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Abstract Since the discovery of incommensurability in ancient Greece, arithme-

ticism and geometricism constantly switched roles. After ninetieth century arith-

meticism Frege eventually returned to the view that mathematics is really entirely

geometry. Yet Poincaré, Brouwer, Weyl and Bernays are mathematicians opposed

to the explication of the continuum purely in terms of the discrete. At the beginning

of the twenty-first century ‘continuum theorists’ in France (Longo, Thom and

others) believe that the continuum precedes the discrete. In addition the last

50 years witnessed the revival of infinitesimals (Laugwitz and Robinson—non-

standard analysis) and—based upon category theory—the rise of smooth infinites-

imal analysis and differential geometry. The spatial whole-parts relation is irre-

ducible (Russell) and correlated with the spatial order of simultaneity. The human

imaginative capacities are connected to the characterization of points and lines

(Euclid) and to the views of Aristotle (the irreducibility of the continuity of a line to

its points), which remained in force until the ninetieth century. Although Bolzano

once more launched an attempt to arithmetize continuity, it appears as if Weierst-

rass, Cantor and Dedekind finally succeeded in bringing this ideal to its completion.

Their views are assessed by analyzing the contradiction present in Grünbaum’s

attempt to explain the continuum as an aggregate of unextended elements (degen-

erate intervals). Alternatively a line-stretch is characterized as a one-dimensional

spatial subject, given at once in its totality (as a whole) and delimited by two

points—but it is neither a breadthless length nor the (shortest) distance between two

points. The overall aim of this analysis is to account for the uniqueness of dis-

creteness and continuity by highlighting their mutual interconnections exemplified
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in the nature of a line as a one-dimensional spatial subject, while acknowledging

that points are merely spatial objects which are always dependent upon an extended

spatial subject. Instead of attempting to reduce continuity to discreteness or dis-

creteness to continuity, a third alternative is explored: accept the irreducibility of

number and space and then proceed by analyzing their unbreakable coherence. The

argument may be seen as exploring some implications of the view of John Bell,

namely that the ‘‘continuous is an autonomous notion, not explicable in terms of the

discrete.’’ Bell points out that initially Brouwer, in his dissertation of 1907, ‘‘regards

continuity and discreteness as complementary notions, neither of which is reducible

to each other.’’

Keywords Successive infinite � At once infinite � Line �
Non-denumerability � Point � Spatial subject � Object relation

1 Discreteness and Continuity

Implicit in our everyday experience of the world there is an awareness of

distinctions relevant to a proper ‘positioning’ of the question: what is a line? These

distinctions will be used to contextualize the question what a line is. Let us start

with our experience of reality which is embedded in an awareness of multiple

(natural and social) entities as well as numerous aspects or modes of being within

which such entities function. For example, identifying couches gives an answer to

the question about their ‘what-ness.’ Once we have identified particular things,

‘how-questions’ regarding their various modes or functions or aspects could be

asked, such as: how expensive is this couch?; how comfortable is it?; how strong is

it?; how large is it?; and how many of them are there? These questions capture the

meaning of different modes of being (modal aspects or ways of existence), in casu

the economic, sensitive, physical, spatial and numerical. Naturally our focus in this

article will be on the last two aspects, number and space.

Distinct entities can always be numbered—a feature already entailed in the use of

the plural: entities. By lifting out their quantitative meaning such entities appear as

distinct units which are countable. Discerning their numerical properties therefore

has to disregard non-numerical features—but note that they are just disregarded, not

eliminated. As Tait explains: ‘Distinct units are indeed distinguished by their

properties, but when from a set of two cats, one white and one black, we ‘abstract’

the number two as a set of pure units, the units are not white and black, respectively,

and they are not cats’ (Tait 2005: 241). One may relate this meaning of the word

‘abstract’ to the meaning of analysis, which comes to expression in logical acts of

identification and distinguishing. The latter, identification and distinguishing, is

equivalent to the meaning of abstraction, for abstraction concerns lifting out

(identifying) certain properties by disregarding others (distinguishing)—on the

basis of similarities and differences.

The nature and role of an abacus neatly illustrates what is here at stake. As a

calculating device the abacus can play a constructive role in the teaching of

arithmetical skills. Consider an elementary abacus where the grouping of beads may
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represent addition on the levels of ones, tens or hundreds. Initially, the typical

many-sidedness of the beads are left intact simply because they form part of the

visible image of the abacus and its beads. This means that the beads are observed in

their multi-aspectual nature, including their specific colors, their typical shapes and

sizes, as well as their flexibility (moveable in opposite directions). Because the use

of the abacus is directed at enhancing arithmetical skills, these non-arithmetical

properties of the abacus are left intact, which makes it easy eventually to abstract

from them by lifting out merely and solely the quantitative aspect of the beads.

Phrased in terms of what Tait said, we can point out that the numerical units

obtained through the operations performed with the aid of the abacus, do not yield

numbers that are spherical, moveable or colored.

This example at once highlights the fact that aspectual (modal) abstraction

represents the distinctive feature of scholarly (scientific) thinking (see Strauss 2009:

45–60). Yet, it is insufficient merely to refer to abstraction, because our everyday

(pre-scientific) concepts of different kinds of entities (such as material things,

plants, animals, and cultural objects) already represent a kind of abstraction, one

that is directed at different kinds or types of entities. When the modes, aspects or

functions of reality are lifted out while disregarding other aspects, modal

abstraction ensues. Sometimes other designations are found, for example when

modal abstraction is seen as idealizing abstraction (Bernays 1976: 37, 196; Diemer

1970: 213).

Of course one of the modes of reality distinguished from the numerical is the

spatial aspect. Whereas distinctness, referred to in connection with the meaning of

number, suggests the idea of discrete quantity, our awareness of the meaning of

space traditionally was related to continuity or to continuous extension. The prime

example of something continuous within mathematics, to be more specific, within

geometry, is a line-stretch (often referred to as a Euclidean line). Bell points out that

initially Brouwer, in his dissertation of 1907, ‘regards continuity and discreteness as

complementary notions, neither of which is reducible to each other’ (Bell 2006:

217).

Although we shall probe some of the historically significant reflections on

continuity below, it should be noted in advance that since Weierstrass, Cantor and

Dedekind, the three prominent German mathematicians who produced their most

important work during the last part of the ninetieth century, most modern

mathematicians believe to have bridged the so-called gap between discreteness and

continuity. Posy alludes to these developments as a ‘period of growing mathemat-

ical abstraction’ which, through

analysis and its generalizations in algebra and topology… took mathematics

irrevocably away from any dependence on perceptual intuition…. mathema-

ticians finally closed the ancient gap between the notion of number and that of

a continuous magnitude like a surface or a smooth motion (Posy 2005: 321).

Of course the question is if there is just one kind of intuition, namely perceptual

intuition? Is it not the case that we also have other intuitions, such as a numerical

intuition and a spatial intuition? A prominent mathematician, Bernays (the co-

worker of Hilbert), does not hesitate to distinguish between our ‘arithmetic’ and
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‘geometric’ intuitions (Anschauungen). He rejects the widespread view that this

distinction (between a numerical intuition and a spatial intuition) concerns time and

space, for according to him the proper distinction needed is that between the

discrete and the continuous (Bernays 1976: 81).

The position assumed by Bernays in this regard shows that what Posy considers

to be the ‘ancient gap between the notion of number and that of a continuous

magnitude’ is not merely ancient at all. In fact, modern authors still view the

discrete and the continuous as unique aspects of the mathematical field of

investigation. Rucker (1982) explicitly says: ‘‘The discrete and continuous represent

fundamentally different aspects of the mathematical universe’’ (Rucker 1982: 243).

