
Optimal Committee Performance: Size versus Diversity∗

Peter Stone† Koji Kagotani‡

June 28, 2013

Abstract

The Condorcet Jury Theorem (CJT), together with a large and growing literature of

ancillary results, suggests two conclusions. First, large committees outperform small

committees, other things equal. Second, heterogeneous committees can, under the

right circumstances, outperform homogeneous ones, again other things equal. But this

literature has done little to bring these two conclusions together. This paper employs

simulations to compare the respective contributions of size and difference to optimal

committee performance. It demonstrates that the contributions depend dramatically

upon bias. In the presence of low bias, committee composition matters little. In the

presence of high bias, it can matter a great deal; optimal committee performance,

however, does not vary dramatically between low- and high-bias committees.
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1 Introduction

The Condorcet Jury Theorem (CJT) established in the late eighteenth century that when it

comes to decision-making, size matters. Other things equal, a large committee will outper-

form a small one. But a growing literature suggests that difference matters as well as size.

Other things equal, a heterogeneous committee, with people representing different back-

grounds and perspectives, will outperform a committee of clones. This heterogeneity may

reflect differences in race, gender, socioeconomic class, or a variety of other factors. Recent

generalizations of the CJT model demonstrate the truth of this claim, although they also

note that heterogeneity only produces beneficial effects under moderately restrictive circum-

stances. This paper uses these generalizations to compare the respective merits of size and

difference. It then makes policy recommendations based upon this comparison.

Section 2 reviews existing results on the contributions size and diversity make to decision-

making. These results rely upon a generalized form of the CJT model. Section 3 derives

expressions for measuring committee success in a collective decision-making environment

characterized by diversity. Section 4 employs simulations to generate comparative statics for

the respective contributions of size and diversity within this model. This enables comparisons

of these contributions under a variety of assumptions. Section 5 concludes by exploring the

policy implications of the results.

2 Size and Diversity

In his classic work Essai sur l’Application de l’Analyse á la Probabilité des Décisions Rendues

á la Pluralité des Voix (1785), Condorcet imagined a committee charged with making some

decision using simple majority rule. The decision is dichotomous, with the committee facing a

choice between options a and b. One option is unambiguously better than the other, although

the identity of the better option is obviously not known in advance. All committee members

share a common utility function which is maximized if the correct option is chosen. The
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committee is comprised of n = 2k+1 members (i.e., n is odd), each of whom decides correctly

with fixed common probability p, with 1
2
< p < 1. The probability that one committee

member votes correctly is independent of the probability that any other committee member

votes correctly. Under these conditions, Condorcet demonstrated that the following two

results hold: 1) the probability that the committee majority will decide correctly is higher

than p; and 2) the probability that the committee majority will decide correctly approaches

1 as the size of the committee increases (Baker 1976). Committee size matters, other things

equal. Indeed, for a fixed value of p, a larger committee will always outperform a smaller

one (Berend and Sapir 2005).

Relaxing the (admittedly rigid) assumptions underlying the CJT can be accomplished

without undermining the central results, so long as it is done with caution. Grofman, Owen

and Feld (1983), for example, showed that majorities still outperform the average individual

in a group even if p varies by individual, so long as the distribution of values of p is sym-

metric. Boland (1989) demonstrated that the distribution of values of p does not matter,

so long as the average value of p is sufficiently high. Paroush (1997) has demonstrated the

importance of Boland’s result, by showing that having the average value of p exceed 1
2
is not

a sufficient condition for the CJT’s result under certain distributions of voter competence.

Owen, Grofman and L. Feld (1989), however, demonstrated that an average value of p ex-

ceeding 1
2
is sufficient for the asymptotic result (i.e., for the probability of majority success

to approach 1 as committee size increases).

Other factors influence, not the results regarding committee performance, but their ap-

plication. The committee may, for example, know in advance that one option is ex ante more

likely than the other to be correct. Assume, without loss of generality, that option a is cor-

rect with probability π ≥ 1
2
. Then the option that is maximally likely to be correct when all

information is taken into account may not be the same as the option that is maximally likely

to be correct when only the individual judgments are considered. In particular, the optimal

voting rule will have a presumption in favor of a, with b winning only if a sufficiently large
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supermajority favors it. Alternatively, the committee’s utility function could treat differ-

ently a wrongful rejection of a and wrongful rejection of b. A jury might be more concerned

about convicting the innocent than acquitting the guilty. Suppose the group loses utility

ea by wrongfully rejecting a and eb by wrongfully rejecting b. (The group receives utility 0

if it chooses correctly.) Then the rule that maximizes the probability of successful choice,

in terms of committee member judgments, may not be the rule that maximizes expected

utility. The committee might prefer to sacrifice some probability of correctly choosing b in

exchange for a smaller increase in the probability of correctly choosing a, because the cost

of failing to choose a correctly is sufficiently high. Once again, this translates into a voting

rule with a presumption in favor of a.

