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One of the primary conceptual difficulties facing the multiple worlds interpretation (MWI) of quantum me-

chanics is the interpretation of the Born rule measure as a probability. Given that each world in the MWI is

typically envisioned as being equally “real,” a more natural rule would be to assign each of the N branches

associated with a measurement the equivalent probability 1/N , rather than the probability |a|2 prescribed by

the Born rule. This approach, the “alternate projection postulate” (APP), has been paid scant attention, how-

ever, since it leads to predictions that contradict those of standard quantum mechanics. In this paper, a further

modification of the MWI is presented that not only incorporates the aesthetic advantages of the APP, but also is

compatible with the predictions of quantum mechanics. This further modification involves an alternative method

of enumerating branches that satisfies what is termed here the “Born identity,” according to which there is not a

single branch associated with a given experimental outcome, but rather more than one branch, with each branch

being physically distinct and the number of branches being proportional to |a|2. In place of the assumption of

the Born identity, however, a feasibility argument for the derivation of the Born identity from more fundamental

field-theoretic principles (such as those provided by general relativity) is sought. In this manner, it is proposed

that quantum statistics may be derived from a purely classical (general relativistic) foundation without injecting

the Born rule – either directly or in disguised form – as an independent postulate.

PACS numbers: Keywords: relative state formulation, multiple worlds interpretation, general relativity, geon.

I. INTRODUCTION

An essential feature of Everett’s relative state formulation

[6], a.k.a. the multiple worlds interpretation (MWI), is the ap-

plication of the Born rule to assign a “probability measure”

m to each branch associated with a measurement, with m be-

ing the squared norm of the complex coefficient a associated

with the corresponding outcome, m = |a|2, as calculated by

the Schrödinger equation. Everett [6] and others (see, e.g.,

[2]) have attempted to demonstrate that this expression for

m arises naturally from the essential makeup of the MWI.

Recently, however, it has been argued [5] that other expres-

sions for m can be conceived that are compatible with the

basic structure of the MWI. In particular, an “alternate projec-

tion postulate” (APP) was proposed according to which each

branch is assigned a probability measure equal to 1/N , where

N is the number of distinct possible experimental outcomes

(also termed “branches” or “trajectories”) associated with the

measurement. Indeed, it was argued (correctly, in our view)

that “the APP is in fact the most natural probability rule that

goes with the Everett interpretation: on each ‘branching’ of an

observer due to a measurement, all of its alternative ‘worlds’

receive an equal probability” [5]. The application of the APP

to the MWI was then argued to give rise to a theory that is not

only internally consistent, but also aesthetically superior to the

standard MWI (SMWI), mired as it is by the interpretational

difficulties of the Born rule. In addition, it was concluded

(once again correctly in our view) that the application of the

Born rule to the MWI should be seen as an assumption that

stands independently from the basic structure of the MWI.
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The difficulty with the APP, of course, is that it leads to

predictions that disagree with those of standard quantum me-

chanics, a difficulty that was seen to “disqualify it as a possible

candidate of a physical theory of our world” [5]. The goal of

this paper is to explore how the MWI may be further modified

to construct a formulation of quantum mechanics that reflects

not only the interpretational advantages of the APP, but also

the ability to make correct predictions. It will be shown that

this is easily achieved through a reconceptualization of the

number of branches associated with a given quantum mechan-

ical measurement: rather than associating one branch with

each experimental outcome, this alternate method, termed the

“alternate enumeration postulate” (AEP), is allowed to asso-

ciate multiple physically distinct branches with each individ-

ual outcome. Predictive accuracy is then restored by restrict-

ing the AEP to satisfy what is termed here the “Born identity,”

according to which the number of branches associated with an

experimental outcome is proportional to |a|2.

In place of the assumption of the Born identity, however,

a method for the derivation of the Born identity from more

fundamental principles of a field theory, such as general rel-

ativity, will be proposed. This method assumes a description

of the observer, the system under observation, and indeed an

entire “world” as geometric objects using the same mathe-

matical language as that used for general relativity; in other

words, it assumes the notion that “all is geometry” as en-

visioned (though not yet fully attained) by many, including

Einstein, since the inception of general relativity. It will be

shown that a small number of constraints (termed the “Born

constraints”) over this mathematical representation may be

identified that give rise to predictions that are equivalent, at

least in the approximation, to the Born identity. Although not

achieved in this paper, it is envisioned that these contraints

may be given the form of field equations and as such, could be

derived from Einstein’s equations themselves. In this manner,
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a general framework for the derivation of quantum statistics
from general relativity is envisioned, one that does not require

the Born rule as an independent postulate. The overall scheme

presented in this paper, therefore, has two motivations: first,

the aesthetic advantages of the APP as compared to the Born

rule; second, the prospect (albeit not fully accomplished in

this paper) of deriving quantum statistics from general relativ-

ity. This scheme will be referred to as the “modified MWI”

(MMWI), which can be constructed conceptually via a series

of modifications of the standard MWI (SMWI) as outlined in

this paper.

