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A physical system has a chaotic dynamics, according to the dictionary, if

its behavior depends sensitively on its initial conditions, that is, if systems

of the same type starting out with very similar sets of initial conditions can

end up in states that are, in some relevant sense, very different. But when

science calls a system chaotic, it normally implies two additional claims: that

the dynamics of the system is relatively simple, in the sense that it can be

expressed in the form of a mathematical expression having relatively few

variables, and that the the geometry of the system’s possible trajectories has

a certain aspect, often characterized by a strange attractor.
Chaos theory proper, it should be noted, has its home territory in classi-

cal physics (and other kinds of dynamics that share the relevant properties

of classical physics). The extent to which chaotic mathematics is fruitful

in understanding the quantum realm is still a matter of debate (Belot and

Earman 1997).

Sensitive Dependence on Initial Conditions In the popular imagination,

a chaotic system is one whose future state may be radically altered by the

smallest of perturbations—as when the fluttering of a butterfly’s wings cre-

ates a disturbance whose size is inflated to the point that it tips the meteo-

rological balance on the other side of the globe, creating a tornado where

there would otherwise have been none. The “butterfly effect” marvelously

engages human fear and wonder at the unpredictability of things. It cap-

tures rather less completely what is interesting and distinctive about modern

chaos theory.
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The idea of an inherent unpredictability in human and other affairs due

to the inflation of small disturbances is an old one: “A Wise man endeavors,

by considering all Circumstances, to make Conjectures, and form Conclu-

sions: But the smallest Accident intervening, (and in the Course of Affairs it

is impossible to see all) doth often produce such Turns and Changes, that at

last he is just as much in doubt of Events, as the most ignorant and unexpe-

rienced Person” (Swift, Thoughts on Various Subjects, 1711).

Modern mathematics is able to characterize the sensitivity of initial con-

dition dependence in various ways that lie far beyond Swift’s means. No-

tions such as the Liapunov exponent help to quantify the speed at which

the trajectories of systems starting out with similar initial conditions will

diverge. Measure theory quantifies something like the chance that a small

initial difference will lead to a relatively large difference in outcome, in

systems where not every small change makes such a difference. There is

nothing here, though, that would have astounded Swift.

Simplicity The central insight of chaos theory is that systems governed by

simple equations, that is, systems whose behavior can be characterized by a

small number of variables, or low dimensional systems, are often sensitive

to initial conditions. At first blush this realization has a pessimistic cast.

Most obviously, it leads to the conclusion that even a simple dynamics may

be unpredictable in the medium to long term, as which of two significantly

different outcomes occurs may depend on such fine details of the initial con-

ditions as to lie beyond the resolving power of any reasonable observational

effort.

Somewhat less obviously, certain kinds of sensitivity to initial conditions

impede systematic dynamical understanding. A famous example closely

connected to the origins of chaos theory is the three body problem, the task

of elucidating all the properties of the dynamics of a three body system in

Newtonian gravitational theory. In 1890, Henri Poincaré showed that three

body systems can tend to chaos in the modern sense of the word, and con-

cluded that a systematic treatment of three body dynamics would be very

difficult if not impossible.
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Chaos can be an impediment to prediction and systematic understand-

ing in low dimensional systems, then. However, if low dimensional chaos is

bad news for the study of systems known to have a low dimensional dynam-

ics, it is good news for the study of systems known only to have a chaotic

dynamics. Traditionally, such systems were modeled by complex equations,

if at all; chaos theory introduces the serious possibility that these systems

may be governed by equations with very few variables. Underlying complex

appearances, then, may be a simple reality. The prospect of finding a hid-

den simplicity in such complex phenomena as turbulent flows, the weather,

the movements of financial markets, and patterns of extinction is what most

excites proponents of chaos theory. (Much the same prospect animates the

advocates of catastrophe theory, the study of cellular automata, “complexity

theory”, and so on.)

To what extent can the nature of this hidden simplicity, if it exists, be di-

vined? Given sensitive dependence on initial conditions, it is difficult to find

the simple equation that best predicts the observed phenomena, since small

errors in measuring initial conditions can make even the true model look like

a very bad predictor. More feasible is to infer some of the more interesting

properties of the putative underlying law, such as the degree of sensitivity to

initial conditions and certain geometrical aspects of the dynamics induced

by the law (discussed below).

In favorable conditions, this information can be used to model accurately

the behavior of chaotic systems to some extent—or at least, that is the hope

both of academic chaoticians and of those hoping to use the mathematics of

chaos theory to beat the financial markets (as described by Bass 1999).

By far the boldest posit made in undertaking such work is the assumption

that there is a simple dynamic law lying behind the subject system’s com-

plex behavior. For elaborate systems such as ecosystems and economies, the

assumption of dynamic simplicity is often no more than a leap of faith; how-

ever, Strevens (2003) describes some circumstances in which ecosystems

and some other complex systems have a low dimensional macrodynamics.
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The Geometry of Chaos Trace the trajectory of a paradigmatically chaotic

system through the space of possible states and the result is a complicated

tangle of looping paths. It is the geometry of this tangle more than anything

else—more even than sensitive dependence per se—that is distinctive of

chaos (though there is disagreement as to which feature of the geometry is

most important; see Smith (1998), chapter 10).