In practice, then, there is a close link between the ex ante probability that each option

is correct and the costs associate with each type of mistake. A committee with π ≥ 1
2
and

ea = eb will maximize expected utility with a certain supermajority voting rule that favors

a. For every such value of π, there exists a committee with unequal values of ea and eb and

π = 1
2
that optimizes performance using the same voting rule. As a result, the literature has

tended to treat these two cases together (e.g. Nitzan and Paroush 1984, 1994; Ben-Yashar,

Koh and Nitzan 2009).1

Much less has been said regarding what (if any) contribution difference makes in the CJT

environment.2 One possible way of capturing this contribution is to assume that homogeneity

leads to violations of the independence assumption. Given this assumption, heterogeneity

improves decision-making by decreasing the average correlation level between individual

judgments. This in turn results in better committee decision-making (Ladha 1992). Another

approach is to compare homogeneous and heterogeneous committees for a fixed average

value of p. This is the approach taken by Kanazawa (1998) and Fey (2003). But this

1See also Chwe (1999), which demonstrated that a committee whose members have different prior beliefs
regarding the correct option is equivalent to a committee whose members have the same prior beliefs but
different attitudes towards risk.

2Surowiecki (2005) explores the contribution of difference in non-voting environments. Page (2008) deals
with difference in voting systems, but without reference to the CJT.
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approach leaves no room for the marginal contribution of diversity. Other things equal, if a

committee adds one more member, it should add one with the highest possible competence

level. There is thus no positive advantage to including people of different backgrounds on

the Kanazawa/Fey approach, assuming independence is assured.

A third approach is to model the differential contributions made by different groups

explicitly. This can be accomplished by introducing the idea of bias into the decision.

Assume again that option a is correct ex ante with probability π. Assume further that the

committee can be composed of members from two different groups, X and Y. Members of

X select a when a is correct with probability q, and b when b is correct with probability

p, with q > p > 1
2
. Members of Y select a when a is correct with probability p, and b

when b is correct with probability q. Thus, X-members are biased in favor of a, whereas

Y-members have an equal and opposite bias in favor of b. The term “bias” is not ideal. It has

connotations of irrationality that we do not intend. We have considered using other terms

for this variation in competence levels with the state of the world. This variation is easily

confused with variation in competence levels between individuals. We believe that “bias” is

the best term available for avoiding this confusion. Finally, allow the error costs ea and eb

to vary. All committee members, regardless of group, receive utility 0 for a correct choice,

pay cost ea if a is wrongfully rejected, and pay cost eb if b is wrongfully rejected.

Stone (2012) demonstrates that given these assumptions (and assuming the committee

votes via majority rule) the optimal committee composition will be a function of p, q, π,

ea, and eb. The expected utility-maximizing committee will have k + s∗ X-members and

k−s∗+1 Y-members on it, where s∗ is the smallest integral value of s between −k and k for

which the inequality ea
eb

π
1−π

>
[
p(1−p)
q(1−q)

]s
fails to hold. (There may be no such value, in which

case an all-X member committee will be optimal.) Should the inequality hold for s = k,

then an all X-member committee would be optimal. And should it fail to hold for s = −k,

then an all Y-member committee would maximize expected utility. Moreover, this condition
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requires that q > 1−p, a condition ensured whenever p > 1
2
.3 If q ≤ 1−p, then heterogeneity

never increases, and sometimes decreases, expected committee utility. Heterogeneity thus

may, but not necessarily will, make a difference for the better. In the simplest case, where

π = 1
2
and ea = eb, the optimal committee will be maximally heterogeneous, with a bare

majority of X-members on it. (A bare majority of Y-members will perform equally well.)

Stone’s model suggests that committee decision-making can be improved either by taking

steps to ensure optimal committee composition or by increasing committee size. Stone’s

original result, however, does not consider the respective magnitudes of these two approaches.

When does size matter a lot, and when does difference matter a lot? Under what conditions

will taking steps to ensure diversity prove more cost-effective than simply involving more

people? These are the questions explored in this paper.

3 Comparing Size and Diversity

Committee performance can be assessed either in terms of the probability that the committee

decides correctly via majority rule, or in terms of the expected utility of committee decision-

making. (The one is equal to the other whenever the costs associated with the two types

of error are the same.) We will begin, therefore, by deriving expressions for both of these

measures.

