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Abstract. Few automated legal reasoning systems have been developed in domains of law in which
a judicial decision maker has extensive discretion in the exercise of his or her powers. Discretionary
domains challenge existing artificial intelligence paradigms because models of judicial reasoning are
difficult, if not impossible to specify. We argue that judicial discretion adds to the characterisation
of law as open textured in a way which has not been addressed by artificial intelligence and law
researchers in depth. We demonstrate that systems for reasoning with this form of open texture can
be built by integrating rule sets with neural networks trained with data collected from standard past
cases. The obstacles to this approach include difficulties in generating explanations once conclusions
have been inferred, difficulties associated with the collection of sufficient data from past cases and
difficulties associated with integrating two vastly different paradigms. A knowledge representation
scheme based on the structure of arguments proposed by Toulmin has been used to overcome these
obstacles. The system, known as Split Up, predicts judicial decisions in property proceedings within
family law in Australia. Predictions from the system have been compared to those from a group of
lawyers with favourable results.

1. Introduction

The majority of applications of artificial intelligence to legal reasoning have fo-
cused on domains of law that are not typically regarded as discretionary. Although
every legal domain entails some judicial discretion, there are a number of domains
in which judicial decision makers have considerable freedom to interpret statutes
or precedent cases in their own way. The Family Law Act (1975) of Australia, in
distributing property, is regarded as a discretionary Act in that it makes explicit a
number of factors that must be taken into account by a judge in altering the property
interests of parties to a marriage, but the statute is silent on the relative importance
of each factor. Different judges may, and do, reach different conclusions, even
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when they agree on facts, because each judge assigns different relative weights
to factors.

The perception that discretionary domains, such as property distribution in Aus-
tralian family law, are fundamentally different from non-discretionary domains
suggests that the artificial intelligence paradigms which are applied to problems in
these two types of domains should also be different. In fact, Edwards and Huntley
(1992) noted a discretionary element in Scottish Family Law and reported that rule-
based reasoning is inadequate to model reasoning in that domain. Our own early
attempts in the application of rule-based reasoning to determine the percentage of
assets an Australian Family Court judge is likely to award each party to a failed
marriage (Stranieri and Zeleznikow 1992), suggested that a rule-based approach
has limited application to simulate reasoning in family law.

In contrast to rule-based reasoning, the artificial intelligence paradigm known
as connectionism is particularly well suited to modelling discretionary domains.
Unlike symbolic reasoning paradigms, including rule-based and non-monotonic
reasoning, domain knowledge of legal rules and principles is not modelled directly
in connectionism. Nor is a select number of leading cases stored for subsequent
retrieval and adaptation, as in case-based reasoning. Rather, a connectionist learn-
ing algorithm is exposed to data from a large number of past cases. This enables
the assimilation and sub-symbolic storage of neural connections which mimic the
judicial discretion required to weight relevant case factors.

Artificial neural networks (ANN) have not been popular in legal domains for
a variety of reasons. The two most difficult problems are this paradigm’s inability
to generate explanations for conclusions reached, and the difficulty in assembling
training sets of sufficient size and coverage. We claim that connectionism can be
useful in law if a series of smaller, interconnected networks are used instead of one
larger network and if explanations are generated independently of the process used
to infer a conclusion. We view these two requisites fundamentally as knowledge
representation problems. Thus, our goal was to discover a knowledge representa-
tion that assists in the decomposition of a task into smaller sub tasks and which also
enables an independent generation of explanations. The knowledge representation
we present that achieves this goal is based on the structure of arguments proposed
by Toulmin (1958).

The Split Up program, presented here, integrates neural networks with rules
to form a partitioned rule/neural system that reasons in the domain of property
distribution upon dissolution of a marriage. Knowledge is represented as a series of
arguments based on the structure proposed by Toulmin. In Split Up we apply data
from a large number of commonplace divorce case judgements to a connectionist
algorithm. The algorithm learns to weight factors in the same way as judges have
done in past cases, so that the outcome of future cases can be predicted. Rules,
legal principles or precedent cases are not explicitly represented in this paradigm.
In the jurisprudence of positivist schools, rules, principles and standards are used
to reach a judicial decision. However, for legal realists, implicitly utilised rules and
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principles may be summoned after a decision has been reached in order to ensure
that a decision is just, moral and legally correct. As Llewellyn (1962, p. 58) says:

It was assumed that the deductive logic of opinions need by no means be either
a description of the process of decision, or an explanation of how the decision
had been reached.

This shift in the status of legal rules enables realists to study the legal profession
on an empirical basis and in a similar fashion underpins our use of neural networks
to glean the relative weights judges have applied to factors in past cases. Attempts
to elicit the weightings from experts or judges by structured interview is inappropri-
ate on pragmatic and also on conceptual grounds. It is difficult for experts to specify
how factors are combined with sufficient accuracy such that their reasoning process
may be reproduced in a computer implementation. Family law experts know that
judges weigh the factorsfuture needsandpast contributionsagainst each other and
indeed, experts are adept at doing this themselves to predict a courtroom outcome,
yet articulating exactly how these two factors interact is very difficult.

Central to our approach is the knowledge representation method based upon,
but not identical to, the argument structures proposed by Toulmin (1958). Before
describing our modification and application of the Toulmin argument structure, we
discuss the differences between domains that we call discretionary, such as family
law in Australia, and other legal domains.

2. Family Law in Australia: A Discretionary Domain

Most legal theorists accept that some degree of judicial discretion is an inevitable
feature of any judiciary. Dworkin (1977) discerns two basic types of discretion
available to a decision maker, though MacCormick (1981) argues that analysis is
flawed in that the distinction between senses of discretion is one of degree and not
of type. Hart (1994) assigned judicial discretion a minor role in his jurisprudence.
On the other hand, critical legal studies (CLS) theoreticians, as exemplified by
Kennedy (1986), have assigned judicial discretion a prominent role.

Despite the attention focused on discretion by jurisprudential theorists, the
concept has received little attention from the developers of legal expert systems.
In contrast, the concept of open texture has been frequently discussed. Prakken
(1993) provides a comprehensive survey of the way in which open texture as a
concept has been used to describe indeterminacy in law. He describes distinct types
of situations which are open textured and thus, difficult to resolve as those that
involve classification ambiguities, defeasible rules or vague terms.

We believe that the existence of judicial discretion contributes to the open tex-
tured nature of law, yet situations that involve discretion cannot be described as
instances of classification difficulties, defeasible rules or the presence of vague
terms. Rather, the existence of discretion is best seen as a distinct form of open
texture. Consider a hypothetical panel of Family Court judges who agree on all the
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facts of a divorce. Vague terms can be imagined to be interpreted in much the same
way by members of this hypothetical panel. There are no classification anomalies
and the same principles have been used by all judges. In this scenario, outcomes
may still be different because judges apply different weights to each relevant factor.
Thus, an additional situation is apparent; one where the decision maker is free to
assign weights to relevant factors, or combine relevant factors in a manner that is
of his own choosing. This will certainly contribute to the indeterminacy inherent in
law.