Sec. II presents the argument for the aesthetic superiority

of the APP compared to the Born rule. Sec. III presents in

simple terms how the AEP and the Born identity confer the

ability to make correct predictions to the MMWI. Special con-

sideration will be given in Sec. IV to the issue of assigning

“multiple physically distinct branches” to a single experimen-

tal outcome in a manner that is consistent with the essential

structure of the Everett program. Sec. IV will also introduce

the argument that general relativity can be incorporated natu-

rally into the general scheme of the MMWI. In particular, the

concept of a “multiplicity” of solutions to general relativistic

systems that admit closed timelike curves is reviewed, with

emphasis on the natural applicability of the APP to the prob-

abilistic interpretation of “multiplicity.” The notion that “all

is geometry” is also discussed, whereby all material objects

(particles) are represented as topologically nontrivial geomet-

ric objects referred to in the literature as “4-geons” [3] [8] us-

ing the mathematical language of general relativity. In Sec. V,

a loose set of constraints (termed here the “Born constraints”)

over this geometry is proposed, and it is demonstrated explic-

itly that the Born identity is a feature of a simplified model

that approximates the empiric predictions of the more com-

plex model based on the Born constraints. This demonstra-

tion makes heavy use of the Feynman path integral (FPI) for-

mulation of quantum mechanics. Since the Born constraints

constitute essentially a description of paths through 4-space, it

is envisioned (albeit not achieved in this paper) that the Born

constraints could be expressed as a compact set of field equa-

tions and could be in turn derived from more generalized field

equations, such as those of the theory of general relativity. It

is conceivable that alternatives to the Born constraints may

exist; therefore, the Born constraints are presented merely as

part of an existence proof for the main thrust of this paper:

that quantum statistics may be derived from general relativity.

Sec. VI contains a summary discussion and presents areas of

future work.

II. MOTIVATION FOR THE APP: THE PROBABILITY

CRITERION

As stated above, the primary motivation for the APP is that

it provides the most “natural” probability rule that one may

imagine upon first encountering the MWI. A simple example

may be used to illustrate this argument. Consider an experi-

ment in which M identically prepared spin-1/2 particles are

prepared and that their spins are measured sequentially. Us-

ing the Born rule, each particle is predicted to be observed to
be spin up or down with probabilities mup or mdown, respec-

tively. Since each individual spin measurement produces two

separate branches (worlds), there will be a total of 2M worlds

at the end of the M measurements. In each of these worlds,

upon the completion of the M measurements, the observer is

imagined to calculate the frequency pup with which the parti-

cles were observed to be in the spin up state. In other words,

mup is what the theory predicts, and pup is what is actually ob-

served (with mup being calculated once prior to experiment,

and pup being calculated separately in each of the 2M worlds,

after completion of the experiment). From a practical perspec-

tive, the prediction is tested by comparing the prediction mup

with the observation pup (and likewise for spin down), using

as large a value for M as is practically feasible. In particular,

it is hoped that as M → ∞, the physical measure of the num-

ber of worlds in which the Born rule appears to be false – that

is, in which pup deviates from mup by an arbitrarily chosen

(small) number δ – approaches zero.

The notion of testing a “probability rule” by comparing the

predicted frequency to the observed frequency may be stated

more generally for any arbitrary quantum mechanical experi-

ment, using the following definitions:

Definition 1. Experiments M . M is the number of times that

the experiment is run.

Definition 2. Outcomes N . N is the number of mutually ex-

clusive possible outcomes for one experimental trial.

Note the assumption that the spectrum of experimental out-

comes is discrete. This assumption may be made without loss

of generality, and is necessary for the purpose of defining a

measure over the number of worlds in which a particular out-

come is observed. A quantum mechanical experiment with a

continuous spectrum of outcomes, such as a position measure-

ment, should more properly be conceptualized as a theoretical

limit as the number of discrete elements of the position mea-

surement apparatus approaches infinity.

Definition 3. Frequency pn. For any individual world (of

which there are NM ), Pn ∈ [0,M ] is the number times that

the nth outcome was observed, with pn = Pn/M ∈ [0, 1]
being the frequency of this outcome among the M measure-

ments.

Definition 4. Probability measure mn. The “probability

measure” of the nth outcome, n ∈ [1, . . . , N ], is defined as

mn, which is the predicted probability frequency associated

with the nth outcome.

Note that pn is an attribute of an individual world, whereas

mn is a predicted quantity that is independent of any individ-

ual experimental result.

Definition 5. Error εn. The difference between the predicted

probability measure mn and the observed quantity pn will be

referred to as the “error” εn, that is, εn = |pn −mn|.

Definition 6. Validity Fn. The proportion Fn ∈ [0, 1] of the

NM worlds in which the observer concludes that the proba-

bility measure is valid, as determined by the error being less

than or equal to an arbitrarily chosen cutoff, εn ≤ δ.
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Given these definitions, the probability criterion may be
stated in the following manner:

Axiom 1. Probability criterion. For any arbitrarily chosen δ,

limM→∞ Fn = 1.

The probability criterion is essentially a mathematical state-

ment of the notion that “most” of the worlds will produce an

observer who concludes that the theoretical prediction is cor-

rect, to within some arbitrarily chosen cutoff. In a sense, the

probability criterion may be interpreted as a definition of the

very notion of probability: it is a requirement that must be

met by the probability measure mn. It therefore may come as

a surprise that the probability criterion is not generally met if

mn is calculated by the Born rule,mn = mBorn
n = |a|2. That

is to say that in most of theNM worlds, the observer will typ-

ically conclude that the Born rule is false. It is, however, met

if mn is calculated by the APP, mn = mAPP
n = 1/N .

