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The history of mathematics began with the discovery of paradoxes in set theory. This leads many 
to believe that the foundation of mathematics began in response to crisis. However, many others 
claim that it began when the development of modern logic occurred. Other accounts of the 
foundation of mathematics are based on the development in nineteenth-century geometry.
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Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was 
motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. 
Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative 
motive for the study of the foundations of mathematics--unification. Work on foundations has shown that diverse 
mathematical practices could be integrated into a single framework of axiomatic systems and that much of mathematics 
could be expressed in a single language. The new framework was the product of an interdisciplinary coalition whose ideas 
resemble those later adopted by the Vienna Circle and logical empiricists.

Without unity existence itself cannot be sustained. (BOETHIUS)

I. Introduction

The standard accounts of the history of the foundations of mathematics claim that the investigation of foundations was 
motivated by the discovery of paradoxes in set theory, a story of crisis that leads one to believe that the primary 
motivation for the study of the foundations of mathematics was epistemological and originated in response to doubts 
about the consistency of mathematics and the truth of some of its branches. This type of presentation frequently is found 
in histories and textbooks (Curry 1963, pp. 3-4; Wilder 1952, pp. 53-57; Eves 1983, p. 474 [cited in Garciadiego 1992, p. 
20]; Russell [1901] 1990; Whitehead and Russell 1910-1913, p. 1). There is now no doubt that this account is incorrect 
(Dreben in Bishop 1975, p. 517; Moore 1978, p. 323; Garciadiego 1992, chap. 2, and 1994, p. 630). Garciadiego (1992) 
argues convincingly that it is Russell alone who interpreted the discoveries of Cantor and Burali-Forti as paradoxes and 
that these were not known as paradoxes until after Russell published The Principles of Mathematics (Russell 1903).(1) 
Both the invention of modern logic and an extensive amount of work on the foundations of mathematics were 
accomplished before any of the paradoxes were discovered. What then, were mathematicians in the late nineteenth 
century trying to accomplish by the invention of algebraic logic, the invention of symbolic logic, the axiomatization of 
arithmetic and geometry, new definitions of number, and the large "formularies" that collected all of mathematics in one 
place?

Standard accounts of the origins of the philosophy of mathematics overemphasize epistemological concerns and ignore 
broader philosophical and disciplinary concerns, especially over the unity of mathematics, that were a strong motivating 
factor for the study of the foundations of mathematics and the development of logic. I do not claim that epistemological 
concerns did not exist--indeed, they appear to have been central to Russell and to have been widely held after the 
discovery of the set-theoretical paradoxes; however, reevaluating the development of scientific philosophy in the twentieth 
century requires a full understanding of issues that led to the study of the foundations of mathematics and the 
development of modern logic. Contextualizing the early work on the foundations of mathematics will lead to a different 
picture of the important role it played in the development of twentieth-century philosophy.

Consider Gottlob Frege, whose work is well known and who, of all those studying foundations, may be the mathematician 
most concerned with epistemological issues. Paul Benacerraf notes that there is something odd about the standard story 
of Frege’s logicism without, however, reaching the same conclusions as I draw:

   When I was young I was taught a number of fundamental propositions: Frege
   was the father of logicism.... I was told too that Frege had invented the
   logic that arithmetic was really only--or at the very least that he was the
   father of modern logic. Had I stopped to think, it might have occurred to
   me to question this all too happy coincidence of discovery and invention.
   At the very least, a decent interval should have been allowed to elapse
   between the discovery (invention) of the laws of logic and the further (?)
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Reconstructing the Unity of Mathematics circa 1900.
   discovery that they were just what had been needed to show that the basic
   laws of arithmetic had really been basic laws of logic all along.
   (Benacerraf 1981, pp. 41-42)

Far from being motivated by the paradoxes, Frege stopped his work on foundations as soon as the paradoxes became 
known. The main point of Frege’s work was to show that mathematics is a priori, in order to fight against psychologism, 
not to prove the consistency of arithmetic or set theory (Sluga 1980, pp. 96-97). It also seems that Frege, like Giuseppe 
Peano, saw his own work as continuous with the rigorization of analysis that had taken place earlier in the nineteenth 
century (Demopoulos 1981). Frege’s story shows that work on the foundations of mathematics must have been 
undertaken for other reasons, not in response to a concern over consistency due to the discovery of the paradoxes.

Although the paradoxes are mentioned by Alfred North Whitehead and Bertrand Russell, they constituted the third of three 
reasons cited as motivating the writing of Principia Mathematica ([1910] 1913, p. 1).(2) The other two reasons given are 
similar to those justifying the earlier work on foundations to be discussed in this article, finding the minimum number of 
primitive terms and axioms and the need to present mathematics in a clear language. Furthermore, although it is true that 
proving the consistency of mathematics was listed as an open problem in Hilbert’s famous lecture of 1900 at the 
International Congress of Mathematicians (Hilbert [1901] 1932-35, p. 299, and 1902, p. 4.47), it is not the only open 
problem, nor was it as pressing for him in this; lecture as it would become at the next International Congress (Hilbert 
1904), after Russell’s publication of the paradoxes, and much later when Hilbert developed his formalist program. Even 
then, the point of Hilbert’s program (Hilbert [1917] 1932-35, 1921) was to show that one can prove the consistency of 
arithmetic by "real" (i.e., finitary) means, not to assuage any fear that arithmetic could really be inconsistent.(3) In his 
pre-1903 writings, Hilbert was most concerned with finding the minimum number of primitive terms and axioms and with 
presenting mathematics in a clear language (e.g., 1921). There is no evidence to suggest that he thought that 
mathematics was in crisis or that some parts of mathematics could be false. Even when epistemological concerns are in 
evidence, there is clearly more to the story of the early work on the foundations of mathematics than merely an attempt to 
prove the consistency of arithmetic.