Section 79(1) of theFamily Law Act (1975)empowers the Family Court to
make orders altering the property interests of parties to the marriage but does not
lay down procedural guidelines for judicial decision makers. In practice, judges of
the Family Court follow a five step process in order to arrive at a property order:
1. Ascertain the property of the parties.
2. Value all property of both parties.
3. Determine which assets will be paramount in property considerations. This is

referred to as common pool property.
4. Determine a percentage of the property to be awarded to each party.
5. Create an order altering property interest to realise the percentage.

The Split Up system implements Steps 3 and 4 above, the common pool determ-
ination and the prediction of a percentage split. According to domain experts, the
common pool determination task (Step 3) does not greatly involve the exercise
of discretion, in stark contrast to the percentage split task (Step 4). Consequently,
Split Up implements the common pool determination by eliciting heuristics as dir-
ected graphs from domain experts using a methodology we have called sequenced
transition networks. This approach is described in Section 10 of this paper. In the
following sections we describe our use of neural networks and rules for the fourth
task above, the determination of a percentage split of marital assets. The last section
of this paper describes a classification scheme we have used to help determine
which of the five family law tasks can be accurately modelled using existing AI
techniques from those which can not.

3. Percentage Split Determination

TheFamily Law Act (1975)directs a decision maker to take into account the past
contributions of each party to a failed marriage in addition to their resources for
coping with life into the future. Rather than offering one definition forcontributions
and one forneeds, the statute presents a’shopping list’of factors to be taken into
account in arriving at a property order. For example, the age, state of health and
financial resources are explicitly mentioned in the statute as relevant factors, yet
their relative levels of importance are unspecified.

Although the statute presents a flat list of relevant factors without specifying
how these factors relate to each other, we realised that the factors could be placed
in a hierarchy. The development of the hierarchy required specific knowledge sup-
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plied by domain experts. A hierarchy of 94 factors presented in Figure 1 was
elicited. Figure 1 demonstrates that the factors relevant for a percentage split de-
termination (extreme right of figure) are past contributions of a husband relative
to those of the wife, the husband’s future needs relative to those of the wife, and
the wealth of the marriage. The factors relevant for a determination of past contri-
butions are the relative direct and indirect contributions of both parties, the length
of the marriage and the relative contributions of both parties to the homemaking
role. No attempt is made in Figure 1 to represent the way in which relevant factors
combine to infer factors higher in the hierarchy. The hierarchy of Figure 1 provides
a structure that was used to decompose the task of predicting an outcome into
thirty-five sub-tasks. Outputs of sub-tasks further down the hierarchy are used as
inputs into sub-tasks higher in the hierarchy. Solid arcs in Figure 1 represent in-
ferences performed with the use of rule sets whereas dashed arcs depict inferences
performed using neural networks.

Figure 2 illustrates the framework for inferring a percentage split outcome with
the use of a neural network. This figure expands the factors on the right of Fig-
ure 1. The inputs to the neural network (depicted on the left edge of Figure 2)
are values on each of the three relevant factors, contributions, future needs and
wealth. The neural network’s output (on the right) is the value of the percentage
split predicted. The inferencing of twenty sub-tasks was performed each with its
own neural network, whilst for the remaining fifteen sub-tasks, small rule sets were
used.

As mentioned earlier, the principal obstacle to the use of neural networks in the
legal domain is that explanations for inferences cannot be directly generated from
the inferencing process. We have overcome this problem by embedding the neural
network within a knowledge representation framework based on the structure of
arguments proposed by Toulmin (1958). However, our argument structure differs
from that originally proposed by Toulmin in a number of fundamental ways, as
described below.

4. Argumentation

Over three thousand years ago, Aristotle presented two types of proofs.1 Dialectic
proofs concern opinions that are adhered to with variable intensity, the objective be-
ing to convince or persuade an audience to accept the claims advocated. The second
type of proofs are known as analytic proofs. Analytic proofs differ from dialectic
proofs in that conclusions are reached by the application of sound inference rules
to axioms.

Perelmen and Obtrechts-Tytecta (1969) reflect that modern logic is almost ex-
clusively concerned with analytic proofs. Dialectical proofs and rhetoric have been
relegated to a subordinate, if not insignificant position. According to those authors,
this has been due to the notion advanced by Descartes (1650) that science ought

1 Aristotle in Topics.
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Figure 1. Hierarchy of relevant factors for percentage split determination.

to ignore anything which is based on opinion and cannot be proven. Perelmen and
Obtrechts-Tytecta (1969) resurrect the Aristotelian dialectics to the same status
as that of analytic logic. Their treatise is entitled ‘The New Rhetoric’ and was
originally published in French in 1958.

In the same year, the philosopher Stephen Toulmin published a treatise in Eng-
lish that also sought to resurrect dialectics. For Toulmin, dialectics portrays human
reasoning processes far more accurately than analytic reasoning. His treatise on
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Figure 2. Inferring a percentage split outcome with a neural network.

Figure 3. Toulmin argument structure, complete with a sample argument.

argumentation was therefore called a theory of practical reasoning. Toulmin ad-
vanced a structure for arguments that was constant regardless of the content of the
argument. His treatise focuses on demonstrating that Toulmin argument structures
more completely capture the semantics of reasoning than analytic reasoning for the
vast majority of arguments. Figure 3 illustrates the structure of argument proposed
by Toulmin (1958) with an example that Toulmin uses.

Toulmin (1958) examined arguments from a variety of domains and concluded
that all arguments, regardless of the domain, have a structure which consists of six
basic invariants:claim, data, modality, rebuttal, warrant and backing. Every argu-
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ment makes an assertion based on some data. The assertion of an argument stands
as the claim of the argument. Knowing the data and the claim does not necessarily
convince us that the claim follows from the data. A mechanism is required to act as
a justification for the claim. This justification is known as the warrant. The backing
supports the warrant and in a legal argument is typically a reference to a statute or
a precedent case. The rebuttal component specifies an exception or condition that
obviates the claim.

Argumentation is a recent phenomena in artificial intelligence that has been
used by researchers in two different ways: to structure knowledge and to represent
dialectical reasoning. Authors that focus on the dialectical nature of argumentation
include Cohen (1985), Poole (1988), Prakken (1993), Gordon (1993), Fox (1986),
Farley and Freeman (1995) and Dung (1995). Authors that use argumentation mod-
els to enhance knowledge representation include Dick (1991), Marshall (1989),
Clark (1991), Johnson et al. (1993), Bench-Capon et al. (1991), Branting (1994)
and Ball (1994). The argumentation approach adopted in Split Up falls within
this latter group. Figure 4 illustrates all of the components of the percentage split
argument in Split Up.

