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Abstract 
There is a vast literature within philosophy of mind that focuses on artificial intelligence, 
but hardly mentions methodological questions. There is also a growing body of work in 
philosophy of science about modeling methodology that hardly mentions examples from 
cognitive science. Here these discussions are connected. Insights developed in the 
philosophy of science literature about the importance of idealization provide a way of 
understanding the neural implausibility of connectionist networks. Insights from 
neurocognitive science illuminate how relevant similarities between models and targets 
are picked out, how modeling inferences are justified, and the metaphysical status of 
models.  
 
 
1. Introduction 

For about 20 years, philosophy of artificial intelligence (AI) has been confined to 

a rather dusty corner of philosophy of mind.1 Despite the very widespread use of methods 

like support vector machines, decision trees, principal components analysis, and neural 

networks in many branches of science and engineering, contemporary AI has largely 

escaped the notice of philosophers of science.2 During the same time period, models and 

simulations have grown from a niche subject to a popular sub-discipline within 

philosophy of science, although these discussions tend to focus on the use of models in a 

handful of fields (economics, climate science, physics, ecology) that does not include the 

neurocognitive sciences.  

It is past time for these estranged relatives to be reunited. With the infiltration of 

machine learning into so many of the technologies that mediate our lives, understanding 

AI methods could hardly be more topical. Likewise, understanding how and when to trust 
                                                             
1 For signs of renewed activity, see Buckner (2019). 

2 Godfrey-Smith (2006, 2009) mentions neural networks very briefly. 
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the predictions of climate models is urgently important. This paper paves the way for the 

re-embrace of philosophy of AI into philosophy of science, and illustrates some potential 

benefits on both sides. 

A natural first step in bringing AI back into philosophy of science is to revisit a 

problem that holds a central place in discussions of methodology in AI: why is neural 

plausibility considered helpful in connectionist models, when the models are known not 

to be realistic? This problem was never resolved, but continues to be relevant, most 

recently in discussions of deep learning, where “adversarial examples” are revealing 

differences between computer and human vision (see Han et al. 2019). During 

connectionism’s heyday, the philosophical vocabulary to answer this question was 

lacking. Here we consider the problem of why and how cognitive models should be 

neurally plausible through the lens of a more general issue in scientific modeling: in what 

ways do models need to resemble their target systems in order to produce relevant, 

generalizable results? This proves useful in understanding connectionist models.  

Insights from the neurocognitive sciences likewise reveal important gaps in 

accounts of modeling and simulation, which rely on examples from a restricted set of 

scientific fields. Neurocognitive science brings a more critical view of representation, and 

digs deeper into questions about causation and the metaphysics of models. An analysis of 

inference in connectionist modeling based on kinds can be extended to models more 

generally. 

Section 2 exhumes the problem of connectionism’s simultaneous endorsement of 

and failure to follow through on neural plausibility. Section 3 surveys recent 

philosophical work on models and simulations to show how connectionism’s 
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methodological puzzle can be resolved by understanding connectionist models as 

idealized models of cognitive mechanisms. Section 4 explores gaps in standard 

philosophical accounts of scientific modeling from the perspective of the neurocognitive 

sciences, and outlines a novel account of the relationship between models and targets 

inspired by an analysis of connectionist models. Section 5 illustrates how this account 

applies to a series of examples of connectionist models. 

2. The Neural Implausibility of Connectionist Models 

Although it has a longer history, philosophical interest in connectionist modeling 

stems largely from the Parallel Distributed Processing (PDP) Research Group, whose 

two-volume ‘bible’ (Rumelhart and McClelland 1986a; McClelland and Rumelhart 1986) 

sparked debate about computational methods in cognitive science.3 The standard 

connectionist network architecture is a three-layer, feedforward network of simple 

neuron-like units, where each unit sends output to every unit in the next higher layer. Any 

pattern of connections is possible though, including sparse, lateral, feedback, or recurrent 

connections. Contemporary deep learning networks include more than 3 layers, and are 

often connected in small neighborhoods. The activity of the network is defined by each 

unit’s activation, each connection’s weight, and the activation function used to calculate a 

unit’s output based on the weighted sum of its input activations. The weights are adjusted 

using a learning rule designed to minimize overall error.  

At first glance, the connectionist project seems to be about building neurally 

plausible AI models. The introduction to the PDP bible states, “One reason for the appeal 

                                                             
3 A renewed interest in some of these questions is currently being hashed out in response 

to Marcus (2018). 
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of PDP models is their obvious ‘physiological’ flavor: They seem so much more closely 

tied to the physiology of the brain than are other kinds of information-processing model” 

(McClelland and Rumelhart 1986, 10). But on closer inspection, both the statement, and 

the motivations for the project, prove harder to interpret. What is meant by “flavor”? 

Why is “physiological” in scare quotes? In virtue of what is having a “physiological” 

flavor appealing?  

The PDP group’s stated inspiration was that classical AI’s models seemed 

unsuited for some kinds of computations: 

the biological hardware is just too sluggish for sequential models of the 

microstructure to provide a plausible account… Each additional constraint 

requires more time in a sequential machine, and, if the constraints are imprecise, 

the constraints can lead to a computational explosion. Yet people get faster, not 

slower, when they are able to exploit additional constraints. (McClelland and 

Rumelhart 1986, 12) 

It is also worth noting that the PDP group’s project was very much continuous with 

classical AI in their concern for building models that produce output that matches the 

results of psychological experiments, and their attention to reaction times: moves taken 

straight out of the cognitive psychologist’s toolbox.4 But because it was taken as a turn 

away from traditional approaches to cognitive science, the PDP bible’s appeal to 

biological hardware invited objections from the AI and cognitive psychology 

mainstream. These objections are organized below into four problems. 

