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Abstract. It would be useful to have a category of extensive-form games whose isomor-

phisms specify equivalences between games. Since working with entire games is too large

a project for a single paper, I begin here with preforms, where a “preform” is a rooted

tree together with choices and information sets. In particular, this paper first defines the

category Tree, whose objects are “functioned trees”, which are specially designed to be

incorporated into preforms. I show that Tree is isomorphic to the full subcategory of

Grph whose objects are converging arborescences. Then the paper defines the category

NCP, whose objects are “node-and-choice preforms”, each of which consists of a node

set, a choice set, and an operator mapping node-choice pairs to nodes. I characterize the

NCP isomorphisms, define a forgetful functor from NCP to Tree, and show that Tree is

equivalent to the full subcategory of NCP whose objects are perfect-information preforms.

The paper also shows that many game-theoretic entities can be derived from preforms, and

that these entities are well-behaved with respect to NCP morphisms and isomorphisms.
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1. Introduction

Category theory has been used to systematize many subjects in mathematics
and elsewhere. For example, Grph is the category of directed graphs. Grph
morphisms can be used to state that one directed graph is embedded within
another. Further, Grph isomorphisms can be used to state that two directed
graphs are equivalent.

Similarly, it would be useful to have a category of extensive-form games
whose morphisms would allow one to systematically compare extensive-form
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games. As yet, little has been done.1,2 Lapitsky [13] and Jiménez [9] define
categories of normal-form games. Machover and Terrington [15] define a
category of simple voting games. Finally, Vannucci [26] defines categories of
various kinds of games, but in its category of extensive-form games, every
morphism merely maps a game to itself.

Building a category of extensive-form games with nontrivial morphisms
is a large project because each extensive-form game has so many compo-
nents: each is a rooted tree with choices, information sets, players, strate-
gies, chance probabilities, and preferences. Accordingly, this paper takes a
small necessary step: it builds a category of preforms, where a “preform” is
a rooted tree with choices and information sets.

Since a preform incorporates a tree, this paper’s first step is yet smaller:
it develops a category of trees which are specially designed to be incorpo-
rated into preforms. These trees are called “functioned trees” because they
consist of a set T of nodes together with an immediate-predecessor func-
tion p which specifies the immediate predecessor p(t) of each nonroot node
t. Section 2 defines not only functioned trees but also morphisms between
them. Theorem 2.5 shows that the resulting category Tree is well-defined.
Theorem 2.6 characterizes the Tree isomorphisms by the bijectivity of their
node transformations. Finally, Theorem 2.8 shows that Tree is isomorphic
to the full subcategory of Grph whose objects are those directed graphs
that are converging arborescences.

A functioned tree determines several derivative entities. These include the
tree’s root node, its stage function, its (strict) precedence relation, and its
weak precedence relation (which partially orders its set of nodes). Further,
a functioned tree determines its set of decision nodes and its collection of
plays (which are the maximal chains in its partially ordered set of nodes).
The propositions of Section 2 develop these entities and show that they are
well-behaved with respect to the morphisms and isomorphisms of Tree.

Section 3 then defines a “node-and-choice preform” to consist of a set
T of nodes, a set C of choices, and an operator ⊗. The operator ⊗ is a
new concept. It maps node-and-choice pairs to nodes. In particular, each
node-and-choice pair in the operator’s domain is mapped to the node that
follows the pair’s node by way of the pair’s choice. Importantly, this operator
determines both a functioned tree (T, p) and a collection H of information

1Extensive-form games are not readily comparable with the games defined in the the-
oretical computer-science literature. Categories of such games are developed in [1,8,17].

2In a different direction, [7] composes games by means of a category whose morphisms
are game segments.
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sets. Preform morphisms are then defined, and Theorem 3.6 shows that the
resulting category NCP is well-defined. Theorem 3.7 characterizes the NCP
isomorphisms by the bijectivity of their node and choice transformations.
Theorem 3.9 establishes a forgetful functor from NCP to Tree, which serves
to make Section 2’s Tree results readily accessible. Finally, Theorem 3.13
shows that Tree is equivalent to the full subcategory of NCP whose objects
are those preforms that have perfect information.

As already mentioned, a preform determines a collection H of informa-
tion sets. More precisely, each choice determines an information set as the
set of nodes from which the choice is feasible (several choices may determine
the same information set). Section 3 explores this construction with exam-
ples and propositions. In addition, a preform determines a previous-choice
function q which specifies the choice q(t) that is previous to any nonroot
node t. The propositions of Section 3 show that p and q together constitute
the inverse of the operator ⊗, and that this inverse leads to useful charac-
terizations of the NCP morphisms. Finally, the propositions of Section 3
show that ⊗, p, q, and H are well-behaved with respect to NCP morphisms
and isomorphisms.

Section 4 sketches out future applications and extensions. In particular,
Section 4.1 uses a collection of examples to suggest that this paper’s abstract
NCP framework nests as special cases the particular formulations of [4,11,
18,22,27] (each of these particular formulations continues to have its own
advantages and disadvantages).3 Finally, Section 4.2 briefly discusses how
we plan to build players, strategies, chance probabilities, and preferences on
top of the preforms defined here.

2. The Category of Functioned Trees

2.1. Definition of Functioned Trees

By definition, a pair (T, p) is a functioned tree iff there exist to ∈ T and
X ⊆ T such that

p is a nonempty function from T �{to} onto X, and (1a)

(∀t �= to)(∃m ≥ 1) pm(t) = to. (1b)

Call T the set of nodes t and call to the root node. Further, call p the
immediate-predecessor function. (1a) states that every nonroot node t is

3Differential games, and the non-discrete games of [2,3], are beyond the scope of node-
and-choice preforms.
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assigned an immediate-predecessor p(t). (1b) states that every nonroot node
t is eventually preceded by the root node. Theorem 2.8 (Section 2.5) will
show the formal sense in which functioned trees are equivalent to nontrivial
and possibly infinite converging arborescences.

Here are some further remarks about definition (1). [i] Since (1a) implies
that to is the only node outside the function’s domain, a functioned tree
determines its to. [ii] (1a) implies p(to) is undefined, and (1b) precludes the
existence of a t �= to such that p(t) = t. Hence (/∃t) p(t) = t. [iii] The
existence of X is not restrictive. Rather, (1a) defines X to be both the
range and the codomain of p. Call X the set of decision nodes. [iv] Since p is
nonempty by (1a), there exists t �= to. Thus (1b) implies to ∈ X. In other
words, the root node must be a decision node.

For example, define

T = ∪n{n, n̄} = {0, 0̄, 1, 1̄, 2, 2̄, . . . }, and (2)

p = ∪n{ (n̄, n), (n+ 1, n) } = { (0̄, 0), (1, 0), (1̄, 1), (2, 1), . . . }.

where n denotes an arbitrary element of N0, and n denotes the corresponding
node. By inspection,

p is a function from T �{0} onto {0, 1, 2, . . . }, and

(∀n) pn+1(n̄) = 0 and pn+1(n + 1) = 0.

Hence (T, p) is a functioned tree with to = 0 and X = {0, 1, 2, . . . }. See the
centipede-like diagram of Figure 1.4

2.2. Entities Derived from Functioned Trees

Throughout this subsection, let (T, p) be a functioned tree.
By (1b), there exists a function k:T→N0 such that

k(to) = 0, and (3a)

(∀t �= to) k(t) ≥ 1 and pk(t)(t) = to. (3b)

Because to is outside p’s domain by (1a), p(to) is undefined. Hence
(3b) (uniquely) determines k(t) for any t �= to. Hence (3) (uniquely)
determines k. In accord with the game-theory literature, call k the stage

4In this paper’s figures, the immediate predecessor of a node appears above, or to the
left of, the node. So in Figure 1, the arrows point up or to the left. Similarly in Figure 2,
and in the left-hand diagram of Figure 5, the arrows representing p and p′ point up. In
many figures, such as Figure 3, the arrowheads are suppressed.
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Figure 1. The functioned tree (2)

function, and call k(t) the stage of node t. (Graph theorists might call k(t)
the “height” of node t.)

Define the (strict) precedence relation ≺ on T by

t1 ≺ t2 iff (∃m ≥ 1) t1 = pm(t2). (4)

Say that t1 (strictly) precedes t2 iff t1 ≺ t2. Equivalently, say that t2 (strictly)
succeeds t1. Note that the range of p is the set of nodes that precede at least
one node. Thus, since the range of p is X by definition (1a), X is the set
of nodes that precede at least one node. Equivalently, X is the set of nodes
that have at least one successor. Although this may suggest other names for
X, the previous section called X the decision-node set, and I will continue
to favour that term.5

Define the weak precedence relation � on T by

t1 � t2 iff t1 ≺ t2or t1 = t2. (5)

Notice that the term “precedence” without the modifier “weak” refers to
strict precedence. The following proposition shows that (T, �) is a par-
tially ordered set whenever (T, p) is an functioned tree. There is no con-
verse because there are partially ordered sets that cannot be constructed
from functioned trees. In particular, Alós-Ferrer and Ritzberger [2,3] define
games over more general partially ordered sets. Apparently, their “discrete”
partially ordered sets ([4, Section 3]) correspond to those partially ordered
sets that can be derived from functioned trees.

5I avoid the term “nonterminal node” because I avoid the term “terminal node”. I
avoid the latter because it is natural to expect that the set of “terminal nodes” would be
in one-to-one correspondence with the set of plays. This does not happen because there can
be infinite plays that do not correspond to individual nodes. In general, Proposition 2.2(b)
shows that infinite plays correspond to sequences of nodes rather than individual nodes.
To illustrate this, the paragraph after the proposition discusses the centipede example (2),
which has an infinite play.
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Proposition 2.1. Suppose (T, p) is a functioned tree with its ≺ and �.
Then (T, �) is a partially ordered set, and ≺ is the asymmetric part of �.
(Proof: Lemma A.1(b,d).)

Finally, let Z be the collection of maximal chains in (T, �), and call
Z ∈ Z a play. In general, plays can be either finite or infinite. Accordingly,
Z = Zft∪Zinft, where

Zft := {finite maximal chains in(T, �)} and (6a)

Zinft := {infinite maximal chains in(T, �)}. (6b)

Part (a) of the following proposition shows that each finite play can be
uniquely associated with a nondecision node. It does so by means of the
maximization operator for �. Meanwhile, part (b) shows that each infinite
play can be uniquely associated with an infinite sequence of nodes (there is
no single node associated with an infinite play). For this result, define the
function E from Zinft into T N1 by

E(Z) := (tv)v≥1, (7)

where each tv is the unique element t of Z for which k(t) = v.6 Call E the
enumeration operator.

Proposition 2.2. Suppose (T, p) is a functioned tree with its to, X, k, ≺,
�, Zft, Zinft, and E. Then the following hold.
(a) Zft � Z 
→ max Z is a bijection onto T �X. Its inverse is

{pm(t)|k(t) ≥ m ≥ 1}∪{t} 
→t ∈ T �X.

(b) E is a well-defined bijection from Zinft onto

Y := {(tv)v≥1 | to = p(t1) and (∀v ≥ 1) tv = p(tv+1)}.

Its inverse is

{to}∪{tv|v ≥ 1} 
→(tv)v≥1 ∈ Y.

(Proof A.2.)

For example, consider the centipede example (2) of Figure 1. Here the
stage function is defined by (∀n) k(n) = n and k(n̄) = n+1, and the

6The sequence E(Z) = (tv)v≥1 is defined to start with a stage-1 node rather than the
stage-0 node to. This is notationally convenient because the index v = 0 would lead to
the redundant and awkward equation t0 = to. Incidentally, the sequence E(Z) = (tv)v≥v∗

could have been defined to start with any v∗ ≥ 0. I believe that a variant of Proposi-
tion 2.2(b) would still hold because the result is fundamentally concerned with the tails of
the sequences.
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(strict) precedence relation ≺ is {(m, n)|m < n} ∪ {(m, n̄)|m ≤ n}. Propo-
sition 2.2(a) implies that the maximization operator is a bijection from the
finite-play collection

Zft = {{0, 0̄}, {0, 1, 1̄}, {0, 1, 2, 2̄}, . . . }
onto the nondecision-node set T �X = {0̄, 1̄, 2̄, . . . }. Proposition 2.2(b)
implies that the enumeration operator E is a bijection from the (singleton)
infinite-play collection

Zinft = {{0, 1, 2, . . . }}
onto the (singleton) node-sequence collection Y = { (1, 2, 3, . . .) }. In accord
with footnote 6, the node sequence in Y begins with the stage-1 node 1
rather than the stage-0 node 0.

2.3. Functioned-Tree Morphisms

Let a functioned-tree morphism be a triple γ = [(T, p), (T ′, p′), τ ] such that

(T, p) and (T ′, p′) are functioned trees, (8a)

τ : T → T ′, and (8b)

{ (τ(t�), τ(t)) | (t�, t)∈p } ⊆ p′. (8c)

The following proposition characterizes functioned-tree morphisms in terms
of the category Set. The functions τ |T�{to}:T �{to}→T ′

�{t′o} and τ |X :X→
X ′ are well-defined by (9a) and the codomain definitions after (9b). These
two functions as well as p and p′ are displayed in the Set diagram of Figure 2.
(9b) states that this diagram commutes.

Proposition 2.3. A triple [(T, p), (T ′, p′), τ ] is a functioned-tree morphism
iff it satisfies (8a)–(8b),

τ(T �{to}) ⊆ T ′
�{t′o}, τ(X) ⊆ X ′, and (9a)

Figure 2. (9b) states that this diagram commutes
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τ |X◦p = p′◦τ |T�{to}, (9b)

where the codomain of τ |T�{to} is defined to be T ′
�{t′o} and where the

codomain of τ |X is defined to be X ′. (Proof A.3.)

(9) can be interpreted. (9a) states that the image of every nonroot node
is a nonroot node, and that the image of every decision node is a decision
node. (9b) states that the image of the predecessor of a nonroot node is the
predecessor of the image of the nonroot node.

By Proposition 2.3, every morphism satisfies (9a) and (9b). Proposi-
tion 2.4 shows that a morphism has many other properties as well. Many of
these properties are proved via property (b), which concerns iterations of the
predecessor functions p and p′. Iterations of a predecessor function are not
compositions within the category Set because the domain and codomain
of a predecessor function are different. In particular, the root node is in
the codomain but not the domain. Property (b) avoids this complication
by assuming that t1 = pm(t2), which implicitly entails that (∀i < m)
pi(t2) �= to.

Proposition 2.4. Suppose [(T, p), (T ′, p′), τ ] is a morphism, where (T, p)
determines to, k, ≺, �, Zft, and Zinft, and where (T ′, p′) determines t′o, k′,
≺′, �′, Z ′

ft, and Z ′
inft. Then the following hold.

(a) t′o �′ τ(to).

(b) If m ≥ 1 and t1 = pm(t2), then τ(t1) = (p′)m(τ(t2)).

(c) k′(τ(t)) = k(t) + k′(τ(to)).

(d) If t1 ≺ t2, then τ(t1) ≺′ τ(t2).

(e) If t1�t2, then τ(t1)�′τ(t2).

(f) If S ⊆ T is a chain, then τ |S is injective and τ(S) is a chain.7

(g) (∀Z∈Zinft)(∃Z ′∈Z ′
inft) τ(Z) ⊆ Z ′. 7

(h) (∀Z∈Zft)(∃Z ′∈Z ′
ft ∪ Z ′

inft) τ(Z) ⊆ Z ′.7 (Proof A.4.)

2.4. The Category Tree

This paragraph and the following theorem define the category Tree, which
is called the category of functioned trees. Let an object be a functioned tree
(T, p). Let an arrow be a functioned-tree morphism [(T, p), (T ′, p′), τ ]. Let
source, target, identity, and composition be

7The symbol τ is overloaded in Propositions 2.4(f)–(h), 2.7(h)–(j), 3.5, and 3.8(e).
Specifically, if S is a set of nodes, then τ(S) := {τ(t)|t∈S}.
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[(T, p), (T ′, p′), τ ]src = (T, p),

[(T, p), (T ′, p′), τ ]trg = (T ′, p′),

id(T,p) = [(T, p), (T, p), idT ], and

[(T ′, p′), (T ′′, p′′), τ ′]◦[(T, p), (T ′, p′), τ ] = [(T, p), (T ′′, p′′), τ ′◦τ ],

where idT is an identity in Set.

Theorem 2.5. Tree is a category. (Proof A.5.)

The following theorem characterizes the isomorphisms in Tree. This char-
acterization is then used by the subsequent proposition to establish the rela-
tionships between the entities derived from isomorphic trees.

Theorem 2.6. Suppose that γ = [(T, p), (T ′, p′), τ ] is a morphism. Then γ
is an isomorphism iff τ is a bijection. Further, if γ is an isomorphism, then
γ−1 = [(T ′, p′), (T, p), τ−1]. (Proof A.8.)

Proposition 2.7. Suppose [(T, p), (T ′, p′), τ ] is an isomorphism, where
(T, p) determines to, X, k, ≺, �, Zft, Zinft, and E, and where (T ′, p′) deter-
mines t′o, X ′, k′, ≺′, �′, Z ′

ft, Z ′
inft, and E′. Then the following hold.

(a) τ |X is a bijection from X onto X ′.

(b) τ |T�{to} is a bijection from T �{to} onto T ′
�{t′o}.

(c) τ(to) = t′o.

(d) k′(τ(t)) = k(t).

(e) (τ, τ)|p is a bijection from p onto p′.

(f) (τ, τ)|≺ is a bijection from ≺ onto ≺′.

(g) (τ, τ)|� is a bijection from � onto �′.

(h) τ |Zft
is a bijection from Zft onto Z ′

ft.
7

(i) τ |Zinft
is a bijection from Zinft onto Z ′

inft.
7

(j) (∀Z∈Zinft)(∀v ≥ 1) τ(E[Z]v) = E′[τ(Z)]v.7 (Proof A.10.)

2.5. Connection to Grph

This subsection shows that Tree, the category of functioned trees, is iso-
morphic to a full subcategory of Grph, the category of directed graphs.

By definition, let a nontrivial converging arborescence be a quadruple
(T, E, init, ter) such that

(T, E, init, ter) is a nontrivial oriented tree, and (10a)
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(∃to)(∀e) init(e) �= to and (10b)

ter(e) is on the path linking init(e) and to,

where [a] [6, p. 2, 6, 13, and 28] define “nontriviality”, “path”, “tree”, and
“orientation” for finite T , and where [b] [6, p. 203] extends these concepts
for infinite T .

To be explicit about (10a), (T, E, init, ter) is an oriented tree iff [i]
(T, E, init, ter) is a directed graph ([6, p. 28], [14, p. 48]), [ii] (T, E) is an
(undirected) tree ([6, p. 13]), and [iii]

(∀e) e = {init(e), ter(e)}. (11)

In this context, nontriviality is equivalent to E being nonempty, which
implies that T has at least two elements. In (10b), the (unique) path linking
init(e) �= to and to is well-defined by [6, Theorem 1.5.1]. Note that any two
nodes in a tree are linked by a finite path, but that a tree does not nec-
essarily have a finite maximum path length. Incidentally, (10) is equivalent
to the definition of a converging arborescence in [25, p. 127], restricted to
prohibit trivial graphs and extended to allow infinite graphs.