The argument structure we have used differs from the Toulmin structure in three
ways:

• reasons which explain why a data item is relevant for a claim are explicitly
represented.

• reasons that explain why the inference method used is appropriate are expli-
citly represented.

• an inference procedure, algorithm or method used to infer an assertion from
datum is explicitly represented.

Figure 3 represents the complete argument structure for the percentage split ar-
gument. Note that only the claim and data can be represented in the hierarchy of
Figure 1.

The reason that the data item “The husband has contributed more to the mar-
riage” is relevant in the percentage split argument within Split Up is that Section
79(4) of the Family Law Act specifically obliges a decision maker to take past
contributions into account. Other factors were considered irrelevant and hence
are not included within this argument. For instance, there is nothing to indicate
that the hair colour of the judge should be considered when deciding the issue
of relative percentages. (van Dijk 1989) notes that the notion of relevance has
puzzled logicians throughout history and has recently given rise to a class of modal
logics broadly described as ‘relevance logics’. One aspect of relevance that van
Dijk elucidates is the requirement that propositions within the same assertion are
expected to be relevant to each other. He eliminates a notion of shared concepts or
shared referents as the basis for an understanding of relevance and contends that
relevance is firmly rooted in the pragmatics of language. We adopt this stance and
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Figure 4. Argument structure used in Split Up.

maintain that a data item is relevant to an argument if a sentence elucidating the
reason for the relevance can be uttered.

Explicitly representing the inference method enables the use of a variety of
artificial intelligence inferencing procedures. For example, rules are used to infer
assertions in Split Up for some arguments whilst neural networks are used for
others. Explicitly representing the inference method used in an argument enables us
to clearly specify which type of inference has been used for each argument. Argu-
ment claims can follow from data by deduction, induction or analogy. The original
Toulmin formulation does not permit the specification of the type of inference in
use within a particular argument. Knowing the type of inference is important in our
efforts to accept or rebut an argument.

A reason that explains why an inference procedure is appropriate is a form of
warrant. This contributes to an explanation of why a claim follows from data. As
Figure 3 illustrates, the neural network used in the percentage split argument is
suitable because it has been trained with data from one hundred and one actual
cases. Additionally, it is appropriate that it was trained with a proven learning
rule. Conversely, a reason that the application of a rule is appropriate in other
arguments is that the inference is an instance of modus ponens, an inference rule
that is demonstrably sound.

5. Neural Networks in Law

The use of the connectionist paradigm for modelling legal reasoning is in its in-
fancy. Studies by Bochereau et al. (1991), Walker et al. (1991), Philipps (1989),
Bench-Capon (1993), Thagard (1989), Warner (1994) and Hobson and Slee (1994)
suggest that connectionism can be usefully applied to resolving open texture in
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law, though formidable obstacles must be overcome. Concerns that the benefits
of neural network use are overstated have been raised by Hunter (1994). These
concerns reflect the belief that many applications of neural networks to law have
used data that is inadequate because examples are too few in number, or because
examples have been invented. Furthermore, the lack of any explanatory facility
casts grave doubts on the effectiveness of this paradigm in the legal domain.

We argue that many concerns related to the use of connectionism in law can be
allayed. To do so we briefly survey approaches used by past researchers, in the con-
text of the typology of situations characterised as open textured by Prakken (1993).
Our aim is to illustrate that neural networks have, in the past, been applied to open-
textured situations that are not particularly suited to connectionism. However, they
have not been applied to tasks such as those studied here; the mimicking of judicial
discretion.

Neural networks have been applied to modelling situations that are character-
ised as open-textured because of difficulties inherent in performing a classification.
Philipps (1989) demonstrates the application of neural networks in dealing with
classification difficulties inherent in law with a hypothetical example from Ro-
man Law. He demonstrated that his network generalised well to produce a most
reasonable outcome for a case that was not used in the training of the network.
He called this an example of the capacity of neural networks to find a solution that
represented an equilibrium of past cases, though as Hunter (1994) notes, this notion
may be questioned on jurisprudential grounds.

Bench-Capon (1993) also applied neural networks to a problem that involved
classification difficulties in the domain of social security entitlements in Britain.
The output represented whether or not an applicant was entitled to social security
benefits. Open texture manifests in this domain as difficulties inherent in classify-
ing a case. Presented with cases that were not used for training, the network was
able to suggest an outcome that reflected the weightings of input variables in prior
cases. However, limitations were apparent in that the network was clearly in error
in some cases. For example every training set case that output a social security
benefit had, as one of the inputs, the fact that the applicant was over 65 years of
age. This was because the applicant’s age was a limiting condition for the granting
of a benefit. However, in some unseen cases, the network granted a benefit to some
applicants who were aged under 65 years. In these cases, the ‘equilibrium’, to use
Philipps notation, was achieved in a manner that was quite inappropriate.

Warner (1994) does not explicitly claim that neural networks have the potential
to resolve situations in law characterised by classification difficulties. Nevertheless,
the actual task he applies them to, in the domain of contract law, appears to be
one that attempts to deal with classification difficulties. His network endeavours to
classify a case according to whether the contract involved a consideration or not.

Each of the above mentioned authors uses neural networks to resolve classi-
fication difficulties in a similar fashion. In contrast, Thagard (1989)’s application
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of neural networks to legal reasoning attempts to apply connectionism to resolve
defeasible rules.

Thagard (1989) proposes a theory of explanatory coherence that aims to model
the way in which competing hypotheses are supported to a greater or lesser ex-
tent by available evidence. Some nodes in the network he has developed represent
propositions that represent each hypothesis. Other nodes represent evidence avail-
able. Links which have an associated weight that may be excitatory or inhibitory
are defined between evidential nodes and hypothesis nodes. To determine which
hypothesis has more support, the network is activated. Nodes feed activation (or
inhibition) to other nodes which feedback to each other until an equilibrium is
reached. The network is then said to be settled. Thagard trialed his ECHO program
on a murder case in which competing hypotheses wereX was innocentandX was
guilty. Propositions associated with these hypothesis includedC broke his hand
punching XandC broke his hand falling on a rock, respectively.

Thagard’s propositions did not include rules from statutes or from legal prin-
ciples. Even so, there is no reason why this could not have been done. Propositions
that reflected statutes or principles would compete for activation with other pro-
positions and those hypotheses that remained most active after the network settled
would be deemed to have, in Thagard’s terms, more explanatory coherence. In this
way, the Thagard approach can be interpreted as one which attempts to resolve
those situations in law that are characterised as open-textured because of the pres-
ence of defeasible rules. The Thagard approach is certainly intuitively appealing
though a great deal of further research is required in order to explore it more fully.

Law is replete with terms which are vague, though few artificial intelligence
systems have been developed which reason with vague terms. To our knowledge,
connectionism has not been applied to tasks which involve vague terms such as
beyond reasonable doubt, or within reasonable limits.Indeed, it is difficult to
imagine how this paradigm can be usefully applied in these situations.

