate a target profile with as little error as possible. The
derivation of the target profile error estimation from that research is used for the
evaluation function of the GA. To summarize, a radar transmit code can be rep-
resented as a weighted superposition of complex signal coefficients sn and basis
functions φn(t):

 () ().n ns t s tφ=∑ (1)

A polyphase code is defined as

2

, [0, 1, 2, , 1].
i m

M
ns e m M

π

= ∈ . . . − (2)

The goal is to find the set of coefficients in Eq. (1) that minimize the average
target profile estimation error [7]. The search space for an N-length code with M
symbols in the constellation is MN. The remainder of this article discusses the
design, implementation, and performance of a GA applied to this radar problem.

3.3 Marginal Information Algorithm

To provide an example of a formal algorithm tailored to solve this problem, an
algorithm that uses a greedy approach to find good codes is examined [7]. The
algorithm, called the marginal information algorithm (MIA), builds the code one
coefficient at a time, choosing each item from the constellation based on which
one decreases the MSE of the code the most. Given an initial code of an N-length
zero vector, the algorithm changes the first element of the zero vector to the first
coefficient in the transmit constellation.

The algorithm then computes the MSE of the resulting code. The first element
is changed to each of the coefficients in the constellation. The resulting code with

508      B. Smith-Martinez et al.

the lowest MSE is kept. The algorithm then repeats this process for the each of
the chips in the vector. Once all the signal coefficients have been found, the algo-
rithm goes back to the first chip and tries to find a chip that will decrease the
MSE further. This process is repeated until the algorithm converges. The marginal
information greedy algorithm runs as follows:
1. Select new symbol from constellation.
2. Does this new symbol decrease the MSE?

Yes: Add the chip.
No: Go back to 1.

3. Is the transmit vector full?
Yes: Go back to 1 and continue replacing chips until the MSE does not

reduce after a complete iteration.
No: Go back to 1 and add another chip.

An advantage of this approach is that it is fast, requiring only MN evaluations instead
of the MN evaluations required by an exhaustive search. In this investigation, this
algorithm is implemented for the sake of comparison with the GA. One improvement
made is the parallelization of the evaluation function that takes place at step 2. This
improves the execution time by computing the MSE of all the considered transmit
codes as concurrently as possible. For example, if searching for a 128 Phase-Shift
Keying (PSK) transmit code on a machine with an eight-core processor, eight codes
are being evaluated at once and each processor is given 16 codes to evaluate.

Other examples of applications of GAs to radar include the works of Peng-
zheng et al. [10], Wei et al. [11], Boudamouz et al. [2], Zomorrodi [15], Zhang et al.
[14], and Fan and Deng [3].

4 Experiment Setup
This section describes the technical details of the experimental setup used in this
project, including the design of the GA, fitness scaling, uniqueness preservation,
parallelization, parameters, and implementation.

4.1 Design of the GA

The GA implementation for this article differs significantly from the SGA. The
most important difference is that the chromosome representation is built from a
limited alphabet of symbols instead of being a simple string of bits. The alphabet
is the integers 0 through n – 1, where n is the number of symbols in the constel-

GA for Minimizing Target Profile Error      509

lation of the transmit codes to be generated. Each integer in this alphabet rep-
resents a chip in the PSK constellation. The mapping from integers to chips is
generated at the beginning of the algorithm given the desired code length and
PSK constellation size.

Using this integer representation instead of the binary representation avoids
problems such as not all possible bit-strings representing a valid solution or not
all valid solutions not being possible to generate with equal probability. Using
an integer representation does not necessitate the modification to the selection
and crossover operators. Mutation, however, is changed from a simple bit flip to
a random selection of possible gene values, that is, a random chip. The chance
of mutation is generally kept at the standard rate of one mutation per thousand
genes transferred to the offspring.

The fitness value in the case of the transmit code problem was chosen to be
the inverse of the estimated MSE of the radar transmit code. The inverse is used
because, by convention, a GA seeks increasing fitness values. The GA used for
this article also implements some additional operators including fitness scaling,
uniqueness preservation, and parallelization of the fitness function.