One especially striking feature of such trajectory tangles is their often

fractal structure: they cut out a shape in the space in which they are embed-

ded so intricate that mathematicians ascribe it a fractional dimension. Such

a shape is a strange attractor (strictly speaking an attractor only if it is a set

of trajectories that systems starting from some points outside the attractor

eventually join).

Many of the more interesting properties of chaotic systems can be un-

derstood as arising from the intricate geometry of the trajectory tangle. One

well-known example is the appearance of “period-doubling cascades” in sys-

tems that are moving from a periodic to a chaotic regime of behavior: as

some parameter affecting the system’s dynamics is tweaked, the system first

oscillates between two states, then between four states, then eight states,

and so on, with shorter and shorter times between each successive dou-

bling, until it goes chaotic. What is interesting about this behavior is that

it turns up in many physically quite different kinds of systems, and that

there are certain aspects of the period doubling, notably the rate at which

the doubling increases, that are the same (in the limit) in these otherwise

rather different systems. This universality in chaotic systems holds out the

promise of understanding the behaviors of a considerable range of systems

in terms of a single mathematical—in this case, a geometrical—fact. So far,

however, the wider significance of this understanding is unclear.

A more practical part of chaotic geometry is the use of limited data about

the behavior of chaotic systems to reconstruct, to a certain extent, the geom-

etry of the system’s trajectory. Suppose that the behavior of a chaotic system

is characterized by three variables, so that the system’s “trajectory tangle” is

a subset of three-dimensional space. Suppose also that only a single prop-

erty of the system’s dynamics can be observed, a function of the values of the
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three variables. In favorable conditions, this single set of observations can

be used to recover the geometrical structure of the three-dimensional dy-

namics. Various predictions, quantitative and qualitative, can then be made

from the recovered geometry.

This is an extremely powerful technique, as it assumes no knowledge

of the number or even the nature of the underlying variables. However,

its success does depend on, among other things, the simplicity assumption

explained above: the technique supposes that there are no more than a

small number of variables.

Chaos and Probability The disorderly behavior of chaotic systems can

be called “random” in a loose and popular sense. Might the behavior of at

least some such systems be random in a stronger sense? The suggestion that

chaos might provide a foundation for probabilistic theories such as statistical

mechanics has been one of the more fruitful contributions of chaos theory

to philosophy.

The best scientific theories of certain deterministic, or near determinis-

tic, systems, are probabilistic. The most prominent examples are perhaps

the systems characterized by statistical mechanics and population genetics;

the simplest examples are various gambling setups such as a roulette wheel

or a thrown die. The probabilistic characterization of these systems is apt be-

cause the various events that make up their behavior (die throws or deaths,

for example) are patterned in characteristically statistical ways, that is, in

ways that are captured directly by one or other of the canonical probability

distributions in statistical theory.

The mathematics of chaos offers an explanation of the probabilistic as-

pect of these patterns, and so offers an explanation of the success of proba-

bilistic theories applied to certain sorts of deterministic systems.

The explanation, or rather the family of explanations, is quite complex,

but it can be loosely characterized in the following way. (See Sklar 1993 for

the full array of chaos-related approaches to founding statistical mechan-

ics.) A paradigmatically probabilistic pattern has two aspects: a short term

disorder, or randomness, familiar to every gambler, and a long term order
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that is quantified by the statistics characterizing a probability distribution,

such as the one half frequency of heads in a long series of coin tosses.

Chaotic systems are capable of producing probabilistic patterns because

they are capable of producing both this short term disorder and the requi-

site kinds of long term order. The short term disorder is due to the sensi-

tive dependence on initial conditions; the long term order to other aspects

of the “geometry of chaos”, principally chaotic dynamics’ resemblance to a

“stretch-and-fold” process. (On the role of the stretch-and-fold geometry

in producing chaotic behavior, and more specifically, probabilistic patterns,

see, in increasing order of technicality, Stewart (1989), Strevens (2003),

and Ornstein and Weiss (1991).)

Nowhere near all chaotic systems, it should be noted, generate proba-

bilistic patterns. Indeed, this area of investigation is not, in a certain sense,

mainstream chaos theory: there are no strange attractors or period-doubling

cascades, though there is a characteristically chaotic geometry to the rele-

vant trajectory tangles.

As well as explaining the success of probabilistic theorizing in science,

chaos has been put forward—for very much the same reasons—as a founda-

tion for the metaphysics of probability, on the principle that what produces

the probabilistic pattern is deserving to a considerable extent of the name

probability. (See Suppes (1987) and the separate entry for probability.)

Philosophical Significance What is the philosophical significance of chaos?

With respect to general philosophy of science, opinion is divided. Some

philosophers have argued that chaos theory requires the abandoning of pre-

diction as the touchstone of successful science, a new conception of the

nature of scientific explanation, and the end of reductionism (Kellert 1993).

Others have argued that these conclusions are too extreme, and that inso-

far as they are justified, chaos theory is not necessary for their justification,

though it may well have brought to philosophy’s attention problems previ-

ously wrongly ignored (Smith 1998).

With respect to certain foundational questions about science, the signif-

icance of chaos is less controversial. The notion of determinism (Earman
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1986), and in the context of processes that are deterministic deep down,

the notions of randomness and probability, cannot be discussed without ref-

erence to work on dynamical systems since Poincaré that falls within the

ambit—broadly conceived—of chaos theory.
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