By way of illustration, suppose mup = 0.9, mdown = 0.1,

δ = 0.1 and M = 100. These 100 measurements result

in 2100 worlds, and it is asked: in what proportion of these

worlds does the observer find that pup falls within the inter-

val mBorn
up ± δ? A quick calculation (using the formulae in

the appendix to this paper) shows that the answer is a minis-

cule 5.58 ∗ 10−8 percent. In contrast, the probability criterion

is met if the probability measure is calculated using the APP,

mAPP
up = 1/N . In this case, mAPP

up = 1/2, and the propor-

tion of worlds in which the observer finds that pup falls within

the interval mAPP
up ± δ is a much larger 96.4 percent. It is

simple to see that for any arbitrary δ, as M approaches ∞, the

former value approaches zero, and the latter approaches 100

percent.

It is not so difficult to see that the APP is generally immune

to the above difficulty. Indeed, it is easily demonstrated (see

the appendix) that the APP is a general solution to the proba-

bility criterion. The essential similarity between the APP and

the probability criterion is that in both cases, each of the N
possible “branches” associated with a single measurement –

or equivalently, each of theNM distinct worlds resulting from

M measurements – is considered to be, ontologically speak-

ing, on an “equal footing.” The SMWI, on the other hand,

does not seem to offer a clear ontological picture of the “re-

ality” of alternate worlds. One is tempted to adopt a form of

double-speak in the interpretation of the Born rule, whereby

each world is “equally real,” with some worlds being “more

real” (more probable) than others. The fact that the APP, but

not the Born rule, is a solution to the probability criterion is

precisely what makes it the more natural choice for the prob-

ability measure.

III. THE ALTERNATE ENUMERATION POSTULATE AND

THE BORN IDENTITY

Heuristically and in simple terms, the representation of

an individual experiment by the standard MWI involves two

steps. First, one must enumerate each distinct possible out-

come of the experiment, i.e. the number N of “branches”

(variously referred to as “trajectories” or “worlds”) associated

with the measurement. Second, one must assign a probabil-
ity measure mn, with n an integer in [1, N ], to each distinct

outcome using a probability rule such as the Born rule or the

APP. As discussed above, the APP is presented as an aes-

thetically superior alternative to the Born rule in the second

step. The straightforward way to incorporate the interpreta-

tional advantages of the APP with the ability to make correct

experimental predictions, therefore, is to modify the first step

of the SMWI, referred to here as the “standard enumeration

postulate” (SEP).

The SEP is deceptively simple. As described in Everett’s

original paper [6], one begins (prior to measurement) with

an observer in some definite physical state ψO, a system

ψS =
∑

n anψ
S
n with eigenfunctions ψS

n , and a composite

state ψO+S . The process of “observation” is defined as an

interaction between the observer and the system that trans-

forms the initial composite state ψO+S into the final state

ψO+S′

=
∑
anψ

S
nψ

O
n . The notion of “branching” is intro-

duced in the following manner: “[W]ith each succeeding ob-

servation (or interaction), the observer state ‘branches’ into a

number of different states.” In other words, the concept of

“branching” is defined such that the number of branches is

equal to the number of final observer-statesψO
n .

However, Everett also makes the statement that “each

branch represents a different outcome of the measurement

. . . ” [6]. Here, Everett seems to imply that the number of

branches is equal to the number of final states of the observed

system ψS
n – as opposed to the number of states of the ob-

server ψO
n . Denoting the former by NS and the latter by

NO, the tacit assumption that can be easily overlooked is that

NO = NS . Furthermore, it is assumed that there is a one-

to-one correspondence between the states ψO
n and the states

ψS
n : “[T]he two have become correlated in a one-one man-

ner . . . ” [6] (emphasis mine). This assumption of one-to-

one correspondence will be referred to here as the “standard

enumeration postulate” (SEP), and it is this assumption that

will be replaced with an alternative way of counting observer

states, which will be called an “alternate enumeration postu-

late” (AEP). In other words, the AEP is based upon the notion

that NO and NS may be different. In keeping with the spirit

of Everett’s original program, the number of branches will be

equated with NO; this seems only reasonable, since it is the

observer who (by definition) calculates the frequency pn and

compares it to mn, as described in the previous section. In

general, any alternative to the SEP will be referred to as an

AEP – although of course, the primary objective will be to

identify a particular AEP that restores quantum statistics.

To illustrate the difference between the SEP and the AEP,

consider once again the observation of the spin state of a sin-

gle spin-1/2 particle with mup = 0.9. Prior to measurement,

the system ψS can be expanded in terms of NS = 2 eigen-

functions, ψS = aupψ
S
up +adownψ

S
down, with aup equal to the

complex square root of 0.9. According to the standard MWI,

the process of measurement likewise transforms the observer

ψO into NO = 2 states, ψO
up and ψO

down. These two states

are physically distinct by virtue of the fact that they are char-

acterized by distinct internal physical recordings of the mea-

surement result (for example, a bit in a computer’s memory).
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After the measurement, the observer will find himself in one
of these two states with probabilities 0.9 and 0.1, respectively.

In the modified MWI, however, the APP is adopted, ac-

cording to which each state is equally likely. In addition,

consider a simple AEP for determining the number of ob-

server states after the measurement: assume that the process

of measurement transforms the observer, not into NO = 2
states, but rather into NO = 10 physically distinct states:

ψO
up,jup

, ψO
down,jdown

, with jup an integer in [1, 2, . . . , 9] and

jdown = 10. Since the number of distinct values of jup

is Jup = 9, and the number of distinct values of jdown is

Jdown = 1, then by the APP, it is seen that the probability that

the observer will measure spin up (or down) is 0.9 (or 0.1), in

agreement with the prediction made by the standard MWI.