4.2 Fitness Scaling

Early in a GA’s run, extraordinary individuals can be selected too often and domi-
nate the population with their offspring within a few generations. Later in a GA’s
run, the average fitness can be close to the fitness of the best individuals. In this
situation, average individuals and the best individuals have about the same prob-
ability of being selected for reproduction. Fitness scaling is a mechanism used to
prevent these situations. In the algorithm developed for this article, linear fitness
scaling is used:

 f ′  =  af + b, (3)

where coefficients a and b are defined in this work as

max avg

avg

avg max

(1)

()
.

f

s

f

s

f

f f
C f

a

f f C
b

δ

δ

δ

= −
−

=

−
=

(4)

However, these definitions can lead to negative f ′ values for individuals that
are far below favg when favg is close to fmax. To prevent this situation, if

510      B. Smith-Martinez et al.

avg max

min ,
1

s

s

C f f
f

C
−

>
−

(5)

then a and b are defined as

avg min

avg

min avg .

f

f

f

f f
f

a

f f
b

δ

δ

δ

= −

=

−
=

 (6)

A certain relationship between the maximum fitness of the population and
the average fitness of the population is maintained with the following constraint
equations:

max avg

avg avg ,
sf C f

f f
= ∗′
=′ (7)

where ′maxf is the scaled maximum fitness, favg is the average fitness of the popula-
tion, and Cs is a scaling constant that specifies the number of expected copies
of the best individual in the next generation. Additional best fitness individuals
allowed in the population causes an increase in selection pressure, which causes
faster convergence. This can lead to a premature convergence on the local optima.

4.3 Uniqueness Preservation

When uniqueness preservation is used, the algorithm disallows the generation of
new individuals that are identical to any individual in the existing population. If
an individual is generated that has a clone in the population, it is mutated until it
is unique. The purpose of this mechanism is to maintain diversity in a population.
This scheme comes with a small limitation: the search space must be smaller
than the population size plus the number of children generated per generation.

It is possible for fitness scaling and uniqueness preservation to work in
tandem, but in this work, uniqueness preservation is not used in the same run as
fitness scaling. Instead, each method is used separately to compare their results.

4.4 Parallelization

GAs are inherently parallel processes that are typically performed serially. A
GA is initialized by either generating a population of independently randomly

GA for Minimizing Target Profile Error      511

generated individuals or by simply loading a seed population. Every genera-
tion, the genetic operators are performed on the population based on a static
state. Fitness scaling occurs once before parent selection. The selection of pairs
of parents and the subsequent creation of offspring via crossover and mutation
could also be performed simultaneously, as each set of operations does not
influence any other. The evaluation of each individual, at both initialization
of the population and the generation of offspring, is an independent opera-
tion. This is important because fitness evaluation is typically the most com-
putationally expensive portion of GA. Despite the structure of GAs, they are
often designed to run as serial algorithms. However, on a machine with multi-
ple processors, this inherent parallelism can be exploited for faster run times.
The implementation of parallelization for the GA developed for this article is
realized using the synchronous master–slave architecture of Grefenstette [5],
in which a single master process performs all the evolutionary operations and
multiple concurrent processes perform fitness function evaluations. With this
design, given a machine with N processors, N concurrent fitness evaluation
processes are possible. The machines used for the experiments had eight core
processors and so could take advantage of up to eight concurrent fitness evalu-
ation processes.

Experiments that required the comparison of statistical analysis of results
therefore had 30 runs of each parameter set, each with a different random seed.
The way this was accomplished was also in parallel. A shell script runs from a
master machine to connect to 40 slave machines and on each of them starts a
run of the GA. In the experiments, 40 machines are used instead of 30 because
as many as 40 were available at a time, and this allowed as many as 10 runs to
fail due to network interruption. Each machine saves a log file and a state file to
a shared network drive. The log file format lists first the parameters used to run
the GA and follows with four columns: the generation number, the best fitness
in the current population, the average fitness in the population, and the best
fitness found during the entire run of the GA. The reason to track the best found
ever is that in any configuration that uses generational replacement of the popu-
lation, it is possible to lose the best individual found and replace it with a less
fit offspring.

The state file lists the integer representation of each member of the popula-
tion at the end of each generation. Due to the large population sizes and the large
number of concurrent experiments being run, only the most recent generation is
recorded, with the previously written one being overwritten.

In case that a GA does not complete its run, a GA can be started with a state
file as input to initialize the population. If the other parameters are the same, the
course of the GA will continue as if it had not been interrupted. This allows the

512      B. Smith-Martinez et al.

machines to be used by other processes, only running the GA during low-usage
times.