E.T. Bell relates this distinction to the entire development of mathematics: ‘‘from

the earliest times two opposing tendencies, sometimes helping one another, have

governed the whole involved development of mathematics. Roughly these are the

discrete and the continuous’’ (Bell 1965: 12). In their standard work, Foundations of

Set Theory, Fraenkel et al. (1973) hold that the gap between discreteness and

continuity is not only central to the foundations of mathematics, but also represents

the oldest problem in this (and related) fields: ‘‘Bridging the gap between these two

heterogeneous domains is not only the central but also the oldest problem in the

foundations of mathematics’’ (Fraenkel et al. 1973: 212). On the previous page we

read: ‘‘Bridging the gap between the domains of discreteness and of continuity, or

between arithmetic and geometry, is a central, presumably even the central problem

of the foundation of mathematics’’ (Fraenkel et al. 1973: 211). This work is still

used as authoritative in respect of the axiomatic foundation of set theory. For this

reason Maddy frequently calls upon it (see Maddy 1997, pp. 14, 39–42, 47–48, 50,

52–54, 57–58, 61, 85).

The problems surrounding the notion of an infinitesimal since the invention of

the calculus caused ninetieth century mathematicians to avoid infinitesimals. By the

late fifties of the previous century A.H. Laugwitz and C. Schmieden revived the idea

of infinitely large and infinitely small numbers, followed up in the sixties by

Abraham Robinson with his non-standard analysis and once more explained by

Detlef Laugwitz (see Laugwitz 1986). Robinson developed his non-standard

analysis on the basis of actual infinite sets which form the basis of the transfinite

cardinalities of Cantor. In non-standard analysis a number a is called infinitesimal

(or infinitely small) if its absolute value (that is its value regardless of the plus or

minus sign) is less than m for all positive numbers m in Y (Y being the set of real

numbers). According to this definition 0 is infinitesimal. The fact that the

infinitesimal is merely the correlate of the transfinite numbers, is apparent in that r

(not equal to 0) is infinitesimal if and only if r-1 is infinite (cf. Robinson 1966:

55ff). In a similar fashion Cantor related irrational numbers to his transfinite

numbers: ‘‘One can simply say that the transfinite numbers stand or fall with the

finite irrational numbers; they are similar in their innermost being’’ (Cantor 1962:

395–396). Bell also explains that for Robinson ‘an infinitely large number’ intends

to designate ‘one which exceeds every positive integer; the reciprocal of any one of

these is infinitesimal in the sense that, while being non-zero, it is smaller than every

positive fraction 1
n

(Bell 2006: 18).
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Subsequently, on the basis of category theory, infinitesimals re-entered the scene

in the idea of an infinitesimal quantity which is so small that its square may be set to

zero. Such ‘zero-square’ infinitesimals are also designated as ‘nilpotent’ (non-

punctiform/non-generate) infinitesimals and the replaced the limit concept (see Bell

2005, 2009). Yet, since they do not have inverses they differ from the infinitesimals

employed in non-standard analysis. Whereas non-standard analysis rests on the

basis of infinite totalities, what became known as smooth infinitesimal analysis

(SIA) proceeds by giving priority to the continuous as ‘an autonomous notion, not

explicable in terms of the discrete’ (Bell 2006: 284). By combining ideas of F.W.

Lawvere and category theory Bell already in the Introduction of his 2006 work

makes the same point, namely that SIA provides ‘‘an image of the world in which

the continuous is an autonomous notion, not explicable in terms of the discrete’’

(Bell 2006: 18). On the same page Bell mentions that the idea of an intensive

magnitude is embodied in the form of infinitesimal tangent vectors to curves, while

a short straight line segment is an infinitesimal part of the curve since in SIA they

are ‘locally straight which means that they are ‘composed’ of ‘infinitesimal straight

lines in de l’Hôpital’s sense’—or as being ‘generated’ by ‘an infinitesimal tangent

factor.’

It should be noted that non-zero infinitesimals are only present in ‘a virtual’ sense

(see Bell 2008: 7). Whatever is not identical with a single point is designated as

being non-degenerate, such that a linelet (a term from Barrow) is introduced as a

segment of a special kind, namely a non-degenerate linear infinitesimal (Bell 2008:

8). Two principles are introduced: the Principle of Microstraightness (regarding the

intersection of the curve with its tangent at the origin) and the Principle of

Microuniformity (natural processes occurring ‘‘at a constant rate over any

sufficiently small period of time (i.e. Barrow’s ‘timelets’)’’ (Bell 2008: 9–10). A

non-degenerate spatial segment, based upon the Principle of Microstraightness and

indicating the ‘presence of motion’, may be conceived of as an infinitesimal ‘rigid

rod’ just ‘long enough to have a slope … but too short to bend’ (Bell 2008: 10).

Bringing uniform motion back into the picture opened the way to transcend the

static orientation of set theory and to furnish every (infinitesimal) quantity ‘‘with a

definite domain over which it varies and a definite codomain in which it takes

values’’ (Bell 2008: 15). Using the phrase ‘smooth variation’ is synonymous with

the more familiar expression ‘continuous change.’

In passing we may note that in a subtle way these developments demonstrate the

complexity involved in analysing the meaning of number and space, because such

an analysis constantly has to use terms exceeding the original meaning of these

aspects. For example, we are used to speak of infinitely large and infinitely small

(where ‘large’ and ‘small’ are spatial terms). Likewise, the developments discussed

by Bell once again analyses the meaning of number and space by introducing the

idea of smooth variation, which is nothing other than an appeal to the core meaning

of the kinematic aspect of uniform motion and the physical aspect (where change

finds its seat). It is equivalent to the expression continuous change. Of course

mathematical logic also employs the idea of constants and variables—without

realizing that these terms are derived from the meaning of the kinematic and
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physical aspects. However, exploring this issue further will lead us away from the

main focus of this article.

In the absence of the idea of infinite wholes given at once, SIA, similar to

intuitionistic mathematics, had to suspend the law of the excluded middle within

this domain (see Bell 2008: 4–5). In an arbitrary smooth world it is not true that any

real number x is either equal or not equal to 0 (that x = 0 or that x = 0; see Bell

2008: 5). In passing we may note that Bell mentions the neoplatonist philosopher

Damascius (c. 4362–540), who bordered upon the idea of an infinite whole given at

once. He quotes Weyl’s intuitionistic rejection of viewing the set of real numbers as

a finished entity (Bell 2000: 268).

2 Historical Contours

Anticipating some elements of what follows below a brief purview of the history of

mathematics underscores the remarks given above about discreteness and continu-

ity. Initially, Pythagorean mathematics aimed at explaining the universe in terms of

the relationships between integers (i.e., fractions). The statement that everything is

number is characteristic of this orientation, but soon it was confronted with two

discoveries. The first discovery concerns the fact that there are incommensurable

geometrical entities, such as the diagonal of a given square which could not be

measured by an aliquot part of its side. Fraenkel et al. note that this is equivalent to

the fact that in modern terms the square root of the number 2
ffiffiffi

2
p

is not a rational

number. The other discovery came from Parmenides and his school to which Zeno

and his well-known paradoxes belong. These paradoxes discovered that it is

impossible to use infinitely small parts in the construction of finite magnitudes

(Becker 1957; Fraenkel et al. 1973: 13; Bell 2006: 21 ff.).