The world-splitting diagrams of the SMWI and the MMWI

are illustrated in Figure 1 A and B, respectively. Figure 1 B il-

lustrates the generalized assumption that Jn is proportional to

|an|
2 – that is, it is proportional to the probability mBorn

n as-

sociated with the nth eigenfunction of the observed system,

as prescribed by the Born rule. The relation Jn ∼ |an|
2

may be thought of as a specific implementation of the AEP

and is referred to here as the “Born identity.” Just as the

SMWI assumes quantum statistics by assuming the Born rule,

the MMWI (in its simplest manifestation) assumes quantum

statistics by assuming the Born identity.

The world-splitting diagram of Figure 1 B is the most sim-

ple one that one might conceive that gives rise to quantum

statistics and fits the general scheme of the MMWI. However,

other, more complex world-splitting diagrams could certainly

be devised to meet these requirements. This is illustrated in

Figure 1 C, in which the specific details of the world-splitting

diagram are unspecified and are represented as a “black box.”

As will be discussed in the next section, the precise configu-

ration of the world-splitting diagram inside this “black box”

is, in principle, a consequence of the mathematical represen-

tation of ψO , ψS , and ψO+S , as well as the rules that govern

their evolution.

IV. GENERAL RELATIVITY AS A FOUNDATION FOR

THE MMWI: CTC’S, MULTIPLICITY, 4-GEONS, AND THE

NOTION THAT “ALL IS GEOMETRY”

The reader may be wondering at this point whether there re-

ally is, after all, any substantive difference between the SMWI

and the MMWI, or whether the difference is nothing more

than notational reshuffling. A careful consideration of the es-

sential structure of Everett’s original program indicates that

there is, in fact, a substantive distinction to be made. The issue

at hand is whether there is any substantive difference between

the claim that the measurement transforms the observer (once

again using the spin-1/2 experiment as an example) into one

of a total of NO = 2 states, as in the SMWI, or – alternatively

– NO = 10 states, as in the MMWI. The argument that this is

a substantive distinction between the SMWI and the MMWI

is that each of theseNO final states is properly conceptualized

as being physically distinct. In the words of Everett’s original

paper [6], the final state is represented “in terms of a super-

position, each element of which contains a definite observer
state . . . ” (emphasis mine). Indeed, a compelling argument

could be made that if the NO states of the observer are not

distinct physically, then it makes no sense to call them “dis-

tinct” at all. Therefore, it must be assumed that not only up
and down, but also jup and jdown, are variables that represent

some internal degree of freedom describing the physical state

of the observer. Thus, if the observer is a computer, then up

and down represent bits in the computer’s memory that record

the result of the measurement, while jup and jdown represent

some other – as yet undescribed – internal physical degree of

freedom of the computer. The essential makeup of the Everett

program, therefore, requires the MMWI to demonstrate that

the Jn states of the observer associated with the nth outcome

are, in fact, physically distinct.

A physical interpretation of the variables N and J will re-

quire, of course, some sort of mathematical representation of

the physical state of the observer in its initial state ψO , as well

as a set of rules that predict its evolution from a single definite

state ψO into one of a multiplicity NO of distinct, alterna-

tive, mutually exclusive physical states ψO
n . It is interesting to

point out that classical general relativity appears to give rise

under the right conditions to situations in which a system in a

single definite state has multiple distinct solutions to its time

dependent evolution. An example of such a system that has

been studied by several groups (see, for example, [9]) is that

of a billiard ball whose trajectory is analyzed in a spacetime

model that is not simply connected – in particular, one that

admits closed timelike curves (CTC’s). These authors discov-

ered that it is possible for there to be more than one distinct

solution to the billiard ball’s trajectory, each one of which is

internally self-consistent. The number of distinct solutions to

the billiard ball’s trajectory, i.e. the “multiplicity,” was found

to differ for different initial conditions. This multiplicity of

solutions exists despite the initial conditions being specified

in full. In addition, the number of solutions was found to be

not arbitrary, but rather determined by the particular initial

configuration of the composite system.

In the realm of established classical physics, the existence

of a multiplicity of solutions to the time-dependent evolution

of a system appears to be unique to a model of GR that admits

CTC’s. By way of contrast, this sort of multiplicity is not char-

acteristic, for example, of Newtonian mechanics. One might

argue otherwise: for example, the Newtonian analysis of the

trajectory of a pencil balanced on its tip might be expected to

yield a multiplicity – in fact, an infinite number – of solutions

to the direction of the pencil’s fall. On further reflection, how-

ever, it may be noted that Newtonian mechanics would predict

that a perfectly balanced pencil would not fall at all, but would

remain balanced. If one were to inject random (say, quantum)

fluctuations to this model so that the pencil would fall, then

the multiplicity of solutions to the pencil’s trajectory would

be inherently attributable to quantum mechanics, not Newto-

nian mechanics.

It would be interesting, therefore, to attribute a probabil-

ity interpretation to the existence of this multiplicity of solu-

tions via application of the APP. In other words, ascribe to the

observer ψO and system under observation ψS a general rel-
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ativistic representation, one which admits CTC’s, analogous
to that given to the billiard ball and its enviroment discussed

above. The “rules” that govern the evolution of these states

are therefore nothing more than the laws of general relativity.