2.1 The Levels Problem 

                                                             
4 Hinton, Rumelhart, and McClelland all started out as psychologists. 
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The first major critique concerns what level PDP models are intended to occupy. 

Broadbent argues that McClelland and Rumelhart (1985) inappropriately cast their 

distributed memory system as having “implications at the psychological and not merely 

at the physiological level” (Broadbent 1985). Broadbent’s appeal to levels refers to Marr 

(1982), with the implication that cognition ought to be independent of implementation. 

Fodor and Pylyshyn (1988) pose Broadbent’s challenge as a dilemma: either 

connectionist models are “mere implementations” of symbolic models, or they fail to 

adequately capture cognition. If PDP models are psychological models, then neural 

details should be irrelevant and afford no advantage. If PDP models are implementation 

level models, they might be interesting to neuroscientists, but are not cognitive science. 

It would require many pages to list all the variations of this reaction. Suffice it to 

say that the Stanford Encyclopedia of Philosophy has set it down as received opinion that 

there are two kinds of connectionist: implementational and radical. Implementational 

connectionists “hold that the brain’s net implements a symbolic processor,” while radical 

connectionists “claim that symbolic processing was a bad guess about how the mind 

works” (Garson 2015). Some connectionist projects, such as the articles in Hinton (1990), 

show that PDP models are capable of structured representations and serial processing, 

i.e., implementational connectionism. Other connectonist projects, such as Plaut (1995), 

show that what looks like serial processing on the surface, might be better explained in 

terms of network-level details, i.e., radical connectionism. A not-so-radical 

connectionism claiming that symbolic processing is a bad guess at how some mental 

functions work is closer to what most connectionists believe.  
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Either way, connectionists do not generally accept that their models are mere 

implementations. Rumelhart and McClelland (1985) object that much of what concerns 

cognitive psychologists is at the algorithmic rather than the computational level.5 

Smolensky (1988, 1988a) describes connectionist models as being at the “sub-symbolic 

level,” and says that the goal of connectionist research is a “middle ground between 

implementing symbolic computation and ignoring structure” (Smolensky 1988a). What 

this middle ground is exactly is unclear. 

2.2 The Neural Detail Problem 

Another well-rehearsed challenge is that connectionist models are unlike brains in 

their details. The backpropagation algorithm is infamous for being neurally implausible; 

error signals cannot in general be propagated backward through a network of neural 

connections, as the algorithm requires. Likewise, nodes in connectionist models typically 

have deterministic activation functions, whereas real action potentials are stochastic.  

A key example of the neural detail problem is the flexibility in how to interpret 

single units. In networks with local representations, units are assigned specific meanings, 

such as the names, occupations, and ages of members of the Jets and Sharks in 

McClelland (1981). In networks with distributed representations, “each entity is 

represented by a pattern of activity distributed over many computing elements, and each 

computing element is involved in representing many different entities” (Hinton 1984). 

Far too few units are used in most connectionist models to be realistic brain models. In 

some connectionist networks, units explicitly stand in for whole populations of neurons, 

                                                             
5 See Churchland and Sejnowski (1990) on how connectionist models relate to Marr’s 

levels. 
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with the activation of the unit representing a population vector.6 There is thus 

considerable diversity in what a unit is meant to correspond to. 

One of the most debated examples is the past-tense learner (Rumelhart and 

McClelland 1986). This network takes English verbs as inputs, and learns to output their 

past tenses. It is trained using a series of examples, including both regular verbs (add 

“ed”) and irregular verbs (went, swam). The past-tense learner’s success in learning to 

conjugate past tenses without any explicit set of rules separating regular and irregular 

verbs was, as Boden puts it, “theoretical dynamite” (Boden 2006, 956). However, the 

past-tense learner was also vigorously criticized for its failure to simulate physiological 

detail. The encoding of its input and output verbs, as phonetic triples called 

“Wickelfeatures” is perhaps the least plausible detail.  

Critics of connectionism treat these disanalogies as mistakes, but the PDP group 

was well aware that the “physiological” flavor stopped short of realistic detail. Volume 2, 

Chapter 20 of the PDP bible describes the ways in which artificial neural networks are 

not like real brains. The introduction also hedges on whether physiological plausibility is 

the goal:  

“Though the appeal of PDP models is definitely enhanced by their physiological 

plausibility and neural inspiration, these are not the primary bases for their appeal 

to us... PDP models appeal to us for psychological and computational reasons” 

(McClelland and Rumelhart 1986, 11).  

                                                             
6 Wilson and Cowan (1972) derived equations for the average spike rate of populations of 

neurons that allows populations of neurons with random, dense connections to be treated 

as aggregates, and these equations closely match those used in connectionist models. 
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Lack of realistic neural detail was, apparently, a design feature.  

Part of what is going on is that practical concerns require that models not be too 

complex. That putting too much detail into a model is a mistake is a common refrain 

among connectionists: “It’s not necessary to put in the kitchen sink to get insight... just to 

simulate the hell out of populations of everything in the model is mindless” (J.D. Cowan, 

quoted in Anderson and Rosenfeld 2000). McClelland (2009) argues that while there is a 

cost to making simplifications in modeling, it is necessary to simplify to achieve 

understanding. But the implausibility seems to run deeper than just pragmatism. 