6. Neural Networks in Split Up

We view the use of neural networks in the Split Up project as an exercise in know-
ledge discovery. Frawley, Piatetsky-Shapiro and Matheus (1991) define knowledge
discovery in databases (KDD) as the‘non trivial extraction of implicit, previously
unknown and potentially useful information from data’. Fayyad, Piatetsky-Shapiro
and Smyth (1996) highlight that effective knowledge discovery involves a number
of steps prior to the application of neural networks. The first phase of any KDD
process involves the selection of a sample of data from a store of real world data.
In the next phase the data must be pre-processed to remove excessive noise and
mistakes. Data is further required to be transformed so that spurious attributes do
not clutter the learning algorithm. Neural networks and rule induction are tech-
niques that can be applied in the next phase, known as data mining. Each phase
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of knowledge discovery in Split Up has required assumptions that we believe are
applicable to knowledge discovery in legal fields other than family law.

6.1. PHASE 1: GATHERING RAW DATA

In order to discover how judges weight different factors, we use, as source mater-
ial, written judgments handed down by judicial decision makers in common place
cases. Dick (1991) points out that written judgments of law cases are not transcripts
of the arguments presented to a Court during litigation. Rather, the ratio decidendi
encapsulated in a written judgment is best seen as an argument that a judge uses
to support the decision he has reached. We similarly adopt this view and treat each
written judgment as a hierarchy of arguments a Family Court judge has used in
deciding a case.

The vast majority of cases that come before the first instance decision maker are
never published, are never appealed, and constitute cases that set no precedents.
They do not revolve around a new legal interpretation, nor do they involve circum-
stances that are legally interesting. Zeleznikow et al. (1997) call these common-
place cases and distinguish them from landmark cases. Landmark cases typically
set a precedent and are certainly published. Such cases cannot be used for our
purposes because our intention is to apply neural networks to learn how judges
combine factors in actual day to day practice. As Hunter (1994) and also Aiken-
head (1996) note, landmark cases often introduce new law, often revolve around
subtleties of interpretation that are far removed from the day to day practice of
existing law and are therefore not suited as data sources for neural network training.

In contrast to leading case judgements, written judgments of common place
cases are suitable data sources for training neural networks. The argument structure
depicted in Figure 1 served as a template for the collection of data from transcripts
of actual case judgements. We had access to four hundred family law cases stored
within the Melbourne registry of the Family Court of Australia. However, as the
focus of Split Up is solely property distribution and many of these cases involved
custody issues in addition to property, they could not be used. Expert opinion in-
dicated that property proceedings are certainly influenced by custody matters. One
hundred and three cases involved property alone. Three raters extracted data from
these cases by reading the text of the judgment and recording values of 94 template
variables. Inter-rater agreement tests were performed informally. Any variable that
seemed ambiguous or unclear was highlighted so that a consensus could be reached
between the raters.

Data for the Split Up project was gathered from cases decided between 1992
and 1994. Each of the cases examined had been decided by one of eight different
judges. Judgements from these eight judges were examined in preference to lim-
iting ourselves to those from only one judge in order to encourage the network to
mimic a composite of all judges.
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6.2. PHASE 2: PRE-PROCESSING RAW DATA

Data from the domain of property division within Australian family law differs
from many other domains in that we expect contradictions. For the purpose of
our work, we define the term thus:Two cases are contradictory if their inputs are
identical yet their outputs differ. Contradictions are expected because the weighting
of factors can vary between judges and within the same judge over time. Thus, two
cases could be recorded with the same input set values but different output values.
According to Haykin (1994), contradictory data can severely interfere with the
ability of a network to perform adequately on cases that it has not been exposed to.

Contradictory cases are necessarily present in discretionary domains because
judges cannot be expected to weight factors in the same way on every case through-
out their career, and they cannot be expected to be perfectly consistent with the
weightings other judges use. Although contradictory examples are expected in
this discretionary domain they should not simply be ignored when training neural
networks. A simple example may illustrate this. Consider two cases, A and B,
that have identical inputs yet case A resulted in a 70% determination and case
B (made perhaps erroneously by a different judge) resulted in 40%. A network
trained only with these cases, and presented with identical inputs, will output a
value intermediate between the outputs; in this case 55%. The intermediate result
of 55% is unacceptable to us. There are a number of ways to deal with extreme
contradictions:

• Ignore the extreme contradictions. If sufficient data is collected then the ma-
jority of typical outputs will outweigh the effects of a handful of extreme
cases. This strategy is acceptable though relies on the existence of quite large
data sets for network training. Given the limited sample size, we opted against
this strategy.

• Modify one or more contradictory examples to remove the anomaly. This is
tantamount to inventing data and was not done.

• Remove extreme contradictions from the training set. This is the strategy we
have adopted in this study but we do note that this is not without ramifications.

The strategy of removing extreme examples from the training set can be criticised
on both jurisprudential and pragmatic grounds. We argue that although both cri-
ticisms are valid their impact is not sufficiently damaging to prohibit the use of
this strategy. In domains that are not appreciably discretionary in the way that
family law is, it could be said that if two judges arrive at different conclusions
after a finding of identical facts then they are using different legal principles or
standards. A discussion relating to which of the judges has selected and applied the
most appropriate principles opens up intense jurisprudential debates that probably
cannot avoid revisiting the discourses centred around the concept of an ideal judge
advanced by Dworkin (1977). However, as illustrated earlier in this work, two
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judges in family law could conceivably agree on the facts of a case and also on the
appropriate legal principles yet still reach different conclusions. This is because the
principal statute affords the first instance decision maker flexibility in the weighting
and combination of factors.

If two judges, in complete agreement on all relevant facts and legal principles
arrive at vastly different outcomes in a discretionary domain then we take the view
that at least one outcome is in error and consequently must be removed. The error
is not an appealable error in law because we assume that both judges have taken
into account all relevant facts, and none that are irrelevant. Rather, one (or both)
outcomes is an error only in our subjective opinion.

Although the removal of extreme cases from training sets is necessarily a sub-
jective exercise, we can implement a degree of consistency in our method by
designing a metric that discerns the extent to which two outcomes are contradict-
ory. The metric we have used in Split Up relies on the representation of all inputs
and outputs as binary digits. For example, the percentage split neural network out-
put is not one output that can take any value between 0 and 100 but is, instead, 13
separate outputs each of which can take the value 0 or 1. The same network has 15
binary inputs which represent one of five possible values on three variables.

Two binary outcomes can be compared by noting the position of the set bit
in each outcome. Thus, an outcome of1 0 0 0 0 differs from one represented by
0 0 0 0 1 by four place units. The second set bit is four places away from the set bit
in the former outcome. We call this a four place contradiction.

In all networks in Split Up we have removed all examples that have identical
inputs but differ from each other by outputs three or more places apart. This criteria
is necessarily subjective. Allowing extreme contradictions to remain in the training
set is unwise, yet determining which contradictions ought to be labelled extreme is
not straight forward.