Grph, the category of directed graphs, is defined in [14, p. 48] and
[5, p. 124]. Its objects are directed graphs (T, E, init, ter). Its arrows are
directed-graph morphisms, which are quadruples

[(T, E, init, ter), (T ′, E′, init′, ter′), τ, ε]

such that

(T, E, init, ter) and (T ′, E′, init′, ter′) are directed graphs, (12a)

τ : T → T ′, ε : E → E′, (12b)

init′◦ε = τ◦init, and ter′◦ε = τ◦ter. (12c)

As noted in the previous paragraph, a nontrivial converging arborescence is
a special kind of directed graph. Accordingly, let Grphca be the full subcat-
egory of Grph whose objects are those directed graphs that are nontrivial
converging arborescences.

The following theorem shows that Tree and Grphca are isomorphic ([14,
p. 14]). A related result is [25, Theorem VI.1, p. 126], which implies that in
a converging arborescence, every nonroot node is the initial node of exactly
one edge. In terms of the following theorem, that result concerns the well-
definition of H0.

Theorem 2.8. Tree and Grphca are isomorphic. In particular, define G
from Tree to Grphca by
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G0 : (T, p) 
→ (T, E, init, ter)
where E = {{t�, t} | (t�, t)∈p},

init = {({t�, t}, t�) | (t�, t)∈p}, and
ter = {({t�, t}, t) | (t�, t)∈p}; and

G1 : [(T, p), (T ′, p′), τ ] 
→ [G0(T, p),G0(T ′, p′), τ, ε]
where ε = {({t�, t}, {τ(t�), τ(t)}) | (t�, t)∈p}.

Conversely, define H from Grphca to Tree by

H0 : (T, E, init, ter) 
→ (T, p)
where p = { (init(e), ter(e)) | e∈E }, and

H1 : [(T, E, init, ter), (T ′, E′, init′, ter′), τ, ε] 
→
[H0(T, E, init, ter),H0(T ′, E′, init′, ter′), τ ].

Then G and H form an inverse pair of isomorphisms. (Proof B.7.)

3. The Category of Node-and-Choice Preforms

3.1. Definition of Node-and-Choice Preforms

As in Section 2, let T be a set and call t ∈ T a node. Further, let C be a set
and call c ∈ C a choice. A (node-and-choice) preform Π is a triple (T, C,⊗)
such that

(∃F ⊆ T×C)(∃to∈T ) (13a)
⊗ is a bijection from F onto T �{to},

(T, p) is a functioned tree where p : T �{to} → F−1(C) (13b)

is defined by p := {(t�, t)|(∃c)(t, c, t�)∈⊗}, and

H partitions F−1(C) (13c)

where H := {F−1(c)|c}.

Call ⊗ the node-and-choice operator. Note that equation (13) derives F , to,
p, and H from (T, C,⊗). Call F the feasibility correspondence. Call to the
root node. Call p the immediate-predecessor function. Call H the collection
of information sets, and let H ∈ H denote an information set. (This abstract
concept of preform extends similar concepts in Streufert (2015b, 2015c).)

(13a) states that the operator ⊗ is a function from a subset of T×C into
a subset of T . Thus it maps node-choice pairs to nodes. Let (t, c, t�) ∈ ⊗ be
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equivalent to ⊗(t, c) = t�, and let this also be equivalent to t⊗c = t�. Call
t⊗c the result of the node-choice pair (t, c).

Further, (13a) states that the range of ⊗ is T �{to}. This determines the
root node to as the only node t that is not in the range of ⊗. Hence T has no
superfluous elements: every node t other than the root node to is the result
of some node-choice pair.

Further, (13a) states that the domain of ⊗ is F ⊆ T×C. Thus

F = { (t, c) | (∃t�)(t, c, t�)∈⊗ }. (14)

Since F is a subset of T×C, F can be regarded as a (nonempty-valued)
correspondence whose domain is some subset of T and whose range is some
subset of C. In accord with this perspective, let the statement (t, c) ∈ F
be equivalent to the statement c ∈ F (t). Thus by (14), c ∈ F (t) iff t⊗c
exists. Accordantly, F (t) is called the set of choices that are feasible from the
node t.

Now consider the range of F . This set consists of those choices c that are
feasible from some node. By (13c) and the fact that a partition consists of
nonempty sets, each inverse image F−1(c) is nonempty. Thus the range of
F is all of C. Hence C has no superfluous elements: each choice c is feasible
from at least one node.

Finally, note that the domain of F is F−1(C). This set consists of those
nodes with at least one feasible choice. Accordantly, the elements of F−1(C)
are called the decision nodes.

(13b) defines the function p:T �{to}→F−1(C). Lemma C.1(a) shows that
(13a) implies that p is well-defined and surjective. This function maps any
t� in the nonroot-node set T �{to} to its immediate predecessor p(t�) in the
decision-node set F−1(C).

Substantively, (13b) assumes that (T, p) is a functioned tree, as defined
by (1a)–(1b). Given (13a) and Lemma C.1(a), (1a) adds only that that the
function p is nonempty. More significantly, (1b) adds that every nonroot
node is eventually preceded by the root node.

Lemma C.1(b) shows that the root node to of the preform (T, C,⊗) equals
the root node of the derived tree (T, p) (the root node of a tree is also denoted
by to in Section 2). Further, Lemma C.1(c) shows that the decision-node set
F−1(C) of the preform (T, C,⊗) equals decision-node set of the derived tree
(T, p) (the decision-node set of a tree is denoted by X in Section 2).

Related to (13b), and for future reference, define q:T �{to}→C by

q = { (t�, c) | (∃t)(t, c, t�)∈⊗ }. (15)
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By Lemma C.2, q is well-defined and surjective. Call q the previous-choice
function, and call q(t�) the choice previous to t�. The function q resembles
the function α defined by [16, p. 227]. Further, note that the definition of
q in (15) closely resembles the definition of p in (13b). This resemblance is
not coincidental: Proposition 3.1(b) shows that p is the first component of
⊗−1, and that q is the second component of ⊗−1.

Proposition 3.1. Suppose (T, C,⊗) satisfies (13a), derive p by (13b), and
derive q by (15). Then, (a) ⊗ = { (p(t�), q(t�), t�) | t� �= to }. Further, (b)
⊗−1 = (p, q). (Proof C.3.)

(13c) defines the collection H of information sets H. This important
construction will be discussed at length in Section 3.2.

In summary, many entities can be derived from a preform Π = (T, C,⊗).
In particular, (13) and (15) define F , to, p, q, and H. Further, T and p define
a tree (T, p) from which more entities can be derived. In particular, (3)–(7)
define k, ≺, �, Z, Zft, Zinft, and E. Finally, as noted four paragraphs ago,
Π’s decision-node set F−1(C) equals (T, p)’s decision-node set X.

3.2. The Construction of Information Sets

(13c) defines the information-set collection H as {F−1(c)|c}. This generalizes
a similar construction by [20, p. 97].

For example, consider Figure 3a, which depicts a preform correspond-
ing to Selten’s horse game.8 To be specific, the horse-like diagram depicts
(T, C,⊗), where

T = {0, 1, 2, 3, 4, 5, 6, 7, 8}, C = {rS, dS, rG, dG, e, f}, and

⊗ = {(0, rS, 1), (0, dS, 3), (1, rG, 2), (1, dG, 4),

(3, e, 5), (3, f, 6), (4, e, 7), (4, f, 8)}.
Better, one can read T , C, and ⊗ directly from the diagram: Nodes and
choices are as usual, and the eight triples in ⊗ are the eight node-choice-
node segments in the diagram. Note that F consists of the eight node-choice

8To tell a story, suppose a student (S) must decide between the right choice (rS) of
doing her homework and the dumb choice (dS) of not doing her homework. Knowing that
the homework has been finished (node 1), a goat (G) must decide between the right choice
(rG) of taking a nap and the dumb choice (dG) of eating the homework. Knowing that either
the student played dumb (node 3) or that the student played right and the goat played
dumb (node 4), the teacher must choose between excusing the student (e) and failing the
student (f). The preform’s three information sets correspond to the student, the goat, and
the teacher.
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Figure 3. a A preform with three information sets. b A similar preform

with only two information sets.

pairs (0, rS), (0, dS), (1, rG), (1, dG), (3, e), (3, f), (4, e), (4, f). Thus there are
three information sets:

F−1(rS) = F−1(dS) = {0},

F−1(rG) = F−1(dG) = {1}, and

F−1(e) = F−1(f) = {3, 4}.

In other words, H = { {0}, {1}, {3, 4} }.
Figure 3b depicts a similar but different preform.9 It differs from Figure 3a

in that r replaces both rS and rG, and d replaces both dS and dG. Thus there
are only four choices in total. Note that F consists of the eight node-choice
pairs (0, r), (0, d), (1, r), (1, d), (3, e), (3, f), (4, e), and (4, f). Thus there are
only two information sets:

F−1(r) = F−1(d) = {0, 1} and

F−1(e) = F−1(f) = {3, 4}.

In other words, H = { {0, 1}, {3, 4} }. Figure 3b depicts the first infor-
mation set by the curved dashed line above the nodes 0 and 1. This new
information set is absentminded in the sense of [19].

This way to construct information sets imposes a mild notational restric-
tion. To see this restriction, recall again that (13c) specifies each information

9In terms of the story, there is now a “student-goat”. This student-goat must decide
between the right choice (r) and the dumb choice (d). And, when making this decision, she
cannot remember whether or not she has made the right choice once before. The preform’s
two information sets correspond to the student-goat and the teacher.
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set H ∈ H as the set F−1(c) of decision nodes from which a choice c is fea-
sible. This implies that each choice determines exactly one information set
(though several choices may determine the same information set). Thus each
choice is associated with exactly one information set (though several choices
can be associated with the same information set). Thus information sets can-
not share choices. In other words, each information set must have its own
choices. This notational restriction is conclusion (16b) of Proposition 3.2.

To illustrate this notational restriction, suppose that one wants to use a
node-and-choice preform to express the rooted tree, choices, and information
sets of Selten’s horse game. That well-known game has three information
sets with two choices each. So, since each information set must have its own
choices, one must specify 3×2 = 6 choices. This is what Figure 3a does.

As a whole, Proposition 3.2 collects some general observations about the
information sets constructed from a preform. It requires some introduction.

In the standard literature, [i] the collection H of information sets H par-
titions the set of decision nodes, and [ii] two nodes in the same information
set H share the same set of feasible alternatives. Feature [i] is assured by
(13c) itself since F−1(C) is the set of decision nodes. Feature [ii] is assured
by Proposition 3.2(16a) below. Accordingly, both [i] and [ii] are exhibited
by both of Figure 3’s preforms.

Further, Proposition 3.2(16b) shows that the information sets con-
structed here have an additional property. As with any correspondence,
the value F (H) of the correspondence F at the set H is defined to be
{ c | (∃t∈H) c∈F (t) }. Proposition 3.2(16a) implies that (∀H∈H) t ∈H ⇒
F (t) = F (H). Hence each F (H) is readily interpreted as the feasible-choice
set of the information set H. Thus, Proposition 3.2(16b) states that each
information set has its own choices. This is the notational restriction intro-
duced four paragraphs ago. It is satisfied by both of Figure 3’s preforms.

Proposition 3.2. Suppose that (T, C,⊗) satisfies (13a) and (13c) with F
and H. Then the following hold.

(∀H∈H) {t, t′} ⊆ H ⇒ F (t) = F (t′). (16a)

(∀H∈H, H ′∈H) H �= H ′ ⇒ F (H)∩F (H ′) = ∅. (16b)

(Proof C.4.)

Section 4.1 will provide four more examples of node-and-choice preforms.
Among other things, these examples illustrate that information sets con-
structed via (13c) satisfy (16a) and (16b). All four examples express the
rooted tree, choices, and information sets of Selten’s horse game. Figure 3a
does the same.
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3.3. Preform Morphisms

A (preform) morphism is a quadruple α = [Π, Π ′, τ, δ] such that

Π = (T, C,⊗) and Π ′ = (T ′, C ′, ⊗′) are preforms, (17a)

τ : T →T ′, δ : C →C ′, and (17b)

{ (τ(t), δ(c), τ(t�)) | (t, c, t�)∈⊗ } ⊆ ⊗′. (17c)

Lemma C.6 shows that a quadruple [Π, Π ′, τ, δ] is a morphism iff its satisfies
(17a)–(17b),

(∀(t, c)∈F ) (τ(t), δ(c)) ∈ F ′, and (18a)

(∀(t, c)∈F ) τ(t⊗c) = τ(c)⊗′δ(c), (18b)

where Π determines F and Π ′ determines F ′. Proposition 3.3 extends this
result to characterize preform morphisms in terms of the category Set. The
functions (τ, δ)|F :F→F ′ and τ |T�{to}:T �{to}→T ′

�{t′o} are well-defined by
(19a) and the proposition’s definitions [c] and [d]. These two functions as
well as the functions ⊗ and ⊗′ are displayed in the diagram of Figure 4.
(19b) states that this diagram commutes.

Proposition 3.3. A quadruple [Π, Π ′, τ, δ] is a morphism iff it satisfies
(17a)–(17b),

(τ, δ)(F ) ⊆ F ′, τ(T �{to}) ⊆ T ′
�{t′o}, and (19a)

τ |T�{to}◦⊗ = ⊗′◦(τ, δ)|F , (19b)

where [a] Π determines F and to, [b] Π ′ determines F ′ and t′o, [c] the
function (τ, δ)|F :F→F ′ is defined by (τ, δ)(t, c) = (τ(t), δ(c)), and [d] the
codomain of τ |T�{to} is defined to be T ′

�{t′o}. (Proof C.7.)

(19) can be interpreted like (18) can be interpreted. (19a) states that the
image of every feasible node-choice pair is a feasible node-choice pair, and
that the image of every nonroot node is a nonroot node. (19b) states that

Figure 4. (19b) states that this diagram commutes



The Category of Node-and-Choice Preforms. . . 1017

the image of the result of a feasible node-choice pair is the result of the
image of that node-choice pair.

Alternatively, recall ⊗−1 = (p, q) by Proposition 3.1(b). Lemma C.9 uses
this identity to show that a quadruple [Π, Π ′, τ, δ] is a morphism iff it sat-
isfies (17a)–(17b),

{ (τ(t�), τ(t)) | (t�, t)∈p } ⊆ p′, and (20a)

{ (τ(t�), δ(c)) | (t�, c)∈q } ⊆ q′, (20b)

where Π determines p and q, and Π ′ determines p′ and q′. Then Lemma C.10
shows that a quadruple is a morphism iff it satisfies (17a)–(17b),

(∀t� �= to) τ(t�) �= t′o, (21a)

(∀t� �= to) τ(p(t�)) = p′(τ(t�)), and (21b)

(∀t� �= to) δ(q(t�)) = q′(τ(t�)). (21c)

where Π determines to, p, and q, and Π ′ determines t′o, p′, and q′. Below,
Proposition 3.4 extends this result to provide a second characterization of
preform morphisms in terms of the category Set. The functions τ |T�{to}
and τ |F −1(C) are well-defined by (22a) and the proposition’s definitions [c]
and [d]. These two functions as well as the functions p, p′, q, q′, and δ are
displayed in the diagrams of Figure 5. (22b)–(22c) state that both of these
diagrams commute.

Proposition 3.4. A quadruple [Π, Π ′, τ, δ] is a morphism iff it satisfies
(17a)–(17b),

τ(T �{to}) ⊆ T ′
�{t′o}, τ(F−1(C)) ⊆ (F ′)−1(C ′), (22a)

τ |F −1(C)◦p = p′◦τ |T�{to}, and (22b)

δ◦q = q′◦τ |T�{to}, (22c)

T ′�{t′o}

(F ′)−1(C ′)
⊆ T ′

F−1(C)
⊆ T

T �{to}

τ |F−1(C)

τ |T�{to}

p p′

T ′�{t′o}

C ′C

T �{to}

δ

τ |T�{to}

q q′

Figure 5. (22b)–(22c) state that these diagrams commute
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where [a] Π determines to, F , p, and q, [b] Π ′ determines t′o, F ′, p′, and q′,
[c] the codomain of τ |T�{to} is defined to be T ′

�{t′o}, and [d] the codomain
of τ |F −1(C) is defined to be (F ′)−1(C ′). (Proof C.11.)

(22) can be interpreted like (21) can be interpreted. (22a) states that the
image of every nonroot node is a nonroot node, and that the image of every
decision node is a decision node. (22b) states that the image of the predeces-
sor of a nonroot node is the predecessor of the image of the nonroot node.
(22c) states that the image of the previous choice of a nonroot node is the
previous choice of the image of the nonroot node.

A morphism implies relationships between [a] the entities derived from
the source preform and [b] the entities derived from the target preform. For
example, a result about the two feasibility correspondences is in the first
half of (19a), a result about the two nonroot-node sets in in the second half
of (19a), a result about the two predecessor functions is in (20a), a result
about the two previous-choice functions is in (20b), and a result about the
two decision-node sets is in the second half of (22a). A result about the
two information-set collections is in Proposition 3.5 below. Finally, results
about the two trees are established categorically by Corollary 3.10 in the
next subsection.

Proposition 3.5. Assume [Π, Π ′, τ, δ] is a morphism, derive H from Π,
and derive H′ from Π ′. Then (∀H∈H)(∃H ′∈H′) τ(H) ⊆ H ′.10 (Proof
C.12.)

3.4. The Category NCP

This subsection defines the category NCP, which is called the category
of node-and-choice preforms. Let an object be a node-and-choice preform
Π = (T, C,⊗). Let an arrow be a preform morphism α = [Π, Π ′, τ, δ]. Let
source, target, identity, and composition be

αsrc = [Π, Π ′, τ, δ]src = Π,

αtrg = [Π, Π ′, τ, δ]trg = Π ′,

idΠ = [Π, Π, idT , idC ], and

α′◦α = [Π ′, Π ′′, τ ′, δ′]◦[Π, Π ′, τ, δ] = [Π, Π ′′, τ ′◦τ, δ′◦δ],

where idT and idC are identities in Set.

10The symbol τ is overloaded. See footnote 7.
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Theorem 3.6. NCP is a category. (Proof C.13.)

Theorem 2.6 characterized the isomorphisms in Tree by the bijectivity
of τ . The following theorem provides an analogous characterization for the
isomorphisms in NCP.

Theorem 3.7. Suppose that α = [Π, Π ′, τ, δ] is a morphism. Then α is an
isomorphism iff τ and δ are bijections. Further, if α is an isomorphism, then
α−1 = [Π ′, Π, τ−1, δ−1]. (Proof C.16.)

The following proposition uses Theorem 3.7 to provide some properties
of NCP isomorphisms. Corollary 3.11 will categorically derive many more
properties.

Proposition 3.8. Suppose [Π, Π ′, τ, δ] is an isomorphism, where Π =
(T, C,⊗) determines F , q, and H, and where Π ′ = (T ′, C ′, ⊗′) determines
F ′, q′, and H′. Then the following hold.

(a) τ |F −1(C) is a bijection from F−1(C) onto (F ′)−1(C ′).

(b) (τ, δ, τ)|⊗ is a bijection from ⊗ onto ⊗′.

(c) (τ, δ)|F is a bijection from F onto F ′.

(d) (τ, δ)|q is a bijection from q onto q′.