Assume a committee with k+ s X-members and k− s+1 Y-members. Then conditional

upon the state of the world (say, a), committee decision making functions as a pair of sets of

Bernoulli trials. We assume throughout that committee members vote sincerely. This is not

an innocuous assumption, even under the assumption (standard in the CJT literature) of a

common utility function (Austen-Smith and Banks 1996). Ben-Yashar and Milchtaich (2007),

however, demonstrate that sincere voting will always be rational in the CJT environment

whenever the optimal voting rule is used. This is easy to find in many cases—as noted

3This condition is minimal but not negligible. If it were not satisfied, then an X-member would be more
likely to select a when b is correct than when a is correct!
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before, simple majority rule will be optimal whenever π = 1
2
and ea = eb—but more difficult

to identify at other times. It is equivalent to making multiple tosses of two coins, one of

which has a different bias towards heads than the other. Coin 1 gets tossed k+ s times, and

lands heads up with probability q, while coin 2 gets tossed k − s + 1 times, and comes up

heads with probability p. Let x be the number of correct votes by the X-members, y be the

number of correct votes by the Y-members, and z = x+y be the total number of correct votes

in a committee. Then the expected counts of correct votes by different types of members are

calculated given the state of the world: E(x | a) = (k + s)q, E(x | b) = (k + s)p, E(y | a) =

(k+s−1)p, and so forth. One can use these to calculate the (unconditional) expected counts

of correct votes in the committee: E(z) = (k+ s)[πq+(1− π)p] + (k+ s+1)[πp+(1− π)q].

One can use this measure as a building block in order to calculate Ca (or Cb), the

probability that the committee decides correctly via majority rule, conditional on a (or b)

being correct. Then one can also calculate C, the unconditional probability of a correct

committee vote:

C =πCa + (1− π)Cb

=πΣk
i=0

[(
k+s
s+i

)
(1− q)s+iqk−i

[
Σi

j=0

(
k−s+1

j

)
(1− p)k−s+1−jpj

]]
+ (1− π)Σk

i=0

[(
k+s
s+i

)
(p)s+i(1− p)k−i

[
Σi

j=0

(
k−s+1

j

)
(q)k−s+1−j(1− q)j

]]
.

(1)

Finally, let u be the utility derived from a committee vote. This vote will yield utility 0

with probability πCa + (1 − π)Cb; utility ea with probability π(1 − Ca), and utility eb with

probability (1− π)(1− Cb). The expected utility E(u) of a committee vote is thus:

eaπ(1− Ca) + eb(1− π)(1− Cb). (2)

With these preliminaries out of the way, it becomes possible to compare the respective

contributions of size and diversity both to C and to E(u). As mentioned before, whenever

ea = eb the expected utility of the committee is maximized if and only if the probability
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of correct committee choice is maximized.4 For this reason, it makes sense to focus upon

investigating this special case.

As discussed in the previous section, the heterogeneous committee achieves the highest

probability of a correct committee vote under certain conditions (Stone 2012). This implies

that as the parameter s increases beyond a certain point, the probability of a correct com-

mittee vote decreases. However, the probability of a correct committee decision-making C

is determined by the multiple parameters n, p, q, s and π, with the effect of each parameter

being a function of other four. Even though we can explore the sign of the impact ana-

lytically, it is very difficult to examine the relative impact of the committee diversity, bias,

and size on its performance. If we can repeat the committee’s decision-making a certain

number of times (for example, 10,000 times), we can calculate the probability of the correct

committee vote given a set of the parameters, which is close to the objective probability of

correct collective choice. Hence, we use the Monte Carlo simulation approach to explore the

relationship between the relative impact of each parameter and the optimal committee.

4 Monte Carlo Simulation

Our simulation procedures are as follows. First, the state of the world ∈ {a, b} is drawn

from the bernoulli distribution with Pr(a) = π. Second, the count of correct votes in the

committee is generated as the sum of a pair of binomial distributions B(X, q) + B(Y, p) if

the state of the world a is chosen, and B(X, p) + B(Y, q) otherwise. Third, if the majority

of the committee (k+1 members) vote correctly, this is called committee success. Fifth, we

iterate this procedures 10,000 times for a given set of parameters n, p, q, s, and π, and then

calculate the ratio of committee success, which is called here the probability of committee

success. As a further simplifying assumption, we begin with π = 1
2
and relax it later. We

address the three theoretical issues below.