2.3 The Abstraction Problem 

Another puzzle is that connectionists sometimes describe their models in 

mathematical terms. Smolensky claims that connectionism explores what continuous 

(rather than discrete) mathematics can reveal about the nature of cognition (1991). 

Thomas and McClelland call connectionist models, “a sub-class of statistical models 

involved in universal function approximation” (2008). 

An example of this is Touretzky and Hinton (1988), which shows how distributed 

representations can be used to “construct a working memory that requires far fewer units 

than the number of different facts that can potentially be stored” (Touretzky and Hinton 

1988). Here no effort is made to recreate neural details beyond general structural features. 

The point is to demonstrate a property such networks have no matter what the units 

represent, yet at the same time, the model is clearly meant as an investigation of working 

memory. One might wonder how it can do both. 

2.4 The Explanation Problem 
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The final challenge concerns the status of PDP models as explanations. Green 

worries that “if connectionist models are NOT to be considered THEORIES of cognition, 

in the traditional scientific sense of the word, then the question arises as to what exactly 

they are, and why we should pay attention to them” (Green 1998). According to Green, 

the only interpretation of connectionist networks as theories is one where they are “literal 

models of the brain activity that underpins cognition” (Green 1998). But this is 

undermined by the implausibility of connectionist models.  

In classical AI, a computer program that produces output comparable to human 

performance on a cognitive task is considered a theory of that cognitive task. In calling 

their programs theories, Newell and Simon (1961, 1976) have in mind the deductive-

nomological (DN) account (Hempel 1958): “[A] computer program used as a theory has 

the same epistemological status as a set of differential equations or difference equations 

used as a theory” (Newell and Simon 1961). The logical calculus in the program has the 

same status as the law and observation statements that constitute a theory in the physical 

sciences.  

Connectionist models are not theories in the DN sense; they do not logically 

deduce behavior or encode lawlike regularities. By the late 1980’s the DN account was 

no longer the received view of scientific explanation, but the lack of consensus on what 

should take its place left it open what sort of explanations connectionist models provide.  

3. Connectionist Models as Idealized Models of Cognitive Mechanisms 

Recent developments in philosophy of science shed light on the problems above.  

3.1  Mechanistic Explanation 
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The mechanistic view of explanation has largely supplanted the DN account in the 

biological sciences. The levels connectionists are concerned with can be thought of as 

mechanistic levels (Craver 2007). Mechanistic explanation situates a phenomenon within 

a multi-level system of mechanisms, where each level constrains and is constrained by its 

neighboring levels. A mechanistic explanation involves showing how component entities 

and their activities are organized to bring about a phenomenon, and identifying the 

mechanism’s role in higher-level phenomena. 

The suggestion that connectionist models can be understood in terms of 

mechanistic explanation is raised in Miłkowski (2013), and expanded upon in Stinson 

(2018). This insight is in tune with the PDP group’s stated motivations. Rather than 

seeing physiology and cognition as independent, connectionists explore the ways in 

which the physiological microstructure constrains cognition. The PDP bible lists the 

constraints they take from neuroscience, including: “There is a very large number of 

neurons… Neurons receive inputs from a large number of other neurons… Learning 

involves modifying connections… Neurons communicate by sending activation or 

inhibition through connections…” (Rumelhart and McClelland 1986b, 130–32).  

That mechanistic explanations have no privileged level helps explain why units 

can correspond to single neurons, populations of neurons, or higher-level entities like 

phonetic representations. Connectionist models can investigate any number of locations 

in a system of mechanisms. As Churchland puts it, ``Network models… depend in 

important ways on constraints from all levels of analysis…. Since the networks are meant 

to reflect principles at entirely different levels of organization, their implementations will 

also be at different scales in the nervous system” (Churchland and Sejnowski 1990). 
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3.2 Abstraction 

Simplicity is essential not only for getting models to work, but also for 

explanation. The cost of simplification is that when you draw an inference from a 

simplified model, it may be that the interesting properties of the model result from 

aspects of the model that differ from the target rather than from what the model and target 

have in common. Connectionist models are different from brains in many ways, so one 

might expect them to behave differently. This is an instance of a very general worry 

about scientific models, namely, which details need to be captured accurately for a model 

to inform us about the target system, and which can be safely altered. This problem has 

been the subject of much work in philosophy of science.  

One kind of simplification is what Cartwright (1989) calls abstraction. Abstract 

models remove details so that the effect of a small number of variables can more easily 

be investigated on their own. Abstracting away too many details can lead to error when 

there are complex relationships between variables, such that investigating each in 

isolation is not straightforwardly informative about the combined picture. Nevertheless, 

quite often it is perfectly legitimate. A comparison can be made to how experiments need 

to control variables in order to be interpretable. There is a trade-off to be made between 

naturalistic field experiments with many uncontrolled variables, and lab experiments that 

are more readily interpretable, but have less external validity.  