One alternative account of the interest in the foundations of mathematics is that developments in nineteenth-century 
geometry--such as the development of Boylai-Lobachevskii geometry as an alternative to Euclid’s and especially the 
development of certain techniques in projective geometry--were central to the development of modern logic and to the 
study of the foundations of mathematics (Nagel [1939] 1979). Many commentators, however, assume that there was an 
epistemological crisis in geometry as well--that the certainty of geometry had been shaken by the development of 
non-Euclidean geometries in the nineteenth century and that geometers had to turn to something (logic!) to settle this 
crisis of proliferating geometries. Thus, the development of non-Euclidean geometry has often been seen as the result of 
a growing movement toward more rigor, more explicit definitions, more emphasis on proof, and the ferreting out of implicit 
assumptions, ending with modern logic and mathematical formalism (Bonola 1906, [1912] 1955; Coolidge [1940] 1963; 
Kline 1972). In these accounts, concern over foundational issues is thought to have led to the development of 
non-Euclidean geometries. For example, the famous 2,000-year-long discussion of the Parallel Postulate is seen as an 
attempt to prove the postulate rigorously, implying that geometers were uncertain as to whether Euclid’s postulate was 
true. In his influential history of non-Euclidean geometries, Bonola said, "Even the earliest commentators on Euclid’s text 
held that Postulate V. was not sufficiently evident to be accepted without proof, and they attempted to deduce it as a 
consequence of other propositions" (Bonola [1912] 1955, p. 3). Many historians of mathematics, including Morris Kline, 
have correctly noted that the aim in discussions of the Parallel Postulate was often to find the simplest statements among 
those that are intuitively true or to discover whether the assumption of the postulate is really necessary rather than to 
doubt its truth (Kline 1980, p. 78). Another frequently heard charge--that, while attempting to prove the Parallel Postulate, 
mathematicians were led over and over again into circular arguments by using implicit assumptions that are equivalent to 
it--is misleading at best, since some mathematicians, for example Wallis, explicitly replaced the Parallel Postulate with a 
different assumption. Some contemporary writers have gone so far as to claim that geometers came to a realization that 
they were dealing with a purely formal system and that terms that seemed meaningful and axioms that seemed to be 
assertions actually were neither (Contro 1976; Freudenthal 1957; Steiner 1964; Trudeau 1987, p. 162). Although there 
was extensive discussion of rigor in analysis and although this discussion clearly influenced Frege, Peano, and others, 
claims that modern logic solved a crisis in mid-nineteenth-century geometry are clearly false, because a formal view of 
mathematics did not exist until long after non-Euclidean geometries were developed and accepted.

Certain epistemological issues were central to debates over geometry in the nineteenth century--such as whether 
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geometry is empirical and whether alternatives to Euclid are really possible; however, Coffa and others have shown that 
many issues were primarily semantic, that is, a clarification of the subject matter of mathematics (Coffa 1986, 1991). 
Without entering into the debates over the correct interpretations of his work in this article, Frege’s comments about the 
shocking lack of rigor in arithmetic could be read in this light as well, since he complains that mathematicians are 
confused about the meaning of primitive terms (see esp. Frege [1884] 1953, 1914). In writings on the foundations of 
mathematics, the idea of a crisis is a common theme, though one that has often been immediately questioned (e.g., 
Bishop 1975 and the discussion that follows it). At the very least, many statements about "crises" in the historical 
development of mathematics are overstated, as will be shown below.

Both of these accounts ignore a third motivation for the study of the foundations of mathematics--unification. The 
nineteenth century saw a tremendous expansion of the fields of mathematics, leading to specialization and to the problem 
that mathematicians could not keep up with new developments or even understand all of mathematics. Work on 
foundations showed that diverse mathematical practices could be integrated into a single framework of axiomatic systems 
and that much of mathematics could be expressed in a single language. The logicist thesis went even further toward unity, 
claiming that all of mathematics could be viewed as a single large axiomatic system. The new framework was the product 
of an interdisciplinary coalition--a new group of mathematician-philosophers who regarded mathematics and logic as a 
single discipline, who were inspired by Leibniz’s project of creating a universal language, and who shared a commitment 
to international scientific cooperation. These were scientific philosophers who saw themselves as breaking away from 
idealism and as maintaining a traditional link between philosophy and science, so the unity that they sought was quite 
different from the "monism" of the prevailing turn of the century neo-Hegelians.(4) Although unification is a perennial 
theme, mathematicians had specific reasons to be concerned about unity in the second half of the nineteenth century.

In analytic philosophy, Russell and Frege have dominated in historical accounts of the development of modern logic and 
of the early work on foundations. The development of logic and of the foundations of mathematics has been seen very 
much through Russell’s eyes (or perhaps through the eyes of later standard interpretations of Russell), and for Russell it 
does often appear that epistemological issues are central. For example, when Russell produced a survey of Peano’s work 
for Mind (written in October 1900, prior to his discovery of his paradox) he assured the editor G. E Stout that the issues to 
be discussed are philosophical and indeed cast mathematical issues in an epistemological light. He described the 
rigorization of analysis as a crisis--a discovery that some of mathematics is false (Russell [1901] 1990, p. 352). Peano’s 
work was described as a search for necessary and sufficient premises, a characterization that could be adequate, as long 
as it was made clear that no principles of mathematics were in doubt for Peano and none required further justification.

Like Russell, Frege saw logic as a possible foundation of arithmetic (Frege 1880/81, p. 12). As important as Frege may 
be, the significance attributed to his work and to the effect of the paradoxes so strongly emphasized by Russell has 
"epistemologized" analytic philosophy’s account of the early work on the foundations of mathematics. The idea of the 
unification of mathematics was a more widely acknowledged theme in turn-of-the-century mathematics than was the 
search for epistemological foundations. Some works that emphasized this theme, such as Peano’s Formulario, were 
much more widely read than Frege’s works, even though Frege made most of the major innovations in logic. I aim at a 
more balanced historical account and in my conclusion will return to Frege and Russell to discuss many viewpoints and 
influences they share with other mathematicians and philosophers interested in the foundations of mathematics at the end 
of the nineteenth century.