4If ea = eb, then E(u) = ea[π(1 − Ca) + (1 − π)(1 − Cb)] = ea[1 − C]. Because ea < 0, this means that
we can find a maximum of E(u) by maximizing C.
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1. Homogeneity versus heterogeneity. If π ≥ 1
2
, then the optimal commit-

tee will always have an X-member majority. Without loss of generality, then,

we will assume the committee will have such a majority. We will then com-

pare the maximally homogeneous committee (i.e., 100% X-member) with

the maximally heterogeneous committee (i.e., a bare X-member majority).

We will also consider all committee compositions within this range. When

π = 1
2
and ea = eb, the optimal committee will be maximally heterogeneous.

This may not be the case, however, if either condition fails to hold.

2. Bias (the relative sizes of q and p). Committee composition could

potentially matter much more when the biases of committee members are

large than when they are small. The size of a bias is larger the greater

the distance between q and p. We shall consider a high-bias and a low-bias

committee.

3. Committee size. Obviously, the higher the value of n, the better the

committee will perform. We will take this into account by comparing several

values of n. Specifically, we will consider n = 11, 21, 51, 101, 201 and

401. All of these are realistic committee sizes for at least certain classes of

decisions.

Figure 1 shows the simulation results for the low-bias committee (p = 0.51 and q = 0.55)

and the high-bias committee (p = 0.51 and q = 0.85). The committee performance is mea-

sured by the probability of correct committee vote. To provide the intuitive understanding

of the patterns, we use the degree of homogeneity k+s
n

× 100 to examine the committee

composition. When we increase s from 1 to k + 1, the committee becomes progressively

more homogeneous. It changes from approximately 50 percent X-members to 100 percent

X-members. The parameter π = 0.5 means that two states of the world a and b are equally
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likely to occur.
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Figure 1: the High-Bias Committee and the Low-Bias Committee

We observe two results. First, more homogeneity worsens high-bias committee perfor-

mance, which is consistent with the theoretical arguments by Stone (2012). The difference

is particularly striking for high values of n. For these values, heterogeneous high-bias com-

mittees perform nearly perfectly, while homogeneous high-bias committees still have a long

way to go before C approaches 1. In contrast, heterogeneity matters little for the perfor-

mance of the low-bias committee of relatively small size (n ≤ 101) because the probability of

committee success remain the same over different values of the parameters. For the low bias

committee of relatively large size (n > 101), more homogeneity does somewhat constrain the

committee performance.

Second, increasing committee size enhances performance regardless of homogeneity level.

With π = 0.5, the maximally heterogenous committee clearly performs the best in all cases

except for low-bias commitees with small numbers of members. In these cases, heterogeneity

makes a negligible difference.

It is not too surprising that the high-bias committees routinely outperform the low-bias

committees here, for all values of n. Ex ante (i.e., before state of the world is selected),
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both X-members and Y-members have an expected competence level of 0.68 in the high-bias

model, but only 0.53 in the low-bias model. It is therefore difficult to distinguish the effects

generated by having a more-or-less competent committee from the effects generated by bias

size. To address this problem, we ran simulations for two further models (Figure 2). In

both of these models, X- and Y-members have the same ex ante competence level, equal

to 0.625. In the modified high-bias model, q = 0.74 and p = 0.51, while in the modified

low-bias model, q = 0.65 and p = 0.6.
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Figure 2: the High-Bias Committee and the Low-Bias Committee

The results generated here are similar but not identical. First, once again the heteroge-

neous committee is clearly best in the presence of high bias while committee composition

hardly matters for the low-bias committee. Second, when the ex ante probability of success

is the same for both committees, with the heterogeneous composition, the probability of

success in the low-bias committee is almost the same as that in the high-bias committee. In

contrast to the previous results, as the committee composition becomes homogeneous, the

low-bias committee clearly begins to outperform the high-bias committee. Third, increasing

committee size once again increases the probability of committee success. In the high-bias

committee, increasing the size raises the probability of committee success and reduces the
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relative effect of homogeneity. The heterogeneous committee success rate rapidly approaches

1, and so its comparative advantage lessens as the homogeneous committee gets large as well.

(It has nowhere to go.) On the other hand, the size of the committee matters for the rel-

atively small committee because the probability of committee success is almost one for the

committee with more than 100 members.