4.5 Parameters

Every GA is subject to a set of parameters that control the specifics of each of
its operators. These can be numerical settings or rates, such as population size,
number of children to create per generation, and mutation rate, or they can be
alternative definitions of operators, such as parent selection, recombination,
mutation, survivor selection, or termination condition.

The GA used in this article uses the same operators for parent selection,
recombination, and mutation as the described SGA. However, it differs in sur-
vival selection. Instead of generational survival selection, elitist survival selec-
tion is used, combining the child population with the current population, sorting
by fitness and culling the worst, and leaving a constant population size. These
operators are the same throughout this investigation. However, in a few experi-
ments, the effects of different values for some of the numerical parameters, such
as mutation rate and population size, are compared.

4.6 Implementation

The GA was implemented in C++ and compiled with the GNU C/C++ compiler
(www.gnu.org). Each instance of the GA was executed on an 8 Intel® Xeon® W3520
(www.intel.com) at a 2.67-GHz core machine with 4 GB of RAM and 119.7 GB of hard
disk space running the 64-bit version of GNU/Linux OS distribution Fedora 13
(www.fedoraproject.org) (Kernel Linux 2.6.34.7-61.fc13.x86 64). Each instance of
the algorithm required a transmit code length, PSK constellation size, random
seed, maximum number of concurrent threads, and the following GA parameters:
number of generations, population size, children per generation, mutation rate,
and flags to enable fitness scaling or uniqueness. Optionally, a text file can be
used to seed the GA. If no seed file is provided, the initial population is uniformly
randomly generated. Seeding has been shown effective [8] in GA approaches.

The output of the GA is two text files. One text file is a record of the algo-
rithm’s progress, saving at the end of each generation three data: the popula-
tion’s average MSE, the best MSE currently in the population, and the best MSE
encountered so far. The other file is a save state, which contains the chromosomes
of each individual in the current population. This can be used as an input file to
seed or continue another execution of the algorithm.

GA for Minimizing Target Profile Error      513

5 Experiments and Results
A series of experiments were conducted, with 30 runs each and using a different
random seed for each run. Each experiment seeks a different transmit code, increas-
ing with length and PSK constellation size. The performance of the GA is compared
against the parallelized version of the greedy MIA and a random transmit code gen-
erator. Each run of the greedy MIA is started with a uniformly randomly generated
seed code instead of a zero vector. The random search generates the same number
of codes as the GA, and reports the best code found. The number of codes evaluated
during run of the GA depends on the number of offspring per generation and how
many generations it runs. Although the GA may potentially find multiple good solu-
tions during a single run, only the best transmit code per run is used in this analysis.

In this section, the experimental results are presented and the effectiveness
of the GA is discussed. With different values for parameters such as population
size, children per generation, and mutation rate, to name a few, a GA will perform
differently. Clearly, finding an optimal configuration for a given problem is at
least as difficult as solving the problem to begin with. Such meta-optimization is
not approached in this article.

However, there are versions of the GA that use fitness scaling or uniqueness to
preserve diversity. In some experiments, their effectiveness is compared against
a GA without any such operator. The results of each experiment are summarized
in tables that list the mean MSE, best MSE, worst MSE, and standard deviation
(SD) of the set of transmit codes each algorithm found. Box plots are also used to
depict the results.

Series of statistical tests are conducted after each experiment. First, one-way
analysis of variance (ANOVA) is used to determine if there is a significant dif-
ference in the means of results. Because each experiment compares more than
two algorithms, it is not known which means are significantly different from each
other. Therefore, if a difference is found, Tukey honestly significant difference
(HSD) [1] is used to make multiple comparisons. The results of the Tukey HSD
tests are summarized by classifying the results of the algorithms into groups that
are not significantly different. Finally, pairwise Wilcoxon rank sum tests [13] are
performed to test whether the distributions of the results differ. For the Wilcoxon
rank sum tests, p-values are adjusted using the Bonferroni correction method [12].

5.1 Length 13 2 PSK

The first experiment conducted seeks a length 13, binary (2 PSK) transmit code.
The longest known Barker code is of length 13; thus, in this case, the global

514      B. Smith-Martinez et al.

minimum is known and an exhaustive search would only take 213 (8192) evalua-
tions. The GA has a population size of 100, has 100 children per generation, and
terminates after 20 generations or 20,000 evaluations. Each algorithm is run 30
times, and the results are summarized in Table 1 and Figure 1.