The trick is to figure out which details matter. Morgan (2002, 2003) argues for the 

importance of materiality: sharing the same materials lends experiments closer access to 

their targets than models, which makes experimental systems more likely to share the 

properties that are relevant. Parker objects to Morgan’s assessment of computer 
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simulations as “just mathematical modeling exercises” (Parker 2009), arguing that 

simulations are physical models. She points out that in weather forecasting, modelers are 

better able to set up the relevant initial conditions in a computer simulation than in a 

laboratory model that uses the same materials as real weather systems. Simulations are 

thus better able to predict the weather than “same stuff” laboratory models, and the key is 

“whether the experimental and target systems were actually similar in the ways that are 

relevant, given the particular question to be answered about the target system” (Parker 

2009, 493). In another meteorological model, sizable volumes of atmosphere are treated 

as homogeneous points in a grid, while measurements of the complex dynamics at a scale 

lower than the grid resolution are approximated with a single parameter value. Ignoring 

the known details at a finer grain of resolution leads to more accurate weather predictions 

than if those details were included in the model (Norton and Suppes 2001, 95–96). (See 

also Küppers and Lenhard 2004.) 

Likewise in cognitive modeling, when the goal is to predict the behaviour of a 

cognitive agent, pragmatic concerns like maximizing accuracy take precedence over 

modeling the finer details of the system. This can be seen in the popularity of support 

vector machines, which make little to no effort to mimic human visual processing, in the 

ImageNET image recognition challenge (Russakovsky et al. 2015).  

Giere (2004), and Godfrey-Smith (2006) focus on the representational role of 

models, and likewise argue that models and targets being similar in the relevant respects 

is what justifies inferences from the one to the other. Which similarities are relevant 

depends on the context: “scientists use continuous fluid models to represent water for the 
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purpose of studying fluid flow and also use molecular models for the purpose of 

representing water for the study of Brownian motion” (Giere 2004). 

If the point of the past-tense learner had been to model how verbs are represented 

in the brain, or to simulate conjugation in detail, then the manner of encoding input and 

output verbs would have been relevant, and using Wickelfeatures would have been 

inappropriate. But Rumelhart and McClelland wanted to see whether what appeared to be 

a structured rule-following behaviour could be achieved without building that structure 

in. The way the verbs are represented was bracketed off as irrelevant, given that goal.  

Winsberg highlights the importance of arguments, to demonstrate that the results 

scientists get “from manipulating their respective pieces of equipment are appropriately 

probative concerning the class of systems that interest them” (Winsberg 2009, 577). 

Those arguments are based not just on similarity, but also on having knowledge about 

how to build good models, which comes from past successes using the same bag of 

modeling tricks.  

Batterman (2001, 2002) describes how the use of mathematical tools like 

renormalization groups depends on paring down particular problems to minimal models. 

What Batterman calls “asymptotic” methods are able to explain the universal, stable 

phenomenologies that are shared by, for example, microstructurally diverse fluids near 

the critical point in phase transitions, as well as magnets transitioning between ferro- and 

paramagnetic states (Batterman 2001, 38). These methods not only offer explanations of 

these universal phenomena, but by “telling us what (and why) various details are 

irrelevant for the behavior of interest, this same analysis also identifies those physical 
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properties that are relevant for the universal behavior being investigated” (Batterman 

2001, 42).  

Something like asymptotic explanation appears in Fuhs and Touretzky’s (2006) 

model of path integration in spatial memory. Their model seeks to explain how rats 

navigating mazes are able to find efficient paths to goal locations regardless of the paths 

they have previously traveled, as well as the peculiar hexagonal patterns found in grid 

cells’ firing fields. As a possible explanation of the hexagonal patterns, Fuhs and 

Touretzky showed that “hexagonally spaced activity bumps can arise spontaneously on a 

sheet of neurons in a spin glass-type neural network model” (Fuhs and Touretzky 2006, 

4266). In spin glass models, each unit is connected to its closest neighbors in a multi-

dimensional grid. This network structure is loosely based on the local structure in 

entorhinal cortex, where grid cells are found, on the assumption that dendrites are closely 

packed. When circles or cylinders of uniform size are closely packed together, the highest 

density arrangement is a hexagonal pattern. This is true regardless of whether they are 

telecommunication cables, or dendrites running through nerve tracts. Fuhs and Touretzky 

(2006) justify arranging the units in their connectionist model of grid cells in a hexagonal 

pattern based on this fact about close packing, even though real dendrites are neither 

perfectly cylindrical nor uniform in size. Their explanation depends on not using a more 

accurate, detailed model, because without the assumption that the dendrites are uniform 

cylinders, the geometric fact about close packing could not have been applied.  

3.3 Idealization 

On Cartwright’s (1989) definition, idealization adds or changes details, such that 

the idealized model has properties not present in the target system. In lab experiments 
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idealizations might substitute more convenient materials, or assign implausible values to 

variables for ease of calculation. Backpropagation and deterministic activation functions 

are the clearest cases of idealization in connectionist modeling. At first blush, it seems 

like putting the wrong details in, as opposed to merely removing irrelevant details, should 

make for a worse model, but this is not generally the case.  

A number of authors have compared idealizations to fictions, and suggested that 

models are interpreted in much the same way as we interpret literature. Mäki’s (2012) 

analysis goes in a different direction. Mäki argues that apparently false idealizations can 

be interpreted as true in several distinct ways. Leaving out some factors can be intended 

as a “negligibility assumption,” i.e., that those factors have a negligible effect, given the 

intended purposes and audience of the model (Mäki 2012, 222). “Applicability 

assumptions” restrict the intended use of a model to domains where the factors left out 

have negligible effects (Mäki 2012, 225). Other kinds of assumptions might defend the 

use of an idealized model on the grounds that the idealization makes the model more 

tractable, or more suitable for pedagogical purposes (Mäki 2012, 228—230). These 

assumptions are not always spelled out explicitly. 