Table 1 illustrates the number of contradictory examples removed from each
training set using this heuristic. Although the claim of twenty arguments are in-
ferred from data values with the use of neural networks only thirteen different
networks were used. Seven arguments draw inferences about the husband and have
similar counterparts in another seven arguments that draw inferences about the
wife. For example, an argument that infers the husband’s obligation to dependents
has a counterpart in a quite independent argument that infers the wife’s obligation
to dependents. Domain experts were generally of the opinion that the same infer-
encing procedure in arguments about men could be used as arguments that infer
conclusions about women.

6.3. PHASE 3: TRANSFORMATION DATA

The third phase of the knowledge discovery process involves transforming the pro-
cessed data set to a form likely to be most fruitful. This phase in Split Up involves
the decomposition of the task into thirty five sub tasks according to the hierarchy of
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Table I. Number of examples for each network with and without extreme contradictions removed.

Net Network name Description Number of Number of Training

No. examples contradictions set size

collected removed

1 Percentage Split Percentage of assets likely to 103 2 (2.06%) 101

be awarded to the husband

2 Relative Overall contributions to the 103 3 (2.91%) 100

contributions marriage by the husband

relative to those of the wife

3 Relative needs Future needs of the husband 103 2 (2.06%) 101

relative to those of the wife

4 Relative direct Contribution made in a direct 103 2 (2.06%) 101

contributions way to the marriage of the

husband relative to those of the

wife

5 Relative indirect Contribution made in an 103 15 (14.56%) 88

contributions indirect way to the marriage of

the husband relative to those of

the wife

6 Relative home Contribution made as a 103 0 (0%) 103

maker contributions homemaker by the husband

relative to those of the wife

7 Individual needs Extent to which an individual 206 5 (4.85%) 201

has a need for resources in the

future

8 Individual Future prospects based on 206 29 (14.07%) 177

personal prospects personal skills, abilities, age

and health

9 Individual Employment prospects for an 206 9 (4.36%) 197

employment individual in the future

prospects

10 Individual Capacity an individual has to 206 41 (19.9%) 165

capacity to work engage in future employment

11 Availability of Likelihood of employment 206 4 (1.94%) 202

employment opportunities in the future for

opportunities for an individual

an individual

12 Individual Extent of financial resources 206 60 146

financial resources available to an individual

13 Individual Extent to which an individual 35 5 30

business resources has recourse to resources from

investments or businesses



168 ANDREW STRANIERI ET AL.

arguments depicted in Figure 1. Each sub task could thus be treated as a separate
(and smaller) data mining exercise. This decomposition also enabled each set of
examples to be free of null values.

6.4. PHASE 4: DATA MINING USING NEURAL NETWORKS

Data mining was performed in Split Up with the use of neural networks. There are
many types of network that could have been used, though we restrict ourselves to
feed forward networks trained with backpropagation of errors. We claim no new
contribution to the general field of neural network research and hence used the type
of network that has been the most popular. We restricted ourselves to networks with
one hidden layer because these networks are simpler than networks with multiple
hidden layers and, as Cybenko (1989) demonstrated, any continuous function can
be approximated with single hidden layer networks. The optimal number of units
in the hidden layer of any network is difficult to determine. Future work aims to
draw on programs such as that developed by Lengers (1995) which applies genetic
algorithms to determine the optimal topology. However, for the current work, we
aimed to keep the number of hidden units down to as small a value as possible.

The aim of any classifying system is to be able to classify all cases in the domain
in question. In the domain of family law property proceedings this includes every
case that has been heard in the past and every case that will be heard in the future.
Access to the entire population of cases is clearly impossible. However, if a random
sample of cases is selected from the entire population and we apply appropriate
statistical techniques, then it is possible to estimate the error our classifier systems
will make over the entire population. Thus, particular attention must be focused on
the production of estimates of the extent to which our networks generalise to the
true population of cases. In the next section, we discuss our efforts to train neural
networks so that they can be accurate predictors for any case.

Feed forward neural networks trained with backpropagation learning are said
to generalise well if the output of the network is correct (or nearly correct) for
examples not seen during training. According to Haykin (1994), generalisation
is influenced by the size and coverage of the training set, the architecture of the
network and the complexity of the problem. Two extremes are to be avoided if
adequate generalisation is to be achieved; under-training and overtraining.

As the term suggests, under-training occurs if the network is exposed to too
few examples. Learning is difficult in this situation because the training patterns
available are not sufficiently representative of the true population of cases or be-
cause the network has not been exposed to the training set for a sufficient number of
repetitions (epochs). The opposite extreme is known as over-generalisation or over-
training. If a sufficiently large network has been exposed to too many examples, too
many times, it can learn each input-output pair so well that it, in effect, memorises
those cases it has been exposed to. The network is said to be overtrained and does
not generalise well.
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Our objective in training Split Up neural networks was to avoid these two train-
ing extremes. This was achieved, in part by terminating training at an appropriate
time. The criteria used to decide when to cease training is related to the metric
used to measure a network’s performance. A performance measure typically used
in network training in non-legal domains is the proportion of examples correctly
classified. As Weiss and Kulikowski (1992) point out, this measure of network
performance may not be adequate for all domains. They suggests that a metric
that includes the direction of the error is useful in some domains. For instance,
classifiers in medical domains will ideally rarely fail to detect a disease though
may frequently err in raising a false alarm. A cost/risk classification of errors is not
warranted in family law because the direction of the error is rarely as critical as it
is in medical domains. A network that predicts the husband is to receive 60% of
the property errs if the judge in the case actually awarded 55%. However, another
network errs in a similar and in a no more or less damaging manner if it predicts
the husband is to receive 50% of the assets. Thus, the direction of the error is not
critical for our purposes. Nevertheless, the magnitude of the error warrants special
attention.

Simply counting the number of correctly classified examples leads to a measure
of network performance which may be too fine-grained for legal applications and
increases the risk of over training. We argue that a better measure of a network’s
performance includes an indication of the magnitude of the error. For example, a
variation of 5% either way from a judge’s decision of the percentage of assets to
be awarded to the wife is, in our view, a minor error. On the other hand, a network
which outputs a percentage split which deviates from that obtained by a judge by
20% is assumed to have erred. Although the cut off point for declaring that an error
has occurred is necessarily subjective, it was important that a metric be discerned
which could be applied consistently to all networks in Split Up.

To our knowledge, no application of neural networks in law, using real or hy-
pothetical data, have employed techniques to ensure that a trained network re-
flects patterns in the actual population of cases and is not merely a reflection of
the sample data gathered. Weiss and Kulikowski (1992) provide a comprehensive
overview of statistical techniques that help to ensure a trained network represents
characteristics of the entire population and is not an aberration linked solely to
the particular set of cases selected for training and testing. They note that few
classifiers remain generally accepted unless some effort has been made to evaluate
the performance of the classifier on an entire population and not just on a sample
of data. In the next section, we shall summarise techniques used to extrapolate
classifier performance on sample data to an entire population.