II. Unity

It is well known that mathematics, like so many other academic disciplines, went through a period of tremendous growth, 
specialization, and professionalization at the end of the nineteenth century (Cajori 1919, pp. 278-86; Gray 1987, p. 57, 
and 1992, pp. 237-38). It has also been widely noted that this progress led to the problems often associated with 
specialization. For example, Morris Kline remarks that:

   Accompanying the explosion of mathematical activity was a less healthy
   development. The many disciplines became autonomous, each featuring its own
   terminology and methodology.... From the nineteenth century on one finds
   mathematicians who work only in small corners of mathematics; quite
   naturally, each rates the importance of his area above all others. His
   publications are no longer for a large public but for particular
   colleagues. Most articles no longer contain any indication of their
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   connection with the larger problems of mathematics, are hardly accessible
   to many mathematicians, and are certainly not palatable to a large circle.
   (Kline 1972, p. 1024)

By the turn of the century, the dramatic expansion of mathematics in the nineteenth century was widely presented as 
problematic:

   The extraordinary development of mathematics in the last century is quite
   unparalleled in the long history of this most ancient of sciences. Not only
   have those branches of mathematics which were taken over from the
   eighteenth century steadily grown, but entirely new ones have sprung up in
   almost bewildering profusion, and many of them have promptly assumed
   proportions of vast extent. (Pierpont 1905, 1:474, as cited in Moritz
   [1914] 1958, p. 110)

    The science [of mathematics] has grown to such vast proportion that
    probably no living mathematician can claim to have achieved its mastery as
    a whole. (Whitehead [1911] 1958, p. 188, as cited in Moritz 1914, p. 119)

The growth and disunity of mathematics were frequently discussed, and various possible solutions were put forth. At the 
end of his famous lecture on open problems in mathematics at the Paris Congress of 1900, Hilbert suggests that the unity 
of mathematics needed to be defended and that logic would come to the rescue:

   The problems mentioned are merely samples of problems, yet they will
   suffice to show how rich, how manifold and how extensive the mathematical
   science of today is, and the question is urged upon us whether mathematics
   is doomed to the fate of those other sciences that have split up into
   separate branches, whose representatives scarcely understand one another
   and whose connection becomes ever more loose. I do not believe this nor
   wish it. Mathematical science is in my opinion an indivisible whole, an
   organism whose vitality is conditioned upon the connection of its parts.
   For with all the variety of mathematical knowledge, we are still clearly
   conscious of the similarity of the logical devices, the relationship of the
   ideas in mathematics as a whole and the numerous analogies in its different
   departments. (Hilbert 1902, p. 478)

Hilbert was not alone in taking logic to be fundamental nor in his claims that it could provide unity.

   The development of abstract methods during the past few years has given
   mathematics a new and vital principle which furnishes the most powerful
   instrument for exhibiting the essential unity of all its branches. (Young
   and Jackson 1911, p. 225, as cited in Moritz 1914, p. 117)

Still, the unity of mathematics was not obviously accomplished at the turn of the century. For example, the question of 
whether Whitehead could sustain the unity that he had achieved in A Treatise on Universal Algebra ([1898] 1960) in a 
projected second volume was raised in a review that appeared in Nature:

   It is, in fact, a comparative study of special algebras, exclusive of
   ordinary algebra, the results of which are taken for granted throughout.
   Such an undertaking has necessarily involved a very great deal of time and
   labour; for, in order to carry it out with any degree of success, it is
   needful, not only to master each separate algebra in detail, but also to
   adopt some general point of view, so as to avoid the imminent risk of
   composing, not one work, but a bundle of isolated treatises. Mr. Whitehead
   has, happily, overcome this difficulty by viewing the different algebras,
   in the main, in their relation to the general abstract conception of space.
   Whether this plan can be consistently followed throughout may be open to
   question: it certainly works very well in this first volume, the keynote of
   which is Grassmann’s Extensive Calculus. (Mathews 1898, p. 384)
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Much later, Principia Mathematica remained incomplete because Whitehead never wrote the projected fourth volume. 
Grattan-Guiness has recently emphasized the question of whether the unity of mathematics was ever proven by the 
logicists (1985, pp. 73-74). Furthermore, as the quotation just cited shows, although there was agreement on the need for 
fundamental principles and concepts to establish the unity of mathematics, there was some disagreement about what the 
fundamental concepts of mathematics were. For example, in 1883 Cayley claimed that "the notion, which is really the 
fundamental one (and I cannot too strongly emphasize the assertion), underlying and pervading the whole of modern 
analysis and geometry, is that of imaginary magnitude in analysis and of imaginary space in geometry" (Cayley 1883, p. 
434; see also Pierpont 1905, p. 474). Twelve years later, Lie would say, "In our century the conceptions substitution and 
substitution group, transformation and transformation group, operation and operation group, invariant, differential invariant 
and differential parameter, appear more and more clearly as the most important conceptions of mathematics (Lie 1895, p. 
261, as cited in Moritz 1914).

Even earlier, in his famous Erlanger Program of 1872, Felix Klein had argued that unity would be obtained through 
projective geometry and invariant theory (see Gray 1992, p. 238, and 1986, chap. 6; Pyenson 1983). By the turn of the 
century, Klein returned to the theme of unity, still seeing the massive expansion of nineteenth-century mathematics as a 
problem and still hoping that unity could be achieved through combining the results of many areas of mathematics "into 
certain general conceptions" ([1893] 1896, p. 134). He now saw "function" as the basic concept that applies everywhere.