(e) τ |H is a bijection from H onto H′.10 (Proof C.18.)

This paragraph makes two observations. First, by (13b), a preform incor-
porates a functioned tree. Second, since (20a) and (8c) are identical, a pre-
form morphism incorporates a functioned-tree morphism. In accord with this
second observation, the left-hand side of Figure 5 for preforms is identical
to Figure 2 for functioned trees (recall that the preform’s decision-node set
F−1(C) equals the functioned tree’s decision-node set X by Lemma C.1(c)).

Together, these two observations suggest that there is a forgetful functor
from NCP to Tree. Theorem 3.9 establishes this result. Three corollaries
follow immediately.

Theorem 3.9. Define F from NCP to Tree by

F0 : Π 
→ (T, p) and

F1 : [Π, Π ′, τ, δ] 
→ [F0(Π),F0(Π ′), τ ],

where Π = (T, C,⊗) determines p by (13b). Then F is a well-defined functor.
(Proof D.1.)
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Figure 6. A perfect-information preform

Corollary 3.10. Suppose [Π, Π ′, τ, δ] is a morphism, where Π determines
(T, p) and Π ′ determines (T ′, p′). Then [(T, p), (T ′, p′), τ ] is a morphism in
Tree. Hence it obeys properties (a)11–(h) of Proposition 2.4.

Corollary 3.11. Suppose [Π, Π ′, τ, δ] is an isomorphism, where Π deter-
mines (T, p) and Π ′ determines (T ′, p′). Then [(T, p), (T ′, p′), τ ] is an iso-
morphism in Tree. Hence it obeys properties (a)–(j) of Proposition 2.7.

Corollary 3.12. Recall the functor G from Theorem 2.8. Then G◦F is a
well-defined functor from NCP to Grphca.

3.5. Perfect Information

A preform is said to have perfect information iff

(∀c) F−1(c) is a singleton. (23)

Thus, in light of (13c), a preform has perfect information iff each of its
information sets is a singleton.

For example, Figure 6 depicts Π = (T, C,⊗), where T is defined in (2),

C = {0stop, 0go, 1stop, 1go, . . . }, and

⊗ = {(0, 0stop, 0̄), (0, 0go, 1), (1, 1stop, 1̄), (1, 1go, 2), . . . }.

Note F = {(0, 0stop), (0, 0go), (1, 1stop), (1, 1go), . . . }. Thus, each F−1

(nstop) = {n}, and each F−1(ngo) = {n}. Hence (T, C,⊗) has perfect infor-
mation. In contrast, the horse-like preform of Figure 3a does not have perfect
information because it has a non-singleton information set.

Several general observations can be made. [1] Perfect information implies
that {F−1(c)|c} partitions F−1(C). Hence perfect information implies (13c).
Therefore, a triple (T, C,⊗) is a perfect-information preform iff it satisfies
(13a)–(13b) and (23). [2] Proposition 3.8(e) implies that isomorphisms pre-
serve perfect information (nothing similar can be said for morphisms). [3]

11Property (a) may be less convenient than Proposition 3.8(a). The two are equivalent
by Lemma C.1(c).
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Lemma D.2 shows that a preform has perfect information iff its previous-
choice function q is bijective.

Let NCPp be the full subcategory of NCP whose objects are the pre-
forms with perfect information. The following theorem shows that NCPp

and Tree are equivalent ([14, p. 18]). Incidentally, the natural isomorphisms
([14, p. 16]) used to establish Theorem 3.13(a) appear in the statement of
Lemma D.6.

Theorem 3.13. NCPp and Tree are equivalent. In particular, let Fp be the
restriction of Theorem 3.9’s functor F to NCPp. Conversely, define E from
Tree to NCPp by

E0 : (T, p) 
→ (T, C,⊗)

where C = T �{to} and ⊗ = { (t, t�, t�) | (t�, t)∈p }, and by

E1 : [(T, p), (T ′, p′), τ ] 
→ [E0(T, p),E0(T ′, p′), τ, τ |T�{to}]

where T �{to} is the set of nonroot nodes of (T, p), T ′
�{t′o} is the set of

nonroot nodes of (T ′, p′), and the codomain of τ |T�{to} is T ′
�{t′o}. Then

(a) E◦Fp is naturally isomorphic to the identity functor for NCPp , and (b)
Fp◦E equals the identity functor for Tree. (Proof D.8.)

For example, consider again Figure 6’s preform Π. Closely related is the
“spartan” preform Πs = (T, Cs, ⊗s), where T is again defined defined by
(2), but

Cs = {0̄, 1, 1̄, 2, . . . } and

⊗s = { (0, 0̄, 0̄), (0, 1, 1), (1, 1̄, 1̄), (1, 2, 2), . . . }.

These two preforms share the same tree. Formally,

F0(Π) = F0(Πs) = (T, p),

where (T, p) is defined by (2). The “expansion” of that tree is the spartan
preform. Formally,

E0(T, p) = Πs.

Thus [1] F0◦E0(T, p) = (T, p) and [2] E0◦F0(Π) = Πs. [1] agrees with Theo-
rem 3.13(b). Since Πs and Π are isomorphic, [2] implies that E0◦F0(Π) and
Π are isomorphic but unequal. Their being isomorphic agrees with Theo-
rem 3.13(a). Their being unequal shows that Fp and E do not form a pair of
isomorphisms between NCPp and Tree.
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NCPp Tree Grphca

Theorem 3.13 Theorem 2.8

Fp G

E H

Figure 7. NCPp, Tree, and Grphca are equivalent by Theorems 3.13

and 2.8

Finally, Corollary 3.14 follows from the two theorems shown in Figure 7.
In addition, the figure almost shows Theorem 3.9’s forgetful functor F, which
goes from all of NCP to Tree.

Corollary 3.14. NCPp and Grphca are equivalent. In particular, define
Fp and E as in Theorem 3.13, and define G and H as in Theorem 2.8. Then
(a) (E◦H)◦(G◦Fp) is naturally isomorphic to the identity functor for NCPp ,
and (b) (G◦Fp)◦(E◦H) equals the identity functor for Grphca. (Proof D.9.)

4. Applications and Extensions

4.1. Applications

The intention behind developing categories for extensive-form games is
to systematically compare the results which are obtained within different
strands of the game-theory literature. Each of these strands has its own way
of formulating games, and each these formulations has its own advantages
and disadvantages.

For example, Figure 3a depicted a horse-like NCP preform. Figures 8 and
9 depict four more horse-like NCP preforms, all of which are isomorphic to
the first. Each of these four additional preforms is formulated according to a
particular strand of the game-theory literature. From the abstract perspec-
tive of NCP, each of these specialized formulations has its own particularly
convenient means of specifying the node-and-choice operator ⊗.

Figure 8a uses a “choice” formulation in the sense that it expresses each
node as a choice-sequence. In particular, Figure 8a depicts the NCP preform
(T, C,⊗), where C consists of the six choices rS, dS, rG, dG, e, and f, where
T consists of the nine choice-sequences {}, (rS), (dS), (rS, rG), (rS, dG), (dS, e),
(dS, f), (rS, dG, e), and (rS, dG, f), and where ⊗ consists of the eight triples

({}, rS, (rS)
)
,

({}, dS, (dS)
)
,

(
(rS), rG, (rS, rG)

)
,

(
(rS), dG, (rS, dG)

)
,

(
(dS), e, (dS, e)

)
,

(
(dS), f, (dS, f)

)
,

(
(rS, dG), e, (rS, dG, e)

)
, and

(
(rS, dG), f, (rS, dG, f)

)
.
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Figure 8. a A “choice” preform where t⊗c = t⊕(c). b A “node” preform

where {t⊗c} = p−1(t)∩c

Better, one can read T , C, and ⊗ from the diagram directly: Nodes and
choices are as usual, and the eight triples in ⊗ are the eight node-choice-node
segments in the diagram. Notice that the node-and-choice operator ⊗ takes
the form t⊗c = t⊕(c), where ⊕ is the concatenation operator for sequences.
For example, (dS)⊗f = (dS)⊕(f) = (dS, f). This formulation is popular. It
appears in the textbook of Osborne and Rubinstein [18],12 and there, choice-
sequences are called “histories”.

Figure 8b uses a “node” formulation in the sense that it expresses each
choice as a node-set. In particular, Figure 8b depicts the NCP preform
(T, C,⊗) where T consists of nine nodes such as t = 3 and t� = 6, where
C consists of six node-sets such as c = {6, 8}, and where ⊗ consists of
the diagram’s eight node-choice-node triples such as (t, c, t�) = (3, {6, 8}, 6).
Notice that ⊗ obeys {t⊗c} = p−1(t)∩c, where p is the preform’s predecessor
function. For example, {3⊗{6, 8}} = p−1(3)∩{6, 8} = {5, 6}∩{6, 8} = {6}.
This formulation appears in Alós-Ferrer and Ritzberger [4, p. 94], and is
related to the classic formulation of Kuhn [11].

The two formulations of Figure 8 are “dual” in the sense that [a] choice
preforms express each node in terms of choices and [b] node preforms express

12Figure 8a is meant to be emblematic of some, but not all, Osborne-Rubinstein struc-
tures. To be precise, let a “structure” be a rooted tree together with choices and information
sets. Then Figure 8a is meant to be emblematic of those Osborne-Rubinstein structures
that can be expressed as NCP preforms. In accord with Proposition 3.2(16b), this rules out
Osborne-Rubinstein structures in which different information sets share the same choices.
[Such a qualification is not needed for Figures 8b, 9a, and 9b because the node, choice-set,
and outcome formulations all require that each information set has its own choices.]
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Figure 9. a A “choice-set” preform where t⊗c = t∪{c}. b An “outcome”

preform where t⊗c = t∩c

each choice in terms of nodes. We plan to show categorically that either of
these special formulations is effectively as general as all of NCP. The result
for choice forms would be related to [10]’s non-categorical link between “OR
trees” and “KS trees”.

Figure 9a uses a “choice-set” formulation. This is the same as the “choice”
formulation of Figure 8a, except that it expresses each node as a choice-set
rather than a choice-sequence. In particular, Figure 9a depicts the NCP
preform (T, C,⊗), where C consists of six choices such as c = f, where T
consists of nine choice-sets such as t = {dS} and t� = {dS, f}, and where
⊗ consists of eight triples such as (t, c, t�) = ({dS}, f, {dS, f}). Notice that
⊗ obeys t⊗c = t∪{c}. For example, {dS}⊗f = {dS}∪{f} = {dS, f}. This for-
mulation was introduced by Streufert [22], and was used to advantage by
[21].

Figure 9b uses an “outcome” formulation in the sense that it expresses
each node and each choice as an outcome-set. Routinely, outcomes are in
one-to-one correspondence with plays, and in this example, the outcomes
are 2, 5, 6, 7, and 8 (these labels correspond with the five nondecision nodes
in Figure 8b). Accordantly, Figure 9b depicts the NCP preform (T, C,⊗),
where T consists of nine nodes such as t = {5, 6} and t� = {6}, where C
consists of six choices such as c = {6, 8}, and where ⊗ consists of eight
triples such as (t, c, t�) = ({5, 6}, {6, 8}, {6}). Notice that ⊗ obeys t⊗c =
t∩c. For example, {5, 6}⊗{6, 8} = {5, 6}∩{6, 8} = {6}. This formulation was
introduced by von Neumann and Morgenstern [27], and was extended to
allow infinite plays by Alós-Ferrer and Ritzberger [4].

The two formulations of Figure 9 are “dual” in the sense that [a] the
⊗ of choice-set preforms uses a union, and [b] the ⊗ of outcome preforms



The Category of Node-and-Choice Preforms. . . 1025

uses an intersection. This dual pair is slightly less general than Figure 8’s
dual pair because only the formulations of the former pair can accommo-
date absentmindedness. Given this caveat, [4] essentially develops a non-
categorical equivalence that links the node and the outcome formulations.
Meanwhile, [23] develops a non-categorical equivalence that links the choice,
the choice-set, and the outcome formulations. We plan to synthesize and
strengthen these equivalences categorically.

In summary, the operator ⊗ provides a unified way of comparing appar-
ently dissimilar formulations.

4.2. Extensions

As discussed in the introduction, this paper is the first step in a larger agenda
to develop a category of extensive-form games. [24] takes the second step. It
develops a category of node-and-choice forms, where a “form” is a preform
from this paper, augmented with players. There, [i] a form assigns each
information set (and concurrently each decision node and each choice) to a
player, and [ii] a form morphism allows players to be renamed and merged.
In addition, we are developing a third paper which augments forms with
[a] pure player strategies and [b] player preferences over non-probabilistic
outcomes (i.e. plays).

This paper, and the two papers just discussed, admit continuum feasible
sets and infinite-horizon trees. They do so at relatively little cost because
they rely on set theory and category theory alone. In contrast, measure-
theoretic issues will arise when there are mixed player strategies with con-
tinuum supports, or chance moves with continuum supports, or player pref-
erences over outcome lotteries with infinite supports. Accordingly, our next
step will avoid these issues by considering only [a] mixed player strategies
with finite support, [b] chance moves with finite support, and [c] player pref-
erences over outcome lotteries with finite support. This intermediate step
will likely entail a restriction to finite-horizon trees. The measure-theoretic
issues can then be left for last.

Appendix A. Concerning Tree

A.1. Objects

Lemma A.1. Suppose (T, p) is a functioned tree with its to, k, ≺, �, Zft, and Zinft.
Then the following hold.
(a) t1 ≺ t2 iff both k(t1) < k(t2) and t1 = pk(t2)−k(t1)(t2).
(b) ≺ is the asymmetric part of �.
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(c) t1 � t2 iff both k(t1) ≤ k(t2) and t1 = pk(t2)−k(t1)(t2), where p0 is the identity
function.
(d) (T,�) is a partially ordered set.
(e) If S ⊆ T is a chain, S∪{pm(t)|t∈S, k(t) ≥ m ≥ 1} is a chain.
(f) If S ⊆ T is an infinite chain, S∪{pm(t)|t∈S, k(t) ≥ m ≥ 1} ∈ Zinft.
(g) If S ⊆ T is a chain, there exists Z ∈ Zft∪Zinft such that S ⊆ Z.
(h) If t ∈ Z ∈ Zft∪Zinft and k(t) ≥ m ≥ 1, then pm(t) ∈ Z.

Proof. (a). The reverse direction follows immediately from the definition of ≺.
To see the forward direction, suppose t1 ≺ t2. Then by the definition of ≺, there
exists an m ≥ 1 such that t1 = pm(t2). Meanwhile by the definition of k(t1), I
have to = pk(t1)(t1). Combining these two yields to = pk(t1)(t1) = pk(t1)(pm(t2)) =
pk(t1)+m(t2). Thus k(t2) = k(t1)+m by the definition of k(t2). So m = k(t2)−k(t1).
This and the definition of m imply both k(t2) > k(t1) and t1 = pk(t2)−k(t1)(t2).

(b). By the definition of �, it suffices to prove that ≺ is asymmetric. This relation
is asymmetric because if both t1 ≺ t2 and t2 ≺ t1 held, part (a) would imply
both k(t1) < k(t2) and k(t2) < k(t1).

(c). By using the definition of � for the first equivalence, and by using part (a)
for the second equivalence,

t1 � t2

⇔ t1 ≺ t2 or t1 = t2

⇔ [ k(t1) < k(t2) and t1 = pk(t2)−k(t1)(t2) ] or

[ k(t1) = k(t2) and t1 = pk(t2)−k(t1)(t2) ]

⇔ k(t1) ≤ k(t2) and t1 = pk(t2)−k(t1)(t2).

(d). Reflexivity holds by the definition of �. Transitivity holds by [1] the defini-
tion of � and [2] the transitivity of ≺, which follows immediately from its definition.
To show antisymmetry, suppose t1 � t2 and t2 � t1. Then by two applications of
part (c), k(t1) = k(t2). Thus by t1 � t2 and part (c) again, t1 = p0(t2) = t2.

(e). Let p0 be the identity function, so that

S∪{pm(t)|t∈S, k(t) ≥ m ≥ 1} = {pm(t)|t∈S, k(t) ≥ m ≥ 0}.

Then consider pm1
(t1) and pm2

(t2) such that {t1, t2} ∈ S, k(t1) ≥ m1 ≥ 0, and
k(t2) ≥ m2 ≥ 0. Since S is a chain, assume without loss of generality that t1 � t2.
Thus by part (c), there is an m ≥ 0 such that t1 = pm(t2). If m1+m > m2,
pm1

(t1) = pm1+m(t2) ≺ pm2
(t2). If m1+m = m2, pm1

(t1) = pm1+m(t2) = pm2
(t2).

If m1+m < m2, pm1
(t1) = pm1+m(t2) � pm2

(t2).
(f). Suppose S is an infinite chain. Since S is a chain and since min S exists, I

may number the elements of S so that min S = t1 ≺ t2 ≺ t3 . . . . Thus by part
(a), (∀n ≥ 1) k(tn) < k(tn+1). Hence (∀n ≥ 1) k(tn) ≥ n−1.
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Now consider S̄ := S∪{pm(t)|t∈S, k(t) ≥ m ≥ 1}. By part (e), S̄ is a chain.
Further, it is infinite because S is infinite. Thus it remains to be shown that S̄
is maximal. Accordingly, suppose that it were not maximal. Then there would be
some t′ /∈ S̄ such that S̄∪{t′} is a chain.

This paragraph shows that (∀n ≥ 1) k(t′) ≥ n. Take any n ≥ 1. Since t′ /∈ S̄,
and since tn and all its predecessors are in S̄, it must be that t′ � tn. Thus by part
(a), k(t′) > k(tn). Thus, since k(tn) ≥ n−1 by the second-previous paragraph,
k(t′) ≥ n.

By the previous paragraph, k(t′) /∈ N0. This contradicts the definition of k.
(g). Suppose S is a chain. On the one hand, suppose S is infinite. Then part

(f) shows that it is a subset of a member of Zinft. On the other hand, suppose S is
finite. Then max S exists, and two cases arise. These cases are defined in the first
sentences of the next two paragraphs.

[1] Suppose that [a] maxS does not have a successor or [b] max S has a suc-
cessor that does not have a successor. In either [a] or [b], let t∗ denote the
node without a successor. Then S∪{t∗} is a chain. Thus by part (e), S̄ =
(S∪{t∗})∪{pm(t)|t∈S∪{t∗}, k(t) ≥ m ≥ 1} is a chain. If S̄ were not maximal,
there would be some t′ /∈ S̄ such that S̄∪{t′} is a chain. Since S̄ contains all the
predecessors of t∗, it must be that t′ � t∗. But this contradicts the assumption that
t∗ does not have a successor.

[2] Suppose that max S has a successor and that every successor of max S has
a successor. Then define S1 by S1 = S∪{t1} where t1 is some successor of max S.
Then, for every n ≥ 2, define Sn = Sn−1∪{t2} where tn is some successor of tn−1.
Then ∪n≥1S

n is an infinite chain. Thus part (f) shows that it is a subset of a member
of Zinft.

(h). Suppose t ∈ Z ∈ Zft∪Zinft and k(t) ≥ m ≥ 1. I argue

pm(t) ∈ Z∪{pm′
(t′)|t′∈Z, k(t′) ≥ m′ ≥ 1} ⊆ Z.