The practice known as hold-out involves partitioning the sample data into a
training set and a test set. The classifier is trained with the training set while the
test set is held out. Once trained, the classifier is trialed on the test set. The error
rate on the test set provides a better estimate of the true error rate than the apparent
error figure. Hold-out is not ideal in a domain such as law which is characterised by
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a lack of readily available data because examples held out must be prohibited from
contributing to the training. Techniques known as re-sampling provide methods
for estimating the true error rate without denying the learning system access to
valuable data.

6.5. RE-SAMPLING TECHNIQUES

Weiss and Kulikowski (1992) describe cross validation as a technique that involves
randomly generating a number of training/test set partitions. The test set in each
training/test pair is held out while the classifier is trained on the training set. The
estimate of the error rate on a true population is determined by taking an average of
the error rate on each test set. An issue that arises with the use of cross validation
concerns the optimal size of each training and test set.
K-fold cross validationinvolves partitioning the sample intok training/test set

pairs of approximately equal size.k classifiers are trained and the estimate of the
true error is obtained by taking the average of apparent error rate on thek test sets.
Cross validation is the most popular re-sampling technique in computer learning
systems though it has disadvantages particularly with small samples. We chose to
use5 fold cross validationbecause of its popularity although it is worth noting that
the technique known as bootstrapping warrants special attention in future research
in law because of its potential to handle small data sets. Table 2 represents the
topology and performance of neural networks in Split Up. Results depicted in
that table are the average number of errors of each magnitude over the five cross
validation sets.

7. Implementing Split Up

Split Up has been implemented using KnowledgePro2 as an argument-based reas-
oning shell. Family law knowledge has been entered into the shell so that the
argument-based framework can be evaluated, though studies are under way to
demonstrate that the shell can also be useful applied within non-legal domains.
The basic unit of knowledge in Split Up is the sentence. All data, claim, warrant
and backing items are sentences. All sentences are stored in a sentence base and are
retrieved to produce user prompts, claims and explanations. Arguments are frames
with slots that reference sentences in a sentence base.

An argument sequence that corresponds to the tree of Figure 1 is not stored
explicitly. Instead, the sequence of arguments that is required for a percentage
split assertion is created dynamically at the outset of a consultation. We call this a
chain of reasoning and note that its dynamic creation facilitates future maintenance.

2 KnowledgePro is an object oriented high level language with a built in inference engine and
hypermedia development tools released by Knowledge Garden Inc. and runs on a PC-Windows
environment.
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Table II. Performance of Split Up networks

Net Network name Topology Average Average Average Average Number

No. input- proportion proportion proportion proportion of

hidden- of errors of of errors of of errors of of errors of epochs

output magnitude>3 magnitude>2 magnitude>1 magnitude>0.5

1 Percentage Split 15-12-13 0.03 0.12 0.16 0.31 900

2 Relative contributions 20-8-5 0.01 0.02 0.06 0.27 1130

3 Relative needs 8-3-5 0.00 0.01 0.02 0.07 230

4 Relative direct contributions 32-15-5 0.00 0.01 0.09 0.19 35

5 Relative indirect contributions 10-4-50.02 0.00 0.02 0.13 180

6 Relative home maker contributions 10-5-5 0.09 0.00 0.00 0.00 270

7 Individual needs 14-3-4 0.02 0.07 0.11 0.30 830

8 Individual personal prospects 17-9-5 0.02 0.01 0.05 0.26 480

9 Individual employment prospects 14-8-5 0.02 0.02 0.08 0.101 170

10 Individual capacity to work 12-5-3 0.01 0.00 0.06 0.22 180

11 Availability of employment opportunities 9-5-4 0.00 0.12 0.16 0.4 490

12 Individual financial resources 26-12-5 0.03 0.02 0.11 0.31 180

13 Individual business resources 10-5-5 0.02 0.03 0.29 0.40 160
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Figure 5. Schema for typical neural systems.

Once the chain of reasoning is constructed inferencing proceeds by repeating the
following steps until the final argument is executed:

• retrieve the next argument from the chain of reasoning;
• if a value for the argument’s data value is not known, then prompt the user;

and
• retrieve the inference method for that argument from the argument base and

apply the data items to the inference method;

Software used for neural network training was neuDL (Neural Network Descrip-
tion Language), a description language for the design, training and operation of
neural networks developed by Samuel Joe Rogers at the University of Alabama.
Using this language rather than specialised network software enabled us to im-
plement our own performance metrics described above. All neural networks were
trained on mainframe computers running Unix for speed and efficiency.

Invoking a number of neural networks for a single consultation presents an
efficiency problem. Figure 5 represents the system design typically used when a
number of different neural networks are called upon to perform an inference. This
figure illustrates that once trained, each network’s topology, weights, biases and
activation function are stored in a repository. A run time invocation of a network
requires, in essence, that the network be rebuilt with information retrieved from
the repository before the input data can be fed through to produce an output. This
can seriously degrade performance in a system such as Split Up that consecutively
invokes over twenty networks. Rather than include the neural network functions in
Split Up, we have captured the results of inferencing in a data structure.

Each possible input is presented to the trained network prior to a consultation in
a pre-specified order. The position of a given input in this ordering is determinable
solely from the input’s value. The outputs are stored in the order they emerge
from the network, so that the outputs are also ordered. To find the output which
corresponds to given input, the position of the input is determined and the output
at that position in the output list is retrieved.
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Figure 6. Schematic diagram of lookup table repository method.

This approach is illustrated in Figure 6. There is no need to store information
about each network other than the sequence of outputs. Rebuilding a network is
unnecessary, nor is there a need to actually feed values through a network during
consultation. Instead the output value that corresponds to the input is retrieved from
the ordered list of outputs. These factors combine to greatly enhance the efficiency
of the system.

8. Explanations in Split Up

Split Up explains its reasoning for inferring an argument’s assertion by presenting
the data, warrant and backing components of the argument to the user on request.
For example, if the user invokes an explanation for the assertion“Overall, the
husband is likely to be awarded 40% of the assets”he/she is presented with the
data items from the argument structure “The husband has contributed to the same
extent as the wife, The husband has greater resources for the future as the wife,
The marriage is of average wealth”. If any one of these data items are questioned
by the user, the argument that produced the data item as an assertion is retrieved
and an explanation generated from it. If, on the other hand, the user is satisfied
with the data items but wants further explanation, the reasons for the relevance of
each data item and the reason for the appropriateness of the inference method are
retrieved from the argument structure:“Contributions must be taken into account
according to the statute: 79(4). Resources for the future must be taken into account
according to the statute: 79(4)e 75(2). Inference has been produced using a neural
network trained with appropriate examples: over one hundred real Family Court
cases. The neural network was trained using backpropagation of errors: a proven
learning algorithm”.