The existence of many unifying programs provides evidence in favor of my claim that reconstructing the unity of 
mathematics was a central project of late nineteenth-century mathematicians, even if Klein and other mathematicians 
sometimes changed from one unifying program to another. For example, although Poincare supported Lie in taking the 
concept of a group to be fundamental, he changed from a group theoretical basis to a topological one after reading Hilbert 
(Poincare 1904; Johnson [1979] 1981; Stump 1996). I claim that much of the work on foundations and the formalization of 
mathematics--the axiomatization of mathematical theories, the use of explicit definition, and the reduction of the number of 
primitive terms and of axioms to a minimum--was in response to the problem of growth and specialization in mathematics 
during the nineteenth century. Many mathematicians searched for unifying basic concepts and attempted to reduce the 
number of primitive terms and axioms to a minimum (Peano 1894a, p. 41; Hilbert 1921).

There is little doubt that logic and formalization won the struggle to be taken as fundamental in geometry and elsewhere 
and that they helped mathematicians to reconstruct the unity of at least much of mathematics. By 1913, all known 
geometries were shown to fit into Hilbert’s framework (Gray 1994, p. 906). A recent assessment highlights Hilbert’s 
spectacular success in both reconstructing the unity of mathematics from an axiomatic standpoint and gaining the 
approval of other mathematicians.

   The modern form of the axiomatic method--undoubtedly, under the influence
   of Bolyai and Lobachevsky’s work--has taken shape in the publications of
   Hilbert. The method gained the approval of contemporary mathematicians
   within a short time, and this led first to the renewal of algebra and then
   to the rebuilding of all mathematics. In the proof of a theorem, only a few
   features of the objects of mathematical research play a role; so the proof
   can be applied to other objects also having these features. Using this
   idea, the proof of an assertion is performed without specifying the objects
   involved; instead, those properties of the objects on which the proof is
   based are listed as axioms. A theorem proved in this way will be valid for
   all objects which satisfy the axioms.

      Working in this spirit, several fields of mathematical problems
   considered previously to be separate and remote from one another could be
   treated alike as particular cases of a more comprehensive problem. On the
   other hand, constructive intuition led to the discovery of rather
   interesting special cases, and of new problems outside even the enlarged
   field of questions.

      As the axiomatic method spread to all territories of mathematics,
   classic limits of subdivision dimmed. New classification and reordering of
   the basic mathematical notions were directed by the ideas of structure
   theory. Mathematics has thus become more uniform. The deepening of
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   abstraction, the widening of generalization promoted science further and
   further in exploring reality. (Karteszi 1987, pp. 218-19)

The most important reason for reconstructing the unity of mathematics seems to have been the perceived need to 
compare results in one area with results in another. The project required a total rewriting of mathematics into a single 
language and necessitated the development of techniques that could be used in many, or even all, branches of 
mathematics. Whitehead’s description of his project in his early work A Treatise on Universal Algebra shows very clearly 
what is involved; he would find general methods to connect disparate branches of mathematics, each represented in a 
section of his book. "The various parts of this volume have been systematically deduced, according to the methods 
appropriate to them here, with hardly any aid from other works. This procedure was necessary, if any unity of idea was to 
be preserved, owing to the bewildering variety of methods and points of view adopted by writers on the various subjects of 
this volume" (Whitehead [1898] 1960, p. x).

The Formulario of Peano and his school is emblematic of this grand reworking of all of mathematics into a single format. 
Setting out to write down all of the truths of mathematics in one place, Peano saw his project as a continuation of 
Leibniz’s; all of mathematics would be written in a universal language and would be amenable to proof. In a summary of 
his work on mathematical logic to date (1891), Peano says:

   One of the most notable results reached is that, with a very limited number
   (7) of signs, it is possible to express all imaginable logical relations,
   so that with the addition of signs to represent the entities of algebra, or
   geometry, it is possible to express all the propositions of these sciences.

In a note, Peano continues,

   It thus results that the question proposed by Leibniz has been completely,
   if not yet perfectly, resolved. (Peano 1973, p. 154)

The most important issue for Peano, beyond his belief in universal artificial languages, is that all of the branches of 
mathematics should be understandable and that it should be possible to compare the results in one area to those in 
another (Peano 1901, p. v, and 1894b, p. 52; Galdeano 1897).

III. Geometry

The development of new geometries, especially non-Euclidean geometries, has been taken as marking a real revolution 
in mathematics--indeed, a crisis that led to work on the foundations of mathematics. Although Bolyai, Lobachevskii, and 
Gauss independently developed the first professed non-Euclidean geometry around 1830, the work of Bolyai and 
Lobachevskii received little attention, and Gauss’s remained unpublished. In the late 1860s, Beltrami and Klein provided 
interpretations of Bolyai-Lobachevskii geometry (BL), and Riemann’s work became more widely known. By the 1870s, 
general expositions of non-Euclidean geometries appeared. Ironically, there were no critiques of non-Euclidean 
geometries until after 1870, immediately after the work of Riemann, Beltrami, and Klein had finally put BL on a firm 
foundation (Sommerville [1911] 1970). It was not until Riemann and Helmholtz gave a philosophical interpretation of the 
existence of non-Euclidean geometries, pointedly arguing that their existence refuted Kant’s philosophy, that 
non-Euclidean geometries were widely discussed and debated (Nowak 1989). At the turn of the century, Peano and 
Hilbert wrote new axiom systems for geometry.

The debate over non-Euclidean geometries after 1870 is not indicative of a foundational crisis as is suggested in many 
standard histories of mathematics. Indeed, the consistency of BL and the unprovability of the Parallel Postulate was 
already accepted by mathematicians before the work of Riemann, Beltrami, and Klein, even though everyone admits that 
the work of Bolyai and Lobachevskii is woefully inadequate from a logical point of view. Bolyai and Lobachevskii assumed 
the acute angle hypothesis and derived consequences; they developed a non-Euclidean geometry by proving theorems 
but had little to say about consistency. For example, in his first paper, Lobachevskii claimed that his geometry was 
consistent because he obtained its trigonometric formulas from the corresponding formulas of spherical geometry by 
multiplying the sides of a triangle by an imaginary unit, but all he proved is that these formulas are consequences of the 
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assumptions of BL. To prove consistency, all the formulas of BL must be shown to be consequences of some other 
geometry, a proof which Lobachevskii did attempt in a later work, without arriving at a complete proof (Rosenfeld 1988, p. 
227-28).