The effect of these discoveries was that Greek mathematics switched to a spatial

perspective (discussed in more detail below). This switch not only affected Greek

mathematics fundamentally (where the theory of numbers became a part of geometry),

but also exerted a decisive influence upon the entire space metaphysics of medieval

philosophy. After the Renaissance, partly mediated by the analytic geometry of

Descartes, the urge towards arithmeticism slowly emerged once more. Whereas

Leibniz (1646–1716) still called God the ‘great Geometer,’ Jacobi (1804–1851) used

the phrase: ‘God ever arithmetizes.’ Cauchy developed this tendency further, although

it was only drawn towards its full implications by Weierstrass, Cantor and Dedekind—

during the last three decades of the ninetieth century. The preferential foundational

position of number in respect of space is seen in the question asked by Frege: ‘‘Is it not

the case that the basis of arithmetic is deeper than all our experiential knowledge and

even deeper than that of geometry?’’ (Frege 1884: 44).

Aided by his new notion of a set (a multiplicity of distinct elements bound together

ino a whole—see Cantor 1962: 282), Cantor advanced what he believed to be a purely

arithmetical concept of a point-continuum (1962: 192), defined by him as a perfectly

cohering set (1962: 194). But when Russell and Zermelo independently of each other

discovered in 1900 that the naive set concept of Cantor entails logical contradictions,
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different schools of thought emerged in mathematics. Frege was a victim of this

discovery and after unsuccessful attempts to reform his program by the end of his life

he once again reverted to a geometrical perspective:

So an a priori mode of cognition must be involved here. But this cognition does

not have to flow from purely logical principles, as I originally assumed. There

is the further possibility that it has a geometrical source…. The more I have

thought the matter over, the more convinced I have become that arithmetic and

geometry have developed on the same basis—a geometrical one in fact—so

that mathematics in its entirety is really geometry (Frege 1979: 277).

Some mathematicians continued to emphasize the primary status of the

‘continuum.’ Longo (2001) refers to Thom who believes that continuity precedes

discreteness: ‘‘For him, as for many mathematicians of the continuum, ‘the

Continuum precedes ontologically the discrete’, for the latter is merely an ‘accident

coming out of the continuum background’, ‘a broken line’ (Longo 2001: 6).’’

Later on in this article Longo combined Thom’s views with those of Leibniz:

‘‘By contrast Leibniz and Thom considers the continuum as the original giving,

central to all mathematical construction, while the discrete is only represented as a

singularity, as a catastrophe’’ (Longo 2001: 19). This view revived the Greek

understanding according to which continuity is the simpler concept. Although

Fraenkel et al. discern a tendency towards arithmetization underlying Zenon’s

paradoxes, they point out that the

converse direction is also conceivable, for intuition seems to comprehend the

continuum at once; mainly for this reason Greek mathematics and philosophy

were inclined to consider continuity to be the simpler concept and to

contemplate combinatorial concepts and facts from an analytic view (Fraenkel

et al. 1973: 213).

3 Forms and Figures

From our early childhood we are confronted with all sorts and kinds of forms and

figures—most of the time exemplified in physical shapes, shapes of different kinds

of living entities, sensory images (cf. children noticing the full moon), as well as the

multifarious diversity of cultural objects. Initially our experience of lines, surfaces

and volumes is therefore intimately connected with our sensory abilities, in

particular with our eye-sight. At school one, two or three dimensional figures are

drawn on a piece paper or on the black board. But already at this primordial level an

apparent tension arises between what we can see and what we can imagine.

4 Seeing and Imagining

Seeing is straight-forward. But is what we see a perfect example of what we have ‘in

mind’ when we think of (or imagine) a line, a circle or a cube? Consider for a
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moment how Plato handled this problem. He distinguishes being from coming into

being and passing away because he wants to account for the durability or

persistence of knowledge. For this reason he located being in the (supra-sensory)

intelligible world of static ontic forms and coming into being and passing away in

the world of becoming, that of appearances. (The Greek word ‘on’ designates what

is, what exists, what therefore participates in being.) Visible things fall within the

realm of genesis where only belief (doksa) is possible (that is eikasia of the shadow

and mirror images and pistis of sensory things). In contrast to what is visible, Plato

posits that which is solely conceivable and belongs (as noeton genos) to the realm of

ousiai (ontic forms). Contemplating the forms of which visible things are

representations, the (intelligible) mathematical knowledge is known as noesis

(cognition in a stricter sense) or as the episteme that can be obtained of the eidè

(ontic forms). In their combination, dianoia and episteme are known as noesis in a

broader sense. The principle making it possible for things to be known and giving

reality to them, is the idea of the good (idea tou agathou) (Cornford 1966:

216–221).

It is clear that Plato elevated mathematical knowledge to a supra-sensory realm

of noesis (cognition) in its stricter sense. The ideal objects within Plato’s

transcendent world of ontic forms do not suffer from the imperfections of what is

observable within the sensory world of becoming. This situation is analogous to the

relationship between sets of number and multiplicities assumed to be present within

the physical world. Cantor committed himself to the idea that the actual infinite

exists in concrete reality. He believed that the set of atoms of bodies within the

universe is countable (denumerably infinite), while the ‘aether atoms’ were

supposed to display the ‘power of the continuum’ (that is, equivalent to the set of

real numbers). Meschkowski (1972) remarks:

But modern physics holds a different view on this matter. It operates with the

finiteness of the universe. The aether theories are given up and the number of

atoms are accepted as finite. … In relation to physical realities there is not a

single justification to speak of the set of all natural numbers. (Meschkowski

1972: 345)

Meschkowski also mentions that Cantor expressed this view in a letter to Mittag–

Leffler. Meschkowski published a part of this letter, which includes Cantor’s

reference to the fact that according to him ‘‘the totality of aether atoms has the

second power’’ (Meschkowski 1967: 248). By contrast Hilbert holds: For the

number of things which could be an object of our experience, is, even when it is

large, beneath a finite limit (Hilbert 1913: 244).

Clearly the modern mathematical theory of real numbers or the mathematical

theory of transfinite sets (Cantor) shows that human understanding can grasp

abstract structures for which no counter-part is found within (physical) nature.

Bernays also points out that our empirical world is restricted to what is (factually)

finite. Therefore, according to him, we can only transcend this limitation by ‘‘the

formal abstraction which helps us to transcend the boundaries of factuality.’’ The

infinite divisibility of (mathematical) space shows that when this division reaches a
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sufficient degree of minuteness ‘‘our spatial-metrical representations become

meaningless in a physical sense’’ (Bernays 1976: 38).

This split is similar to the one mentioned above regarding Plato’s views. In

modern mathematics the weakest Platonistic assumption appears to be given in the

acceptance of the totality of integers (see Bernays 1976: 63). With reference to the

modern theories of analysis and set theory and their fruitful application within the

domains of algebra and topology, Bernays holds that it is not an over-statement to

say that the application of Platonism in mathematics is so widespread that it is

reigning in mathematics (Bernays 1976: 65).

5 Idealizing and Imagining

The influence of mathematical Platonism is also evident in some of the definitions

of this discipline. While Meschkowski opts for a definition of mathematics as the

science of formal structures, Bernays prefers to characterize it as the science of

idealized structures. Yet he views ‘idealization’ as playing a mediating role between

concept and intuition (Bernays 1976: 196).