Eberhart (1995) claims that the purpose of an explanation facility within an
expert system is to encourage the user to trust the system as opposed to the purpose
of rule based system explanation facilities which was to aid knowledge engineers
to debug large rule sets. The early ‘trace’ type of explanation facility reflected the
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inferencing process perfectly though typically did not engender a user’s trust. In
a similar vein, Bench-Capon et al. (1991) noted that explanations were more than
proof procedures and reported favourable user responses when they used Toulmin
argument structures to provide explanations for their logic programs. Wick and
Thompson (1992) also note that explanation involves more than the reproduction of
inferencing steps. They have developed an explication facility that is invoked after
the inferencing has concluded. It takes, as input, the inferencing steps used to reach
a conclusion, in addition to domain knowledge at a different level of specificity to
that used to infer conclusions.

Generating explanations for neural network inferences is difficult because the
inferencing steps are not explicit. Nevertheless, two broad approaches have
emerged which aim to generate explanations in this paradigm. One approach in-
volves selecting a sample of examples that most closely matches the input. These
examples are presented to the user as similar cases. This approach certainly has
its uses but can be limited in law. A sample of similar examples does not make
explicit a statute or precedent case that underlies many inferences. A different
approach in neural network explanation, exemplified by Diederich (1992), involves
representing the internal sub-symbolic processes within a neural net in a symbolic
manner so that inference steps can be elucidated. While useful, these approaches
are limited in law because an explanation that will engender trust must provide
information over and above that involved in inferencing steps.

Explanations in Split Up are pragmatically grounded because they are supplied
by domain experts. There is no suggestion that the reason for the relevance of a
data item specified by domain experts is the only one possible, nor is it necessarily
the ideal reason. It is however a reason that makes pragmatic sense to the expert. As
such, it is more likely to engender the user’s trust than if a reason which replicated
reasoning steps was used.

9. Split Up Evaluation

Eight specialist family law solicitors were asked to analyse three cases.3 The three
cases were devised to test diverse marriage scenarios. Given the difficulty in assem-
bling large numbers of specialist lawyers we cannot attempt tests of significance on
these results. Table 3 illustrates the percentage of the assets awarded to the husband
by the Split Up system and by each of the lawyers.

Cases B and C indicate compatibility between Split Up predictions and those of
the eight lawyers. Furthermore, reasons for their prediction given by Split Up were
similar to reasons given by the lawyers. Case A was more controversial. This case
involved a marriage where domestic duties were performed by paid staff and not
by either party to the marriage. Split Up and four of the lawyers interpreted this
situation as one where both parties had contributed to the home in equal measure.

3 Ten lawyers actually participated in the trials but results from two were not included because of
signficant prior awareness of the Split Up system.
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Table III. Percentage of assets awarded to hus-
band by Split Up and family lawyers

Case A Case B Case C

Split Up 55% 50% 40%

Lawyer 1 55-60% 50% 35%

Lawyer 2 55% 50% 35–40%

Lawyer 3 50–55% 50% 40%

Lawyer 4 45% 50% 50%

Lawyer 5 45–50% 50% 40%

Lawyer 6 40% 50% 35%

Lawyer 7 45–50% 50% 35%

Lawyer 8 50% 50% 40%

The remaining lawyers regarded this situation as improbable and, despite evidence
to the contrary, assigned the majority of the home-maker role to the spouse who
had not engaged in paid employment. This brings to light an important issue in
this legal domain: What constitutes being a home-maker, and how important is
this role within a marriage? As the above example in Table 3 clearly shows, the
domestic beliefs of the lawyers involved weighed heavily on their interpretations
of the given facts. Evaluating the Split Up system is complicated by such variance
within domain experts’ opinions.

10. Sequenced Transition Networks

The sequenced transition network methodology (STN) enables the automated trans-
lation of a directed graph into sets where each set represents a path within the graph
(Stranieri et al. 1994). Four set operators defined in the STN approach are applied
to the sets in order to implement forward chaining, backward chaining and the
generation of explanations. This approach is conceptually equivalent to rule-based
reasoning although the role of a knowledge engineer is kept to a minimum. Using
this methodology, knowledge acquisition and maintenance benefits result because
rules are not required at all. There is no requirement to convert graphs to rules
because directed graphs drawn by the expert are automatically converted into sets.
Figure 7 illustrates a directed graph that represents the interaction between a family
law expert and a client.

The principal domain expert for Split Up was Renata Alexander, an experienced
family law practitioner with a government funded legal agency in the state of Vic-
toria. The graph of Figure 7 is one of 51 she drew to capture knowledge relevant
for determining whether an asset will be considered by the Court or not. AnSTN
program labels each node in the graph. The initial node is labelled 0. The node
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Figure 7. Directed graph for common pool determination.

reached by traversing arc 2 from the initial node is labelled node 02. If a node in
the graph is reached by more than one path, then the node receives two labels. The
program stores each node as an object which is identified by the node label. Text
associated with the node and with arcs emanating from the node on the graph are
also stored within the object for subsequent use as prompts and explanations. Thus,
a directed graph is not translated into rules for inference engine utilisation as is the
case in traditional rule-based expert system design. No prompts, questions or text
other than what is drawn on the graph are required.

Forward chaining inferencing commences with the presentation to the user of
the text associated with the initial node as a user prompt. The user is then provided
with a number of response options. The arc number of the user’s response is appen-
ded to the node number to retrieve the next node. This proceeds until a conclusion
is reached. Three set operators are invoked to generate explanations:

• Reachable conclusion set for a node. This is the set of all conclusions that can
be reached from the node.
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• Unreachable conclusion set for a node. This is the set of all conclusions that
cannot be reached from the node.

• Difference segment. This is a set that compares two paths and represents the
first point of difference between the two sets.

The sequenced transition network methodology is an approach equivalent to a rule
based approach but has some acquisition and maintenance benefits. However, a
pressing question in the use of this technique, neural networks or any other in-
ferencing method concerns the selection of the problem to be implemented. The
next section introduces a classification method we have used to help select those
aspects of Split Up’s target domain which could best be implemented with rule sets
and those best left to neural networks.

11. Evaluating Tasks for AI Implementation

We considered the common pool determination task well suited to a rule-based
reasoning approach, but the task of predicting the percentage of those assets awar-
ded to either party was perceived to be too demanding for rule-based reasoning.
The problem of deciding whether a legal task can be modelled by any existing
paradigm, and if so, which one, is a problem currently tackled in an ad hoc manner
by developers of legal reasoning systems. This section describes a simple classific-
ation scheme we used to classify sub-tasks in Split Up in an attempt to instil some
method within our decision making.