In some cases, the use of backpropagation in connectionist models could be 

justified with a tractability assumption, since it was for a time the only known method of 

updating weights that was guaranteed to converge. In other cases backpropagation can be 

justified with a negligibility assumption. For example, in NETtalk (Sejnowski and 

Rosenberg 1986) backpropagation is unproblematic given the purpose of the model, 

because their goal is to show that a system capable of pronouncing English words need 

not encode a complicated set of rules. For that purpose, it is fair to simply assume that the 
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brain has some way of propagating error signals, without worrying about how exactly 

that happens. The particular pathways the error signals take don’t make a difference to 

what they’re investigating. In contrast, Suri and Schultz (2001) is a model of learning 

mechanisms, so the way error signals are propagated is highly relevant. In their model, 

backpropagation is not used; instead the anatomy of the basal ganglia is reproduced in 

some detail, including only pathways that exist in the brain and through which feedback 

is known to actually travel. 

The curious phrase “‘physiological’ flavor” might be interpreted to mean that 

connectionist models are idealized models of cognitive mechanisms. If you take away 

irrelevant details, and idealize others, cortex is an interconnected network of simple 

learning units. 

3.4 Discovery 

Models serve many different purposes in science, and many different strategies 

may be employed in the search for mechanisms. Anderson and Rosenfeld’s (2000) 

history of connectionism demonstrates that among connectionist modelers there have 

always been widely differing approaches in terms of how much physiological detail to 

include, and what the goals are. These goals include engineering, mathematical, 

psychological, and neuroscientific questions. Models intended for different epistemic 

roles require different characteristics. 

Steinle (1997, 2002) argues that experiments at different stages in a research 

project tend to have different epistemic goals, which means that different sorts of 

experiments are performed. For example, earlier exploratory experiments tend to try out 

many more combinations of parameter values in a search for potentially meaningful 
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correlations, while later “theory-driven” experiments use high precision equipment, and 

“are typically done with quite specific expectations of the various possible outcomes” 

(Steinle 1997).  

Steinle’s analysis also holds for models. Models used at different stages in a 

research project tend to have different epistemic goals, and correspondingly may vary in 

terms of how idealized or specific they should be in order to meet those goals. This 

difference in epistemic goals is reflected in the difference in detail in the learning 

mechanisms used in NETtalk compared to models of the basal ganglia.  

4 Epistemology and Metaphysics of Models  

This section continues in the spirit of Irvine (2014), where considering 

computational modeling practices from cognitive neuroscience problematized and revised 

claims from the models and simulations literature. Other examples of work on 

computational modeling in the neurocognitive sciences are Kaplan (2011), which argues 

that computational explanations in neuroscience are mechanistic explanations; 

Chirimuuta (2018), which argues that there are “numerous instances of mathematical, 

non-causal explanation” in computational neuroscience; and Stinson (2018), where I 

argue that connectionist cognitive models explain using a logic of tendencies in contrast 

to classical AI’s use of inference to the best explanation.  

What these examples share is a concern with questions about causation and 

ontology, quite unlike the focus on representations characteristic of the models and 

simulations literature (see Suárez 2003; Giere 2004; Weisberg 2012; Frigg and Nguyen 

2016). Perhaps the reason is that cognitive scientists have learned to regard with some 

suspicion appeals to representations as explanations, and tend to worry about how 
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putative representations acquire and transmit their contents. This more critical take on 

representation, and causal-mechanistic bent could be helpfully applied to the models and 

simulations literature.  

Three open questions in that literature are how relevant similarity ought to be 

judged, how inferences from models to targets are justified, and what the metaphysical 

status of models is. On the first two questions, the state of the art seems to be that which 

similarities are relevant has to be decided on a case-by-case basis (Parker 2009), and that 

we have to provide arguments to justify our modeling choices (Winsberg 2009). A deeper 

analysis of the criteria modelers use in making these judgments is needed.  

Godfrey-Smith (2009) lays out the problem of the metaphysical status of models. 

He notes that model systems are “in a sense, of the same kind as the target systems that 

the models are used to help us understand” (Godfrey-Smith 2009), but rejects what 

scientists say about planets, populations, or economies being “inside the computer” even 

in a loose sense. He resists attributing computational models object-hood such that 

they’re taken as “shadowy additional graspable thing[s],” and endorses the comment 

attributed to Deena Weisberg that the Platonism of mathematicians is a “folk ontology” 

(Godfrey-Smith 2009). Godfrey-Smith describes the Platonist view as taking the model to 

be an abstract entity that can be investigated mathematically, then requiring a mapping of 

abstract properties to the physical properties of the target.  

The Platonist view is implicitly rejected because it runs into the Third Man 

problem, by assuming the independent reality of abstract objects. But, if models are not 

objects that can be directly compared to targets, the question remains how they can 

inform us about concrete things. Representations and fictions are overly flexible; 
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anything can happen in fiction, so it does not adequately constrain inferences to real 

world targets. As Frigg and Nguyen argue, “One can imagine almost anything about 

almost any object, but unless there are criteria telling us which of these imaginings 

should be regarded as true of the target, these imaginings don’t licence any surrogative 

reasoning” (2016). The metaphysical problem and the inference problem are thus in 

tension with one another. 