The argument given in textbooks of the time was on an even less sound logical footing. It was simply stated that the 
attempt to prove the Parallel Postulate had gone on too long, and that the repeated lack of success shows that it is 
impossible (a traditional argument, often mentioned in the French literature, that goes back to d’Alembert and Klugel). 
Before the work of Helmholtz, Beltrami, and Klein had appeared, Jules Houel, the French mathematician who was as 
responsible as Riemann and Helmholtz for making the existence of non-Euclidean geometries known by translating all of 
the principal texts into French and tirelessly advocating them, claimed that it was already clear that the Parallel Postulate 
was independent and that BL was consistent: "Research which is already old, but which has gone unnoticed until recently, 
has placed beyond doubt that the proof of Euclid’s eleventh axiom (our fourth axiom) cannot be deduced from the 
preceding axioms. This discovery was made around 1829 by two geometers, Lobachevskii and J. Bolyai" (Houel 1867, p. 
72).(5) Manning’s textbook of 1901 takes exactly the same point of view, and it is most striking that he does not mention 
the models of BL that had been given by Beltrami, Klein, and Poincare (Manning 1901). There is no evidence that 
Riemann, Beltrami, or Klein was responding to a "crisis in the foundations of geometry." Quite to the contrary, 
mathematicians seemed to have accepted the consistency of BL geometry and the impossibility of proving the Parallel 
Postulate before the work of Riemann, Beltrami, and Klein had put the non-Euclidean geometries on a sound logical 
footing. Therefore, it seems clear that something other than the invention of modern logic is behind the acceptance of the 
consistency of BL. Geometers in this period did not treat geometries as pure uninterpreted axiomatic systems, and yet 
they accepted the consistency of BL. The percentage of geometrical works devoted to the theory of parallels declined 
sharply after 1870 and continued to decline through the last decades of the nineteenth century (see table A1).

From 1870 on, heated philosophical discussions ensued, revolving around the issue of which geometry is true and how 
geometry is known; however, this discussion can certainly be considered continuous with earlier philosophical discussion 
of mathematics and of a priori knowledge in general. The fact that empiricism in geometry had already been championed 
by Mill, for example, shows that there is more continuity than might be expected in the philosophical debate over Euclid, 
and in that sense, the revival of empiricism by Riemann and Helmholtz can hardly be seen as revolutionary. A revolution 
did occur in philosophy however, when formalism in mathematics took hold, but, interestingly many of the major actors in 
that movement did not see a connection to geometry. Even in mathematics proper, the development of spherical 
geometry was not considered to be revolutionary at all, because it was not seen to conflict with Euclid. In fact, spherical 
geometry conflicts with Euclid every bit as much as BL (Gray [1979] 1989, p. 71). It was only when Bonola and other 
historians started drawing philosophical consequences from the development of geometry in the nineteenth century that 
the revolution that had already taken place could be perceived.

The points raised above cast doubt on the claim that geometers used logic to end a crisis in the 1870s. In a classic and 
widely cited paper, Nagel reversed the order of the crisis account and argued that the development of analytic techniques 
in geometry provided the means for developing formal axiomatics at the turn of the century basically by showing that 
geometric primitives are uninterpreted or reinterpretable and that the abstract relationships given in the axioms remain the 
same under different interpretations ([1939] 1979; see also Bourbaki 1970 and Freudenthal 1974, both of whom agree 
with Nagel). However, it is far from clear to what extent the development of nineteenth-century geometry influenced the 
modern conception of logic and mathematics. Indeed, we have already seen that another standard account gives the 
discovery of paradoxes in set theory, not the discovery of non-Euclidean geometries, as the motivation for formalization 
and the study of the foundations of mathematics. Frege maintained, notoriously that there was a profound difference in 
the grounding of geometry and that of arithmetic (Bynum 1993), and he did not claim that geometry is part of logic. 
Furthermore, Whitehead and Russell did not mention geometry as a motivation for their study of the foundations of 
mathematics in Principia Mathematica, despite the fact that Russell was well aware of the development of non-Euclidean 
geometries and had written quite a lot about its philosophical implications. Of course, by then Russell had the paradoxes 
as a motivation. Thus, those studying the foundations of mathematics immediately after the turn of the century did not see 
a revolution in geometry as the basis for their new work. To this day, textbook justifications of the study of the foundations 
of mathematics do not include geometry. By striking contrast, the contemporary undergraduate textbook presentation of 
geometry does include a heavy dose of formal axiomatic methods.

Both the crisis account and Nagel’s account strongly link the history of the discussion of the Parallel Postulate and 
discovery of non-Euclidean geometries with the development of mathematical logic and discussion of the foundations of 
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mathematics. This linkage is also stressed by contemporary geometry textbooks that treat the discussion of the Parallel 
Postulate and the consistency of BL as a historical example of a problem that can be solved with modern axiomatics and 
logic, with the geometry sometimes getting less treatment than axiomatics (Meschkowski 1965; Greenberg 1980; Trudeau 
1987; Perry 1992). Nothing is necessarily wrong with this approach, as long as it is not claimed to be historical; in fact, it is 
interesting and important to note that the development of non-Euclidean geometries should be taken to be such a good 
pedagogical topic for introducing axiomatics, but it is equally noteworthy that earlier textbooks developed systems of 
non-Euclidean geometry without formal proofs of consistency (Manning 1901; Coolidge 1909).