When we read in Euclid’s Elements how he defines a point and a line, the above-

mentioned distinctions ought to be kept in mind. His first definition states that ‘‘a

point is that which has no part’’ and his second definition claims that ‘‘a line is

breadthless length.’’

Claiming that a line has no width or breadth idealizes something that cannot be

observed by the senses, just as little as a point without parts gives access to sensory

perception. If no sensorily perceptible physical line is a breadthless length, then

humans must have the capacity to imagine an ideal line displaying this property.

Wilder observes that ‘‘in a subject like mathematics’’ the ‘‘conceptual has gradually

gained primacy over the observable’’ (Wilder 1968: viii).

Human imagination appears to display two qualities. Immanuel Kant says that

the imagination is the ability to represent an object in our intuition without its actual

presence (Kant 1787-B: 151). But this conception does not sufficiently account for

the difference between thought and experience—even what is merely represented in

its absence may still reflect the imperfect images of sensory objects (and figures).

It is only when Kant’s understanding of the imagination is turned around that this

difference clearly surfaces, for it also belongs to the capacity of the human fantasy

to imagine that which is given to the senses in a way that is different from how it is

given. In an account of the earliest human artifacts (tools) the archaeologist Narr

explains that human tools are distinguished by the fact that they embody the free,

formative fantasy of humans, at least when such tools conform to the three

conditions identified by him, namely that the form of the manufactured tool must

not be given, that the way of production must not be suggested and that the function

should not be suggested (such as mere extensions of bodily organs) (see Narr 1988:

281).

The so-called ‘ideal’ representation of a point and a line is therefore nothing but

an instance of the capacity of human beings to imagine something that is given to

the senses in a different way (similar to an oval shaped stone which is chopped until
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it has a sharp end, useful for digging). Yet this imaginative capacity does not stand

on its own, because humans are also capable of identifying and distinguishing

(lifting out and disregarding), which is normally designated as our capacity to

analyze (identify and distinguish) and to abstract (lifting out and disregarding).

6 Fractions and the Absence of a Primal Yardstick

The restriction to what we currently designate as rational numbers (fractions in

Greek mathematics) contained unforeseeable problems. One way to explain these

problems is to consider the possibility of choosing a measure (yardstick), such that

any distance could merely be seen as a multiple of this minimal yardstick. The

problem is that the side and diagonal of a square cannot be measured with the same

yardstick. Laugwitz explains this by pointing out that there is no ‘atomic’ primal

yardstick (arch-yardstick; Urmaß) for all geometrically constructible distances. The

side and diagonal of a square (or of a regular pentagram) turned out to be

‘incommensurable’ (Laugwitz 1986: 14). Of course this was a crisis for the

Pythagorean conviction that the essence of everything could be expressed by means

of the relationship between integers, that is, in terms of fractions. At the same time it

highlights that their arithmeticism (everything is number) demonstrated the

underlying abstraction required to articulate their peculiar stance in terms of what

is arithmetical (arithmoi)—lifting out the arithmetical by disregarding the non-

arithmetical aspects. (We have briefly explained above how an abacus can facilitate

modal abstraction.) The effect of incommensurability, however, caused a change in

the direction of Greek mathematics, away from its initial move towards the

arithmetical, because it subsequently explored a geometrical path. Fowler expresses

his own preference regarding the outcome of this when he states that this ‘‘first

characteristic of early Greek mathematics is negative: it seems to be completely

non-arithmetized’’ (Fowler 1999: 10). Nonetheless he points out that ‘‘one of the

main preoccupations of Euclid’s geometry is the transformation, combination, and

comparison of figures’’ while the idea ‘‘behind Euclid’s use of ‘equality’ within

geometry is one of size, not shape’’ (Fowler 1999: 12). The problem is nevertheless

that size still calls forth the arithmetical (arithmoi)—one, two or three dimensional

sizes (magnitudes) are all specified by providing numbers, albeit that numerical

considerations were now positioned within geometry.

Although it is possible to represent every numerical relationship in a geometrical

way, the restriction to integers and their relationships made it impossible to

represent every spatial distance arithmetically. Laugwitz remarks: ‘‘This serves as

the foundation for the primacy of geometry in respect of arithmetic and the

implication is found in the works of Euclid: the theory of numbers forms a part of

geometry’’ (Laugwitz 1986: 9).

One of the multiple ways in which the arithmetical appears in a geometrical

context, is in connection with the relation between a whole and its parts, such as

when a numerical sequence is presented as a half, third, quarter, fifth and so on (see

Fowler 1999: 14). The conception of a whole with multiple parts gave rise to the
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possibility of dividing a whole (and each of its parts) endlessly—which is

reminiscent of the view on continuity advanced by Aristotle (Aristotle 2001: 14).

7 A New Impetus to the Arithmetization of the Continuum

This Aristotelian legacy dominated the history both of philosophy and mathematics

up to the ninetieth century. The introduction of coordinates already enabled

Descartes in introducing algebraic equations and in paving the way for a new

attempt to arithmetize our understanding of space. The historically significant

break-through of this process took shape during the ninetieth century. In a

posthumously published work on Paradoxes of the Infinite, Bernard Bolzano

provided the first building blocks for Cantor’s set theory and transfinite arithmetic.

In paragraph 38 of this work he highlights the circularity entailed in assuming a

(minimal) length (extension) for points. One cannot explain extension in terms of

parts (‘points’) that are already extended (Bolzano 1851: 72). He concedes that a

finite set of points does not generate something extended.

Bolzano contemplated what the meaning of ‘continuous extension’ or ‘a

continuum’ is. He declares:

a continuum is only then present when there is a set of simple objects (of

points …) which are situated in such a way that for every arbitrarily small

distance its environment will contain at least one element of this set (Bolzano

1851: 73).

He once more mentions the (traditional) objection that extension cannot be

resolved into simple points and then states that: ‘‘an infinite set of points could only

then … produce extension when the frequently mentioned condition is met, namely

that in every sufficiently small environment every point contains a neighbor’’

(Bolzano 1851: 75).

On this basis he concludes on the same page that one must continue to insist ‘that

every continuum nonetheless ultimately cannot emerge from anything else but

points and once again only points.’

By introducing two criteria, namely coherence and perfectness (a Dedekind cut

where each point of division is taken twice, as end-point and as starting-point, and

infinite divisibility), Cantor explains that the definition given by Bolzano in § 38 of

his Paradoxien des Unendlichen is incorrect because it highlights only one feature

of the continuum, a characteristic which also covers instances of multiple separated

continua. In his work on Continuity and Irrational Numbers (1872) Dedekind

explored, according to Cantor, the other property of a continuum, perfectness

(Cantor 1962: 194). Cantor’s own definition on this page combines these two

elements, because he defines a point-continuum as a ‘perfect-cohering set.’

When every point of a set is a limit-point and when all limit-points of the set

belong to the set, Cantor calls it perfect (Cantor 1962: 194). As Editor of Cantor’s

Gesammelte Abhandlungen Zermelo here points out that ‘perfectness’ is what

Hausdorff calls ‘gaplessness’ (see also Wieleitner 1927: 42). Cantor refers to his
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well-known example of a perfect point-set, which is nowhere dense in any interval

no matter how small it is, by introducing

the set of all real numbers which are contained in the equation z ¼
c1

3
þ c2

32 þ :::þ cv

3v þ . . . where the coefficients cv arbitrarily have to assume the

values 0 and 2 and where the sequence can consist both out of a finite or out of

an infinite number of members (Cantor 1962: 207).