Winsberg (2010) likewise notes that “Practitioners of simulation” favor the idea 

that simulations literally mimic their target systems, such that a simulation of fluid 

dynamics can be viewed as an experiment in a “virtual wind tunnel” (Winsberg 2010, 

35). But Winsberg raises the problem of “whether or not, to what extent, and under what 

conditions a simulation reliably mimics the physical system of interest” (Winsberg 2010, 

37).  

A common assumption in representational accounts of models is that the relation 

between model and world is one of similarity, following Giere’s (1988) diagram, 

reproduced here in figure 1. Winsberg notes that the relation between models and targets 

has to be something “far more complicated than mimicry” (Winsberg 2010, 39). What 

this more complicated relation might be is key to all three questions at hand.  
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Figure 1. Relations between theory, model and reality, reproduced from Giere (1988, 83).  

Frigg and Nguyen offer a more complicated candidate relation in their DEKI 

account. According to DEKI, models are interpreted as exemplifying a set of properties 

of interest, which are mapped to properties imputed to the target. The addition of more 

stations along the way between model and target solves a number of problems with direct 

representation accounts (see Frigg and Nguyen 2016), but retains the main weakness of 

representational accounts, since a mapping between sets of properties does little to ensure 

that one reliably mimics the other. 

4.1 An Alternative to Representational Accounts of Models 

My analysis of inference in connectionist modeling from Stinson (2018) can be 

extended into an alternative account of models. This account provides a more robust 

connection between properties of models and targets, and legitimizes scientists’ views 

about the ontology of models. I argue that inferences are drawn from connectionist 

models to their targets indirectly via kinds that both the model and target exemplify. A 

diagram illustrating this set of relations is given in figure 2. 
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Figure 2. Relations between model, target and kind. 

On this account, the inferences modelers draw from models to targets have the following 

structure:  

P1  The target system T is an instance of kind K.  

P2  Model M is an instance of K.  

C  Therefore T should be similar to M.  

In the case of connectionist models, T is the brain or cognitive system being investigated, 

and M is the connectionist model.  

This extra step of associating the model first with a kind then that kind with the 

target is promising for several reasons. One is that it makes better sense of idealization 

than representational accounts of modeling do. A good model is often very minimal, 

including only the properties of interest, and few other details. If similarity were the 

criterion for model target relations, more details would be better, not fewer. But if 

capturing the characteristic properties of a kind is the goal, then idealized models are 

exactly what one ought to aim for. Similarity is what we want to infer as a conclusion, 

not what we aim for in model building.  
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Second is that it can provide needed guidance about which similarities are the 

relevant ones to capture in a model. The properties that a model should mimic from the 

target are the ones that are characteristic of the kind they both belong to. As long as we 

have a way of picking out kinds, this gives specific guidance about what the relevant 

similarities are: something representational accounts were unable to do.  

The account also has other nice properties. It fits well with Godfrey-Smith’s 

observation that models sometimes describe one case of a target phenomenon, then act as 

a hub, anchoring all the “actual-world” cases (Godfrey-Smith 2009). The hub is the kind 

captured by the model. Models with no target are likewise accounted for by treating the 

kind as a generalized target. 

What is still wanting in this account is a way of delineating kinds, telling which 

kinds a target belongs to, and a workaround to the problem of universals. One missing 

piece can be provided by Khalidi’s (1998, 2013) broad view of kinds. Khalidi argues that 

scientific kinds like parasite, liquid, or schizophrenia should be considered “real kinds”7 

because “we discovered things about them which were by no means implied when they 

were first introduced” (Khalidi 1998). This account of kinds assumes neither essential 

natures, nor strictly hierarchical relationships between kinds. As such, it is promiscuous 

enough to accommodate most any phenomena that one might want to model. But because 

members of kinds have non-arbitrary things in common, kinds provide a basis for 

inferring that members likely have the properties characteristic of the kind in common 

with each other.  

                                                             
7 Khalidi (2013) uses the term “natural kinds”, but in conversation says that he wished he 

had called them “real kinds”. 



 23 

Khalidi’s kinds might be made more robust by connecting them to Andersen’s 

(2017) information-theoretic update to Dennett’s (1991) “real patterns”. A real pattern is 

one that “can be reliably picked out and tracked through time and which allows one to 

make predictions that are better than chance” (Andersen 2017). A collection of 

phenomena that manifest a real pattern according to Andersen would count as the 

members of a real kind according to Khalidi.  

Andersen comments on the “profligacy” of patterns, saying that “there could be a 

vast number of different ways of picking out such patterns that give us predictive grasp 

on the system” (Andersen 2017), but just as the promiscuity of Khalidi’s kinds should not 

be troubling given that they don’t assume anything about essences or hierarchies of kinds, 

the profligacy of Andersen’s patterns should not be troubling because “the degree of 

realism is very, very minimal” (Andersen 2017). Both Khalidi and Andersen argue that 

the concern that this allows for too many kinds or patterns is overblown. The criteria that 

kinds or patterns can be reliably picked out, tracked, and make useful predictions are not 

met by jerry-rigged kinds.  

Against the worry that patterns are epiphenomenal, Andersen claims “The 

overwhelming majority of patterns are counterfactually robust, in that they could have 

differed in their microphysical details in each token instantiation without thereby altering 

the relatum’s causal profile” (2017). That idealized and simplified models of causal 

processes are often most useful for figuring out how those processes work would be 
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mysterious were it not the case that these patterns are real in some sense that goes beyond 

the reality of their microphysical details.8  

Both Khalidi and Andersen claim at least a minimal reality for their kinds / 

patterns. On Andersen’s account, patterns are part of the causal nexus, and “higher-level 

causes are just as real as lower-level causes” (Andersen 2017). Her deke around the 

problem of universals is that what is real is “the causal nexus and patterns instantiated in 

it, which are informationally structured, but where the information itself is a structure of 

something else, not a reified extra substance” (Andersen 2017).  