The classification scheme is based on two dimensions; our estimation of the
extent to which a task is open textured, and our estimation of the extent to which
a task displays a feature that we call boundedness. A graphical representation of
four family law tasks, based on two axes namedopen textured-well definedand
bounded-unbounded, is presented in Figure 8. The dimensionopen textured-well
definedrefers to our belief as to the extent to which a task is open-textured. Al-
though every possible extension for an open-textured concept cannot be predicted,
we believe that it is possible to estimate the extent to which the known extensions
represent all possibilities. Practitioners seem to estimate the degree of open texture
of a statute in order to offer a prediction. Few practitioners would argue that the
concept ofvehicle in a local government by-law seems less subject to new uses
than the concept ofmembership of a social groupin a United Nations Convention
governing refugee status.

Thebounded-unboundeddimension refers to the extent to which an expert (or
knowledge engineer) believes that all terms relevant for the performance of a task
are explicitly known. The aetiology of AIDS is quite unbounded because we sus-
pect that there are factors relevant to this task other than a HIV test result. We
have a fair degree of confidence that expert heuristics for the common pool task
depicted in Figure 8(a) are relatively complete thus this task is perceived to be
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Figure 8. Classification of four family law tasks.

quite bounded. Similarly, we believe we know sufficient relevant factors to predict
a property distribution percentage (Figure 8(b)).

The task of predicting custody arrangements depicted in Figure 8(c) is quite
unbounded in that we do not believe that all, or even most factors relevant for this
determination are known. Practitioners tell us the family values particular judges
adhere to is an important factor in predicting custody outcomes yet this is not a
factor we can include in an automated system with confidence. Furthermore, the
character judgement inherent in determining custody matters necessarily involves
factors that cannot obviously be made explicit. Therefore, we are enticed into be-
lieving that this task cannot be modelled adequately because sufficient knowledge
does not currently exist.

Figure 8(d) depicts the task judges have in creating a property order to realise a
percentage split, once decided. Few features relevant for this task are known though
judges generally avoid forcing a sale of any asset and they also attempt to minimise
the disruption to the everyday life of children. There are no other obviously relevant
factors or heuristics. The statute provides no guidance and there have been very few
contested cases which specifically relate to the court order created. We thus view
this task as quite unbounded.
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We believe that the classification of a task along thebounded/unboundedcon-
tinuum is subjective. We highlight three factors that affect an expert’s perception
of the degree of boundedness in a task.

• Prevalence of discretionary provisions in statutes. These provisions encourage
a decision maker to take any factor deemed relevant into account.

• The expert’s perception of the broader social and political environment.
• The expert’s estimation of the completeness of his/her knowledge.

A classification along the open-texture continuum is necessarily subjective. The
same task may be classified by different experts in different ways. This is under-
standable because the classification reflects the expert’s belief about the domain.
More specifically, we believe the classification reflects the expert’s beliefs about
four factors.

• The extent to which the domain contains ambiguous definitions;
• The extent to which terms in the domain are coarse grained;
• The expert’s own jurisprudential perspective; and
• The social and political environment.

The common pool task of Figure 8(b) does not seem appreciably open textured to
us. There is far less discretion than is the case in the percentage split task represen-
ted in Figure 8(a). Heuristics used for the common pool task involve terms which
are not obviously susceptible to new uses. In contrast, the discretionary element
available to a decision maker in combining relevant terms in the percentage split
problem lead us to view this task as quite open textured. Terms relevant for the
prediction of a property order include the percentage split figure to be realised,
the desire of each party to retain assets and the disruption to children. In our view
these concepts, perhaps with the exception of‘disruption to the children’, are not
appreciably open-textured.

Tasks that fall in the narrow bounded quadrant (top right) are well suited to im-
plementation with rule-based reasoning or within a logic programming paradigm.
First order predicate logic limits inferences to deduction, is monotonic, and cannot
represent uncertainty. In many tasks these features are limitations, but this is not the
case with tasks classified as narrow bounded. A representation of uncertainty is not
required for these tasks because terms relevant for a solution are known and how
they combine is also known. Terms are not appreciably open textured so there is
little need to represent uncertainty of rules or clauses. Similarly, non-monotonicity
is not necessary because assertions do not normally need to be retracted. The
common pool task was therefore implemented as a rule based reasoner, albeit a
non-traditional one.

Tasks classified as wide bounded (top left quadrant) are regarded asbounded
to a considerable extent but do contain many terms which are quite open-textured.
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Figure 9. Two arguments within percentage split determination.

Many legal tasks appear to fall within this category. A technique is required to deal
with the open texture in these domains. As described earlier, the open texture in
percentage split determination involves judicial discretion so we have used neural
networks. If the open texture manifests predominantly as defeasible rules, then a
non monotonic logic would seem more appropriate.

We believe that unbounded tasks, whether they contain open textured terms
or not, cannot be performed by any existing paradigm because relevant terms are
not known. The aetiology of AIDS cannot be predicted because sufficient terms
relevant for that prediction are not yet known. The task of predicting the actual
property order a judge may deliver in order to realise a percentage split of the
assets previously decided was considered to be beyond the scope of any existing AI
paradigm simply because insufficient factors are known about this decision making
process. Predicting custody arrangements is made difficult not only because of
a preponderance of open textured terms such aswelfare of the childrenbut also
because we suspect factors vital for the prediction are not known to us at this time.

We have used the classification scheme with sub tasks (arguments) in the per-
centage split determination task to discern those arguments that are suited to imple-
mentation with a rule based approach from those more suited to neural networks.
Figure 9 illustrates two tasks within the percentage split determination which are
represented as arguments. The husband’s capacity to work illustrated in Figure 9(a)
is determined by two factors; his age and his state of health (see Figure 1). These
terms do not seem appreciably open textured to us, principally because their com-
bination is quite straight forward. These are the only factors that seem relevant for
determining a capacity to be engaged in employment. We have therefore classified
this task as a predominantly narrow bounded one and have hence implemented it
with rules. In contrast, the way the datum items combine to infer a relative direct
contribution of the husband depicted in Figure 9(b) involves a degree of discretion
and is thus seen as quite open textured. This task has therefore been implemented
using neural networks.
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12. Conclusion

We have demonstrated our belief that reasoning in discretionary domains is in-
dicative of a type of open-texture often overlooked by AI and Law researchers.
This type of open-texture needs to be tackled in a different way to the methods
used for classification anomalies, defeasible rules or vague terms. We have illus-
trated the benefits of an integration of the connectionist paradigm with rule-based
reasoning for reasoning in the discretionary domain of family law in Australia.
Our approach generates explanations for conclusions which are reached quite in-
dependently of inferencing methods used to reach those conclusion. Assumptions
underlying this draw jurisprudential support from the movement known as legal
realism. The foundation of the integration and the explanation is a knowledge
representation schema based on the structure of arguments proposed by Toulmin.
We have also illustrated a classification scheme that helped us discern those tasks
more suited to a rule based implementation from those suited to a connectionist
implementation.
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