The multiple distinct evolutions of the observer and system

may be labelled ψO
no
, no ∈ [1, NO] and ψS

ns
, ns ∈ [1, NS],

respectively. Via the probability criterion (the APP), each of

these alternative NO evolutions of the observer is attributed

an equal probability 1/NO.

The composite observer and system state ψO+S will like-

wise have a multiplicity NO+S of solutions to its time-

dependent evolution. Each of these solutions is internally con-

sistent, but inconsistent with any other solution; thus, there

will be a separate 4-manifold for the representation of each

solution. Any pair of evolutions ψO
n′

o
and ψS

n′

s
are deemed

“compatible” if they coexist within any individual solution to

the evolution of the composite observer-system state. There-

fore, any individual of the NS evolutions of the system must

be compatible with at least one, but possibly more than one,

of the NO possible evolutions of the observer. This number is

identified with the quantity Jns
as discussed previously. (See

Figure 1 B). The quantity Jns
(as well as NO , which is the

sum of the individual Jns
’s) is of course derivable, in prin-

ciple, from the principles of general relativity, which govern

this evolution.

Interestingly, an independent program for the “derivation”

of quantum mechanics from general relativity has been pro-

posed by Hadley [3] [8] that likewise relies in a fundamental

sense on CTC’s for its construction. In this program, par-

ticles are modelled as topologically nontrivial regions a of

four-dimensional spacetime termed “4-geons,” with particular

topological features being associated with particular particle

types. In this model, physical objects are not envisioned as

living “on top of” spacetime, but rather are built out of space-

time itself. This is the essence of the notion that “all is geom-

etry.” A specific 4-geon model of the electron, for example,

has been proposed, according to which the non-causal struc-

ture of the 4-geon spacetime is seen to underly the phenomena

of spin-half [4] and charge [1].

In the next section, a general relativistic description of mat-

ter in terms of 4-geons will be assumed with the goal of filling

in the “black box” of Figure 1 C to produce the world-splitting

diagram of Figure 1 E. This will involve the definition of a pa-

rameter χ as an internal physical characteristic of a 4-geon,

with (χ)2 playing a role analogous to that of J in the above

discussion. (Compare Figure 1 B and 1 E). Indeed, it will

be shown that the simple MMWI model of Figure 1 B (the

Born identity) makes the same empiric predictions as the more

complex MMWI model of Figure 1 E (the Born constraints);

therefore, the former may be interpreted as an approximation

to the latter.

V. THE BORN CONSTRAINTS

The rules that govern the model of Figure 1 E will be re-

ferred to as the “Born constraints.” This model assumes a

general relativistic description in terms of 4-geons of the ini-

tial states of the observerψO (say, a computer), the system un-
der observationψS (the particle), and the composite observer-

system state ψO+S . As discussed above, there will be multiple

4-manifolds W to represent the multiplicity of evolutions of

the composite observer-system state ψO+S ; the ensemble of

all such 4-manifolds, corresponding to a given experimental

setup, will be labelled E.

In addition, assumptions will be presented concerning the

actions of paths connecting two generic regions a and b of

spacetime. These postulates will be presented in terms of

generic paths λ connecting a and b; in this manner, they can be

interpreted as generic mathematical constraints applied over

the manifolds W . In the specific instance that a and b corre-

spond to a 4-geon, however, the postulates form the basis for

the construction of the physical descriptor χ, whose square

will be shown to play a role analogous to that of J in the

preceeding discussion. In this manner, the Born constraints

serve as a generalized field-theoretic set of mathematical con-

straints, from which the model of the MMWI as depicted

in Figure 1 E may be built. This is one reason that the 4-

geon model is an attractive one to incorporate into the general

scheme of the MMWI.

Consider a very general quantum mechanical experiment:

given a particle that is observed within a spacetime region of

4-space s(x, t) (where s indicates particle source), calculate

the relative probability that it will be detected within the re-

gion dn(x, t) (where d indicates particle detector, with n rep-

resenting the nth detector element). This experiment can be

used, for example, to represent the electron 2-slit experiment,

which Feynman has argued contains the “essential mystery”

of QM [7].

Following the general reasoning of Everett’s original pro-

gram [6], the observer is defined to be in a single, well-defined

initial state, and to have already observed and recorded the full

experimental setup: the presence of the particle at the source

s(x, t), a series of detectors at regions dn(x, t), a system of

barriers between source and detector, and the system under

observation ψS in its initial state. It should be emphasized

that these internal recordings are assumed in Everett’s orig-

inal program to represent an accurate representation of ex-

ternal reality. Therefore, ψO may be interpreted as a bound-

ary condition to be imposed upon a 4-manifold W , such that

anyW that meets the boundary condition defined by ψO con-

tains one possible solution to the evolution of the composite

state ψO+S . In other words, E is defined as the set of all

4-manifolds that “contain” ψO as a boundary condition; and

it follows that each and every 4-manifold within E contains

the full experimental setup. In contrast to the observer, the

system under observation is not required to be in a single well

defined state; rather, there may in fact be multiple initial states

ψS , with different ψS’s being represented by distinct W ’s.

Given a 4-geon corresponding to a region of spacetime a,

the variable χ will be defined in terms of paths connecting the

4-geon a to other regions of spacetime. Within any W ∈ E,

given any two regions in 4-space a and b (where s and d are

specific instances of the more general variables a and b), con-

sider the set of equivalence classes of all possible paths con-

necting a and b, where λi
a,b denotes a class representative of
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the ith equivalence class. (Given the assumption that space-
time is characterized by multiple-connectedness at the small

scale via the 4-geon particle model, there will be a very large

number of paths that cannot be deformed into one another, and

hence a very large number of distinct equivalence classes.)