The set membership holds because t ∈ Z and k(t) ≥ m ≥ 1. The set inclusion holds
because [1] Z∪{pm′

(t′)|t′∈Z, k(t′) ≥ m′ ≥ 1} is a chain by part (e) and [2] Z is
maximal by the assumption Z ∈ Zft∪Zinft. �
Proof A.2. (for Proposition 2.2) (a). I must show that

Zft � Z 
→ max Z (24)

is a bijection onto T �X, and that its inverse is

{pm(t)|k(t) ≥ m ≥ 1}∪{t} 
→t ∈ T �X. (25)

These results follow from the next two paragraphs.
This paragraph argues that the function (24) followed by the function (25) is

the identity function on Zft. Accordingly, take any Z ∈ Zft. The remainder of this
paragraph argues

Z 
→ max Z 
→ (26)

{ pm(max Z) | k(max Z) ≥ m ≥ 1 }∪{ max Z } = Z,
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where the two arrows apply the functions (24) and (25), respectively. By inspection,
the first arrow applies the function (24). Before applying the function (25), it must
be shown that max Z exists and is an element of T �X. First, max Z exists and is
an element of T because Z ∈ Zft by definition. Second, maxZ is not an element of
X, for if it were an element of X, [1] it would have a successor, thus [2] Z would
not be a maximal chain, and thus [3] Z /∈ Zft in contradiction to the definition of
Z. Accordingly, the second arrow in (26) applies the function (25) at t = max Z.
To continue, the ⊆ direction of the equality in (26) holds by Lemma A.1(h) applied
at t = max Z. To see the ⊇ direction, take any t ∈ Z. Because Z is a chain that
contains max Z, either t � max Z or max Z ≺ t. The former implies that t is in
the left-hand side. The latter contradicts the definition of the maximum operator.

This paragraph argues that the function (25) followed by the function (24) is
the identity function on T �X. Accordingly, take any t ∈ T �X. The remainder of
this paragraph argues

t 
→ {pm(t)|k(t) ≥ m ≥ 1}∪{t} 
→ (27)

max{pm(t)|k(t) ≥ m ≥ 1}∪{t} = t,

where the two arrows apply the function (25) and (24), respectively. By inspection,
the first arrow applies the function (25). Before applying the function (24), it must
be shown that S := {pm(t)|k(t) ≥ m ≥ 1}∪{t} is an element of Zft. Since S is
a finite chain by inspection, I only need to show that S is maximal. Accordingly,
suppose there were a t′ /∈ S such that S∪{t′} was a chain. Because t ∈ S and S∪{t′}
is a chain, either t′ � t or t ≺ t′. The first case is impossible for it would imply
that t′ ∈ S, in contradiction to the definition of t′. The second case would imply [1]
that t has a successor, and thus [2] that t ∈ X. This would contradict the definition
of t. Accordingly, the second arrow in (27) applies the function (24) at Z = S. The
equality is immediate.

(b). This paragraph shows that E is a well-defined function from Zinft into T N1 .
Accordingly, take any Z ∈ Zinft. It must be shown that

(∀v ≥ 1)(∃!t∈Z) k(t) = v.

Take any v ≥ 1. First, consider uniqueness. It must be shown that there are not
two nodes in Z at stage v. This holds because distinct nodes in a chain have different
stages by Lemma A.1(a). Second, consider existence. Let S := {t′∈Z|k(t′)≤v}. Since
distinct nodes in a chain have different stages by Lemma A.1(a), S is finite. Thus
since Z is infinite, Z�S = {t′∈Z|k(t′)>v} is nonempty. Take t∗ ∈ Z�S and let
t = pk(t∗)−v(t∗). Note t ∈ Z by Lemma A.1(h) at its t equal to t∗ and its m equal
to k(t∗)−v. Further note that

to = pk(t∗)(t∗) = pv(pk(t∗)−v(t∗)) = pv(t),

where the first equality holds by the definition of k(t∗), the second is a rearrange-
ment, and the third holds by the definition of t. Thus k(t) = v by the definition of
k(t).
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This paragraph shows that E maps from Zinft into Y ⊆ T N1 . Accordingly, take
any Z ∈ Zinft. By the previous paragraph, I may let E(Z) = (tv)v≥1. It must be
shown that to = p(t1) and that (∀v ≥ 1) tv = p(tv+1). Since k(t1) = 1 by the
definition of E, p(t1) = to by the definition of k. Next take any v ≥ 1. By the
definition of E, [1] {tv, tv+1} ⊆ Z, [2] k(tv) = v, and [3] k(tv+1) = v+1. By [1],
tv ≺ tv+1 or tv+1 � tv. Thus tv ≺ tv+1 because the alternative is impossible by
[2], [3], and Lemma A.1(c). Finally, tv ≺ tv+1 implies tv = p(tv+1) by [2], [3], and
Lemma A.1(a).

The next two paragraphs prove that E is a bijection from Zinft onto Y, and that
its inverse is

{to}∪{tv|v ≥ 1} 
→(tv)v≥1 ∈ Y. (28)

This paragraph argues that E followed by the function (28) is the identity func-
tion on Zinft. Accordingly, take any Z ∈ Zinft. I argue

Z 
→ E(Z) 
→
{to}∪{E(Z)v|v ≥ 1} = Z,

where the arrows apply the functions E and (28), respectively. The first arrow
applies E by inspection. The second arrow applies (28) because E(Z) ∈ Y by
the second-previous paragraph. To see the ⊆ direction of the equality, take any
t ∈ {to}∪{E(Z)v|v ≥ 1}. If t = to, then t ∈ Z because to belongs to every maximal
chain and Z is a maximal chain. If t = E(Z)v from some v ≥ 1, then t ∈ Z by the
definition of E. To see the ⊇ direction of the equality, take any t ∈ Z. If k(t) = 0,
then t = to. If k(t) ≥ 1, then t = E(Z)k(t) by the definition of E.

This paragraph argues that the function (28) followed by E is the identity func-
tion on Y. Accordingly, take any (tv)v≥1 ∈ Y. I argue

(tv)v≥1 
→ {to}∪{tv|v ≥ 1} 
→
E({to}∪{tv|v ≥ 1}) = (tv)v≥1,

where the arrows apply the functions (28) and E, respectively. The first arrow
applies (28) by inspection. Before applying E, it must be shown that S :=
{to}∪{tv|v ≥ 1} belongs to Zinft. In other words, it must be shown that S is an
infinite maximal chain. The definitions of (tv)v≥1 and Y assure that S is a chain
and that S contains a node of every stage. This easily implies that S is infinite.
It also implies that S is maximal because distinct nodes in a chain have different
stages by Lemma A.1(a). Hence S belongs to Zinft and the second arrow applies
E. The equality follows from the fact that (∀v ≥ 1) k(tv) = v by the definitions of
(tv)v≥1 and Y. �

A.2. Arrows

Proof A.3. (for Proposition 2.3) Take any triple [(T, p), (T ′, p′), τ ]. By the defi-
nition of morphism, it suffices [a] to assume (8a)–(8b) and [b] to show that (8c) is
equivalent to (9). Toward that end, assume (8a)–(8b).
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Suppose (8c). To show the first half of (9a), take any t� ∈ T �{to}. Then by (8a)
and (1a) for p, there exists t such that (t�, t) ∈ p. Hence by (8c), (τ(t�), τ(t)) ∈ p′.
Thus by (8a) and (1a) for p′, τ(t�) ∈ T ′

�{t′o}.
Similarly, to show the second half of (9a), take any t ∈ X. Then by (8a) and (1a)

for p, there exists t� such that (t�, t) ∈ p. Hence by (8c), (τ(t�), τ(t)) ∈ p′. Hence by
(8a) and (1a) for p′, τ(t) ∈ X ′.

Since (9a) has been established, the codomain definitions after (9b) guarantee
that the equality of (9b) is well-defined in Set. Thus, to show that the equality
holds, it suffices to show that

(∀t�∈T �{to}) τ◦p(t�) = p′◦τ(t�).

Take any t� ∈ T �{to}. By (8a) and (1a) for p, (t�, p(t�)) ∈ p. Thus by (8c),
(τ(t�), τ◦p(t�)) ∈ p′. By (8a) and (1a) for p′, this is equivalent to p′◦τ(t�) = τ◦p(t�).

Conversely, suppose (9). Take any (t�, t) ∈ p. By (8a) and (1a) for p, t = p(t�).
Thus τ(t) = τ◦p(t�) = p′◦τ(t�), where the first equality holds by the previous
sentence and the second holds by (9b). By (8a) and (1a) for p′, this is equivalent to
(τ(t�), τ(t)) ∈ p′. �

Proof A.4. (for Proposition 2.4)
(a). This is trivial. It holds because τ(to) ∈ T ′ and because (∀t′) t′o �′ t′.
(b). Suppose m ≥ 1 and t1 = pm(t2).
This paragraph shows by induction on i that

(∀m ≥ i ≥ 1) τ(pi(t2)) = (p′)i(τ(t2)). (29)

The initial step (i = 1) holds by (9b) of Proposition 2.3, applied at t� = t2 (note
t2 �= to because pm(t2) exists and m ≥ 1). To show the inductive step (m ≥ i > 1),
I argue

τ ◦ pi(t2) = τ ◦ p ◦ pi−1(t2)

= p′ ◦ τ ◦ pi−1(t2)

= p′ ◦ (p′)i−1 ◦ τ(t2)

= (p′)i ◦ τ(t2).

The first equality is a rearrangement. The second equation holds by (9b) of Propo-
sition 2.3, applied at t� = pi−1(t2) (note pi−1(t2) �= to because pm(t2) exists and
m ≥ i). The third equation holds by the inductive hypothesis, and the fourth is a
rearrangement.

Finally, I argue

τ(t1) = τ(pm(t2)) = (p′)m(τ(t2)).

The first equality holds by the assumption t1 = pm(t2), the second holds by (29) at
i = m.
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(c). By the definition of k′(τ(t)), it suffices to show

t′o = (p′)k′(τ(to))[τ(to)]

= (p′)k′(τ(to))[(p′)k(t)(τ(t))]

= (p′)k(t)+k′(τ(to))(τ(t)).

The first equality follows from the definition of k′(τ(to)). The second equality holds
because [a] to = pk(t)(t) by the definition of k(t), and hence [b] τ(to) = (p′)k(t)(τ(t))
by part (b). The final equality is a rearrangement.

(d). Suppose t1 ≺ t2. Then by the definition of ≺, there exists m ≥ 1 such that
t1 = pm(t2). Thus by part (b), τ(t1) = (p′)m(τ(t2)). Thus by the definition of ≺′,
τ(t1) ≺′ τ(t2).

(e). Suppose t1 � t2. Then by the definition of �, either t1 = t2 or t1 ≺ t2.
In the case of equality, τ(t1) = τ(t2). In the case of precedence, part (d) implies
τ(t1) ≺′ τ(t2). Thus in either case, τ(t1) �′ τ(t2).

(f). Suppose S ⊆ T is a chain.
To show that τ |S is injective, suppose t1 and t2 are distinct members of S. Since

S is a chain, t1 ≺ t2 without loss of generality. Hence τ(t1) ≺′ τ(t2) by part (d).
Hence τ(t1) and τ(t2) are distinct.

To show that τ(S) is a chain, take any distinct t′1 and t′2 in τ(S). Since both
are in τ(S), there exist distinct t1 and t2 in S such that τ(t1) = t′1 and τ(t2) = t′2.
Thus since S is a chain, t1 ≺ t2 without loss of generality. Hence τ(t1) ≺′ τ(t2)
by part (d). Hence t′1 ≺′ t′2 by the definition of t1 and t2.

(g). Take any Z ∈ Zinft. Since Z is an infinite chain in T , part (f) implies that
τ(Z) is an infinite chain in T ′. Thus by Lemma A.1(f) applied to (T ′, p′) at S′ =
τ(Z), there exists Z ′ ∈ Z ′

inft such that τ(Z) ⊆ Z ′.
(h). Take any Z ∈ Zft. Since Z is a chain in T , part (f) implies that τ(Z) is a

chain in T ′. Thus by Lemma A.1(g) applied to (T ′, p′) at S′ = τ(Z), there exists
Z ′ ∈ Z ′

ft∪Z ′
inft such that τ(Z) ⊆ Z ′. �

A.3. The Category

Proof A.5. (for Theorem 2.5) This paragraph notes that, for every functioned tree
(T, p), the triple [(T, p), (T, p), idT ] is a morphism. (8a) and (8b) hold by inspection.
(8c) holds with equality.

This paragraph demonstrates that, if γ = [(T, p), (T ′, p′), τ ] and γ′ =
[(T ′, p′), (T ′′, p′′), τ ′] are morphisms, then γ′◦γ = [(T, p), (T ′′, p′′), τ ′◦τ ] is a mor-
phism. Toward that end, take any such γ and γ′. (8a) for γ′◦γ follows immediately
from (8a) for γ and (8a) for γ′. For different reasons, (8b) for γ′◦γ follows immedi-
ately from (8b) for γ and (8b) for γ′. Finally, to show (8c) for γ′◦γ, I argue

{(τ ′◦τ(t�), τ ′◦τ(t)) | (t�, t)∈p}
= {(τ ′(t′�), τ ′(t′)) | (t′�, t′)∈{(τ(t�), τ(t))|(t�, t)∈p}}
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⊆ {(τ ′(t′�), τ ′(t′)) | (t′�, t′)∈p′}
⊆ p′′.

The equality is a rearrangement. The first inclusion holds by (8c) for γ, and the
second inclusion holds by (8c) for γ′.

The first paragraph of this proof shows that the identity arrow id(T,p) is well-
defined for any functioned tree (T, p). The second paragraph shows that the com-
position γ′◦γ is well-defined for any morphisms γ and γ′. The unit and associative
laws are immediate. Thus Tree is a category (e.g. [5, Section 1.3]). �
Lemma A.6. Suppose γ = [(T, p), (T ′, p′), τ ] is an isomorphism. Then (a) τ is
bijective and (b) γ−1 = [(T ′, p′), (T, p), τ−1].

Proof. Since γ = [(T, p), (T ′, p′), τ ] is an isomorphism (e.g. [5, p. 12]), its inverse
γ−1 = [(T ′, p′), (T, p), τ∗] exists. Thus

[(T ′, p′), (T, p), τ∗]◦[(T, p), (T ′, p′), τ ] (30a)

= γ−1◦γ = id(T,p) = [(T, p), (T, p), idT ], and

[(T, p), (T ′, p′), τ ]◦[(T ′, p′), (T, p), τ∗] (30b)

= γ◦γ−1 = id(T ′,p′) = [(T ′, p′), (T ′, p′), idT ′ ],

where the first two equalities in both lines follow from the definition of the inverse
γ−1 = [(T ′, p′), (T, p), τ∗], and where the third equality in both lines follows from
the definition of id. The third component of (30a) implies that τ∗◦τ = idT . The
third component of (30b) implies that τ◦τ∗ = idT ′ . The last two sentences imply
that τ is a bijection and that τ∗ = τ−1. Conclusion (a) follows from the previous
sentence. Conclusion (b) holds because

γ−1 = [(T ′, p′), (T, p), τ∗] = [(T ′, p′), (T, p), τ−1],

where the first equality holds by definition, and where the second equality holds
because τ∗ = τ−1 by the second-previous sentence. �
Lemma A.7. Suppose that γ = [(T, p), (T ′, p′), τ ] is a morphism and that τ is bijec-
tive. Then γ is an isomorphism.

Proof. Define γ∗ = [(T ′, p′), (T, p), τ−1].
This paragraph shows that γ∗ is a morphism. Specifically, it shows that

(T ′, p′) and (T, p) are functioned trees, (31a)

τ−1 : T ′ → T, and (31b)

{ (τ−1(t′�), τ−1(t′)) | (t′�, t′)∈p′ } ⊆ p. (31c)

(31a) follows from (8a) for γ. (31b) follows from (8b) for γ and the bijectivity of τ .
To show (31c), take any (t′�, t′) ∈ p′. For notational ease, define t� = τ−1(t′�) and
t = τ−1(t′). Thus it suffices to show that (t�, t) ∈ p, or equivalently, that

p(t�) = t. (32)
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First, I argue

t� �= to. (33)

If t� = to were true, [a] t� � t since to precedes every element of T , thus [b]
τ(t�) �′ τ(t) by γ being a morphism and Proposition 2.4(e), and thus [c] t′� �′ t′

by the definitions of t� and t. This would contradict t′� � t′ which follows from the
assumption that p′(t′�) = t′. Second, I argue

τ◦p(t�) = p′◦τ(t�) = p′(t′�) = t′. (34)

The first equality follows from γ being a morphism, from (9b) of Proposition 2.3,
and from (33). The second equality follows from the definition of t�. The third holds
by assumption. Finally, I argue that (32) holds:

p(t�) = τ−1(t′) = t.

The first equality follows from applying τ−1 to both sides of (34). The second
equality is the definition of t.

Finally,

γ∗◦γ = [(T ′, p′), (T, p), τ−1]◦[(T, p), (T ′, p′), τ ] = id(T,p) and

γ◦γ∗ = [(T, p), (T ′, p′), τ ]◦[(T ′, p′), (T, p), τ−1] = id(T ′,p′).

Thus γ is an isomorphism (and γ−1 = γ∗). �

Proof A.8. (for Theorem 2.6) Lemma A.6 establishes [a] the forward direction of
the theorem’s second sentence and [b] the theorem’s third sentence. Lemma A.7
establishes the reverse direction of the theorem’s second sentence. �

Lemma A.9. Suppose γ = [(T, p), (T ′, p′), τ ] is an isomorphism, where (T, p)
determines Z = Zft∪Zinft and where (T ′, p′) determines Z ′ = Z ′

ft∪Z ′
inft. Then

(∀Z∈Z) τ(Z) ∈ Z ′.

Proof. By Theorem 2.6, τ is bijective and γ−1 = [(T ′, p′), (T, p), τ−1]. These facts
will be used implicitly.

Take any Z ∈ Z. Then by Proposition 2.4(f) applied to γ at S = Z, τ(Z) is a
chain. Hence it remains to be shown that τ(Z) is maximal. Suppose not. Then there
is t′ /∈ τ(Z) such that τ(Z)∪{t′} is a chain. By Proposition 2.4(f) applied to γ−1

at S′ = τ(Z)∪{t′}, τ−1(τ(Z)∪{t′}) = Z∪{τ−1(t′)} is a chain. Note τ−1(t′) /∈ Z
because τ−1(t′) ∈ Z would imply t′ ∈ τ(Z) in contradiction to the definition of t′.
The last two sentences contradict the maximality of Z. �

Proof A.10. (for Proposition 2.7) Let γ denote [(T, p), (T ′, p′), τ ]. Theorem 2.6
implies

τ is a bijection from T onto T ′, and (35a)

γ−1 = [(T ′, p′), (T, p), τ−1]. (35b)

These facts will sometimes be used implicitly.
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(a). By Proposition 2.3 (second half of (9a)), τ |X is a well-defined function
from X into X ′. It is injective by (35a). To show it is surjective, take any t′ ∈ X ′.
By (35b) and by Proposition 2.3 (second half of (9a)) for γ−1, τ−1(t′) ∈ X. Thus
τ◦τ−1(t′) = t′ is in the range of τ |X .