Bolzano still adhered to the view that the integers are genuine numbers, although

even integers are sometimes designated as magnitudes. This concept of a magnitude

embraces more than numbers, for he says that there are many more magnitudes than

numbers—and then he mentions fractions and the so-called irrational magnitudes,

here designated as expressions, but not numbers (Bolzano 1851: 21). This practice,

which speaks of numbers as magnitudes, reflects the long-standing effect of the

Greek geometrization of mathematics, because when number is treated within a

spatial context magnitudes appear (length, surface and solid). We have noted earlier

that when Euclid mentioned equality he had size (and not shape) in mind (compare

once more Fowler 1999: 12).

Dedekind exceeded this remnant of the Greek legacy by connecting the

expansion of the number concept to what he designates as the four basic operations,

addition, multiplication, subtraction, and division (Dedekind 1969–1872, pp. 5–6).

His approach advanced with a clear awareness of the distinctness of number and

space, because his line of argumentation in 1872 aims at arithmetically following up

what is given with the points present on a straight line. His second paragraph reads:

Comparing the rational numbers with the points of a straight line (Dedekind 1969–

1872, pp. 7–8). The third paragraph deals with the continuity of a straight line

(Dedekind 1969–1872: 8–11) and the fourth with the ‘creation of irrational

numbers’ (Dedekind 1969–1872: 11–16). These considerations directed him to the

‘continuity of the real numbers’ (Dedekind 1969–1872: 16–17).

This line of argumentation of Dedekind is echoed in the contemporary practice to

speak of the number line in the teaching of mathematics.

8 The Number Line

A different conceptual aid found to be fruitful in the teaching of mathematical skills

and an expansion of the number concept of children, is given in what became known

as the number line. It is, inter alia, employed as an aid in learning more about adding

and subtracting. This concept of a number line combines two distinct perspectives:

the numerical and the spatial. Similar to the way in which Dedekind proceeded by

arithmetically following up what is given on a straight line, the conception of the

number line explores the possibility to discern a one-to-one correspondence

between different types of number and particular points on the line. One may

imagine the unit line, encompassing the closed interval [0,1], or even, as it is

sometimes done, a line representing all real numbers continuing endlessly in the

positive and negative directions. Decisive in this regard is the above-mentioned
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standpoint of Bernays rejecting the widespread view that this distinction between a

numerical intuition and a spatial intuition concerns time and space, for according to

him the proper distinction needed is that between the discrete and the continuous

(Bernays 1976: 81).

Viewed from this angle the idea of the number line merely establishes a

correlation between arithmetical and spatial entities. However, given the inclination

present in the thought of Weierstrass, Dedekind and Cantor, namely to arithmetize

mathematics completely, one may ask if there is still, within this frame of mind,

room for an irreducible continuum?

9 Adolf Grünbaum: The Continuum as an Aggregate of Unextended Elements

Grünbaum’s aim is to ‘inquire whether contemporary point-set theory succeeds in

avoiding an inconsistency upon resolving positive linear intervals into extensionless

point-elements’ (Grünbaum 1952: 288). On the next page the two axioms invoked

by Zeno (in his mathematical paradoxes of plurality) are stated, assuming that all

magnitudes are divided into positive and ‘dimensionless’ magnitudes:

1. the sum of an infinite number of equal positive magnitudes of arbitrary

smallness must necessarily be infinite.

2. the sum of any finite or infinite number of ‘dimensionless’ magnitudes must

necessarily be zero (Grünbaum 1952: 289).

In responding to the second element Grünbaum writes: ‘‘For in the second horn

of his dilemma, Zeno avers that a line cannot he regarded as an aggregate of points

no matter what cardinality we postulate for the aggregate’’ (Grünbaum 1952: 289).

He proceeds by arguing that the ‘completely non-metrical character of all the

definitions of dimension theory proper will now become evident and will prove the

independence of dimensionality from length’ (Grünbaum 1952: 293). He specifies

that ‘[E]very non-empty finite or countably infinite point-set on the number axis is

0-dimensional; consequently, the set R of rational real points is 0-dimensional’ too

(Grünbaum 1952: 294).

Grünbaum proceeds:

1. There is a one–one correspondence between the points of an n-dimensional

Euclidean space En and a certain real coordinate system (xi,… xn)

2. If the points x, y have the coordinates xi, yi, then there is a real function d (x, y)

called their (Euclidean) distance given by

d x; yð Þ ¼
X

n

1

ðxi � yiÞ2
( )

1=2

He defines closed, open and half-open intervals: closed ða� x� bÞ; open

a\x\bð Þ and half-open ða� x\bÞ or ða\x� bÞ. He then specifies ‘the length of a

finite interval (a, b) as the non-negative quantity b - a0 (the symbols ‘\’ and ‘=’

Axiomathes (2014) 24:181–205 193

123



here have a purely ordinal meaning—Grünbaum 1952: 296; see also De Barra 1974,

pp. 2–4). The point Grünbaum wants to bring home is that

the set-theoretic addition of a single point to an open interval (or to a half-open

interval at the open end) has no effect at all on the length of the resulting

interval as compared with the length of the original interval (Grünbaum 1952:

296).

In the limiting case where a = b the interval is called ‘degenerate’. Here ‘the

closed interval reduces to a set containing the single point x = a, while each of the

other three intervals is empty’ from which it ‘‘follows that the length of a degenerate

interval is zero’’ (loosely speaking Grünbaum here concludes that ‘a single point has

0 length’—Grünbaum 1952: 296).

At this point Grünbaum employs the difference between (d)enumerability and

non-denumerability—a distinction which we inherited from an initial proof

advanced by Cantor in 1874 and which he later on, in 1889, casted in the form

of his well-known diagonal proof for the non-denumerability of the real numbers

(see the extensive discussion in Strauss 2011). Whereas the integers and fractions

are enumerable—capable of being correlated one-to-one with the natural numbers 1,

2, 3,…, it appeared to be impossible to count all the real numbers in this way.

Grünbaum points out that

the length of an interval which is subdivided into an enumerable number of

subintervals without common points is equal to the arithmetic sum of the

lengths of these subintervals. Thus, both for a finite number and for a countably

infinite number of non-overlapping subintervals, the length L(i) of the total

interval is an additive function of the interval i (Grünbaum 1952: 298).

In connection with Plato’s theory of knowledge we noted earlier that his

transcendent ideal ontic forms do not suffer from the imperfections of the sensory

world of becoming and we compared this situation with the relationship between sets of

number and multiplicities assumed to be present within the physical world. Grünbaum

distinguishes between the infinite divisibility of a continuous whole (totality) and

Cantor’s postulate of ‘an actual infinity of point-elements ab initio’ (Grünbaum 1952:

299). Hilbert describes the potential infinite as being in a process of becoming, such as

the limit concept in analysis where the infinite appears as the infinitely small and

infinitely large [dem Unendlichkleinen und dem Unendlichgroßen], and the actual

infinite as a fixed unity (an infinite totality), such as the totality of the numbers 1, 2, 3, 4,

… (Hilbert 1925: 167). It is intuitively clearer to designate these two kinds of infinity as

the successive infinite (SI) and the at once infinite (AI).

Yet, regarding the question whether or not a line is a continuum of points one first

of all has to specify in which sense the term ‘line’ is understood. Grünbaum

therefore states:

No clear meaning can be assigned to the ‘division’ of a line unless we specify

whether we understand by ‘line’ an entity like a sensed ‘continuous’ chalk

mark on the blackboard or the very differently continuous line of Cantor’s

theory (Grünbaum 1952: 300).
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The assumption is that a line which is open to perception by the senses is

different from an ‘ideal line’ a la Plato or Cantor.