One can go a step further in endorsing the folk ontology of scientists, and 

interpret these reality claims as implicating additional shadowy things of a sort. But 

before the kneejerk reaction that this runs into the problem of universals kicks in, let’s 

look at some recent developments in metaphysics, where respectable options are 

available for considering universals as concrete in some sense.  

Hennig (2014) offers a possible solution to the problem of universals, based on 

Baxter (2001), wherein kinds have concrete aspects, making them in a sense “the same 

as” instances of the kind. Hennig summarizes the account in the following way: “that 

Socrates instantiates the kind seated thing means that there is an aspect of Socrates that is 

also an aspect of the kind seated thing. This aspect can be described in two ways: (1) as 

Socrates qua seated thing or (2) as seated thing qua instantiated by Socrates” (Hennig, 

2014). Hennig clarifies as follows:  

                                                             
8 Both Khalidi and Andersen reject the suggestion that Kim’s causal exclusion argument 

might cause problems for the reality of promiscuous/profligate kinds or patterns.  



 25 

That Socrates instantiates the kind “seated thing” means that there is a 

seated thing that is the same as Socrates. This thing is one of his aspects. 

Socrates is an instance of seated thing, and seated thing is an aspect of 

Socrates. The aspect is not a third entity mediating between Socrates and 

the universal “being seated”; there are only two things: Socrates and the 

aspect. (Hennig, personal communication) 

Aspects, unlike Platonic universals, are concrete and in the world. The aspect ‘Socrates 

qua human’ has flesh and bones.  

This brief detour into contemporary metaphysics shows that there are respectable 

options available that allow us to take seriously the views of scientists about the reality of 

models. Putting these pieces together, the relation between kind and target can be 

understood as the relation between aspect and instance, and the relation of model to target 

as between two instances of the same aspect. It is tempting to think of models as though 

there are two of them, the ideal one and the instantiated one. The ideal one is what 

scientists think is really in the target system, and really in the computer. The instantiated 

model is the tool we use to get at the ideal. The former is the aspect. The latter is an 

instance.  

The practice of modeling picks out an aspect of the target to investigate, then 

constructs an instance of that aspect that can be manipulated conveniently. A 

mathematical model like the Hodkin-Huxley equation comes pretty close to being the 

aspect under investigation, while models that substitute another material for the material 

in the target (like architectural models, model organisms, and analog models), are 

instances that have additional aspects not characteristic of the kind in question.  
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I am seated right now as I write, making me an instance of ‘seated thing’. In 

virtue of being seated, I could act as a model of ‘Socrates qua seated thing’. Based on this 

model, I could speculate that Socrates’s toes might also have been prone to falling asleep 

after sitting too long on a hard chair. But I also have other aspects that are not shared with 

Socrates. It would not be wise to conclude that Socrates too would usually be drinking 

tea, and overhearing conversations in English while sitting on a hard chair. The instances 

of ‘seated thing’ near me do share some of those aspects, but they share them in virtue of 

being instances of ‘person working at Propeller Coffee’. A better model of ‘seated thing’ 

would be isolated from noises and hot beverages. 

 The status of computational models is a bit subtler. In some ways they are like 

mathematical models in that they are close to being pure aspects. But as Parker argues, 

computational models are also physical models with properties of their own (like being 

made with transistors). Within a range of conditions those other aspects can be made 

irrelevant, but in the presence of large magnets or when submerged in water, 

computational models will show their colours as electronic devices. A computational 

model qua made with transistors may not be informative about cognition, but a 

computational model qua connectionist network ought to be.  

What makes computers so useful in modeling is that they are designed to have the 

capacity to explore the aspect of your choice, while isolating that aspect from their other 

aspects (made with transistors, notebook sized, manufactured in China, etc.). If you 

consider only particular output streams, like images, printouts, or certain files (as 

opposed to measuring the CPU’s temperature, or seeing what happens when you whack it 

with a hammer), and assume a translation code that interprets that output, a programmer 
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can make a computer be an instance of a wide variety of aspects. Other kinds of models, 

like fruit flies in genetics, are likewise chosen because they make the investigation of a 

given aspect more feasible (faster, cheaper, more ethical) than it would be to investigate 

that aspect in the target itself. For a model to be minimally appropriate it has to be an 

instance of the aspect of interest. That the model and target are the same in the sense of 

sharing an aspect is what sanctions inferences from one to the other. 

The starting point in building a model is identifying a kind K that the system of 

interest belongs to, and which the model will be designed to investigate. One factor that 

affects the strength of the inference is whether K is a real, robust kind capable of 

sustaining generalizations. For the most generic Ks in connectionist modeling, the choice 

of model amounts to the wager that some of the generalizations that are relevant to 

cognition operate at the network level. Another factor is whether M is a representative 

instance of K. Models with a minimum of properties that are not typical of Ks are more 

representative. Finally, the inference depends on T also being of kind K. If K is a real 

kind, and M is a minimal instance of K, whatever one finds out about the kind K by 

investigating M should, all else being equal, also be true of T, assuming T belongs to K. 