(b). By Proposition 2.3 (first half of (9a)), τ |T�{to} is a well-defined function
from T �{to} into T ′

�{t′o}. It is injective by (35a). To show it is surjective, take
any t′ ∈ T ′

�{t′o}. By (35b) and by Proposition 2.3 (first half of (9a)) for γ−1,
τ−1(t′) ∈ T �{to}. Thus τ◦τ−1(t′) = t′ is in the range of τ |T�{to}.

(c). This follows immediately from (35a) and part (b).
(d). By part (c) and by the definition of k′(t′o), k′(τ(to)) = k′(t′o) = 0. Thus by

Proposition 2.4(c), k′(τ(t)) = k(t) + k′(τ(to)) = k(t).
(e). By (8c) for γ, (τ, τ)|p is a well-defined function from p into p′. It is injective

by (35a). To show it is surjective, take any (t′�, t′) ∈ p′. By (35b) and by (8c) for
γ−1, (τ−1, τ−1)|p′ is a well-defined function from p′ into p. Hence

(τ−1(t′�), τ−1(t′)) ∈ p.

Thus (τ, τ)(τ−1(t′�), τ−1(t′)) = (t′�, t′) is in the range of (τ, τ)|p.
(f). Proposition 2.4(d) implies that (τ, τ)|≺ is a well-defined function from ≺

into ≺′. It is injective by (35a). To show it is surjective, take any (t′1, t′2) ∈ ≺′. By
(35b) and by Proposition 2.4(d) for γ−1,

(τ−1(t′1), τ−1(t′2)) ∈ ≺ .

Thus (τ, τ)(τ−1(t′1), τ−1(t′2)) = (t′1, t′2) is in the range of (τ, τ)|≺.
(g). This proof is similar to that of the previous part. Replace ≺ with �, and

replace Proposition 2.4(d) with Proposition 2.4(e).
(h)–(i). Let Z = Zft∪Zinft and Z ′ = Z ′

ft∪Z ′
inft. Since τ is a bijection, the cardi-

nality of S equals the cardinality of τ(S) for any set S ⊆ T . Thus it suffices for
both parts (h) and (i) to show that τ |Z is a bijection from Z onto Z ′.

Lemma A.9 implies that τ |Z is a well-defined function from Z into Z ′. It is
injective because τ is injective. To show that it is surjective, take any Z ′ ∈ Z ′. By
Lemma A.9 applied to α−1, τ−1(Z ′) ∈ Z. Thus τ(τ−1(Z ′)) = Z ′ is in the range of
τ |Z .

(j). Take any Z ∈ Zinft. The expression E′[τ(Z)] is well-defined because
τ(Z) ∈ Z ′

inft by part (i). Now take any v ≥ 1. By the definition of E, E[Z]v is
a stage-v member of Z. Thus by part (d), τ(E[Z]v) is a stage-v member of τ(Z).
Thus by the definition of E′, τ(E[Z]v) equals E′[τ(Z)]v. �

Appendix B. Between Tree and Grphca

This entire appendix is concerned with the proof of Theorem 2.8.
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Lemma B.1. Suppose that (T, p) is a functioned tree. Then G0(T, p) is a nontrivial
converging arborescence, where G0 is defined in Theorem 2.8.

Proof. Derive to from (T, p). Let (T,E, init, ter) = G0(T, p). I will show that
(T,E, init, ter) is a nontrivial converging arborescence in four steps.

Step 1 This step shows that (T,E) is a nontrivial graph. By remark (ii) in the
paragraph following the definition (1) of a functioned tree, (/∃t) p(t) = t. This, and
the nonemptiness of p (1a), imply that E is a nonempty collection of two-element
subsets of T . Thus by the definitions of [6, p. 2], (T,E) is a nontrivial graph.

Step 2 This step shows that (T,E) is a nontrivial tree. By Step 1 and [6, Theorem
1.5.1], it suffices to show that (T,E) is minimally connected. In other words, it
suffices to show that [a] (T,E) is connected ([6, p. 10]) and [b] (∀e∈E) (T,E�{e})
is not connected.

For [a], take any distinct tA and tB. If either tA or tB is to, (1b) and the definition
of E imply the existence of a path linking tA and tB .

If neither tA nor tB is to, two applications of (1b) imply the existence of mA ≥ 1
and mB ≥ 1 such that pmA

(tA) = to and pmB

(tB) = to. Let

m∗ = max{m≤min{mA,mB} | pmA−m(tA) = pmB−m(tB)},

where p0 is the identity function. This m∗ exists because the set in its definition
contains 0 by the definitions of mA and mB . Let t∗ = pmA−m∗

(tA), which equals
pmB−m∗

(tB) by the definition of m∗. [It is true, but irrelevant, that pm∗
(t∗) = to.]

By the definition of E, there is a path13

(tA, p(tA), p2(tA), . . . pmA−m∗
(tA) = t∗), (36a)

and also a path

(tB , p(tB), p2(tB), . . . pmB−m∗
(tB) = t∗). (36b)

Suppose these two paths shared a node t′ �= t∗. Then t′ �= t∗ being on (36a)
would imply the existence of n ≥ 1 such that

pmA−(m∗+n)(tA) = t′ (37a)

and pn(t′) = t∗, where p0 is the identity function. Further, pn(t′) = t∗ and t′ being
on (36b) would imply

pmB−(m∗+n)(tB) = t′. (37b)

Since n ≥ 1, (37a) and (37b) contradict the definition of m∗. Hence the sets (36a)
and (36b) do not share a node other than t∗. Hence the union of the two paths
(36a) and (36b) is a path. This path links tA and tB .

13As in [6, p. 6, note 3], I denote a path by a natural sequence of its nodes. Pairs of
nodes that are adjacent in the sequence are adjacent in the sense of [6, p. 3].
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For [b], take any edge e ∈ E and suppose that (T,E�{e}) is connected. The
following four paragraphs will derive a contradiction with (1b).

First, by the definition of E, there is some (t1, t2) ∈ p such that e = {t1, t2}.
Since (t1, t2) ∈ p, (1a) implies

t1 ∈ T �{to} and p(t1) = t2. (38)

Second, since (T,E�{e}) is connected, there is a path without e = {t1, t2} that
links t1 and t2. Denote this path13 by

(t2, t3, . . . tn = t1). (39)

Since this path does not use e = {t1, t2},

tn−1 �= t2. (40)

Thus n ≥ 4 and the path has at least three nodes.
This paragraph argues that

(∀k∈{2, 3, . . . n−1}) tk ∈ T �{to} and p(tk) = tk+1. (41)

In particular, I will make an inductive argument in which k is decreasing rather
than increasing. Consider the initial step (k = n−1). By (39), {tn−1, tn} ∈ E. Thus
by the definition of E, either (tn−1, tn) ∈ p or (tn, tn−1) ∈ p. Thus, since p is a
function by (1a), either p(tn−1) = tn or p(tn) = pn−1. The second contingency is
the first equality in the contradiction

t2 �= tn−1 = p(tn) = p(t1) = t2,

where the inequality is (40), the second equality holds because tn = t1 by (39),
and the third equality holds by (38). Thus p(tn−1) = pn. Further tn−1 ∈ T �{to}
since the domain of p is T �{to} by (1a). Next consider the inductive step
(k∈{2, 3, . . . n−2}). By the definition of tk in (39), {tk, tk+1} ∈ E. Thus by the
definition of E, either (tk, tk+1) ∈ p or (tk+1, tk) ∈ p. Thus since p is a function by
(1a), either p(tk) = tk+1 or p(tk+1) = tk. The second contingency is precluded by
[a] the inductive hypothesis that p(tk+1) = tk+2 and [b] the fact that tk �= tk+2

because the nodes of any path are distinct. Thus p(tk) = tk+1. Further tk ∈ T �{to}
since the domain of p is T �{to} by (1a).

This paragraph argues that

(∀i∈{0, 1, . . . n−1}) pi(t1) = t1+i, (42)

where p0 is the identity. The case i = 0 is trivial. The case i = 1 holds by (38). For
any i ∈ {2, 3, . . . n−1},

pi(t1) = pi−1(t2) = pi−2(t3) = · · · = p(ti) = ti+1,

where the first equality holds by (38) and the remaining i−1 equalities holds by
(41).
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Note that

pn−1(t1) = tn = t1,

where the first equality holds by (42) at i = n−1, and where the second equality
holds by (39). Thus

(∀m ≥ 1) pm(t1) = p(mmod (n−1))(t1) = t(mmod (n−1))+ 1 ∈ T �{to},

where the first equality holds by the previous sentence, where the second equality
holds by (42), and where the set membership holds by (38) [for (m mod (n−1))+ 1 =
1] and (41) [for (m mod (n−1))+ 1 ∈ {2, 3, . . . n−1}]. This contradicts (1b).

Step 3. This step shows (10a). In other words, it shows that (T,E, init, ter) is a
nontrivial oriented tree. By Step 2, it suffices to show that (T,E, init, ter) is oriented
([6, p. 28]).

As a preliminary observation, this paragraph shows that p is asymmetric in the
sense that

(/∃{tA, tB}∈T ) {(tA, tB), (tB , tA)} ⊆ p. (43)

Suppose there were such tA and tB . Then (1a) implies that [a] neither tA nor tB

equals to, [b] p(tA) = tB , and [c] p2(tA) = p◦p(tA) = p(tB) = tA. These three
observations imply that tA �= to and that there does not exist an m ≥ 1 such that
pm(tA) = to. This contradicts (1b).

It must be shown that [a] init:E→T and ter:E→T are well-defined functions and
[b] (∀e∈E) {init(e), ter(e)} = e. To show [a], take any e ∈ E. By the definition of
E, there is a (tA, tB) ∈ p such that e = {tA, tB}. Thus, by the definition of init ,
(e, tA) ∈ init. Further, by the definition of E and (43), there can be no more than
one (tA, tB) ∈ p such that e = {tA, tB}. Hence by the definition of init , there can
be no more than one t such that (e, t) ∈ init . A similar argument shows that ter is
a well-defined function. To show [b], take any e ∈ E. By the definition of E, there
is a (tA, tB) ∈ p such that e = {tA, tB}. Thus by the definitions of init and ter,
{init(e), ter(e)} = {tA, tB} = e.

Step 4. This step shows (10b). In other words, it shows that (∀e∈E) init(e) �= to

and ter(e) is on the path linking init(e) and to.
Take any e ∈ E. By the definitions of E, init, and ter, there exists (tA, tB) ∈ p

such that [a] e = {tA, tB}, [b] init(e) = tA, and [c] ter(e) = tB. Note that tA �= to

by the definition of (tA, tB) and by (1a). Thus [b] implies init(e) �= to. Further,
since tA �= to, (1b) implies the existence of an m ≥ 1 such that the path linking
tA and to is

(tA, p(tA), p2(tA), . . . pm(tA) = to).

Thus p(tA) is on the path linking pA and to. Note p(tA) = tB = ter(e) by the
definition of (tA, tB) and by [c]. Also note pA = init(e) by [b]. Thus by substitution,
the last three sentences imply that ter(e) is on the path linking init(e) and to. �



1038 P. A. Streufert

Lemma B.2. Suppose that [(T, p), (T ′, p′), τ ] is a functioned-tree morphism. Then
G1([(T, p), (T ′, p′), τ ]) is a directed-graph morphism, where G1 is defined in Theo-
rem 2.8. Further, its source and target are nontrivial converging arborescences.

Proof. By the definitions of G1 and G0,

G1([(T, p), (T ′, p′), τ ])

= [G0(T, p),G0(T ′, p′), τ, ε]

= [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε],where

ε = {({t�, t}, {τ(t�), τ(t)}) | (t�, t)∈p}, (44a)

E = {{t�, t} | (t�, t)∈p}, (44b)

init = {({t�, t}, t�) | (t�, t)∈p}, (44c)

ter = {({t�, t}, t) | (t�, t)∈p}, (44d)

E′ = {{t′�, t′} | (t′�, t′)∈p′}, (44e)

init′ = {({t′�, t′}, t′�) | (t′�, t′)∈p′}, and (44f)

ter′ = {({t′�, t′}, t′) | (t′�, t′)∈p′}. (44g)

It must be shown [a] that [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε] satisfies (12a)–(12c),
and [b] that both (T,E, init, ter) and (T ′, E′, init′, ter′) are nontrivial converging
arborescences. Both (12a) and [b] follow from (8a) and Lemma B.1.

The first half of (12b) follows from (8b). To show the second half of (12b), it
must be shown [a] that ε is a function, [b] that its domain is E, and [c] that its
range ε(E) is a subset of E′. [a] holds by (44a) and the fact that τ is a function. [b]
holds by (44a) and (44b). [c] holds by

ε(E) = {{τ(t�), τ(t)} | (t�, t)∈p}
= {{t′�, t′} | (t′�, t′)∈ { (τ(t�), τ(t)) | (t�, t)∈p }}
⊆ {{t′�, t′} | (t′�, t′)∈ p′}
= E′,

where the first equality holds by (44a)–(44b), the second equality is a rearrangement,
the set inclusion holds by (8c), and the third equality holds by (44e).

To see the first half of (12c), take any e ∈ E. By (44b), there is a (t�, t) ∈ p such
that e = {t�, t}. Thus by (44c), init(e) = t�. Hence

τ◦init(e) = τ(t�).

Further, by (44a), ε(e) = {τ(t�), τ(t)}. Because (t�, t) ∈ p, (8c) implies (τ(t�), τ(t))
∈ p′. Hence

init′◦ε(e) = init′({τ(t�), τ(t)}) = τ(t�),
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where the first equality holds by the second-previous sentence, and where the second
equality holds by the previous sentence and (44f). By this paragraph’s two centered
equations, τ◦init(e) = init′◦ε(e).

Similarly, to see the second half of (12c), take any e ∈ E. By (44b), there is a
(t�, t) ∈ p such that e = {t�, t}. Thus by (44d), ter(e) = t. Hence

τ◦ter(e) = τ(t).

Further, by (44a), ε(e) = {τ(t�), τ(t)}. Because (t�, t) ∈ p, (8c) implies (τ(t�), τ(t))
∈ p′. Hence

ter′◦ε(e) = ter′({τ(t�), τ(t)}) = τ(t),

where the first equality holds by the second-previous sentence, and where the second
equality holds by the previous sentence and (44g). By this paragraph’s two centered
equations, τ◦ter(e) = ter′◦ε(e). �

Lemma B.3. Theorem 2.8’s G is a well-defined functor from Tree to Grphca.

Proof. By Lemma B.1, G0 maps objects of Tree to objects of Grphca. By
Lemma B.2, G1 maps arrows of Tree to arrows of Grphca. It remains to show
[1] that G preserves sources and targets, [2] that G preserves identities, and [3] that
G preserves compositions.

[1]. Take any Tree morphism [(T, p), (T ′, p′), τ ]. To show that G preserves
sources, I argue

G1([(T, p), (T ′, p′), τ ])src

= [G0(T, p),G0(T ′, p′), τ, ε]src

= G0(T, p)

= G0([(T, p), (T ′, p′), τ ]src),

where ε is defined in Theorem 2.8. The first equality holds by the definition of G1,
the second by the definition of src in Grphca, and the third by the definition of src
in Tree. A symmetric argument shows that G preserves targets.

[2]. Take any Tree object (T, p). As a preliminary step, note that the definition
of G0 implies

G0(T, p) = (T,E, init, ter), (45)

where

E = {{t�, t} | (t�, t)∈p}, (46)

and where init and ter are also defined in the definition of G0 but not needed explic-
itly here. I argue that

G1(id(T,p)) (47)

= G1([(T, p), (T, p), idT ])

= [(T,E, init, ter), (T,E, init, ter), idT , ε]
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= [(T,E, init, ter), (T,E, init, ter), idT , idE ]
= idG0(T,p),

where

ε = {({t�, t}, {idT (t�), idT (t)}) | (t�, t)∈p}. (48)

The first equality in (47) holds by the definition of id in Tree. The second equality
in (47) holds by the definition of G1 and by (45). For the third equality in (47),
it suffices to show that ε = idE . This follows from inspecting (46) and (48). The
fourth equality in (47) holds by the definition of id in Grphca and by (45).

[3]. Let [(T, p), (T ′, p′), τ ] and [(T ′, p′), (T ′′, p′′), τ ′] be any two Tree morphisms.
As a preliminary step, note that the definition of G0 implies

G0(T, p) = (T,E, init, ter), (49)

G0(T ′, p′) = (T ′, E′, init′, ter′), and

G0(T ′′, p′′) = (T ′′, E′′, init′′, ter′′),

where

E = {{t�, t} | (t�, t)∈p}, (50)

and where init, ter, E′, init′, ter′, E′′, init′′, and ter′′ are also derived from the
definition of G0 but not needed explicitly here.

I argue that

G1([(T ′, p′), (T ′′, p′′), τ ′] ◦ [(T, p), (T ′, p′), τ ]) (51)

= G1([(T, p), (T ′′, p′′), τ ′◦τ ])

= [(T,E, init, ter), (T ′′, E′′, init′′, ter′′), τ ′◦τ, ε∗]

= [(T,E, init, ter), (T ′′, E′′, init′′, ter′′), τ ′◦τ, ε′◦ε]

= [(T ′, E′, init′, ter′), (T ′′, E′′, init′′, ter′′), τ ′, ε′]

◦ [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε]

= G1([(T ′, p′), (T ′′, p′′), τ ′]) ◦ G1([(T, p), (T ′, p′), τ ]),

where

ε∗ = {({t�, t}, {τ ′◦τ(t�), τ ′◦τ(t)}) | (t�, t)∈p}, (52a)

ε = {({t�, t}, {τ(t�), τ(t)}) | (t�, t)∈p}, and (52b)

ε′ = {({t′�, t′}, {τ ′(t′�), τ ′(t′)}) | (t′�, t′)∈p′}. (52c)

The first equality in (51) holds by the definition of ◦ in Tree. The second equality
holds by the definition of G1 and by (49). The third equality will be proved in the
following paragraph. The fourth equality holds by the definition of ◦ in Grphca.
The fifth equality holds by two applications of the definition of G1 and by (49).

For the third equality in (51), it suffices to show that ε∗ = ε′◦ε. Toward that
end, take any e in E. By (50), there exists (t�, t) ∈ p such that e = {t�, t}. Thus
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(52b) implies ε(e) = {τ(t�), τ(t)}. Because (t�, t) ∈ p, (8c) implies (τ(t�), τ(t)) ∈ p′.
Hence

ε′◦ε(e) = ε′({τ(t�), τ(t)}) = {τ ′◦τ(t�), τ ′◦τ(t)} = ε∗(e),

where the first equality holds by the second-previous sentence, where the second
equality holds by the previous sentence and (52c), and where the third equality
holds by [a] (52a), [b] (t�, t) ∈ p, and [c] e = {t�, t}. �

Lemma B.4. Suppose (T,E, init, ter) is a nontrivial converging arborescence. Then
H0(T,E, init, ter) is a functioned tree, where H0 is defined in Theorem 2.8.

Proof. By the definition (10) of a nontrivial converging arborescence, there exists
a to such that

(T,E, init, ter) is a nontrivial oriented tree and (53a)

(∀e) init(e) �= to and ter(e) is on path linkinginit(e)and to. (53b)

Let (T, p) = H0(T,E, init, ter). Then by the definition of H0,

p = {(init(e), ter(e)) | e∈E}. (53c)

I show that (T, p) is a functioned tree in four steps. During these steps, (53a) is
often used implicitly, while (53b) and (53c) are used explicitly.