The redescription of the development of non-Euclidean geometry allowed by a formal conception of mathematics became 
the standard, if whiggish, history. It is well known that histories of the sciences are often used to legitimate new sciences 
or revolutionary changes (Graham, Lepenies, and Weingart 1983), and the use of the history of the Parallel Postulate to 
justify the study of the foundation of mathematics and formal logic in elementary geometry textbooks is surely an example 
of such legitimation, especially since the original discussion of the foundations of mathematics did not include discussion 
of geometry as a justification. Furthermore, in this case, history, as well as logic, helped formalize mathematics. The 
narrative reconstruction of the development of geometry in the nineteenth century is part of the content of science just as 
much as the logical techniques are. By this I mean quite straightforwardly that the history of non-Euclidean geometry is 
part of what is taught in standard university courses in geometry and that a connection between the history of the 
discussions of the Parallel Postulate, the need for formal axiomatic systems, and the demand for rigorous proof all form 
part of this standard curriculum.

There is another positive side to this narrative reconstruction that should be mentioned, however, since it shows the 
power of the study of foundations occurring at the turn of the century. Diverse mathematical practices could be integrated 
into a new framework and justified by powerful methods in compelling ways. The consistency of BL could be proven with 
new rigor in the new logical framework, and a new narrative reconstruction of what had happened in geometry in the 
nineteenth century could be written. So, both a new logical and a new historical unity of geometry was achieved by the 
turn of the century. Bonola’s work contributed to the broader unity of mathematics movement by showing a unified logical 
development of geometry. Histories do not, however, always show the unity of a science or that later developments in a 
science incorporate what came before. As Rachel Laudan has shown in a survey of early histories, contrary to what would 
be expected, histories of science were only rarely used to show the unity of science (1993, p. 21). Furthermore, the 
situation in nineteenth-century geometry that I have been describing is unique. The proliferation of geometries and the 
demands of disciplinary specialization at the end of the nineteenth century motivated the mathematicians’ quest for 
reconstructing the unity of mathematics.

The two early influential histories of the non-Euclidean geometries are those of Stackel and Engel, published in German in 
1895, and of Bonola, published in Italian in 1906, expanded and translated into German in 1908, reprinted in 1919 and 
1921, translated into English in 1912, reprinted in 1938 and 1955, and translated into Spanish in 1945. Although Stackel 
and Engel did most of the original historical work, Bonola’s book was much more widely disseminated and has become 
the standard history of the development of non-Euclidean geometry A statement from Carruccio, if taken literally and as if 
he were speaking for the whole mathematical community rather than as it was intended, could serve to highlight the 
impact of Bonola’s history: "When nothing is said to the contrary, we refer always to Bonola" (Carruccio [1951] 1964; table 
A2 below).

What was the motivation for writing, translating, and publishing the history of non-Euclidean geometries at the turn of the 
century? There seem to have been two main motivations: The first was to convince philosophers that non-Euclidean 
geometries are consistent, an issue that the mathematical community had already settled by 1870. The second was to 
draw philosophical lessons from the development of non-Euclidean geometries and to give teachers of mathematics new 
tools for pedagogy. Both of these motivations required that the development of non-Euclidean geometries be described in 
a form that would be useful. It appears that describing the developments as a revolution occurring in response to a crisis 
was just what was needed to show the limits of the rational intuition used by classical mathematicians and philosophers 
and to convince students that they should learn how to express themselves in symbolic terms and to formulate rigorous 
proofs.(6)

In his introduction, Stackel affirms that he wrote his history partly as a conscious attempt to convince philosophers. "If we 
have so far directed ourselves to the mathematicians, we would also like to bring our book to the attention of 
philosophers, for the theory of parallels is closely connected with various foundational problems of philosophy; as Gauss 
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has said, the central question touches directly upon Metaphysics" (Stackel and Engel 1895, p. vi).(7) Bonola, on the other 
hand, says very little about his explicit motivation for writing his history of the non-Euclidean geometries. Nonetheless he 
does assert that it was written in response to "the interest felt in the critical and historical exposition of the principles of 
various sciences" ([1912] 1955, p. vii). The term "historical-critical" usually refers to biblical exegesis and also dates, for 
example, to Bayle’s famous encyclopedia (Bayle 1695-1702; Krentz 1975). It started appearing in histories of science and 
of philosophy in the mid-nineteenth century and was fairly common by the end, with Mach’s Science of Mechanics (1891) 
being the most famous example. At the turn of the century, the Bulletin of the American Mathematical Society was 
subtitled "A Historical and Critical Review of Mathematical Science." The term may have been so widely used and 
commonplace that it lost its specific meanings; however, it is clear that "historical-critical" referred to an analytic stance by 
which the :reliability of sources was to be examined and by which historical texts were to be understood in their context. 
The historical-critical method is associated with the Enlightenment and, in the case of Bayle, with strict empiricism, which 
may explain Mach’s interest in the term. Although it is unclear exactly what Bonola or Mach had in mind in using these 
terms, it is clear that both had the intention of using modern historical methods.

Enriques, in the preface he wrote for the English translation of Bonola’s book, is considerably more revealing than Bonola 
was himself.

   It seems to me that this account, although concerned with a particular
   field only, might well serve as a model for a history of science, in
   respect of its accuracy and its breadth of information, and, above all, the
   sound philosophic spirit that permeates it. The various attempts of
   successive writers are all duly rated according to their relative
   importance, and are presented in such a way as to bring out the continuity
   of the progress of science, and the mode in which the human mind is led
   through the tangle of partial error to a broader and broader view of truth.
   This progress does not consist only in the acquisition of fresh knowledge,
   the prominent place is taken by the clearing up of ideas that it has
   involved; and it is remarkable with what skill the author of this treatise
   has elucidated the obscure concepts which have at particular periods of
   time presented themselves to the eyes of the investigator as obstacles, or
   causes of confusion.... May his devotion stimulate others to pursue with
   ideals equally lofty the path of historical and philosophical criticism of
   the principles of science! Such efforts may be regarded as the most fitting
   introduction to the study of the high problems of philosophy in general,
   and subsequently of the theory of understanding, in the most genuine and
   profound signification of the term, following the great tradition which was
   interrupted by the romantic movement of the nineteenth century. (Bonola
   [1912] 1955, pp. iii-iv)