It may still happen that T is atypical in relevant respects, so fails to have the same 

properties as M despite belonging to the same kind K.  

 Considering models in the neurocognitive sciences has motivated the need for a 

more complex account of the model-target relation, better answers to questions about 

relevant similarity, and more detail about the metaphysics of models. The bare outlines of 

a novel epistemology and metaphysics of models has been drawn here from an analysis 

of inference in connectionist modeling.  
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5 Inferences via Kinds in Computational Cognitive Science 

Let’s see how this account works in practice, by applying it to some examples. In 

Marr’s (1969) theory of the cerebellum, the starting points are some basic anatomical 

knowledge about the types of cells found in the cerebellum and the patterns and numbers 

of connections between them; the hypothesis that the function of the cerebellum is to 

learn motor skills; and ideas about feature analysis then current in the AI literature (Marr 

1969, 469). He suggests that “the mossy fibre-granule cell-Purkinje cell arrangement 

could operate as a pattern recognition device” where the “mossy fibre-granule cell 

articulation is essentially a pattern separator” (Marr 1969, 440). Marr then proceeds to 

mathematically derive constraints on codon size and other measures.  

In this case, Marr abstracts from the functional anatomy of the cerebellum to a 

generic kind K defined by the numbers and types of connections between cell types, with 

constraints determining loose boundaries. Mathematical derivations uncover the 

properties of K, and these properties are applied as a hypothesis about the target system, 

the cerebellum. 

In another early treatment of distributed representation, Hinton (1984) describes 

how sparsely encoded, distributed representations can give rise to properties such as 

efficient data storage, content-addressable memory, and automatic generalization. These 

properties are established through both formal derivations, and simple connectionist 

models. Hinton argues that whenever “abstract models are implemented in the brain 

using distributed representations” we can take these properties to be “primitive 

operations” (Hinton 1984, 3).  
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In this case, K is distributed representations, and M instantiates K in a simple 

network that learns associations between word form and meaning. Here M is chosen to be 

an instance where the properties of interest should be difficult to achieve: “This is a case 

in which distributed representations appear to be much less suitable than local ones, 

because the associations are purely arbitrary” (Hinton 1984, 3). The properties of interest 

are nevertheless confirmed in M, and the conclusion is drawn that these are properties of 

K in general. In this case, Hinton’s strategy is to choose a model that seems unlikely to 

have the property of interest, as a way of demonstrating that the property generalizes 

across kind members. 

These properties of distributed representations have also been confirmed in more 

detailed models of cortical systems. For example, Babadi and Sompolinsky (2014) 

analyze the computational benefits of sparseness (few neurons respond to any given 

stimulus) and expansion (increased dimensionality in the cortical layer) in “generic 

ensembles of clustered stimuli,” focusing on “relatively simple and biologically plausible 

architectures and dynamics” (Babadi and Sompolinsky 2014, 1213). They draw 

implications for olfactory and visual processing, as well as the mossy fibers of the 

cerebellum. Billings et al. (2014) investigate sparse encoding in the cerebellum using 

“biologically detailed network models of spiking neurons, whose parameters were 

constrained by experimental measurements” in order to determine the contribution that 

synaptic connectivity makes to effective pattern separation.  

These cases define increasingly specific Ks to which cerebellar networks belong. 

The models in these examples confirm the general properties of the more generic kinds 

explored in earlier papers, and establish a more nuanced picture of the properties of the 
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more specific kinds, as well as investigating the boundary cases where the typical 

properties of the kind break down. As the models get more detailed and realistic, the 

inferences from model to target are strengthened, because the model and target share 

more properties, but the scope of the conclusions decreases as the kind becomes more 

specific. Babadi and Sompolinsky’s conclusions also apply to olfactory and visual cortex, 

while Billings et al.’s conclusions are specific to cerebellum. 

There is a continuum here between making more generic theoretical models and 

more specific models of particular brain areas. Models may be located anywhere between 

these extremes, with tradeoffs between inference strength and generalizability. 

6. Conclusion 

There is much to be gained from reconnecting philosophy of AI to philosophy of 

science. Their estrangement has left a vacuum where methodological critiques of AI 

ought to be. It would be hard to overstate the urgency with which that kind of work is 

needed. Likewise, if philosophy of science is to provide credible support against attacks 

on climate models, accounts of computational models need to go deeper than fiction. 

Beyond these life or death motivations, there is also philosophical and scientific value in 

embracing AI within philosophy of science. 

On the part of AI, we gain an answer to the question of why building some of the 

constraints that hold of the neural hardware into connectionist models makes them better 

able to capture cognition, even without any attempt at realistic detail. Insights from 

philosophy of science help establish that connectionist models can be understood as 

idealized, multi-level models of the mechanisms underlying cognition. This allows their 

strengths and weaknesses to be evaluated. 
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On the part of philosophy of science, a close look at computational models in 

cognitive science lays the groundwork for a novel epistemology and metaphysics of 

models, which helps illuminate outstanding problems in the models and simulations 

literature. Indirectly mediating between models and targets via kinds allows for more 

specific answers to questions about how to choose relevant similarities in model building, 

how we justify inferences from models to targets, and the metaphysical nature of models. 

Artificial neural networks tell us about real cognitive systems by demonstrating the 

properties of the kinds they both belong to, or the aspects they have in common. This 

analysis may also prove helpful in understanding other types of models, including model 

organisms and mathematical models. 
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