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How many basic operations of arithmetic are there? Four, right? That is certainly the 

impression one gets from reading the mathematics textbooks of the last few hundred years. 

But wind the clock back further than that and you find mathematicians who thought 

differently. Take, for example, duplation and mediation, that is, the operations of successive 

doubling and successive halving respectively. In medieval Europe, duplation and mediation 

were treated as distinct arithmetical operations in their own right, warranting discussion 

separate from that concerning the operations of multiplication and division. Indeed, according 

to pedagogical treatises, duplation and mediation were to be learned before multiplication and 

division. The source of this view was the English monk Johannes de Sacrobosco (c.1195–

c.1256), whose Tractatus de arte numerandi [Treatise on the Art of Reckoning]—generally 

known as his Algorismus—of c.1225, explained that ‘There are nine species of this art [of 

reckoning], namely: numeration, addition, subtraction, mediation, duplation, multiplication, 

division, progression, and extraction of roots’ [1]. 

 Sacrobosco’s aim was to promote Hindu-Arabic methods of arithmetic in Europe, and 

his identification of nine basic operations drew on various Hindu and Arabic sources, which 

recognize operations such as duplation and mediation as basic. It is not hard to see why: 

many ancient forms of reckoning, such as those found in Egypt and elsewhere across Africa 

and the Middle East, use methods of multiplication and division that require successive 

doubling or halving. For example, in the ancient Egyptian method one computes 11 × 25 by 

repeatedly doubling 1 (yielding 1, 2, 4, 8; stopping at 8 because 16 > 11), repeatedly doubling 

25 (25, 50, 100, 200), and then adding up 25 + 50 + 200 to get the result 275, those terms 

having been selected since 1 + 2 + 8 = 11. With such reckoning methods, the need to master 

duplation and mediation is clear. But Sacrobosco mentions none of that in his treatise, which 

focuses not on why one should learn those operations but only on how they should be 

performed. With no rationale provided, Sacrobosco gives the impression that duplation and 

mediation are little more than a gentle way of introducing students to the standard European 

methods of multiplication and division. 

 Sacrobosco’s treatise became the blueprint for European mathematical texts for 

hundreds of years thereafter, with many medieval authors cleaving fast to his identification of 

nine basic arithmetical operations. But there were regional variations: in 1494, the Italian 

mathematician Luca Pacioli (c.1447–1517) omitted duplation and mediation from the list of 

basic operations on the grounds that ‘duplation is implicit in multiplication, and mediation in 

division’ [2]. This view was shared by the Dutch mathematician Gemma Frisius (1508–

1555), who in 1540 reduced the number of basic operations to four. Frisius was in fact 

scathing about including duplation and mediation: 

 

Some people are wont to identify duplation and mediation as species [of operation] 

distinct from multiplication and division. But I don’t know what came over those 

stupid people, since both the definition and the operation is the same [in each case]. 

For to double is to multiply by two and to halve is to divide by two. But if these are 

distinct operations [from multiplication and division] then there will be an infinite 

number of them, for we will accept triplation, quadruplation etc. as species [3]. 

 

But not everyone got Frisius’s memo, and in Germany, Sacrobosco’s view held firm. In a 

popular and oft-reprinted work on arithmetic, Rechnung auff der Linihen und Federn 

[Reckoning with Lines and Quills], the German mathematician Adam Ries (or Riese, 1492–

1559) discussed the same nine operations Sacrobosco had, each under its own separate 



2 

 

heading. So important was it to learn duplation and mediation that Ries even showed how 

they could be performed by moving a coin around on a counting board. Ries’ book went 

through over a hundred editions, and continued to be used as a textbook in Germany until the 

middle of the seventeenth century [4]. Curiously, however, Ries’ characterizations of 

duplation and mediation offered no grounds for treating them as distinct operations in their 

own right: ‘Duplation means two-fold’, Ries states, and ‘is nothing other than multiplying by 

two’, while ‘mediation means making half, and is nothing other than splitting a number into 

two equal parts’ [5]. 

 Those who retained duplation and mediation among the basic arithmetical operations 

did so more out of deference to the European tradition started by Sacrobosco than because of 

any perceived theoretical or practical need. Like Ries, they provided no grounds for 

supposing duplation and mediation were in any way distinct from multiplication and division, 

and struggled to come up with practical examples where one would need the specific skills of 

doubling or halving. For example, a French textbook from 1535 illustrates mediation with the 

unlikely question of how much would be paid to a man offering to sell his robe for the price 

of 43,690 francs and 8 gros reduced by half twenty-four times over [6]. The value of such a 

question lies more in its ability to promote familiarity with the complexities of the currency, 

in which there were 12 gros to the franc, 16 deniers to the gros, and 2 mailles to the denier, 

than it does in identifying any real world application of the operation of mediation. (The 

answer, by the way, is 1 maille.) 