The references to the eighteenth-century view of progress and the unity of science are particularly significant because 
they highlight the fact that those studying the foundation of mathematics had found a way to unify mathematics, 
something that had been lost in the great expansion of mathematics during the nineteenth century and in the "romantic" 
attacks on science in the late nineteenth century. Part of this gain in unity, however, comes from Bonola’s reformulation of 
geometers’ ideas in axiomatic terms and his highlighting of the issues seen as important at the turn of the century. Gray’s 
criticism of the standard history of non-Euclidean geometries--Bonola’s work and that of others--matches Enriques’ 
assessment very well. Gray says that the main problem with the standard account is its tendency to regard the entire 
history of the Parallel Postulate as comprising a single issue-the foundations of geometry (Gray [1979] 1989, pp. 169 and 
149150; 1987, p. 57). Thus, Bonola’s emphasis on the foundational issues, which Gray justly criticizes as whiggish, is 
praised by Enriques for clarifying the issues and providing a unified framework for evaluating the history of geometry? 
There is no doubt that Bonola’s book has been read from Enriques onward as contributing to the foundations of geometry.

It is also clear that these influential histories of the non-Euclidean geometries were written and published with pedagogy in 
mind. Here Carslaw, the English translator of Bonola’s text, speaks for the mathematical community. "Recent changes in 
the teaching of Elementary Geometry in England and America have made it more than ever necessary that those who are 
engaged in the training of the teachers should be able to tell them something of the growth of that science" (Bonola [1912] 
1955, p. v). There is also no doubt that the pedagogical literature was influenced by the standard historical account of the 
development of the non-Euclidean geometries and that Bonola’s account was influenced by the study of the foundations 
of mathematics. As mentioned earlier, the standard undergraduate course in geometry now includes a strong dose of 
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formal axiomatics, but it also includes a very surprising amount of history, far more than is typically found in mathematical 
textbooks on other topics. Increasingly, formal logic and axiomatics are being introduced independently of geometry in 
newer textbooks so that these new texts may serve a dual function as an introduction both to mathematical logic and to 
geometry. At the same time, the historical accounts are being left out of these textbooks, so that the linkage forged by 
mathematicians writing history at the turn of the century between mathematical logic and geometry is now being 
obliterated (see table A2).

IV. Conclusions

Five themes recur in the works of those involved in the foundations of mathematics and the development of new logics, 
themes that tie this work to broader movements in science and philosophy. The foundations of mathematics and the new 
logics were the product of an interdisciplinary coalition, a new group of mathematician-philosophers. Frege, Whitehead, 
Peano, Russell, Couturat, and, to a lessor extent, Boole, Schroder, and Hilbert partially share a set of interconnected 
influences and general philosophical outlooks (enough to maintain a family resemblance): the strong influence of Leibniz, 
logicism, interdisciplinarity (taking degrees in both philosophy and mathematics or publishing in both fields), belief in the 
fundamental unity of mathematics, and internationalism. Many of these ideas resemble those later adopted by the Vienna 
Circle and logical empiricists.

A. The Leibnizian Revival

Peano, Couturat, Frege, and Russell all cited Leibniz frequently. At the turn of the century, Russell and Couturat 
independently wrote pioneering works on the logic of Leibniz (Couturat [1901] 1969; Russell 1900), and Couturat 
discovered and published previously unknown logical writings of Leibniz, the so-called Hanover manuscripts (Couturat 
1903). The fact that Leibniz was so widely cited at the turn of the century is somewhat surprising, in light of the fact that 
his logical writings had been ignored earlier. For example, writing in 1854, Boole mentions practically everyone except 
Leibniz, providing evidence for the contention that only at the turn of the century was Leibniz considered the premier 
logical precursor (Boole [1854] 1958). We find in Leibniz an element of each of the themes highlighted here. At least in the 
work of the new Leibniz discovered at the turn of the century, logic plays a central role, echoing logicism. As the 
coinventor of the calculus and the developer of a relational theory of space that rivaled Newton’s absolute theory and 
other scientific work, Leibniz certainly represented scientific and, especially, mathematical philosophy. Compared to 
claims of the most famous advocate of "universal harmony," the unity of mathematics seems a very modest claim, indeed. 
And finally, Leibniz invented the idea of a universal language and of a universal calculator, believing that all disputes could 
be settled by rational means. Perhaps advances in logic made Leibniz’s claims appear more tenable, or perhaps those 
working on logic simply used Leibniz as an emblem, finding all of the themes they supported already personified in him. At 
the turn of the century, Leibniz was suddenly an oft-cited precursor, becoming a model for what it was to be a philosopher.

B. Logicism

Those working on algebraic logic, such as Boole, Peirce, Jevons, Venn, Schroder, and Whitehead, saw themselves as 
making logic more mathematical. Conversely, according to the standard reductionist reading of Frege and Russell’s 
logicism, mathematics (for Frege only arithmetic) should be seen merely as a branch of logic. So, is logic a branch of 
mathematics, or is mathematics a branch of logic? Although Peano agreed that mathematics should be more logical, he 
maintained that mathematics and logic are separate disciplines. Indeed, Peano’s main critique of algebraic logic is that 
mathematical symbols were used for logical notions. His great advance over algebraic logic was to introduce special 
logical symbols and to thereby make distinctions that had been ignored previously, such as the distinction between the 
various uses of "is" and the distinction between set membership, proper inclusion, and improper inclusion 
(Grattan-Guinness 1984, pp. 7-8). On the other hand, Couturat sometimes equated logic and mathematics, creating either 
a grand synthesis of the two traditions or else a terrible confusion (Couturat 1904, pp. 1046-47; 1905, p. 5).(9) Even if 
logicism no longer seems a viable project, all of these authors strongly linked logic and mathematics, forging links that 
endure to this day.