The ANOVA reveals that there is a statistically significant difference some-
where in the mean result of the algorithms. Tukey HSD test results are used to
classify the algorithms, and each one has a significantly different mean, as illus-
trated in Table 2. Finally, the Wilcoxon pairwise rank sum test further demon-
strates that the distributions in the three groups differ significantly from each
other.

5.2 Length 52 2 PSK

This experiment seeks another binary transmit code, this time with length 52. An
exhaustive search would take 252 (∼4.5e + 15) evaluations. The GA has a popula-

0.35

0.30

0.25

ga pmia rand

Figure 1. Length 13 2 PSK Box Plot Results.

Table 1. Length 13 2 PSK Results.

Algorithm Mean Best Worst Success Rate

GA 0.1533 0.0718 0.2270 0.1667
MIA 0.2926 0.1558 0.4143 0
RAND 0.0964 0.0718 0.1558 0.7000

GA for Minimizing Target Profile Error      515

tion size of 500, has 500 children per generation, and terminates after 200 gen-
erations or 100,000 evaluations. Each algorithm is run 30 times, and the results
are summarized in Table 3 and Figure 2.

The ANOVA reveals that there is a statistically significant difference some-
where in the mean result of the algorithms. However, both Tukey multiple com-
parisons of means (Table 4) and the pairwise Wilcoxon rank sum tests show that

Table 2. Length 13 2 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

PMIA a
GA b
RAND c

0.35

0.30

M
S

E

0.25

ga pmia rand

Algorithm

MSE of Transmit Codes Found

Figure 2. Length 52 2 PSK Box Plot Results.

Table 3. Length 52 2 PSK Results.

Algorithm Mean Best Worst SD

GA 0.2632 0.2134 0.3316 0.02897
MIA 0.2738 0.2231 0.3924 0.04207
RAND 0.3163 0.2408 0.3479 0.02315

516      B. Smith-Martinez et al.

difference exists between the random search and the greedy MIA or the GA. There
is no significant difference in the mean or distribution of the results of the greedy
MIA or the GA.

5.3 Length 58 2 PSK

This experiment seeks another binary transmit code, this time with length 58.
An exhaustive search would take 258 (∼2.8e + 17) evaluations. The GA has a pop-
ulation size of 500, has 500 children per generation, and terminates after 200
generations or 100,000 evaluations. In this experiment, different modifications
of the GA are tried. A standard GA, a GA using fitness scaling, and a GA using
uniqueness preservation are all compared. In addition, each variation of the GA
is also run with two different mutation rates. A mutation rate of 0.03 mutations
per 1000 chips transferred is compared against a mutation rate of 0.17 mutations
per 1000 chips. Each algorithm is run 30 times, and the results are summarized
in Table 5 and Figure 3.

ANOVA reveals that there is a statistically significant difference in the mean
result of the algorithms. Tukey HSD test results are used to classify the algorithms
(Table 6). Both of the GAs that used uniqueness preservation are classified as
having a significantly different mean from the rest of the algorithms. The GAs

Table 4. Length 52 2 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

MIA a
GA a
RAND b

Table 5. Length 58 2 PSK Results.

Algorithm Mean Best Worst SD

GA-lu 0.2069245 0.165078 0.2261300 0.01281314
GA-mu 0.2079898 0.178671 0.2317660 0.01425155
GA-mf 0.2625325 0.201165 0.3086400 0.02761104
GA-m 0.2635027 0.215362 0.3193720 0.03009706
GA-l 0.2752430 0.175345 0.3358340 0.03435993
GA-lf 0.2808252 0.201273 0.3414180 0.03227592
MIA 0.2882690 0.208831 0.3887021 0.04464315
RAND 0.3268788 0.277506 0.3563460 0.01996862

GA for Minimizing Target Profile Error      517

that used the higher mutation rate outclassed the GAs with the lower mutation
rate and no uniqueness preservation, which did not have a significantly different
mean from the greedy MIA. Finally, the Wilcoxon pairwise rank sum test further
demonstrates the statistical relationships between the distributions of each set
of results.

5.4 Length 51 32 PSK

In this experiment, polyphasic codes of length 51 and 32 PSK are generated. An
exhaustive search would take 3251 (∼5.7e + 76) evaluations. The GA has a popula-

0.35

0.30

M
S

E

0.25

0.20

ga_If ga_Is ga_Iu ga_mf ga_ms ga_mu pmia rand

Algorithm

MSE of Transmit Codes Found

Figure 3 Length 58 2 PSK Box Plot Results.