There is further assumed a suitable definition for the general

relativistic action Si of path λi. Assume that one method of

approximating this set of paths in the non-relativistic limit (us-

ing a flat background spacetime manifold) is to enumerate the

set of “all possible” paths ϕi
a,b from a to b by the technique of

the Feynman path integral (FPI) [7]. Furthermore, assume that

the action of λi is well-approximated in the non-relativistic

limit by the action of the corresponding path ϕi as calculated

by the FPI. Since the distibution of the amplitudes of the Feyn-

man paths ϕi on the unit circle in the complex plane (see Fig-

ure 1 D) are completely determined by the experimental setup

(according to the standard technique of the FPI [7]), the same

must also be true of the amplitudes of the paths λi, given the

postulated relationship between the ϕi and the λi.

Next, assume that given any set of paths λi between a and

b, there is a natural method of placing them into disjoint sub-

sets whose union equals the entire set of paths, and with each

subset containing k paths, k ∈ [1, 2, 3, . . .]. Thus, any indi-

vidual path belongs to a single subset containing k paths, with

k being called the “index” of the path; that is, the index is the

number of paths with which any given path is coassociated

(so that a path with index k = 1 is coassociated only with

itself). The joining of these paths into subsets is assumed to

depend upon the precise configuration of the region a. If a and

b represent two different locations in spacetime of the same 4-

geon, it is assumed that the placement of paths into subsets is

preserved between a and b. Define χk
a,b as the total number

of paths from a to b with index k. Replace a and b with s
and dn, respectively, and define χk

s as the sum of χk
s,dn

over

all of the detector elements. Since s is interpreted as a 4-geon

(corresponding to the state of the particle as it is emitted from

the source), then χk
s is interpreted as a physical characteristic

of this 4-geon.

Given any individual subset of k paths, assume that there

is a natural cyclic ordering from 1 to k such that two ad-

jacent paths λi and λi+1 are 2π/k out of phase, that is,

Si − Si+1 = 2π~/k. (See Figure 1, D, which illustrates the

case for a subset with index k = 5. Recall that the amplitude

for the ith path whose action is Si is given by the expression

φi = e−iSi/~.)

According to the FPI, the total amplitude ψs,dn
= anφn

for a particle emitted from the source s to be observed in the

region dn is calculated as the sum of the individual amplitudes

φi
s,dn

over all paths from s to dn. Given the assumptions

above, performing the summation using the MMWI paths λ
(in place of the Feynman paths ϕ) will yield the same result,

since each path λ has the same action and hence the same am-

plitude as the corresponding path ϕ. Because of the cyclic

ordering discussed above, it is plain to see that for k > 1,

the amplitudes of the k paths within any individual subset will

“cancel each other out,” i.e. they will sum to zero. (See Fig-

ure 1, D.) Thus, the paths with index k > 1 may be eliminated

from the calculation of ψs,dn
, so that ψs,dn

is the sum over all

paths with index k = 1.

Consider next the details of the “black box” in Figure 1, C.

This will be assumed to take the two-step structure illustrated

in Figure 1, E. The first step involves the variable χ1
s . Assume

the tree diagram to be structured so that χ1
s is minimized. (The

minimization of χ1
s implies the minimization of χ1

s,dn
for each

dn.) That is, lower values of χ1
s (and hence each χ1

s,dn
) are

more probable than higher values. The minimization of χ1
s,dn

could equivalently be stated as grouping as many paths λs,dn

as possible into subsets of high (greater than one) index. As a

result of the requirement that paths within any subset of k > 1
must be cyclically ordered (Figure 1 D), the minimum possi-

ble value of χ1
s,dn

, which is denoted with a bar on top (χ̄1
s,dn

),

is of course restricted by the distribution of amplitudes on the

unit circle. For example: suppose hypothetically that all of

the paths from s to dn have exactly the same phase. In this

case, none of them can be placed into subsets of k > 1, so

that each path must be “individually grouped” into subsets of

k = 1. On the other hand, suppose hypothetically that half of

the paths have phase π, and the other half have phase 0. In this

case, it is possible to place each path with phase 0 into a subset

of k = 2 containing one of the phase π paths, resulting in zero

k = 1 paths. Each distinct possible way of dividing the set of

paths into subsets will require a distinct global 4-manifold in

E for its representation.

It can be noted that if all index k = 1 paths in a given

W ∈ E have the same phase, then there can be no other

W ∈ E in which these paths are placed into higher-index

subsets. Therefore, if a 4-manifold is characterized by having

all index k = 1 paths with the same phase, then χ1
s,dn

takes its

minimum value. A careful consideration of the technique of

the FPI indicates that it is always possible to achieve a group-

ing of index k = 1 paths with the same phase. Therefore,

the minimization of χ1
s,dn

will produce a set of index k = 1
paths that all have the same phase. Since they all have the

same phase, then the absolute value of the sum of their phases

(|ψs,dn
|) is proportional to the number χ̄1

s,dn
of paths being

summed over; that is, χ̄1
s,dn

∼ |ψs,dn
|. Squaring this expres-

sion yields (χ̄1
s,dn

)2 ∼ |ψs,dn
|2 ∼ |an|

2.