In the Cantorian view a line-stretch is captured in set-theoretic terms by equating

the (actually infinite set of) real numbers with the continuity of a line-stretch.

Grünbaum now explores his aim to argue for an understanding of the extended

linear continuum as an aggregate of unextended elements. He proceeds from the

infinite divisibility of the line and the actual infinite dividedness of sets (Grünbaum

1952: 300). This enables him to see a ‘‘positive interval as the union of a continuum

of degenerate intervals’’ combined with the fact ‘‘that the number of lengths to be

‘added’ is not denumerable.’’

The contrast between determining the length of the union of a denumerable

infinity of non-overlapping intervals and the degenerate subintervals is that the latter

‘‘are the only kind of (non-overlapping) subintervals of which there are non-

denumerably many in a given interval.’’ But note that Grünbaum had to state that no

meaning is assigned to ‘‘forming the arithmetic sum’’ when an attempt is made to

‘sum’ a ‘‘super-denumerable infinity of individual numbers (lengths)’’ (Grünbaum

1952: 301).

Grünbaum proceeds with the attempt to subdivide an interval into a non-

denumerable infinity of such intervals and establishes that they cannot be non-

degenerate, for Cantor

has shown that any collection of positive non-overlapping intervals on a line is

at most denumerably infinite. It follows that the degenerate subintervals which

are at the focus of our interest, are the only kind of (non-overlapping)

subintervals of which there are non-denumerably many in a given interval

(Grünbaum 1952: 301).

Non-denumerability eliminates the possibility of addition, because what cannot

be enumerated cannot be added. Therefore in his theory we cannot meaningfully

determine the length of the finite interval (a, b) as the ‘‘union of a continuum of

degenerate subintervals’’ which is achieved by ‘adding’ the ‘‘individual zero lengths

of the degenerate subintervals.’’ Grünbaum explains that this is an instance which

allows for set-theoretic addition while arithmetic addition is not possible (Grün-

baum 1952: 302).

The two possibilities discussed by Grünbaum depend upon a choice in favour of

one of the two above-mentioned kinds of infinity. If the successive infinite (potential

infinite—SI) is chosen, then the length (measure) of an enumerably infinite point-

set, upon denumeration of the set, is zero (like the set of rational points between and

including 0 and 1). In this case an aggregate of unextended elements cannot

constitute the extended linear continuum. What has been shown, according to

Grünbaum, is

that geometrical theory as here presented does not have the paradoxical feature

of both assigning the non-zero length b - a to the interval (a, b) and

permitting the inference that (a, b) must have zero length on the grounds that

its points each have zero length (Grünbaum 1952: 302).

What has been affirmed are the following four propositions:
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1. The finite interval (a, b) is the union of a continuum of degenerate subintervals.

2. The length of each degenerate (sub)interval is 0.

3. The length of the interval (a, b) is given by the number b - a.

4. The length of an interval is not a function of its cardinality.

Grünbaum believes that this line of argumentation does not reveal any

inconsistency ‘‘against set-theoretical geometry’’ (Grünbaum 1952: 302). A

countable set of degenerate intervals does not constitute an extended linear

continuum, because the addition of denumerably many zeros yields nothing but

zero. The only way to avoid a ‘zero-outcome,’ is to consider the non-denumerable

case, because then addition is not defined, leaving room open for the jump from zero

to a positive (non-zero) value of the interval b - a.

The crux of the entire argument therefore rests upon the non-denumerability of

the real numbers. Grünbaum is fully aware of the necessity of this assumption: ‘‘The

consistency of the metrical analysis which I have given depends crucially on the

non-denumerability of the infinite point-sets constituting the intervals on the line’’

(Grünbaum 1952: 302).

The fundamental question is whether non-denumerability, as the presupposition

of Grünbaum’s argumentation, could be envisaged without an (albeit implicit)

appeal to the irreducible meaning of space? From a historical perspective

simultaneity was always conceived in connection with space. Just recall how

Parmenides described being in spatial terms by affirming that everything coheres in

the present (Diels-Kranz 1959: 235). A speculative side-line introduced eternity as

the timeless present—Plotinus 1969 Part III, Chapter 7). This legacy is continued by

Boethius and more recently by Kierkegaard (the eternal present: nunc aeternum).

Leibniz juxtaposes time—as ‘‘an order of successions,’’ with space—as ‘‘an order of

coexistences’’ (Leibniz 1965: 199) and Kant distinguishes three modes of time,

namely ‘persistence, succession and simultaneity’ (Kant 1787: 219).

Every spatially extended figure, such as a line-stretch, can only exist as a whole

which is present at once. The term whole derives from the Greek word holon and

has as Germanic equivalent the term Ganzheit. This feature of spatial extension may

also be designated with the Latin term totum (totality). Although our basic

understanding of spatial continuity (extension) entails its infinite divisibility, in the

sense of the successive infinite, a deepened perspective may contemplate the actual

infinite dividedness of a straight line, as correctly emphasized by Grünbaum

(Grünbaum 1952: 300).

There is a strict correlation between simultaneity (at once) and wholeness or

totality, entailing that if either of the two is irreducible the other would also be

irreducible. That the whole-parts relation is indeed unique, is acknowledged by

Russell: ‘‘The relation of whole and part is, it would seem, an indefinable and

ultimate relation’’ (Russell 1956: 138). Weyl refers to the understanding of Brouwer

in respect of the intimate link between the whole-parts relation and continuity: ‘‘Not

in the relation of element and set, but in that of the part to the whole Brouwer

observes, in harmony with intuition, the essence of the continuum’’ (Weyl 1966:

74). Laugwitz argues that the legacy of Cantorian set theory has resolved the

continuum into a set of (isolated) points, upon which it then super-imposes, with the
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auxiliary set theoretical construction of environments and open sets, a ‘topology’

within which it is once again possible to speak of ‘continuity’ (see Laugwitz 1997:

266—see also Bell 2000: 263). Weyl arrives at a similar assessment when he affirms

that ‘it belongs to the essence of the continuum that everyone of its parts allows

unlimited further divisions’ and ‘that the concept of a point must be understood as a

limiting idea [Grenzidee]’ where a ‘‘‘point’ is the representation of the limit of a

division continued into infinity.’’ To this he adds a statement similar to the just-

mentioned one formulated by Laugwitz: ‘‘In order to recover the continuous

coherence of points contemporary analysis, since it has broken the continuum apart

into a set of isolated points, had to take recourse to the environment concept’’ (Weyl

1921: 77).

What is primitive and undefined in Zermelo-Fraenkel set theory makes an appeal

to the order of at once as well as to the (spatial) feature of wholeness. In addition to

primitive symbols taken from logic, the only set theoretical primitive symbol

employed by Zermelo-Fraenkel’s set theory is the binary predicate epsilon, which

denotes the membership relation (cf. Fraenkel et al. 1973, pp. 22–23). This explains

why, within Zermelo-Fraenkel set theory, the terms ‘set’ and ‘element’ (member-

ship) are synonymous (Fraenkel et al. 1973: 24). Frege clarified the confusion of

multiplicity and the whole-parts relation by holding that sets contain their elements

(members in Zermelo-Fraenkel set theory) ([), but include themselves and their

subsets (() (see Fraenkel et al. 1973, pp. 26–27).