Table 6. Length 58 2 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

Gals ab
GAlu c
GAmf a
GAms a
GAmu c
MIA b
RAND d
GAlf ab

518      B. Smith-Martinez et al.

tion size of 500, has 500 children per generation, and terminates after 300 gen-
erations or 150,000 evaluations. In this experiment, different modifications of the
GA are tried. A standard GA, a GA using fitness scaling, and a GA using unique-
ness preservation are all compared. A mutation rate of 0.19 mutations per 1000
chips transferred is used throughout the experiment. Each algorithm is run 30
times, and the results are summarized in Table 7 and Figure 4.

ANOVA reveals that there is a statistically significant difference in the mean
result of the algorithms. Tukey HSD test results are used to classify the algorithms.
The standard GA and the GA using fitness scaling were classified as having insig-
nificantly different means from each other but significantly different from the rest
(Table 8). The greedy MIA mean MSE is better by  > 1 SD than the next closest algo-
rithm, the GA using uniqueness preservation. The Wilcoxon pairwise rank sum

0.4

0.3

0.2

ga_f ga_s ga_u pmia rand

Algorithm

0.1

M
S

E

MSE of Transmit Codes Found

Figure 4. Length 51 32 PSK Box Plot Results.

Table 7. Length 51 32 PSK Results.

Algorithm Mean Best Worst SD

GAf 0.1754435 0.141882 0.2082470 0.01692452
GAs 0.1744988 0.141882 0.2082470 0.01648276
GAu 0.1077868 0.081401 0.1381190 0.01251883
MIA 0.0878632 0.062018 0.1103647 0.01272620
RAND 0.3268788 0.277506 0.4548510 0.01568197

GA for Minimizing Target Profile Error      519

test demonstrates that the distributions in the three groups differ significantly
from each other.

5.5 Length 17 64 PSK

In this experiment, polyphasic codes of length 17 and 64 PSK are generated.
An exhaustive search would take 6417 (∼5.0e + 30) evaluations. The GA varies
in population size in this experiment. One set of GAs has a population size of
500, has 500 offspring per generation, and terminates after 3000 generations
or 1,500,000 evaluations. The other set of GAs has a population size of 5000,
has 5000 offspring per generation, and terminates after 600 generations or
3,000,000 evaluations.

In this experiment, different modifications of the GA are tried. A standard
GA, a GA using fitness scaling, and a GA using uniqueness preservation are all
compared. A mutation rate of 0.19 mutations per 1000 chips transferred is used
throughout the experiment. Each algorithm is run 30 times, and the results are
summarized in Table 9 and Figure 5.

Table 8. Length 51 32 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

GAs a
GAu b
MIA c
RAND d
GAf a

Table 9. Length 17 64 PSK Results.

Algorithm Mean Best Worst SD

GAfl 0.09090319 0.04486430 0.1498160 0.02600308
GAfs 0.08726232 0.04192010 0.1402750 0.02263069
GAl 0.09181526 0.05430950 0.1231710 0.01892948
GAs 0.10200423 0.04623240 0.1788180 0.02808770
GAul 0.08491796 0.04225520 0.1161510 0.01833392
GAus 0.08069726 0.04356430 0.1410860 0.02888958
MIA 0.09834705 0.05479663 0.1463733 0.02227150
Rand 0.22806287 0.19250400 0.2535850 0.01580852

520      B. Smith-Martinez et al.

ANOVA confirms that there is a statistically significant difference in the mean
result of the algorithms, as illustrated in Table 24. The differences given by Tukey
HSD multiple comparisons of means are calculated, and the resulting classifica-
tions are shown in Table 10.

5.6 Length 49 64 PSK

In this experiment, polyphasic codes of length 49 64 PSK are generated. An
exhaustive search would take 6449 (∼3.1e + 88) evaluations. The GA has a popula-

MSE of Transmit Codes Found
M

S
E

0.25

0.20

0.15

0.10

0.05

ga_fI ga_fs ga_I ga_s ga_ul

Algorithm

ga_us pmia rand

Figure 5. Length 17 64 PSK Box Plot Results.