Next, consider the set of all index k = 1 paths from s to

any of the detector elements dn. By experimental design, the

particle traverses the source s as well as one and only one of

the detector regions dn. Assume that between any two regions

a and b, both of which are traversed by a 4-geon, there exist

two index k = 1 paths from a to b that can be uniquely associ-

ated with the 4-geon. Given χ̄1
s,dn

paths of index k = 1 from

s to dn, there are exactly 1
2 (χ̄1

s,dn
) ∗ (χ̄1

s,dn
− 1) ∼ (χ̄1

s,dn
)2

unique ways to choose two of them. Assume that in the sec-

ond phase of the trajectory diagram (Figure 1, E), the obser-

vation of the particle at detector element dn is concomitant

with identification of these two paths, and that there is a sep-

arate branch on the trajectory diagram associated with each

possible pairwise combination. Thus, the number of branches

associated with the nth detector element is proportional to

(χ̄1
s,dn

)2. By the APP, the predicted probability PMMWI
s,dn

of

detection at dn is proportional to this number of branches,

so that PMMWI
s,dn

∼ (χ̄1
s,dn

)2. The FPI, of course, predicts
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that PFPI
s,dn

∼ |ψs,dn
|2. Since (χ̄1

s,dn
)2 = |ψs,dn

|2, it follows

that PMMWI
s,dn

∼ PFPI
s,dn

; that is, the predictions of the MMWI

are in agreement with the predictions of the FPI and hence of

quantum mechanics in general. In other words, it is shown that

the MMWI model of reality, using the world-splitting diagram

of Figure 1 E, makes approximately the same predictions as

the SMWI model of reality, using the world-splitting diagram

of Figure 1 A. In this manner, the Born constraints are shown

to be equivalent to the Born identity.

VI. DISCUSSION

Conceptually, the modified MWI (MMWI) may be con-

structed from the standard MWI (SMWI) through a series of

stepwise modifications. First, the aesthetic advantages of the

probability criterion are incorporated by replacing the Born

rule with the APP. Next, the ability to make empirically cor-

rect predictions is restored by replacing the standard enumer-

ation postulate (SEP) with an alternate enumeration postu-

late (AEP) that obeys the Born identity. Finally, more com-

plex versions of the MMWI may be constructed using more

complicated world-splitting diagrams. Careful consideration

has been paid to the construction of the MMWI in a manner

that is consistent with the original intent of Everett’s origi-

nal program. In particular, the MMWI, perhaps more than

the SMWI, respects the original ontology of Everett’s pro-

gram, according to which each world (or equivalently, each

branch) is attributed an equal degree of “reality.” In addition,

the MMWI makes sure to distinguish different branches of the

world-splitting diagram by virtue of a physical distinction be-

tween different observer-states – once again, in a manner that

respects the ontology of Everett’s original program. A distinc-

tion should perhaps be made, at this point, between the terms

“branch” and “world,” with the term “world” being used to

correspond to an element (a 4-manifold) of the ensemble E.

A discussion of the relationship between the MMWI and other

ensemble formulations of quantum mechanics, such as Ein-

stein’s so-called “statistical formulation,” will be the subject

of a separate paper.

Although the initial motivation for the MMWI is the aes-

thetic appeal of the APP over the Born rule, a second and

perhaps more powerful motivation is the prospect of deriv-

ing quantum statistics from field-theoretic constraints, such

as Einstein’s equation of general relativity. This derivation

is envisioned to proceed as follows: general field-theoretic

constraints → Born constraints → Born identity → quantum

statistics. The last step – quantum statistics from the Born

identity – is a straightforward application of the APP. Indeed,

it should be noted that the goal of deriving quantum statistics

from relativity is worthwhile only if one accepts the APP as

being sufficiently natural as to require no further justification.

In other words, it would be pointless to attempt a derivation

of quantum statistics from GR in the context of the SMWI,

since the SMWI assumes the Born rule, and as such, it as-

sumes quantum statistics already. Note that at no point in the

above derivation does the MMWI outright assume quantum

statistics. Indeed, the Born rule is entirely bypassed in the

MMWI; in effect, the Born rule has been sidestepped by the
Born constraints. One way to view this situation would be to

note that the Born rule gives rise to correct predictions only if

worlds (branches) are counted using the standard enumeration

postulate (SEP), as in the SMWI. When worlds are counted

according to the AEP, as in the MMWI, it is the APP rather

than the Born rule that leads to correct experimental predic-

tions. This is an either-or choice: we may adopt the SMWI

and the Born rule, or we may adopt the MMWI along with

the APP, AEP, and Born constraints. Either model makes the

same predictions.

This paper is concerned primarily with the second step:

the derivation of the Born identity from the Born constraints.

These constraints are offered merely as an “existence proof”

for the feasibility of the overall scheme of this paper; alter-

native sets of constraints may exist that serve the same pur-

pose, and that fill in the “black box’ of Figure 1 in a different

manner. Assuming the 4-geon particle model and the notion

that “all is geometry,” the Born constraints may be summa-

rized loosely as a set of relations applicable to the paths λ
connecting any two regions of spacetime a and b within a 4-

manifold M . These include variables such as the placement

of paths into groups of k elements and the cyclic ordering of

their actions S; the assumption that certain properties such

as the action S can be well approximated in a flat manifold;

and assumptions governing the makeup of the world-splitting

diagram of Figure 1 E. Given these assumptions, it is demon-

strated that the predictions of the MMWI are equivalent (in

the approximation) to the predictions of standard quantum

mechanics, with the Feynman path integral formulation being

used to represent standard quantum mechanics.