An individual point within the geometrical continuum does not have character-

istic properties, which implies that it cannot be distinguished from other points—

and the same applies to lines and surfaces. Natural numbers, by contrast, are distinct

and possess properties through which they are distinguished from every other

number, determined by the numerical order of succession (see Laugwitz 1986: 9).

The ‘order-place’ of every number is determined by this order of succession

(captured in what is known as ordinal numbers). Disregarding this order of

succession is reflected in cardinal numbers. Fraenkel et al. also articulate the same

point:

Every integer differs from every other in characteristic individual properties

comparable to the differences between human beings, while the continuum

appears as an amorphous pulp of points which display little individuality

(Fraenkel et al. 1973: 212).

Of course we have to account for the fact that different number types may imitate

crucial spatial features. We may designate these imitations as analogies or as

retrocipations and anticipations, i.e., as backward-pointing and forward-pointing

analogies (see Figs. 1, 2 below). The integers (whole numbers—said to be discrete)

imitate the wholeness property of the spatial whole-parts relation. (In set theoretical

terms a set is said to be discrete set if it is finite or if it is countably infinite.) The

fractions imitate the infinite divisibility of a spatial whole (an extended linear

continuum) while the set of rational numbers conform to the conditions for

denseness. Finally, the real numbers imitate the continuity of an extended linear

continuum (remember that Cantor defined continuity in terms of a perfect-coherent

set—see Cantor 1962: 194).
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Figure 2 highlights the coherence between the aspects of number and space, viewed

from the perspective of the numerical aspect. The idea of an aspect (Fig. 1) accounts

for the uniqueness of an aspect (its primitive and indefinable core meaning or meaning-

nucleus), for its order side (law side—which includes its aspect-specific time order), its

factual side, as well as its inter-connections with other aspects—either backward-

pointing analogies (retrocipations) or forward-pointing analogies (anticipations). All

these structural features are stamped or qualified by die meaning-nucleus of an aspect.

These ‘imitations’ represent analogical linkages between the numerical and

spatial aspects. Some of them may be pointing backward (retrocipatory analogies,

such as the infinite divisibility of a spatial continuum which refers back to the

arithmetical order of succession) and other forward (such as the set-theoretic idea of

a multiplicity of elements bound together into a whole—Cantor). Speaking of the

number of dimensions reflect a numerical analogy on the order side (law side) of the

spatial aspect—a dimension is an order of extension and its correlate (at the factual

side of the spatial aspect) is also specified by a number (length as a one-dimensional

magnitude, surface as a two-dimensional magnitude, and so on). The view advanced

by Bell in respect of integers and the continuity of geometric figures, is in harmony

with this view of the uniqueness and coherence between the aspects of number and

space. He writes:

In mathematics it is the concept of whole number, later elaborated into the set

concept, that provides an embodiment of the idea of pure discreteness, that is,

of the idea of a collection of separate individual objects. … by their very

nature geometric figures are continuous; discreteness is injected into

geometry, the realm of the continuous, through the concept of a point, that

is, a discrete entity marking the boundary of a line (quoted by Buckley 2012:

54).

Fig. 1 The structure of an aspect
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In terms of Fig. 1 a line is a spatial subject (continuously extended) and a point a

spatial object (dependent upon a spatial subject). Although he does not explore the

whole-parts relation as such, Bell does emphasize that continuity entails wholeness:

‘‘We are all familiar with the idea of continuity. To be continuous is to constitute an

unbroken or uninterrupted whole’’ (Bell 2006: 13).

It is worth noting that Dedekind, in his mentioned little work on Continuity and

Irrational Numbers, holds that the continuity of a line is not something in need of

proof, for assuming it is much more like accepting an axiom (Dedekind 1872: 11).

In general an analogy is present when in the moment of similarity the difference

is shown. Both mathematical space and physical space are extended (similarity), but

whereas the former is both continuous and infinitely divisible the latter is neither

continuous nor infinitely divisible (difference). Therefore, within the physical aspect

a retrocipatory analogy referring back to the spatial aspect is found. Against this

Fig. 2 The coherence between number and space viewed from the numerical aspect
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background we can also explain the meaning of the phrase ‘semi-disclosed’ found in

Fig. 2. The integral nature of integers anticipates the spatial feature of wholeness,

but since this feature of wholeness entails the infinite divisibility of a continuous

whole the said anticipation is mirrored back to the order of (infinite) succession on

the law side of the numerical aspect. Therefore it can be said that the fractions

(rational numbers) should be appreciated as an anticipation to a retrocipation

because pointing towards (i.e., anticipating) wholeness is reflected in its infinite

divisibility which immediately points back to the meaning of number. Intuitionism

remains stuck in this semi-disclosed meaning of number (see Brouwer 1952). It is

only when any succession of numbers is viewed as an infinite totality, present at

once, that the full disclosure or deepening of the meaning of number is encountered.

However, the terminology used in Fig. 2 demonstrates that mathematicians, in

capturing the imitated inter-connections between number and space, display a sound

intuition of the nature of and inter-connections between number and space. The only

exception derives from the arithmeticistic aim to reduce continuity to discreteness,

focused on a particular understanding of the real numbers. It should be kept in mind

that in their imitation of continuity every real number remains strictly distinct.

When the term discrete is used in a restricted sense, merely referring to the nature of

the integers, it may best be replaced by an expression such as ‘being integral.’ The

reason for this suggestion is not only that every natural number, every integer and

every fraction is unique, with distinct properties (see once more Fraenkel et al.

1973: 212), but that also every real number is unique (distinct). Laugwitz, in his

frequently quoted work on Infinitesimalmathematik, is therefore fully justified to

call upon Cantor’s definition of a set as every combination of a multiplicity of

properly distinguished elements into a whole (Cantor 1962: 282), in support of his

remark that the discrete rules (Laugwitz 1986: 10). He is therefore also correct in

remarking that from the outset the set concept was constructed in such a way ‘‘that

what is continuous withdraws itself from its grasp’’ (Laugwitz 1986: 10).

Clearly, already the set concept as such entails an element ‘borrowed’ from

space, namely the feature of wholeness or being a totality. Particularly intuitionistic

mathematics acknowledges the whole-parts relation as an essential ingredient of the

continuum (see Weyl 1921: 77; 1966: 74). Intuitionism, however, restricts itself to

the successive infinite (SI—the potential infinite) divisibility of a continuum,

because it rejects the at once infinite (AI—actual infinity). Only when the numerical

meaning of the successive infinite (the SI), is related to the original (and irreducible)

spatial meaning of a whole or totality, is it possible to envisage the idea of infinite

totalities. Cantor simply incorporated the spatial whole-parts relation in his

circumscription of a set (‘combining into a whole’)—in set theory expressed in the

distinction between sets (wholes) and their subsets (their parts).

Bernays holds that the idea of the continuum originally is a geometrical idea,

expressed by analysis in an arithmetical language—and he also underscores the fact

that the totality character of continuity obstructs every attempt to arrive at a

complete arithmetization of the continuum (Bernays 1976: 74, 187–190).

In his discussion of the role of an infinite totality in mathematics Wilder refers to

the one-to-one correspondence between the natural numbers and the squares which
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are seen ‘as forming a complete infinite totality’ (Wilder 1973: 115). A few pages

further he explains it in more detail:

Following initial work by Cauchy, the efforts of Dedekind, Weierstrass,

Cantor, and others were directed intensely towards providing a rigorous theory

of real numbers. Their work involved the assumption of a complete infinite

totality of real numbers and employed various approaches, such as ‘Dedekind

cut’ classes of rational numbers, equivalence classes of certain sequences of

rational numbers (‘Cauchy sequences’), and the like (Wilder 1973: 119).