Table 10. Length 17 64 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

GAfs ab
GAl ab
GAs a
GAul ab
GAus b
MIA ab
RAND c
GAfl ab

GA for Minimizing Target Profile Error      521

tion size of 1000, has 1000 offspring per generation, and terminates after 500
generations or 500,000 evaluations. In this experiment, different modifications
of the GA are tried. A standard GA, a GA using fitness scaling, and a GA using
uniqueness preservation are all compared. A mutation rate of 0.20 mutations
per 1000 chips transferred is used throughout the experiment. The data from the
random search algorithm are missing due to an error at run time that has not been
corrected at the time of writing. Each algorithm is run 30 times, and the results are
summarized in Table 11 and Figure 6.

ANOVA confirms that there is a statistically significant difference in the mean
result of the algorithms. The resulting classifications given by Tukey HSD are
shown in Table 12. The results of the pairwise comparisons using the Wilcoxon
rank sum test support these classifications.

MSE of Transmit Codes Found
0.18

0.16

0.14

0.12

0.10

0.08

0.06

ga_f ga_s ga_u pmia

Algorithm

M
S

E

Figure 6. Length 49 64 PSK Box Plot Results.

Table 11. Length 49 64 PSK Results.

Algorithm Mean Best Worst SD

GAf 0.13069591 0.09612920 0.1756330 0.018230771
GA 0.12467841 0.09612920 0.1639320 0.016499612
GAu 0.09467253 0.07622120 0.1152980 0.009212712
MIA 0.08192220 0.04752182 0.1032973 0.012021836

522      B. Smith-Martinez et al.

6 Conclusion
This article presented an SGA that attempts to find transmit codes with minimal
radar target profile expected error. The results of the GA versions using fitness
scaling and uniqueness preservation were compared with an existing greedy
search method.

When searching for binary codes, the GA-generated results as good as or
better than the greedy method. However, when searching for polyphase codes,
the GA had equal or inferior results to the greedy method. In the case of length 51
32 PSK code, the greedy algorithm-generated codes with mean MSE better by  > 1
SD than the closest GA. In the case of length 17 64 PSK code, some versions of the
GA had the same performance as the greedy method. In the largest search space,
length 49 64 PSK, the greedy MIA found the best codes and was significantly
better than the codes the GAs found.

GAs with varying mutation rates and population sizes were compared. Two
different mutation rates were used when searching for length 58 2 PSK codes and
did not cause statistically different results. Two different population sizes were
used when searching for length 17 64 PSK codes and did not cause statistically
different results.

Two diversity-preserving measures, fitness scaling and uniqueness preserva-
tion, were used in several of the experiments, as well as the standard GA without
any such measure. In all the cases in which these two methods were compared
(length 58 2 PSK, length 51 32 PSK, length 17 64 PSK, length 49 64 PSK), the GAs
using fitness scaling found slightly better results but did not find statistically sig-
nificantly different results than the standard GA. The GA using uniqueness pres-
ervation found statistically significantly better results than both the standard GA
and the GA using fitness scaling.

In terms of future work, although the GA did well in finding good binary radar
transmit codes, when searching for longer codes with larger constellations, the
GA did not perform as well as the greedy MIA. Both algorithms used the same
heuristic, but the GA required many more evaluations to find good solutions,
whereas the greedy algorithm quickly converged.

Table 12. Length 49 64 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

GAs a
GAu b
MIA c
GAf a

GA for Minimizing Target Profile Error      523

However, the GA could certainly be improved. One way to cut down on the
number of evaluations the GA requires would be to keep a table of the fitness of
previously found individuals. It is possible to regenerate and reevaluate a previ-
ously found solution. This wastes computation time. Before implementing such
a mechanism, it would be prudent to run first an experiment that keeps a count
of every unique individual code generated during the course of GA. If, for a given
problem set, a good portion of the evaluations is for previously generated indi-
viduals, then this would be a wise optimization.

The fact that GAs using uniqueness preservation performed significantly
better than any other GA configuration suggests that the more standard fea-
tures of the GA are not well suited for this problem. Only a few experiments were
conducted to compare certain parameters of the GA such as mutation rate and
population size. Any future investigation would require some tuning of these
parameters. Variations in parent selection and survival selection methods should
also be explored. The elitist survival selection method used in this project may be
too aggressive and have causes a premature convergence of the population, even
with fitness selection and uniqueness preservation in place. The same could be
said of the fitness proportional parent selection.

Mutation rates, which were kept relatively low throughout this investigation,
may need to be raised as the search space increases. Alternatively, instead of
keeping a fixed mutation rate for every gene in all the individuals in the popula-
tion, a technique from evolutionary strategies could be used, which, along with
the solutions, keeps a vector of mutation rates for each individual, and these
mutation rate data are evolved along with the solutions [6].