 What of Britain? By the time books on arithmetic came to be written in English, in the 

mid-sixteenth century, there was no appetite among British mathematicians to include 

duplation and mediation among the basic operations of arithmetic. In The Ground of Artes 

(1543), the Welsh mathematician Robert Recorde followed Pacioli in identifying seven basic 

operations of arithmetic: numeration, addition, subtraction, multiplication, division, 

progression, and extraction of roots. Recorde declined to include duplation and mediation on 

the grounds that they are contained under multiplication and division respectively [7]. Two 

decades later, Humfrey Baker managed to ignore duplation and mediation altogether in The 

Welspring of Sciences (1564), at least until he came to fractions, where he ‘treateth of 

duplation, triplation, and quadruplation of all broken numbers’ [8]. Posthumous editions of 

Recorde’s book, expanded by John Dee, followed suit, adding brief discussions on the 

mediation and duplation of fractions. Dee noted, for example, that if one wanted to double 
 

  
 

it could be done either by doubling the numerator, to make 
  

  
, or by halving the denominator, 

to make 
 

 
 [9]. Boosted by numerous reprints, Recorde and Baker between them cornered the 

market in British textbooks on arithmetic until the end of the seventeenth century, helping to 

keep duplation and mediation from falling into total obscurity, even if they were by now 

gathering dust at the bottom of the arithmetician’s toolbox. 

 As European reckoning methods did not make use of successive doubling or halving, 

it was inevitable that duplation and mediation would fall out of favour. By the turn of the 

eighteenth century, they were routinely omitted from lists of the basic operations of 

arithmetic throughout Europe. Even the terms ‘duplation’ and ‘mediation’ themselves were 

rapidly falling out of use, and by the second half of the eighteenth century were about as 

common as they are today. From this, one might conclude that, almost five hundred years 

after they had been introduced in Europe, duplation and mediation finally disappeared, almost 

as if they had eventually cancelled each other out. 

 But while the seventeenth century may have marked the end of duplation and 

mediation as distinct operations in decimal, it marked their beginning as such in binary. In 

the late 1670s, the German polymath Gottfried Wilhelm Leibniz (1646–1716) invented the 

binary number system, in which, he quickly realized, multiplying a nonnegative value by two 
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involves nothing more than shifting all of the digits of the value one place to the left and 

adding a 0 on the right [10]. Hence: 

 

           54 

 

         108 

 

Similarly, to divide a nonnegative value by two, simply shift each of the digits one place to 

the right, discard the rightmost digit, and add a 0 on the left: 

 

           12 

 

           6 

 

These operations, known today as ‘bit shifting’, are commonplace in assembly programming; 

consequently high-level languages such as Java, Python, C, and C++ have specific commands 

for them. Duplation and mediation have thus survived as distinct operations in their own 

right, at least in binary. 

 

Acknowledgements 

The author is grateful to the Gerda Henkel Stiftung, Düsseldorf, for their award of a research 

scholarship (AZ 46/V/21), which made this article possible. The author would also like to 

thank Peter Clarke, Owain Daniel Jones, Harry R. Lewis, and an anonymous reviewer for 

helpful comments on an earlier version of this article. 

 

References 

 

[1] Rara Mathematica; Or, A Collection of Treatises on the Mathematics and Subjects 

Connected with Them, from Ancient Inedited Manuscripts (1839), ed. James Orchard 

Halliwell, John William Parker, London, pp. 1–26, at p. 2. 

 

[2] Pacioli, Luca (1494) Summa de arithmetica, geometria, proportioni et proportionalita, 

Paganinus de Paganinis, Venice, fol. 19r. 

 

[3] Frisius, Reinerus Gemma (1540) Arithmeticae practicae methodus facilis, per Gemmam 

Frisium medicum ac mathematicum, Gregorius Bontius, Antwerp, fol. VII. 

 

[4] See Carpenter, Dorothy I. (2013) ‘Adam Riese’ in The European Mathematical 

Awakening: A Journey Through the History of Mathematics from 1000 to 1800, ed. by Frank 

J. Swetz, Dover, New York, pp. 45–49 at p. 47. 

 

[5] Ries, Adam (1529), Rechnung auff der Linihen und Federn, Erfurt, chapters ‘Dupliren’ 

and ‘Medirn’. 

 

[6] [Manière] (1535) Le vraye                                          , par plume & 

                                                         , Claude Veycellier, Lyon, fol. 20. 

 

[7] Recorde, Robert (1543), The Ground of Artes Teachyng the Worke and Practise of 

Arithmetike, Moch Necessary for All States of Men. After a More Easyer and Exacter Sorte, 

Than Any Like Hath Hytherto Ben Set Forth, London, p. 6. 



4 

 

 

[8] Baker, Humfrey (1564), The Welspring of Sciences, James Rowbothum, London, fol. 67v. 

 

[9] Recorde, Robert, John Dee, and John Mellis (1582), The Grounde of Artes: Teaching the 

Perfecte Worke and Practise of Arithmetike, Both in Whole Numbers and Fractions, After a 

More Easie and Exact Sort, than Hitherto Hath Bene Set Forth. Made by M. Robert Recorde, 

D. in Physick, and Afterwards Augmented by M. Iohn Dee. And Now Lately Diligently 

Corrected, & Beautified With Some New Rules and Necessarie Additions: And Further 

Endowed With a Thirde Part, of Rules of Practize, Abridged into a Briefer Methode than 

Hitherto Hath Bene Published: with Diverse Such Necessary Rules, as Are Incident to the 

Trade of Merchandize. By Iohn Mellis of Southwark, Scholemaster, I. Harison and H. 

Bynneman, [London], p. 409. 

 

[10] Strickland, Lloyd, and Harry Lewis (2022), Leibniz on Binary: The Invention of 

Computer Arithmetic, MIT Press, Cambridge, Mass., pp. 39–40. 