Postulating ‘the assumption of a complete infinite totality of real numbers’

demonstrates the dependence of this theory of the real numbers upon the irreducible

totality character of the geometrical idea of the continuum. Since Cantor’s proof of

the non-denumerability of the real numbers is fully dependent upon the employment

of the at once infinite, articulated in the form of infinite totalities, this implies that

non-denumerability stands and falls with the acceptance of the at once infinite. But

because the idea of the at once infinite, underlying the idea of infinite totalities,

presupposes the spatial feature of wholeness, which is given at once, this form of

infinity, while presupposing the irreducibility of spatial continuity, cannot be used in

the attempt to reduce spatial continuity to the set of real numbers (or a set of non-

denumerable degenerate intervals). Such a set at most (arithmetically) imitates the

feature of continuity characteristic of the geometrical idea of the continuum.

Since employing the at once infinite (in proving non-denumerability) presup-

poses the irreducible spatial order of simultaneity (at once) as well as the irreducible

feature of spatial wholeness, it is contradictory to claim that the extended linear

continuum could be seen as an aggregate of unextended elements. Although

Grünbaum (1952) acknowledged, as mentioned above, that the ‘consistency of the

metrical analysis which’ he has given ‘‘depends crucially on the non-denumerability

of the infinite point-sets constituting the intervals on the line’’ (Grünbaum 1952:

302), he is patently not aware of the fact that the proof of non-denumerability

presupposes the at once infinite which, in turn, presupposes the irreducible spatial

order of at once as well as the irreducibility of the spatial feature of wholeness

(totality).

Our conclusion therefore is that Grünbaum’s attempt to generate a consistent

conception of the extended linear continuum as an aggregate of unextended

elements failed. Since the extension of a line is one dimensional in nature one can

also say that it is an extended subject in one dimension. Points, with dimension zero,

are, as noted above, objects in one dimension (without extension), delimiting a

straight line. Hilbert accepts point, straight line, and plane as primitive terms in his

axiomatic foundation of geometry (Hilbert 1913: 22; Klein 1939: 160). From a

philosophical perspective it can be said that a spatial point (as object) is dependent

upon the existence of a spatial subject (such as a continuously extended line-

stretch). Therefore it is impossible to account for the spatial extension of a line (as a

spatial subject) in terms of spatial objects (points). Points as spatial objects are

always dependent upon extended spatial subjects.

Euclid’s interest in size, namely when equality in geometry is considered,

highlights the coherence between extension and magnitude. Length is a one
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dimensional magnitude, which is specified by a number. This number is a measure

of extension and not the extension itself. Therefore Hilbert is justified in avoiding

the mistaken view of a straight line, defined as the shortest distance between two

points when, in the fourth of his famous 23 problems presented to the international

mathematics conference held in Paris in 1900, he spoke of a line as the shortest

connection between two points (Hilbert 1970, pp. 302–304). Mac Lane, for

example, still says: ‘‘The straight line is the shortest distance between two points’’

(Mac Lane 1986: 17).

The abstract (‘idealized’) structure and inter-connections between number and

space belong to a dimension of reality inaccessible to sense perception (already

appreciated by Plato in his own way)—and this includes the idea of infinite

totalities. Bernays correctly points out that we do not have a proper visual

representation of infinite totalities. He makes a plea for acknowledging the diversity

in which the field of investigation of mathematics differentiates on the one hand,

and mutual relationships on the other, including relationships such as that between

concrete and idealised structures (Bernays 1976: 188). On the same page Bernays

radically rejects (while disqualifying it as an arbitrary thesis), what he calls the

arithmetizing monism in mathematics, because concepts such as ‘‘a continuous

curve and plane’’ and ‘‘in particular those which are disclosed within topology’’

cannot ‘‘‘be reduced to representations of number.’’ He here categorically holds that

the continuum, which originally is a geometric idea, cannot be arithmetized

exhaustively.

Summarizing the shortcomings in Grünbaum’s argument:

1. The ‘entire argument [of Grünbaum] is dependent upon the non-denumerability

of the real numbers’ (conceded by Grünbaum himself);

2. Proving the non-denumerability of the real numbers presupposes the use of the

‘at once infinite’ (the actual infinite);

3. The idea of infinite totalities underlies the idea of the ‘at once infinite.’

4. The spatial feature of wholeness/totality makes possible the idea of infinite

totalities.

5. Finally, since the argument aims at reducing spatial continuity to an aggregate

of unextended elements by implicitly using the (irreducible) spatial feature of

wholeness/totality, Grünbaum’s argument is self-defeating (contradictory).

10 Concluding Summary: What a Line Really is

Distinguishing between the domains of discreteness and continuity finds support in

the history of mathematics and suggests that apart from acknowledging the

uniqueness of the aspects of number and space, their unbreakable mutual coherence

must be taken into account as well. The meaning of number comes to expression in

its coherence with space and likewise the meaning of space comes to expression in

its coherence with number (see Figs. 1, 2). Bernays mentions the fact that according

to Gonseth the whole field of investigation of mathematics differentiates into
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differently natured ‘horizons,’ while at the same time being related to each other

(Bernays 1976: 188).

A straight line or line-stretch instantiates this mutual coherence straightaway.

Just recall the above-mentioned (still widely accepted) mistaken view of Mac Lane,

namely that ‘‘[T]he straight line is the shortest distance between two points.’’ Also

recall Euclid’s definition: ‘‘a line is breadthless length.’’ The continuous extension

of a line-stretch is not identical to the measure of its extension. Saying that the

distance between two points is 3 inches merely specifies an analogy of the meaning

of number within the spatial aspect. Its infinite divisibility embodies another way in

which the meaning of space points backward to the meaning of number. Within

space the infinite divisibility of a line analogically reflects the successive infinite in

its original (non-analogical) numerical meaning.

Subject to the spatial order of simultaneity a line-stretch is therefore a one-

dimensional factual spatial figure delimited by two points. Points are not extended

and therefore they are not spatial subjects (like lines, planes and volumes) but

spatial objects, dependent upon the (f)actual extension of a line. As a factual spatial

subject a line is continuously extended, while its length, i.e., its one-dimensional

magnitude, is the measure of its extension. If we follow Kant in his (mentioned)

distinction between succession and simultaneity as modes of time, we may qualify

the order-sides of number and space by referring to the numerical time-order of

succession and the spatial time-order of simultaneity (at once).

The spatial subject[line]-object[point] relation, embodied in a (delimited) line-

stretch, presupposes the uniqueness and irreducibility of the totality character of

continuity (Bernays, Brouwer and Weyl), as well as the irreducibility of the spatial

time-order of at once—and at the same time it highlights the mutual coherence

between the aspects of number and space.
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Van den Hoeck and Ruprecht, Göttingen, pp 273–302

Plotinus (1969) The Enneads, Plotinus; translated by Stephen MacKenna; with a foreword by Dodds ER

and an introduction by Paul Henry. London: Faber

Posy C (2005) Intuitionism and philosophy. In: Shapiro S (ed) The Oxford handbook of philosophy of

mathematics and logic. Oxford University Press, Oxford, pp 318–355

Robinson A (1966) Non-standard analysis, Amsterdam 1966

Rucker R (1982) Infinity and the mind: the science and philosophy of the infinite. Birkhäuser, Boston
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