Another diversity preservation method called crowding could be investi-
gated as well. Crowding is similar to uniqueness preservation, but instead of
disallowing the generation of new individuals that are identical to any indi-
vidual in the existing population, it replaces the most similar member of the
population [9].

Although the parallelization scheme used in this project took advantage of
all the processing power available on a single multi-core machine, a networked
approach with remote machines performing fitness evaluations at less than full
capacity would be much better suited to today’s cloud-based computing, as pow-
erful networked computers become ubiquitous.

Another approach could be to modify the GA to run in phases. First, gener-
ate codes with a smaller constellation early in the run; then, when the popula-
tion has converged, increase the constellation size, translate the population’s
codes to the new size, and dramatically increase the mutation rate for a few
generations. This approach can be repeated until the desired constellation size
is reached and the population converges. This scheme could be implemented

524      B. Smith-Martinez et al.

using the GA developed for this project and a function that translates trans-
mit codes from one constellation size to another. Each phase would represent
a single run of the GA. The translation function would transform the state file
produced, and the next phase of the GA would be another run seeded with the
transformed state file. Finally, another scheme that would seed the GA would
be a hybrid approach that would generate the initial population of the GA using
multiple runs of the greedy marginal improvement algorithm. This hybrid
approach would require a GA that is improved using any of the methods sug-
gested in this article.

Received May 7, 2013; previously published online June 5, 2013.

Bibliography
[1] H. Abdi and L. J. Williams, Tukey’s honestly significant difference (HSD) test, in:

Encyclopaedia of Research Design, N. Salkind, ed., Sage, Thousand Oaks, CA, 2010.
[2] B. Boudamouz, P. Millot and C. Pichot, MIMO antenna design with genetic algorithm

for TTW radar imaging, in: Proceedings of the 9th European Radar Conference (EuRAD),
pp. 150–153, 2012.

[3] G. Fan and W. Deng, MIMO radar transmit beam pattern synthesis based on genetic
algorithm, in: Proceedings of the 5th Global Symposium on Millimeter Waves (GSMM
2012), pp. 445–448, Harbin, China, 2012.

[4] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, 2nd ed.,
Addison-Wesley Longman Publishing Co., Boston, MA, 1989.

[5] J. J. Grefenstette, Parallel adaptive algorithms for function optimization, Technical Report
No. CS-81-19, Computer Science Department, Vanderbilt University, Nashville, TN, 1981.

[6] J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press,
Ann Arbor, MI, 1975.

[7] J. D. Jenshak, A fast method for generating transmit codes for radar, in: Proceedings of the
Radar Conference, pp. 1–6, Rome, Italy, 2008.

[8] B. A. Julstrom, Seeding the population: improved performance in a genetic algorithm
for the rectilinear Steiner problem, in: Proceedings of the ACM Symposium on Applied
Computing (SAC‘94), pp. 222–226, 1994.

[9] O. J. Mengshoel and D. E. Goldberg, The crowding approach to niching in genetic
algorithms, Evol. Comput. 16 (2008), 315–354.

[10] L. Pengzheng, H. Xiaotao, W. Jian and M. Xile, Sensor placement of multistatic radar
system by using genetic algorithm, in: Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), pp. 4782–4785, 2012.

[11] P. Wei, P. W. Li and Y. Jinsong, Adaptive genetic algorithm evidence model and its
application for discriminating enemy radar operation intention, in: Proceedings of the
24th Chinese Control and Decision Conference (CCDC), pp. 1088–1093, 2012.

[12] Wikipedia, 2013. Available at: en.wikipedia.org/wiki/Bonferroni_correction. Accessed
May 2013.

GA for Minimizing Target Profile Error      525

[13] C. J. Wild and G. A. F. Seber, Chance encounters: a first course in data analysis, Wiley, New
York, 2000.

[14] Z. Zhang, Y. Zhao and J. Huang, Array optimization for MIMO radar by genetic algorithms,
in: Proceedings of the 2nd International Congress on Image and Signal Processing
(CISP‘09), pp. 1–4, 2009.

[15] M. Zomorrodi, Improved genetic algorithm approach for phased array radar design, in:
Proceedings of the Asia-Pacific Microwave Conference (APMC), pp. 1850–1853, 2011.

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.