Step 1 This step proves the following lemma: “Take any t �=to and let
(t, t1, t2, . . . tm = to) be the path linking t and to. Then (t, t1)∈ p.”

To prove this lemma, take any t �= to and let (t, t1, t2, . . . tm = to) be the path
linking t and to. Then {t, t1} ∈ E. Thus by (11),

(
init({t, t1}), ter({t, t1})

)
= (t, t1) or

(
init({t, t1}), ter({t, t1})

)
= (t1, t).

The latter, together with the second half of (53b) at e = {t, t1}, would imply that t
is on the path linking t1 and to. But this is impossible because [a] the path linking
t1 and to is the subpath (t1, t2, . . . tn = to) and [b] t is not on this subpath since
it is on the full path (t, t1, t2, . . . tn = to). Thus the former alternative holds. This
equality leads to

(t, t1) =
(
init({t, t1}), ter({t, t1})

) ∈ p,

where the set membership follows from {t, t1} ∈ E and (53c).
Step 2 The following three paragraphs show p:T �{to}→T .
This paragraph shows that (/∃t1) (to, t1) ∈ p. Suppose there were such a t1. By

(53c), this would imply {to, t1} ∈ E and init({to, t1}) = to. This would contradict
the first half of (53b) at e = {to, t1}.

This paragraph shows that (∀t �= to)(∃t1) (t, t1) ∈ p. Take any t �= to. Let
(t, t1, t2, . . . tm = to) be the path linking t and to. Then (t, t1) ∈ p by the lemma of
Step 1.
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It remains to be shown that (∀t �= to)(/∃tA �= tB) {(t, tA), (t, tB)} ⊆ p. I will
show this by contradiction. Toward this end, take any t �= to and suppose tA �= tB

are such that {(t, tA), (t, tB)} ⊆ p. Then (53c) implies

{t, tA} ∈ E and (t, tA) =
(
init({t, tA}), ter({t, tA})

)
and (54a)

{t, tB} ∈ E and (t, tB) =
(
init({t, tB}), ter({t, tB})

)
. (54b)

Let (t, t1, t2, . . . tn = to) be the path linking t and to. Since t �= to by assump-
tion, this path has at least two vertices and thus

t �= t1. (55)

Further, the remainder of this paragraph shows that both tA and tB are on this
path. Without loss of generality, consider tA. By the first half of (54a), {t, tA} ∈ E.
Thus by the second half of (53b) at e = {t, tA}, ter({t, tA}) is on the path linking
init({t, tA}) and to. Thus by the second half of (54a), tA is on the path linking t and
to. Hence tA is on (t, t1, t2, . . . tm = to).

Since tA �= tB by assumption, at least one of them is distinct from t1. Without
loss of generality, suppose tA �= t1. Then consider the subpath (t, t1, t2, . . . tA).
Since t �= t1 by (55), and since t1 �= tA by the second-previous sentence, this
subpath has at least three nodes. This and the first half of (54a) imply the existence
of a cycle ([6, p. 8]). This contradicts (T,E) being a tree ([6, p. 13]).

Step 3 This step shows that (∀t �= to)(∃m ≥ 1) pm(t) = to.
Take any t �= to. Let (t, t1, t2, . . . tm = to) be the path linking t and to. By the

lemma of Step 1, (t, t1) ∈ p. Thus since p is a function by Step 2,

p(t) = t1. (56)

Further, the remainder of this paragraph argues that

(∀k∈{1, 2, . . . m−1}) p(tk) = tk+1. (57)

Take any such k. Then (tk, tk+1, tk+2, . . . tm = to) is the path linking tk and to.
Thus (tk, tk+1) ∈ p by the lemma of Step 1. Thus p(tk) = tk+1 since p is a function
by Step 2.

Finally, I argue

pm(t) = pm−1(t1) = pm−2(t2) = · · · = p(tm−1) = tm = to,

The first equality holds by (56). The last equality holds by the definition of tm. The
intervening equalities hold by (57).

Step 4 By Step 2, p is a function from T �{to} onto X, where X is defined to
be the range of p. Further, the nontriviality of (53a) implies that E is nonempty.
Thus by (53c), p is nonempty. Hence (1a) has been established. (1b) was shown in
Step 3. �

Lemma B.5. Suppose [(T,E, init, ter), (T ′, E′, init, ter), τ, ε] is a directed-graph mor-
phism whose source and target are nontrivial converging arborescences. Then
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H1([(T,E, init, ter), (T ′, E′, init, ter), τ, ε]) is a functioned-tree morphism, where H1

is defined in Theorem 2.8.

Proof. By the definition of H1,

H1([(T,E, init, ter), (T ′, E′, init, ter), τ, ε])

= [H0(T,E, init, ter),H0(T ′, E′, init′, ter′), τ ].

I will show [H0(T,E, init, ter),H0(T ′, E′, init′, ter′), τ ] satisfies (8a)–(8c). (8a) fol-
lows from Lemma B.4 and this lemma’s assumption that (T,E, init, ter) and
(T ′, E′, init′, ter′) are nontrivial converging arborescences. (8b) is identical to the
first half of (12b).

To show (8c), note that the definition of H0 implies

[H0(T,E, init, ter),H0(T ′, E′, init′, ter′), τ ] = [(T, p), (T ′, p′), τ ],

where

p = {(init(e), ter(e)) | e∈E} and (58a)

p′ = {(init′(e′), ter′(e′) | e′∈E′}. (58b)

I will show [(T, p), (T ′, p′), τ ] satisfies (8c). Take any (t�, t) ∈ p. By (58a), there
exists e ∈ E such that

(t�, t) = (init(e), ter(e)). (59)

By the first half of (12c) and the first component of (59),

init′◦ε(e) = τ◦init(e) = τ(t�).

Similarly, by the second half of (12c) and the second component of (59),

ter′◦ε(e) = τ◦ter(e) = τ(t).

Meanwhile, since ε(e) ∈ E′ by the second half of (12b), (58b) implies

(init′◦ε(e), ter′◦ε(e)) ∈ p′.

By substitution, the last three sentences imply (τ(t�), τ(t)) ∈ p′. �
Lemma B.6. Theorem 2.8’s H is a well-defined functor from Grphca to Tree.

Proof. By Lemma B.4, H0 maps objects of Grphca to objects of Tree. By
Lemma B.5, H1 maps arrows of Grphca to arrows of Tree. It remains to show
[1] that H preserves sources and targets, [2] that H preserves identities, and [3] that
H preserves compositions.

[1]. Take any Grphca arrow [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε]. To show that
H preserves sources, note

H1([(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε])src

= [H0(T,E, init, ter),H0(T ′, E′, init′, ter′), τ ]src

= H0(T,E, init, ter)
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= H0([(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε]src).

where the first equality holds by the definition of H1, the second by the definition
of src in Tree, and the third by the definition of src in Grphca. A similar argument
shows that H preserves targets.

[2]. Take any Grphca object (T,E, init, ter). Then

H1(id(T,E,init,ter))

= H1([(T,E, init, ter), (T,E, init, ter), idT , idE ] )

= [H0(T,E, init, ter),H0(T,E, init, ter), idT ]
= idH0(T,E,init,ter),

where the first equality holds by the definition of id in Grphca, the second by the
definition of H1, and the third by the definition of id in Tree.

[3]. Take any two Grphca arrows [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε] and
[(T ′, E′, init′, ter′), (T ′′, E′′, init′′, ter′′), τ ′, ε′]. Then

H1([(T ′, E′, init′, ter′), (T ′′, E′′, init′′, ter′′), τ ′, ε′]

◦ [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε])

= H1( [(T,E, init, ter), (T ′′, E′′, init′′, ter′′), τ ′◦τ, ε′◦ε])

= [H0(T,E, init, ter),H0(T ′′, E′′, init′′, ter′′), τ ′◦τ ]

= [H0(T ′, E′, init′, ter′),H0(T ′′, E′′, init′′, ter′′), τ ′]

◦ [H0(T,E, init, ter),H0(T ′, E′, init′, ter′), τ ]

= H1([(T ′, E′, init′, ter′), (T ′′, E′′, init′′, ter′′), τ ′, ε′])

◦ H1([(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε]),

where the first equality holds by the definition of ◦ in Grphca, the second holds by
the definition of H1, the third holds by the definition of ◦ in Tree, and the fourth
holds by the definition of H1. �

Proof B.7. (for Theorem 2.8) Lemma B.3 shows that G is a well-defined operator
from Tree to Grphca. Conversely, Lemma B.6 shows that H is a well-defined functor
from Grphca to Tree.

It remains to be shown [1] that H0◦G0 maps any functioned tree to itself, [2]
that G0◦H0 maps any nontrivial converging arborescence to itself, [3] that H1◦G1

maps any functioned-tree morphism to itself, and [4] that G1◦H1 maps any directed-
graph morphism, whose source and target are nontrivial converging arborescences,
to itself.

[1]. Take any functioned tree (T, p). By the definitions of G0 and H0,

H0◦G0(T, p) = (T, p∗), where

p∗ = {(init(e), ter(e)) | e∈E}, (a)

E = {{t�, t} | (t�, t)∈p}, (b)
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init = {({t�, t}, t�) | (t�, t)∈p}, and (c)

ter = {({t�, t}, t) | (t�, t)∈p}. (d)

It must be shown that p∗ = p.
This paragraph shows p∗ ⊆ p. Take any (t∗�, t∗) ∈ p∗. By (a), there exists e ∈ E,

such that (t∗�, t∗) = (init(e), ter(e)). By (b), there exists (t�, t) ∈ p such that e =
{t�, t}. I argue

(t∗�, t∗) = (init(e), ter(e)) = (init({t�, t}), ter({t�, t})) = (t�, t) ∈ p.

The first equality holds by the definition of e, and the second holds by the definition
of (t�, t). The third equality holds by (c) and (d) because (t�, t) ∈ p by definition.
The fourth equality holds because (t�, t) ∈ p by definition.

This paragraph shows p ⊆ p∗. Take any (t�, t) ∈ p. By (b), (c), and (d), respec-
tively,

{t�, t} ∈ E,

init({t�, t}) = t�, and

ter({t�, t}) = t.

Thus by (a), (t�, t) = (init({t�, t}), ter({t�, t})) belongs to p∗.
[2]. Take any nontrivial converging arborescence (T,E, init, ter). Define E∗, init∗,

and ter∗ by equalities (b), (f), and (j) below. It suffices to show the remaining ten
equalities.

G0◦H0(T,E, init, ter) = (T,E∗, init∗, ter∗), (a)

E∗ := {{t�, t} | (t�, t) ∈ {(init(e), ter(e))|e∈E}} (b)

= {{init(e), ter(e)} | e∈E} (c)

= {e | e∈E} (d)

= E, (e)

init∗ := {({t�, t}, t�) | (t�, t) ∈ {(init(e), ter(e))|e∈E}} (f)

= {({init(e), ter(e)}, init(e)) | e∈E} (g)

= {(e, init(e)) | e∈E} (h)

= init, and (i)

ter∗ := {({t�, t}, t) | (t�, t) ∈ {(init(e), ter(e))|e∈E}} (j)

= {({init(e), ter(e)}, ter(e)) | e∈E} (k)

= {(e, ter(e)) | e∈E} (l)

= ter. (m)
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(a) follows from the definitions of H0 and G0. (c), (g), and (k) are rearrangements.
(d), (h), and (l) hold by (11). (e) is trivial. (i) and (m) hold because E is the domain
of init and ter.

[3]. Take any functioned-tree morphism [(T, p), (T ′, p′), τ ]. I argue

H1◦G1([(T, p), (T ′, p′), τ ])

= H1([G0(T, p),G0(T ′, p′), τ, ε])

= [H0◦G0(T, p),H0◦G0(T ′, p′), τ ]

= [(T, p), (T ′, p′), τ ],

where ε = { ({t�, t}, {τ(t�), τ(t)}) | (t�, t)∈p }.

The first equality follows from the definition of G1. The second equality follows from
the definition of H1. The third equality follows from (8a) and part [1].

[4]. Let [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε] be a directed-graph morphism
whose source and target are nontrivial converging arborescences. As a preliminary
observation, note that the definition of H0 implies

H0(T,E, init, ter) = (T, p) (60a)

where p = {(init(e), ter(e)) | e∈E} and

H0(T ′, E′, init′, ter′) = (T ′, p′) (60b)

where p′ = {(init′(e′), ter′(e′)) | e′∈E′}.

Define

ε∗ = { ({t�, t}, {τ(t�), τ(t)}) | (t�, t)∈p }.

In the remainder of this paragraph I argue

ε∗ = {({init(e), ter(e)}, {τ◦init(e), τ◦ter(e)}) | e∈E} (61)

= {({init(e), ter(e)}, {init′◦ε(e), ter′◦ε(e)}) | e∈E}
= {(e, {init′◦ε(e), ter′◦ε(e)}) | e∈E}
= {(e, ε(e)) | e∈E}
= ε.

The first equation holds by substituting the definition of p into the definition of
ε∗. The second equation holds by (12c). The third equation holds by (11) for
(T,E, init, ter). The fourth equation holds by [a] (11) for (T ′, E′, init′, ter′) because
[b] ε(E) ⊆ E′ by the second half of (12b). The fifth equation holds because the
domain of ε is E by the second half of (12b).

I argue

G1◦H1([(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε])

= G1([H0(T,E, init, ter),H0(T ′, E′, init′, ter′), τ ])
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= G1([(T, p), (T ′, p′), τ ])

= [G0(T, p),G0(T ′, p′), τ, ε∗]

= [G0(T, p),G0(T ′, p′), τ, ε]

= [G0◦H0(T,E, init, ter),G0◦H0(T ′, E′, init′, ter′), τ, ε]

= [(T,E, init, ter), (T ′, E′, init′, ter′), τ, ε].

The first equality follows from the definitions of H1, the second from (60), and the
third from the definition of G1. The fourth equality follows from (61), the fifth from
(60), and the sixth from part [2]. �

Appendix C. Concerning NCP

C.1. Objects

Lemma C.1. Suppose that (T,C,⊗) satisfies (13a) with its F and to. Define p as
in (13b). Then (a) p is a well-defined function from T �{to} onto F−1(C). Conse-
quently, if (T, p) is a functioned tree as (13b) requires, then (b) to is the root node
of (T, p), and (c) F−1(C) is the decision-node set X of (T, p).

Proof. (a). Since ⊗ is a bijection onto T �{to} by (13a), p is a function with
domain T �{to}. Further,

p(T �{to}) = {t | (∃t�) (t�, t)∈p}
= {t | (∃t�)(∃c) (t, c, t�)∈⊗}
= {t | (∃c) (t, c)∈F}
= F−1(C),

where the first equality holds by the previous sentence, the second equality follows
from the definition of p, the third equality follows from (13a), and the fourth equality
is a rearrangement.

(b)–(c). Suppose (T, p) is a functioned tree. Then by (1a), p is a function, from
T less the root node of (T, p), onto the decision-node set X of (T, p). Thus by part
(a), to is the root node of (T, p), and F−1(C) is the decision-node set X of (T, p). �
Lemma C.2. Suppose (T,C,⊗) satisfies (13a) and (13c) with its to. Define q as in
(15). Then q is a function from T �{to} onto C.

Proof. Since ⊗ is a bijection onto T �{to} by (13a), q is a function with domain
T �{to}. Further, I argue

q(T �{to}) = {c | (∃t�) (t�, c)∈q}
= {c | (∃t�)(∃t) (t, c, t�)∈⊗}
= {c | (∃t) (t, c)∈F}
= C,
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where F is derived from (T,C,⊗). The first equality holds by the previous sentence,
the second equality holds by the definition of q, and the third equality holds by the
definition of F . The ⊆ half of the fourth equality holds simply because every c is in
C. The converse holds because each F−1(c) is nonempty by (13c). �
Proof C.3. (for Proposition 3.1) (a) To show the ⊆ direction, take any (t, c, t�) ∈
⊗. Then [1] t� �= to by (13a), [2] t = p(t�) by the definition of p, and [3] c = q(t�)
by the definition of q. Conclusions [2] and [3] imply (t, c, t�) = (p(t�), q(t�), t�). Thus
conclusion [1] implies that (t, c, t�) belongs to { (p(t�), q(t�), t�)) | t� �= to }.

To show the ⊇ direction, take any t� �= to. Then by (13a) there exists (t, c) such
that (t, c, t�) ∈ ⊗. By the definition of p, t = p(t�). By the definition of q, c = q(t�).
Therefore by the last three sentences, (p(t), q(t), t�) ∈ ⊗.

(b). Part (a) suffices because (13a) assumes that ⊗ is a bijection when viewed
as a function from the first two components of its constituent triples to the third
component of its constituent triples. �
Proof C.4. (for Proposition 3.2) To show the contrapositive of (16a), suppose
F (t) �= F (t′). Without loss of generality, suppose that c∗ ∈ F (t) but c∗ /∈ F (t′).
Then t ∈ F−1(c∗) but t′ /∈ F−1(c∗). Thus, since H = {F−1(c)|c} is a partition by
(13c), there cannot be an H ∈ H that contains both t and t′.

To show the contrapositive of (16b), suppose H ∈ H and H ′ ∈ H satisfy
F (H)∩F (H ′) �= ∅. Then there exists c∗, t, and t′ such that

c∗ ∈ F (t), t ∈ H, (62a)

c∗ ∈ F (t′), and t′ ∈ H ′. (62b)

Since H = {F−1(c)|c} is a partition by (13c), and since t ∈ F−1(c∗) by the first half
of (62a), the second half of (62a) implies that F−1(c∗) = H. By similar reasoning
with (62b), F−1(c∗) = H ′. By the last two sentences, H = H ′. �

C.2. Arrows

Lemma C.5. Suppose a quadruple [Π,Π ′, τ, δ] satisfies (17a)–(17b). Then (17c) iff
(18) iff (19).

Proof. (17c)⇒(18). Assume (17c). Take any (t, c) ∈ F . Then by (13a) for Π,
(t, c, t⊗c) ∈ ⊗. Thus by (17c),

(τ(t), δ(c), τ(t⊗c)) ∈ ⊗′.

This set membership is equivalent to (18b). Further, by (13a) for Π ′, this set mem-
bership implies (τ(t), δ(c)) ∈ F ′, which is (18a).

(17c)⇐(18). Assume (18). Take any (t, c, t�) ∈ ⊗. Then (t, c) ∈ F by the defini-
tion of F . Thus τ(t)⊗′δ(c) = τ(t⊗c) by (18b). Thus since t⊗c = t� by the definition
of (t, c, t�), I have τ(t)⊗′δ(c) = τ(t�). Thus (τ(t), δ(c), τ(t�)) ∈ ⊗′.