The largest gap in the above proposed derivation is in the

first step: the derivation of the Born constraints from a more

general expression of field-theoretic constraints, such as Ein-

stein’s equation. One of the arguments that is often put for-

ward for the incompatibility of GR and QM is that QM is fun-

damentally a theory of probability, whereas GR is a determin-

istic theory that has no inherent concept of probability. This

argument is challenged, however, by the appearance of “mul-

tiplicity” within GR, provided that one accepts the APP as a

natural probability interpretation of multiplicity. The primary

accomplishment of this paper is that quantum statistics has es-

sentially been reformulated in terms of the Born constraints,

which take the form of mathematical statements that may be

applied to the 4-manifolds used for the expression of general

relativity. Given this common mathematical language, it be-

comes at the least feasible to envision that the Born constraints

may be derived from more fundamental general relativistic re-

lations (that is, the Einstein equation). As discussed above, in

the absence of an inherent notion of probability within GR, it

is difficult to imagine – in fact, it may be pointless to attempt

– such a derivation.

There are many mathematical languages for the expression

of general relativity (such as differential geometry, differen-

tial forms, or geometric algebra), and it is unclear to the au-

thor which might be the most appropriate in a search for the

derivation of the Born constraints from Einstein’s equation. In

the language of differential forms, for example, one might be-
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gin with the definition of a 1-form w over a 4-manifold that
can be expressed as the pull-back of the standard 1-form on

the unit circle, so that the integral of w along any closed loop

C will be integer-valued. This is a field-theoretic statement,

and coupled with a suitable conception of a 4-geon, might

form the basis for the characterization of the paths λ that play

a major role in the statement of the Born constraints. Further

work will be necessary to determine whether this notion of w
is implied by a field-theoretic description of general relativ-

ity; if so, then a link between GR and the Born constraints

might result. On the other hand, alternatives to the Born con-

straints may be conceived that are implied by GR and that in

turn imply quantum statistics. It should also be noted that the

arguments put forth in this paper do not point to any particu-

lar field theory. Other theories, such as the Evans unified field

theory or perhaps some version of string theory, may serve as

an alternative to GR. The reasons that GR are singled out in

this paper are essentially that GR is the most obvious place to

look first, and that GR exhibits multiplicity.

The vision offered by the present work for the derivation of

quantum statistics from GR is in broad outline only, and is ad-

mittedly incomplete. To our knowledge, however, it is unique

as a prospect for the explicit derivation of QM from GR. Other

programs have been devised for the demonstration of the com-

patibility between QM and GR. Hadley’s program [3] [8], for

example, is one such program. Indeed, Hadley’s program and

the present work may be viewed as complementary in many

ways, with the notion of 4-geons playing a central role in both.

Further development of the general scheme proposed in this

work will undoubtedly require much mathematics. However,

it will hopefully not require any new physics.
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APPENDIX A: RELATIONSHIP BETWEEN THE

PROBABILITY CRITERION AND THE APP

Assume the definitions of Sec. II. It is further assumed that

mn can be expressed as a function of N . (Compare this to

Everett’s assumption [6], discussed in [5], that mn can be ex-

pressed as a function of an.) The goal is a solution for mn

that satisfies the probability criterion.

The number of ways to make Pn observations of the nth

outcome is calculated to be
(N−1)(M−Pn)M !

Pn!(M−Pn)! , as follows. There

is only one way to get the nth result on Pn out of Pn trials.

Next, the number of ways to get anything other than the nth

result onM−Pn out ofM−Pn trials is (N−1)M−Pn . Next,

the number of ways to mix an ordered sequence with Pn el-

ements and an ordered sequence of M − Pn elements, i.e.

the number of ways of distributing Pn elements over M ele-

ments is M choose Pn, i.e. M !
Pn!(M−Pn)! . Multiplying these

expressions yields:
(N−1)(M−Pn)M !

Pn!(M−Pn)! . Dividing this expres-

sion by the total number of worlds NM yields the proportion

f(pn) ∈ [0, 1] of such worlds: f(pn) = (N−1)(M−Pn)M !
Pn!(M−Pn)!NM . The

integrated proportion F (mn, δ) ∈ [0, 1] of worlds in which

the observed frequency pn is close to the predicted frequency

mn, i.e. falls anywhere within the closed interval mn ± δ,

i.e. falls within [mn − δ,mn + δ], is calculated as the sum:

F (mn, δ) =
∑pn=mn+δ

pn=mn−δ f(pn). The probability criterion

states that for any δ, limM→∞ F (mn, δ) = 1. It is readily

seen that the APP, mn = 1/N , is a solution to this equa-

tion. Computerized numeric calculations confirms this solu-

tion. Therefore, it can be concluded that the APP is a solution

to the probability criterion.
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FIG. 1: Diagrammatic representation of world-splitting. A. Standard MWI (SMWI). Each branch is realized with probability |a|2. B. The

modified MWI (MMWI). Each branch is equally likely, and the number Jn of branches associated with the nth outcome is assumed (by the

Born identity) to be equal to |a|2. C. More complicated versions of the MMWI that reproduce quantum statistics may be envisioned if the

Born identity is replaced with more complex world-splitting diagrams. D. Cyclic ordering of the amplitudes of the k paths of a subset with

index k = 5, illustrating that for any k > 1, the amplitudes will “cancel each other out” when summed together. E. The Born constraints.