Next we relax our assumption regarding the states of the world and assume π = 0.75,

so that state of the world a is significantly more likely to occur than state of the world b

(Figure 3). We employ the same values of p and q as in the first set of simulations and

consider the results. First, both the high-bias and the low-bias committees demonstrate

interesting results regarding the composition of the committee. The high-bias committee

with more than 50 members generates results similar to those previously seen. That is, the

best committee is the most heterogeneous and more homogeneity dampens the committee

performance. Things are somewhat different for the high-bias committees with 11 and 21

members. The reason for this is that when π = 0.75, s∗ = 2. The optimal committee will

thus have 3 more X-members than Y-Members on it. This makes a significant difference for

small high-bias committees. The optimal 11- and 21-member committees will have 7 and 12

X-members, respectively; put another way, the percentage of these committees comprised

of X-members will be 63% and 57%. Maximal heterogeneity is thus no longer optimal

heterogeneity, even though homogeneity still does worse.

A similar, but much stronger, result obtains for the low-bias committee. For this case,

s∗ = 114. This means that, for every low-bias committee of less than maximal size, the

optimal composition will involve no Y-members at all. Even for the 401-member committee,

the optimal committee will have a 314-87 majority in favor of X-members. It will be 78% X-

member. The simulation results clearly reflect this, as the homogeneous low-bias committee

outperforms any heterogeneous one (albeit marginally), except when n = 401. These results

are caused by the assumption on the states of the world π = 0.75. Since state of the world

a is more likely to occur, the committee can improve its performance by including more
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Figure 3: the High-Bias Committee and the Low-Bias Committee

X-members who are more likely to detect states of world a.

As in the first set of simulations, however, it is difficult to distinguish the effect of the

bias size from the effect of the overall competence level. For this reason, we ran one final

pair of simulations with π = 0.75 but with the same competence levels as in the second set of

simulations (Figure 4). Once again, optimal committee composition will not be maximally

heterogeneous. For the high-bias committee, s∗ = 4, and for the low-bias committee, s∗ = 21.

This means that, even for the high-bias committee, the optimal committee will consist almost

entirely of X-members for low values of n. And the optimal low-bias committee will have no

Y-members at all until n = 51.

Otherwise, the results are essentially the same as in the second set of simulations. For

high values of n, the optimal committee performs extremely well for both high- and low-bias

committees. Indeed, when n is at least 101, optimal committee performance is near-perfect.

But the difference between committee with the best composition and the committee with the

worst composition is far more pronounced in the presence of high bias than in the presence of

low bias. With low bias, composition makes a relatively small contribution to performance.

But with high bias, even a 401-member homogeneous committee will have a significnt chance
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Figure 4: the High-Bias Committee and the Low-Bias Committee

of failure, while a 401-member heterogeneous committee will almost never fail.

5 Conclusion

The simulation results impart several important lessons regarding committee performance

in the presence of bias. Most importantly, heterogeneity is more likely to make a difference,

for better or for worse, the committee members have high bias. By “high bias,” we mean

a large difference between the values of p and q. In the presence of high bias, committee

composition will matter much more. The optimal committee will significantly outperform

committees with less-than-optimal composition. This will be true regardless of the value

of s∗. If the optimal committee is homogeneous, then a homogeneous high-bias committee

will significantly outperform a heterogeneous one. If the optimal committee is heterogeneous,

then the opposite will occur. This difference will tend to shrink as n gets large for one obvious

reason. As n gets large, the optimal committee will decide correctly with a probability near

one. And so for large values of n, the difference between the best committee’s performance

(which hovers near 1) and that of the worst will of necessity grow smaller. Note, however,
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that even for the largest high-bias committees, poor committee composition will significantly

worsen committee performance. A 401-member high-bias committee that is composed well

will perform with near-perfection, but a 401-member high-bias committee that is composed

poorly will lag significantly behind.

All of this suggests that, if a policy maker has control over the values of p and q, she

should prefer, other things equal, for the values to be close together rather than further

apart. The precise manner in which this works remains a subject for further study. Such

study could reveal, for example, how much the difference between p and q matters relative

to the absolute sizes of the two variables. The present simulation results suggest that both

factors will considerably influence committee success.

Normally, however, policy makers have no control over the existing biases within the

population. All they control is 1) how many people from that population get selected and

2) which people they select. (Policy makers could, of course, try to find people with low

levels of bias, an intuitively obvious idea that our study supports.) If the policy maker

has no control over p and q, then the relative attention she gives to committee size versus

committee composition should vary according to the size of the bias. In the presence of high

bias, committee composition matters a great deal. In the presence of low bias, however,

committee composition matters little, and the only way to improve committee performance

significantly is to increase n. Given that selection criteria can prove costly, especially if

employed on a large scale, this conclusion could matter significantly in policymaking contexts.

Policy makers facing decisions in which the population is strongly divided may wish to select

smaller committee within which diversity of opinion is ensured. With low bias, policy makers

may wish to forego consideration of diversity and simply assemble a large committee.
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