(18)⇒(19). Assume (18). (18a) implies the first half of (19a). For the second
half of (19a), take any t� ∈ T �{to}. Since ⊗ is onto T �{to} by (13a), there exists
(t, c) ∈ F such that t� = t⊗c. Thus τ(t�) = τ(t⊗c) = τ(t)⊗′δ(c), where the second
equality holds by (18b). Thus since ⊗′ is onto T ′

�{t′o} by (13a), τ(t�) ∈ T ′
�{t′o}.
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(19b) is an equation in the category Set. The left-hand side is well-defined
because the codomain of ⊗ is T �{to} by (13a). The right-hand side is well-defined
because the domain of ⊗′ is F ′ by (13a), and because the codomain of (τ, δ)|F is F ′

by the proposition’s definition [c]. The codomains of the two sides are both equal to
T ′

�{t′o} by the proposition’s definition [d] and by (13a) for Π ′. Finally, the domains
of the two sides are both equal to F by (13a) for Π. The previous four sentences have
established that (19b) is a well-defined equation. By the second-previous sentence
and (18b), the equation is true.

(18)⇐(19). The first half of (19a) implies (18a), and (19b) implies (18b). �

Lemma C.6. A quadruple [Π,Π ′, τ, δ] is a morphism iff it satisfies (17a)–(17b) and
(18). [Proof: By definition, a quadruple is a morphism iff it satisfies (17a)–(17c).
Thus the result follows immediately from Lemma C.5((17c)⇔(18)).]

Proof C.7. (for Proposition 3.3) By definition, a quadruple is a morphism iff it
satisfies (17a)–(17c). Thus the result follows immediately from Lemma C.5((17c)⇔
(19)). �

Lemma C.8. Suppose a quadruple [Π,Π ′, τ, δ] satisfies (17a)–(17b). Then (17c) iff
(20) iff (21) iff (22).

Proof. (17c)⇒(20). Assume (17c). For (20a), I argue

{(τ(t�), τ(t)) | (t�, t)∈p}
= {(τ(t�), τ(t)) | (∃c) (t, c, t�)∈⊗}
⊆ {(τ(t�), τ(t)) | (∃c) (τ(t), δ(c), τ(t�))∈⊗′}
⊆ {(t′�, t′) | (∃c′) (t′, c′, t′�)∈⊗′}
= {(t′�, t′) | (t′�, t′)∈p′}
= p′,

where the first equality holds by the definition of p, the first set inclusion holds by
(17c), the second set inclusion holds by (17b), and the second equality holds by the
definition of p′. Similarly for (20b), I argue

{(τ(t�), δ(c)) | (t�, c)∈q}
= {(τ(t�), δ(c)) | (∃t) (t, c, t�)∈⊗}
⊆ {(τ(t�), δ(c)) | (∃t) (τ(t), δ(c), τ(t�))∈⊗′}
⊆ {(t′�, c′) | (∃t′) (t′, c′, t′�)∈⊗′}
= {(t′�, c′) | (t′�, c′)∈q′}
= q′,

where the first equality holds by the definition of q, the first set inclusion holds by
(17c), the second set inclusion holds by (17b), and the second equality holds by the
definition of q′.
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(20)⇒(21). Assume (20). To show (21a), take any t� �= to. Since p is a function
from T �{to} by (17a) and (13b), there exists t such that (t�, t) ∈ p. Thus by (20a),
(τ(t�), τ(t)) ∈ p′. Thus since p′ is a function from T ′

�{t′o} by (17a) and (13b),
τ(t�) �= t′o.

I show (20a) implies (21b) by

{(τ(t�), τ(t)) | (t�, t)∈p} ⊆ p′

⇒ {(τ(t�), τ(t)) | t = p(t�), t� �= to} ⊆ p′

⇒ {(τ(t�), τ(p(t�)) | t� �= to} ⊆ p′

⇒ (∀t� �= to) τ(p(t�)) = p′(τ(t�)),

where the first implication holds because p is a function from T �{to} by (17a) and
(13b), and where the next two implications are rearrangements.

Similarly, I show (20b) implies (21c) by

{(τ(t�), δ(c)) | (t�, c)∈q} ⊆ q′

⇒ {(τ(t�), δ(c)) | c = q(t�), t� �= to} ⊆ q′

⇒ {(τ(t�), δ(q(t�)) | t� �= to} ⊆ q′

⇒ (∀t� �= to) δ(q(t�)) = q′(τ(t�)),

where the first implication holds because q is a function from T �{to} by (17a) and
Lemma C.2, and where the next two implications are rearrangements.

(17c)⇐(21). Assume (21). I argue

{(τ(t), δ(c), τ(t�)) | (t, c, t�)∈⊗}
= {(τ(t), δ(c), τ(t�)) | t = p(t�), c = q(t�), t� �= to}
= {( τ(p(t�)), τ(q(t�)), τ(t�) ) | t� �= to}
= {( p′(τ(t�)), q′(τ(t�)), τ(t�) ) | t� �= to}
⊆ {(p′(τ(t�)), q′(τ(t�)), τ(t�) ) | τ(t�) �= t′o}
⊆ {(p′(t′�), q′(t′�), t′� ) | t′� �= t′o}
= ⊗′.

The first equality holds by Proposition 3.1(a) for Π. The second equality is a
rearrangement. The third equality holds by (21b)–(21c). The first set inclusion
holds by (21a). The second set inclusion holds by the first half of (17b). The fourth
equality holds by Proposition 3.1(a) for Π ′.

(21)⇒(22). Assume (21). (21a) implies the first half of (22a). For the second half
of (22a), take any t′ ∈ τ(F−1(C)). Since p is a function from T �{to} onto F−1(C)
by Lemma C.1(a), there exists a t� ∈ T �{to} such that t′ = τ(p(t�)). Thus by (21b),
t′ = p′(τ(t�)). Thus since p′ is into (F ′)−1(C ′) by the definition of p′ (at (13b)),
t′ ∈ (F ′)−1(C ′).
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(22b) is an equation in Set. The left-hand side is well-defined because the
codomain of p is F−1(C) by definition of p (at (13b)). The right-hand side is well-
defined because the domain of p′ is T ′

�{t′o} by the definition of p′, and because the
codomain of τ |T�{to} is T ′

�{t′o} by the proposition’s definition [c]. The codomains
of the two sides are both equal to (F ′)−1(C ′) by the proposition’s definition [d]
and by the definition of p′. Finally, the domains of the two sides are both equal
to T �{to} by the definition of p. The previous four sentences have established that
(22b) is a well-defined equation. By the second-previous sentence and (21b), the
equation is true.

(22c) is another equation in Set. The left-hand side is well-defined because the
domain of δ is C by the second half of (17b), and because the codomain of q is C by
definition of q (at (15)). The right-hand side is well-defined because the domain of q′

is T ′
�{t′o} by the definition of q′, and because the codomain of τ |T�{to} is T ′

�{t′o}
by the proposition’s definition [c]. The codomains of the two sides are both equal to
C ′ by the second half of (17b) and the definition of q′. The domains of the two sides
are both equal to T �{to} by the definition of q. The previous four sentences have
established that (22c) is a well-defined equation. By the second-previous sentence
and (21c), the equation is true.

(21)⇐(22). The first half of (22a) implies (21a), (22b) implies (21b), and (22c)
implies (21c). �

Lemma C.9. A quadruple [Π,Π ′, τ, δ] is a morphism iff it satisfies (17a)–(17b) and
(20). [Proof: By definition, a quadruple is a morphism iff it satisfies (17a)–(17c).
Thus the result follows immediately from Lemma C.8((17c)⇔(20)).]

Lemma C.10. A quadruple [Π,Π ′, τ, δ] is a morphism iff it satisfies (17a)–(17b) and
(21). [Proof: By definition, a quadruple is a morphism iff it satisfies (17a)–(17c).
Thus the result follows immediately from Lemma C.8((17c)⇔(21)).]

Proof C.11. (for Proposition 3.4) By definition, a quadruple is a morphism iff it
satisfies (17a)–(17c). Thus the result follows immediately from Lemma C.8((17c)⇔
(22)). �

Proof C.12. (for Proposition 3.5) Derive F from Π and F ′ from Π ′. Then take any
H ∈ H. By (13c) for Π, there exists c such that H = F−1(c). Let H ′ = (F ′)−1(δ(c)).
Note H ′ ∈ H′ by (13c) for Π ′. Thus it suffices to argue

τ(H) = {τ(t) | t∈H}
= {t′ | (∃t) t′ = τ(t) and t∈H}
= {t′ | (∃t) t′ = τ(t) and t∈F−1(c)}
= {t′ | (∃t) t′ = τ(t) and (t, c)∈F}
⊆ {t′ | (∃t) t′ = τ(t) and (τ(t), δ(c))∈F ′}
= {t′ | (∃t) t′ = τ(t) and (t′, δ(c))∈F ′}
⊆ {t′ | (t′, δ(c))∈F ′}



1052 P. A. Streufert

= (F ′)−1(δ(c))

= H ′.

The first and second equalities are rearrangements, the third follows from the defini-
tion of c, and the fourth is a rearrangement. The first inclusion follows from the first
half of (19a) in Proposition 3.3. The fifth equality is a rearrangement. The second
inclusion follows from the first half of (17b). The sixth equality is a rearrangement,
and the final equality follows from the definition of H ′. �

C.3. The Category

Proof C.13. (for Theorem 3.6) This paragraph notes that, for every preform Π =
(T,C,⊗), the quadruple [Π,Π, idT , idC ] is a morphism. (17a) and (17b) hold by
inspection. (17c) holds with equality.

This paragraph shows that, if α = [Π,Π ′, τ, δ] and α′ = [Π ′,Π ′′, τ ′, δ′] are mor-
phisms, then α′◦α = [Π,Π ′′, τ ′◦τ, δ′◦δ] is a morphism. Toward that end, take any
such α and α′. Let Π = (T,C,⊗), Π ′ = (T ′, C ′,⊗′), and Π ′′ = (T ′′, C ′′,⊗′′). First,
(17a) for α and (17a) for α′ imply (17a) for α′◦α. Second, note that τ :T→T ′ by the
first half of (17b) for α, and that τ ′:T ′→T ′′ by the first half of (17b) for α′. Hence
τ ′◦τ :T→T ′′, which is the first half of (17b) for α′◦α. A parallel argument shows
δ′◦δ:C→C ′′, which is the second half of (17b) for α′◦α. Finally, to show that (17c)
holds for α′◦α, I argue

{(τ ′◦τ(t), δ′◦δ(c), τ ′◦τ(t�)) | (t, c, t�)∈⊗}
= {(τ ′(t′), δ′(c′), τ ′(t′�)) | (t′, c′, t′�)∈{(τ(t), δ(c), τ(t�))|(t, c, t�)∈⊗}}
⊆ {(τ ′(t′), δ′(c′), τ ′(t′�)) | (t′, c′, t′�)∈⊗′}
⊆ ⊗′′.

The equality is a rearrangement. The first inclusion holds by (17c) for α, and the
second inclusion holds by (17c) for α′.

The first paragraph of this proof shows that the identity arrow idΠ is well-defined
for any preform Π. The second paragraph shows that the composition α′◦α is well-
defined for any arrows α and α′. The unit and associative laws are immediate. Thus
NCP is a category. �

Lemma C.14. Suppose α = [Π,Π ′, τ, δ] is an isomorphism. Then (a) τ and δ are
bijective, and (b) α−1 = [Π ′,Π, τ−1, δ−1].

Proof. Let Π = (T,C,⊗) and let Π ′ = (T ′, C ′,⊗′). Because α = [Π,Π ′, τ, δ] is
an isomorphism (e.g. [5, p. 12]), its inverse α−1 = [Π ′,Π, τ∗, δ∗] exists. Thus

[Π ′,Π, τ∗, δ∗]◦[Π,Π ′, τ, δ] =
(63a)

α−1◦α = idΠ = [Π,Π, idT , idC ], and

[Π,Π ′, τ, δ]◦[Π ′,Π, τ∗, δ∗] =
(63b)

α◦α−1 = idΠ′ = [Π ′,Π ′, idT ′ , idC′ ],
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where the first two equalities in both lines follows from the definition of the inverse
α−1, and the third equality in both lines follows from the definition of id. The third
component of (63a) implies that τ∗◦τ = idT . The third component of (63b) implies
that τ◦τ∗ = idT ′ . The last two sentences imply that τ is a bijection from T onto T ′

and that

τ∗ = τ−1. (64)

Similarly, the fourth components of (63a) and (63b) imply that δ is a bijection from
C onto C ′ and that

δ∗ = δ−1. (65)

Conclusion (a) holds by the last two sentences. Conclusion (b) holds by

α−1 = [Π∗,Π∗∗, τ∗, δ∗] = [Π ′,Π, τ−1, δ−1],

where the first equality holds by definition, and the second equality follows from
(64)–(65). �

Lemma C.15. Suppose that α = [Π,Π ′, τ, δ] is a morphism and that τ and δ are
bijective. Then α is an isomorphism.

Proof. Define α∗ = [Π ′,Π, τ−1, δ−1]. This and the next two paragraphs show that
α∗ is a morphism. Specifically, they show that

Π ′ and Π are preforms, (66a)

τ−1 : T ′ → T, δ−1 : C ′ → C, and (66b)

{ (τ−1(t′), δ−1(c′), τ−1(t′�)) | (t′, c′, t′�)∈⊗′ } ⊆ ⊗, (66c)

where Π = (T,C,⊗) and Π ′ = (T ′, C ′,⊗′). (66a) follows from (17a) for α. (66b)
follows from (17b) for α and the bijectivity of τ and δ. To show (66c), suppose
(t′, c′, t′�) ∈ ⊗′. For notational ease, define t = τ−1(t′) and t� = τ−1(t′�). Further
derive to, p, and q from (T,C,⊗), and t′o, p′, and q′ from (T ′, C ′,⊗′).

This paragraph argues [1] that (T, p) and (T ′, p′) are functioned trees and [2]
that γ = [(T, p), (T ′, p′), τ ] is a functioned-tree morphism.14 For [1], note that Π
and Π ′ are preforms by (17a) for α. Thus (T, p) and (T ′, p′) are functioned trees by
two applications of (13b). For [2], it must be shown that γ satisfies (8). (8a) holds
by [1]. (8b) holds by the first half of (17b) for α. (8c) is identical to (20a), which
holds by Lemma C.9 and α being a morphism.

This paragraph shows that t� �= to. Derive � from (T, p) and �′ from (T ′, p′)
(this is possible by [1]). Now suppose t� = to were true. Then [a] t� � t since to

precedes every element of T , thus [b] τ(t�) �′ τ(t) by γ being a morphism (by [2])
and Proposition 2.4(e), and thus [c] t′� �′ t′ by the definitions of t� and t. This

14This argument could have been made categorically via Corollary 3.10 if the text
had arranged the results in a different order. In fact, claims [1] and [2] in this sentence
correspond to paragraphs [1] and [2] in Proof D.1 for Theorem 3.9.
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contradicts t′� � t′ which follows from p′(t′�) = t′, which in turn follows from the
assumption that (t′, c′, t′�) ∈ ⊗′.

Since the range of ⊗ is T �{to}, and since t� �= to by the previous paragraph,
Proposition 3.1(b) implies that

p(t�) ⊗ q(t�) = t�. (67)

Note that

τ◦p(t�) ⊗′ δ◦q(t�) = τ(t�) = t′�,

where the first equality holds by (67) and (17c) for α, and the second equality holds
by the definition of t�. Because of the previous equality, because t′⊗′c′ = t′� by
assumption, and because ⊗′ is a bijection by (17a) for α and (13a) for Π ′,

τ◦p(t�) = t′ and δ◦q(t�) = c′.

Hence

p(t�) = τ−1(t′) and q(t�) = δ−1(c′).

Now take (67) and replace its three terms by means of [a] the two equalities in the
last sentence and [b] the definition of t�. The result is

τ−1(t′) ⊗ δ−1(c′) = τ−1(t′�),

as required by (66c).
Finally,

α∗◦α = [Π ′,Π, τ−1, δ−1]◦[Π,Π ′, τ, δ] = [Π,Π, idT , idC ] = idΠ and

α◦α∗ = [Π,Π ′, τ, δ]◦[Π ′,Π, τ−1, δ−1] = [Π ′,Π ′, idT ′ , idC′ ] = idΠ′ .

Thus α is an isomorphism (and α−1 = α∗). �
Proof C.16. (for Theorem 3.7) Lemma C.14 establishes [a] the forward direction
of the theorem’s second sentence and [b] the theorem’s third sentence. Lemma C.15
establishes the reverse direction of the theorem’s second sentence. �
Lemma C.17. Suppose α = [Π,Π ′, τ, δ] is an isomorphism, where Π = (T,C,⊗)
determines F , q, and H, and where Π ′ = (T ′, C ′,⊗′) determines F ′, q′, and H′.
Then the following hold.
(a) τ |F −1(C) is a bijection from F−1(C) onto (F ′)−1(C ′).
(b) (τ, δ, τ)|⊗ is a bijection from ⊗ onto ⊗′.
(c) (τ, δ)|F is a bijection from F onto F ′.
(d) (τ, δ)|q is a bijection from q onto q′.
(e) (∀H∈H) τ(H) ∈ H′.

Proof. Theorem 3.7 implies

τ is a bijection from T onto T ′, (68a)

δ is a bijection from C onto C ′, and (68b)

α−1 = [Π ′,Π, τ−1, δ−1]. (68c)
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(a). By Proposition 3.4 (second half of (22a)) for α, τ |F −1(C) is a well-defined
function from F−1(C) into (F ′)−1(C ′). It is injective by (68a). To show it is sur-
jective, take any t′ ∈ (F ′)−1(C ′). By (68c), and by Proposition 3.4 (second half of
(22a)) for α−1, τ−1(t′) ∈ F−1(C). Thus τ(τ−1(t′)) = t′ is in the range of τ |F −1(C).

(b). By (17c) for α, (τ, δ, τ)|⊗ is a well-defined function from ⊗ into ⊗′. It is
injective by (68a)–(68b). To show it is surjective, take any (t′, c′, t′�) ∈ ⊗′. By (68c),
and by (17c) for α−1,

(τ−1(t′), δ−1(c′), τ−1(t′�)) ∈ ⊗.

Thus (τ, δ, τ)(τ−1(t′), δ−1(c′), τ−1(t′�)) = (t′, c′, t′�) is in the range of (τ, δ, τ)|⊗.
(c). By (18a) (via Lemma C.6) for α, (τ, δ)|F is a well-defined function from F

into F ′. It is injective by (68a)–(68b). To show it is surjective, take any (t′, c′) ∈ F ′.
By (68c), and by (18a) (via Lemma C.6) for α−1,

(τ−1(t′), δ−1(c′)) ∈ F.

Thus (τ, δ)(τ−1(t′), δ−1(c′)) = (t′, c′) is in the range of (τ, δ)|F .
(d). By (20b) (via Lemma C.9) for α, (τ, δ)|q is a well-defined function from q

into q′. It is injective by (68a)–(68b). To show it is surjective, take any (t′�, c′) ∈ q′.
By (68c), and by (20b) (via Lemma C.9) for α−1,

(τ−1(t′�), δ−1(c′)) ∈ q.

Thus (τ, δ)(τ−1(t′�), δ−1(c′)) = (t′�, c′) is in the range of (τ, δ)|q.
(e). Take any H ∈ H. By the definition of H, there exists c such that H =

F−1(c). Note that

H = F−1(c) (69)

= {t | (t, c)∈F}
= {t | (∃(t′, c′)∈F ′) t = τ−1(t′) and c = δ−1(c′)}
= {t | (∃t′) (t′, δ(c))∈F ′ and t = τ−1(t′)}
= {τ−1(t′) | (t′, δ(c))∈F ′}
= {τ−1(t′) | t′ ∈ (F ′)−1(δ(c))}
= τ−1( (F ′)−1(δ(c)) ),

where the first equation holds by the definition of c, the third equation holds by
part (c), and the remaining equations are rearrangements. Because τ is a bijection,
(69) implies τ(H) = (F ′)−1(δ(c)). Thus τ(H) ∈ H′ by the definition of H′. �

Proof C.18. (for Proposition 3.8)
(a)–(d). Lemma C.17(a)–(d).
(e). By Lemma C.17(e), τ |H is a well-defined function from H into H′. Thus it

remains to show that τ |H is bijective.
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Let α = [Π,Π ′, τ, δ]. By Theorem 3.7, [a] τ is bijective, [b] δ is bijective, and [c]
α−1 = [Π ′,Π, τ−1, δ−1]. Thus τ |H is injective by [a]. To show that τ |H is surjective,
take any H ′ ∈ H′. By [c], and by Lemma C.17(e) applied to α−1, τ−1(H ′) ∈ H.
Thus τ(τ−1(H ′)) = H ′ is in the range of τ |H. �

Appendix D. Between NCP and Tree

D.1. The Forgetful Functor F

Proof D.1. (for Theorem 3.9) It must be shown [1] that F0 takes each preform
to a functioned tree, [2] that F1 takes each preform morphism to a functioned-tree
morphism, [3] that F preserves identity, [4] that F preserves sources and targets,
and [5] that F preserves composition.

[1] Take any preform Π. Then F0(Π) is a functioned tree by (13b).
[2] Take any preform morphism α = [Π,Π ′, τ, δ]. Then F1(α) = [F0(Π),F0(Π ′),

τ ]. (8a) holds by (17a) for α and by two applications of step [1]. (8b) holds by the
first half of (17b) for α. (8c) is identical to (20a), which holds by Lemma C.9 and
α being a morphism.

[3] Take any preform (T,C,⊗). Let F0(T,C,⊗) = (T, p). I argue

F1(id(T,C,⊗)) = F1([(T,C,⊗), (T,C,⊗), idT , idC ])

= [F0(T,C,⊗),F0(T,C,⊗), idT ]

= [(T, p), (T, p), idT ]
= id(T,p)

= idF0(T,C,⊗),

where the first equality holds by the definition of identity in NCP, the second holds
by the definition of F1, the third holds by the definition of (T, p), the fourth holds
by the definition of the identity in Tree, and the fifth holds by the definition of
(T, p).

[4] Take any preform morphism [Π,Π ′, τ, δ]. For sources,

F1([Π,Π ′, τ, δ])src

= [F0(Π),F0(Π ′), τ ]src

= F0(Π)

= F0([Π,Π ′, τ, δ]src),

where the first equality holds by the definition of F1, the second by the definition of
src in Tree, and the third by the definition of src in NCP. A symmetric argument
shows that targets are preserved.

[5] Take any two preform morphisms [Π,Π ′, τ, δ] and [Π ′,Π ′′, τ ′, δ′]. I argue

F1([Π ′,Π ′′, τ ′, δ′]◦[Π,Π ′, τ, δ])

= F1([Π,Π ′′, τ ′◦τ, δ′◦δ])
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= [F0(Π),F0(Π ′′), τ ′◦τ ]

= [F0(Π ′),F0(Π ′′), τ ′]◦[F0(Π),F0(Π ′), τ ]

= F1[Π ′,Π ′′, τ ′, δ′]◦F1[Π,Π ′, τ, δ],

where the first equality holds by the definition of ◦ in NCP, the second by the
definition of F1, the third by the definition of ◦ in Tree, and the fourth by the
definition of F1. �

D.2. Perfect Information

Lemma D.2. Suppose (T,C,⊗) is a preform. Then (T,C,⊗) has perfect information
iff its q is bijective.

Proof. Derive F from (T,C,⊗). Note that

q−1(c) = {t� | (∃t) (t, c, t�)∈⊗} (70)

= {t� | (∃t) (t, c)∈F and (t, c, t�)∈⊗}
= {t� | (∃t) (t, c)∈F and t⊗c = t�)}
= {t⊗c | (t, c)∈F}
= {t⊗c | t∈F−1(c)},

where the first equality follows from the definition of q, the second follows from the
definition of F , the third holds because ⊗ is a function by (13a), and the fourth
and the fifth are rearrangements.

Suppose (T,C,⊗) has perfect information. By Lemma C.2, q is a function onto
C. Thus it remains to show that each q−1(c) is a singleton. This follows from (70)
because perfect information means that each F−1(c) is a singleton.

Conversely, suppose q is bijective. By the definition of perfect information, it
suffices to show that each F−1(c) is a singleton. Take any c. Because q is bijec-
tive and because q is onto C by Lemma C.2, q−1(c) is a singleton. Thus, by (70),
{ t⊗c | t∈F−1(c) } is a singleton. Thus, since ⊗ is injective by (13a), F−1(c) is a
singleton. �

Lemma D.3. Suppose that (T, p) is a functioned tree. Then E0(T, p) is a perfect-
information preform, where E0 is defined in Theorem 3.13.

Proof. Let (T, p) determine its to. By the definition of E0, E0(T, p) = (T,C,⊗)
where

C = T �{to} and (71a)

⊗ = {(t, t�, t�) | (t�, t)∈p}. (71b)

I will show that (T,C,⊗) satisfies (13a)–(13b) and (23). This suffices because (23)
is both the definition of perfect information and a sufficient condition for (13c).

For (13a), define F = { (t, t�) | (t�, t)∈p }. Note

F ⊆ T×(T �{to}) = T×C,
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where the set inclusion holds because p:T �{to}→T by (1a), and the equality holds by
(71a). It remains to show that ⊗ is a bijection from F onto T �{to}. Two observations
suffice. First, (71b) and the definition of F together imply that ⊗ is a function from
F . Second, since p:T �{to}→T by (1a), (71b) implies that the converse of ⊗ is a
function from T �{to}.

For (13b), this paragraph shows that p is the set that (13b) derives from
(T,C,⊗). In other words, it shows

p = {(t�, t) | (t�, t)∈p and t�∈T �{to}} (72)

= { (t�, t) | (t, t�, t�)∈⊗ and t�∈T �{to}}
= {(t�, t) | (∃t′∈T �{to}) (t, t′, t�)∈⊗}
= {(t�, t) | (∃c) (t, c, t�)∈⊗}.

The first equality holds because p is a function from T �{to} by (1a), and the second
equality holds by (71b). The ⊆ direction of the third equality holds by inspection,
and the reverse direction holds by (71b). The fourth equality holds by (71a).

Further, Lemma C.1(a), (13a), and (72) imply p:T �{to}→F−1(C). The previ-
ous paragraph, the previous sentence, and the lemma’s assumption that (T, p) is a
functioned tree together imply (13b).

For (23), take any c. Then F−1(c) = {t|(t, c)∈F} = {t|(c, t)∈p} = {p(c)}, where
the first equality is a rearrangement, the second follows from the definition of F ,
and the last equality holds because p is a function. �

Lemma D.4. Suppose that γ = [(T, p), (T ′, p′), τ ] is a functioned-tree morphism.
Then E1(γ) is a preform morphism, where E1 is defined in Theorem 3.13. Further,
its source and target have perfect information.

Proof. The definition of E1 defines the codomain of τ |T�{to} to be T ′
�{t′o}, where

to is the root of (T, p) and t′o is the root of (T ′, p′). This codomain is well-defined
because τ(T �{to}) ⊆ T ′

�{t′o} by Proposition 2.3 (first half of (9a)).
By the definition of E,

E1(γ) = E1([(T, p), (T ′, p′), τ ])

= [E0(T, p),E0(T ′, p′), τ, τ |T�{to}]

= [(T,C,⊗), (T ′, C ′,⊗′), τ, τ |T�{to}],

where C = T �{to}, (73a)

⊗ = {(t, t�, t�) | (t�, t)∈p}, (73b)

C ′ = T ′
�{t′o}, and (73c)

⊗′ = {(t′, t′�, t′�) | (t′�, t′)∈p′}. (73d)

It must be shown [a] that the above quadruple satisfies (17a)–(17c) and [b] that its
source and target have perfect information. (17a) and [b] follow from Lemma D.3.
The first half of (17b) follows from (8b). To see the second half of (17b), recall that
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τ |T�{to} maps from T �{to} to T ′
�{t′o} by the first paragraph of this proof. Thus

it maps from C to C ′ by (73a) and (73c). Finally, for (17c), I argue

{(τ(t), τ |T�{to}(c), τ(t�)) | (t, c, t�)∈⊗}
= {(τ(t), τ |T�{to}(t

�), τ(t�)) | (t�, t)∈p}
= {(τ(t), τ(t�), τ(t�)) | (t�, t)∈p}
⊆ {(τ(t), τ(t�), τ(t�)) | (τ(t�), τ(t))∈p′}
⊆ {(t′, t′�, t′�) | (t′�, t′)∈p′}
= ⊗′.

The first equality holds by (73b). The second equality holds because the domain of
p is T �{to} by (8a) and (1a). The first set inclusion holds by (8c). The second set
inclusion holds by (8b). The final equality is (73d). �

Lemma D.5. E is a well-defined functor from Tree to NCPp, where E is defined
in Theorem 3.13.

Proof. By Lemma D.3, E0 maps objects of Tree to objects of NCPp. By
Lemma D.4, E1 maps arrows of Tree to arrows of NCPp. Thus it remains to
show [1] that E preserves identities, [2] that E preserves sources and targets, and [3]
that E preserves compositions.

[1]. Take any functioned tree (T, p) with its to. Note

E0(T, p) = (T,C,⊗), (74a)

where C = T �{to} and (74b)

⊗ = {(t, t�, t�)|(t�, t)∈p}. (74c)

by the definition of E0. I argue

E1(id(T,p))

= E1([(T, p), (T, p), idT ])

= [E0(T, p),E0(T, p), idT , idT |T�{to}]

= [E0(T, p),E0(T, p), idT , idT�{to}]

= [(T,C,⊗), (T,C,⊗), idT , idC ]
= id(T,C,⊗)

= idE0(T,p).

The first equation holds by the definition of id in Tree. The second holds by the
definition of E1. The third holds since the final clause in the definition of E1 implies
that the codomain of idT |T�{to} is T �{to}. The fourth holds by (74a) and (74b).
The fifth holds by the definition of id in NCPp. The sixth holds by (74a).
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[2]. Take any functioned-tree morphism [(T, p), (T ′, p′), τ ]. Let (T, p) determine
to. For sources,

E1([(T, p), (T ′, p′), τ ])src

= [E0(T, p),E0(T ′, p′), τ, τ |T�{to}]
src

= E0(T, p)

= E0([(T, p), (T ′, p′), τ ]src),

where the first equality holds by the definition of E1, the second by the definition of
src in NCPp, and the third by the definition of src in Tree. A symmetric argument
shows that targets are preserved.

[3]. Take any two functioned-tree morphisms [(T, p), (T ′, p′), τ ] and [(T ′, p′),
(T ′′, p′′), τ ′]. Let (T, p) determine to, let (T ′, p′) determine t′o, and let (T ′′, p′′) deter-
mine t′′o. To align with the last clause in the definition of E1, let the codomain
of τ |T�{to} be T ′

�{t′o}, let the codomain of τ ′|T ′�{t′o} be T ′′
�{t′′o}, and let the

codomain of (τ ′◦τ)|T�{to} be T ′′
�{t′′o}. I then argue

E1( [(T ′, p′), (T ′′, p′′), τ ′]◦[(T, p), (T ′, p′), τ ] )

= E1( [(T, p), (T ′′, p′′), τ ′◦τ ] )

= [E0(T, p),E0(T ′′, p′′), τ ′◦τ, (τ ′◦τ)|T�{to}]

= [E0(T, p),E0(T ′′, p′′), τ ′◦τ, τ ′|T ′�{t′o}◦τ |T�{to}]

= [E0(T ′, p′),E0(T ′′, p′′), τ ′, τ ′|T ′�{t′o}] ◦ [E0(T, p),E0(T ′, p′), τ, τ |T�{to}]

= E1([(T ′, p′), (T ′′, p′′), τ ′]) ◦ E1([(T, p), (T ′, p′), τ ]).

The first equality holds by the definition of ◦ in Tree. The second holds by the
definition of E1. The third is a rearrangement. The fourth holds by the definition of
◦ in NCPp. The fifth holds by two applications of the definition of E1. �

Lemma D.6. Define the functors Fp and E as in Theorem 3.13. Then E◦Fp is nat-
urally isomorphic to the identity functor for NCPp. In particular, for every object
Π in NCPp, define the quadruple

ηΠ = [Π,E0◦Fp0(Π), idT , q−1],

where q is the previous-choice function of Π = (T,C,⊗). Then (a) for every object
Π in NCPp, ηΠ is an isomorphism in NCPp. Further (b) for every arrow α =
[Π,Π ′, τ, δ] in NCPp,

(E1◦Fp1)(α)◦ηΠ = ηΠ′◦α.

Proof. The functors Fp and E are well-defined by Theorem 3.9 and Lemma D.5.
(a). Take any perfect-information preform Π = (T,C,⊗) with its to, p, and q.

Importantly, Lemma C.2, Lemma D.2, and the perfect information of Π imply

q : T �{to} → C is bijective. (75)
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Further, by the definitions of Fp0 and E0,

E0◦Fp0(Π) = E0(T, p) = (T, T �{to}, {(t, t�, t�)|(t�, t)∈p}).

By the definition of ηΠ and the previous sentence,

ηΠ = [ Π, E0◦Fp0(Π), idT , q−1 ] (76)

= [ (T,C,⊗), (T, T �{to}, {(t, t�, t�)|(t�, t)∈p}), idT , q−1 ].

This paragraph shows that ηΠ is a morphism in NCPp. By definition (17) and
the equalities of (76), this is equivalent to showing

Π and E0◦Fp0(Π) are perfect-information preforms, (77a)

idT : T → T, q−1 : C → T �{to}, and (77b)

{(t, q−1(c), t�)|(t, c, t�)∈⊗} ⊆ {(t, t�, t�)|(t�, t)∈p}. (77c)

(77a) holds since Π is a perfect-information preform by assumption and since
E0◦Fp0(Π) is a perfect-information preform by Lemma D.3. The first half of (77b)
is obvious. The second half of (77b) follows from (75). Finally, for (77c), I argue

{(t, q−1(c), t�) | (t, c, t�)∈⊗}
⊆ {(t, t�, t�) | (∃c) (t, c, t�)∈⊗}
= {(t, t�, t�) | (t�, t)∈p}.

To see the set inclusion, take any (t, c, t�)∈⊗. By the definition of q, c = q(t�). Thus
by (75), q−1(c) = t�. The equality follows from the definition of p.

Lastly, this paragraph shows that ηΠ is an isomorphism in NCPp. By the pre-
vious paragraph and Theorem 3.7, it suffices to show that the transformations idT

and q−1 are bijective. Obviously, idT is bijective. Further, q−1 is bijective by (75).
(b). Consider any arrow α = [Π,Π ′, τ, δ] in NCPp. Suppose Π = (T,C,⊗) and

derive its to and q. Similarly, suppose Π ′ = (T ′, C ′,⊗′) and derive its t′o and q′.
First, I argue

(E1◦Fp1)(α) (78)

= (E1◦Fp1)([Π,Π ′, τ, δ])

= E1([Fp0(Π),Fp0(Π ′), τ ])

= [E0◦Fp0(Π),E0◦Fp0(Π ′), τ, τ |T�{to}].

The first equality holds by the definition of α. The second equality holds by the
definition of Fp1. The third equality holds [1] by the definition of E1, and [2] because
the root node of Fp0(Π) is to by Lemma C.1(b).

Second, Proposition 3.4(22c) for α states that

q′◦τ |T�{to} = δ◦q

holds in Set (the proposition takes the codomain of τ |T�{to} to be T ′
�{t′o}). Also,

Lemma D.2 and the perfect information of Π imply that q is bijective. Similarly, q′
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is bijective. By the previous three sentences,

τ |T�{to}◦q−1 = (q′)−1◦δ. (79)

Finally, I argue

(E1◦Fp1)(α)◦ηΠ

= [E0◦Fp0(Π),E0◦Fp0(Π ′), τ, τ |T�{to}]◦[Π,E0◦Fp0(Π), idT , q−1]

= [Π,E0◦Fp0(Π ′), τ, τ |T�{to}◦q−1]

= [Π,E0◦Fp0(Π ′), τ, (q′)−1◦δ]

= [Π ′,E0◦Fp0(Π ′), idT ′ , (q′)−1]◦[Π,Π ′, τ, δ]
= ηΠ′◦α.

The first equality holds by (78) and the lemma’s definition of ηΠ . The second
equality holds by the definition of ◦ in NCPp. The third equality holds by (79).
The fourth equality holds by the definition of ◦ in NCPp. The fifth equality holds
by the definitions of ηΠ′ and α. �

Lemma D.7. Define the functors Fp and E as in Theorem 3.13. Then Fp◦E equals
the identity functor for Tree.

Proof. The functors Fp and E are well-defined by Theorem 3.9 and Lemma D.5.
Step 0 will show that Fp0◦E0 maps each functioned tree to itself. Step 1 will show
that Fp1◦E1 maps each functioned-tree morphism to itself.

Step 0 Take any functioned tree (T, p) with its to. By the definition of E0,
E0(T, p) = (T,C,⊗) where

C = T �{to} and ⊗ = {(t, t�, t�) | (t�, t)∈p}.

Thus, by the definition of Fp0, Fp0◦E0(T, p) = (T, p∗), where

p∗ = {(t�, t) | (∃c) (t, c, t�)∈⊗}.

Hence it suffices to show that p∗ = p. I argue

p∗ = {(t�, t) | (∃c) (t, c, t�)∈⊗}
= {(t�, t) | (∃c) (t, c, t�)∈{(t, t�, t�)|(t�, t)∈p}}
= {(t�, t) | (t�, t)∈p}
= p,

where the first equality is the definition of p∗, the second follows from the definition
of ⊗, and the third holds by the equivalence of the sets’ predicates.

Step 1 Take any functioned-tree morphism [(T, p), (T ′, p′), τ ], and let (T, p) deter-
mine to. Then

Fp1◦E1([(T, p), (T ′, p′), τ ])

= Fp1([E0(T, p),E0(T ′, p′), τ, τ |T�{to}])
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= [Fp0◦E0(T, p),Fp0◦E0(T ′, p′), τ ]

= [(T, p), (T ′, p′), τ ],

where the first equality follows from the definition of E1, the second equality follows
from the definition of Fp1, and the third equality follows from two applications of
Step 0. �

Proof D.8. (for Theorem 3.13) (a) is established by Lemma D.6. (b) is established
by Lemma D.7. �

Proof D.9. (for Corollary 3.14) (a) follows from Theorem 3.13(a) because
(E◦H)◦(G◦Fp) = E◦Fp by Theorem 2.8. (b) follows from Theorem 2.8 because
(G◦Fp)◦(E◦H) = G◦H by Theorem 3.13(b). �
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