C. Scientific Philosophy

The philosophers working on the foundations of mathematics were scientific philosophers who saw themselves as 
breaking away from idealism and as maintaining a traditional link between philosophy and science. Grattan-Guiness has 
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said that there were very few in the period who were truly both mathematician and philosopher, listing only Boole, De 
Morgan, Peano, and Whitehead and excluding both Russell and Frege as well as Couturat (Grattan-Guinness 1988, p. 
79). It is true that rather than create original mathematics, Couturat gave a philosophical defense of Cantor’s set theory 
and that, despite evidence to the contrary (Boolos 1994), Russell is often thought to have contributed advances only in 
logic proper--but, significantly, they each took degrees in both mathematics and philosophy. Pierre Boutroux gave a very 
telling description of Couturat as "conforming to the classical tradition," given that he had completed his philosophical 
education, by taking a degree in a science (1892, quoted in Sanzo 1983, p. 70; see also Giuculescu 1983). Surprisingly, 
this suggests that there was only a very brief period in the nineteenth century when it would have been unusual for a 
philosopher to study a science. Russell, of course, more than anyone, became the model for philosophers of 
mathematics, having written his dissertation on geometry before turning to arithmetic and set theory and having 
consciously based his philosophy on results from modern logic.

Frege’s critique of psychologism (clearly a philosophical theory of mathematics) was very influential, especially through 
Edmund Husserl. Furthermore, his paper "On Sense and Reference" became a seminal work in the philosophy of 
language. Although his philosophical papers were narrow in scope, they had a large impact on philosophers in the 
twentieth century. Peano and his collaborators were involved in foundational issues, and Peano did attend the 
International Philosophy Congresses in 1900 and 1904, even though he apparently took practically no interest in 
philosophical issues, per se. Hilbert believed that both philosophical and mathematical investigations were necessary to 
complete his program, taking quite an active part in supporting the hiring and promotion of scientific philosophers at 
Gottingen, even if his own works were not philosophical (Peckhaus 1994). In spite of these limits and qualifications, the 
level of cooperation between philosophers and mathematicians at the turn of the century was remarkable and 
unprecedented. The process of developing this interdisciplinary coalition led to the creation of the philosophy of 
mathematics as a specialization in philosophy. As it was later developed by the Vienna Circle and logical empiricists, 
knowledge of modern logic and the foundations of mathematics became the cornerstone of scientific philosophy.

D. The Unity of Mathematics as a Project

The quotations given in Section II above demonstrate that, by the late nineteenth century, many mathematicians felt the 
need to unify mathematics, but how do Frege and Russell stand on this issue? Since a strong form of the unity of 
mathematics follows from logicism--all of mathematics could be seen as one large axiomatic system--one might think that 
reconstructing the unity of mathematics could be taken as central to their project as well. However, the unity of 
mathematics is not a theme found in their work, although Frege does claim in the preface of the Begriffsschrift that it is 
possible to write all of mathematics in a formula language such as his (Frege [1879] 1972, pp. 105-6). Frege and Russell 
seem to have had other motivations and did not often express a need for unity. The fact that the unity of mathematics 
follows from logicism is not a sufficient reason to attribute to them an interest in the unity of mathematics (May 1975).

Whitehead, Peano, Couturat, Hilbert, and Boole all saw the unity of mathematics as very important and cited the 
reconstruction of the unity of mathematics as one of the aims of their works. I noted above that it is questionable whether 
the unity of mathematics has ever been proven; however, since formal axiomatics provided the clearest and most 
powerful framework for proving the consistency of BL and of other axiomatic theories, it did allow a redescription of the 
development of non-Euclidean geometry, a description that has become the standard account,(10) The existence of this 
standard account shows what the study of foundations achieved. Only the study of the foundations of mathematics with 
formal axiomatic methods allowed a coherent cumulative picture of nineteenth-century geometry to be drawn. The 
nineteenth-century revolution in geometry did have profound implications for twentieth-century philosophy; the logical 
positivists took all scientific theories to be expressible as uninterpreted axiomatic systems then given a physical 
interpretation through bridge principles. Alberto Coffa argues convincingly that the linguistic conventionalism of Carnap 
and Wittgenstein came straight out of the development of it formal conception of geometry (Coffa 1986), though I would 
argue that the formal conception of geometry that influenced the logical positivists derives from a particular reading of 
Poincare and Einstein’s physics, not directly from pure mathematics. In the early twentieth century, the logical positivists 
used modern mathematical logic to carry out a central part of their project of developing a scientific philosophy. It allowed 
them to eliminate intuitive elements from mathematics and science in general and to replace them with explicit rules of 
construction.

E. International Scientific Cooperation and Universal Languages
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The turn of the century was a time of widespread international scientific cooperation, marked by a remarkable amount of 
travel by scientists to international conferences and World’s Fairs, by the development of new organizations, and by the 
work on standards (Lyons 1963, pp. 223-45). Many of the above quotations are from the International Mathematical 
Congresses that began with sessions as part of the World’s Fair in Chicago in 1893 and continued more formally in 1897 
in Zurich, 1900 in Paris, 1904 in Heidelberg, 1908 in Rome, 1912 in Cambridge, and so on (Albers, Alexanderson, and 
Reid 1986). The first formal congress was purposely held in neutral Switzerland, after which the site was rotated among 
countries. The First International Philosophy Congress was organized in 1900 in Paris under the auspices of the Revue 
de Metaphysique et de Morale, and Paris was also the site of another World’s Fair that year, one of the biggest ever. As is 
well known, Russell, Couturat, Peano, and others attended both the mathematics and philosophy congresses in Paris. 
Russell met Peano for the first time at the Paris Congresses, asked for all his works, adopted his notation, and 
immediately began working on symbolic logic within Peano’s system.

The bibliographic projects started in conjunction with the World’s Fair in Paris in 1889 (Repertoire Bibliographique des 
Sciences Mathematiques 1893) and by the Royal Society in London, which was both broader in scope and more broadly 
international (Provisional International Committee [1901] 1968), provide further examples of international scientific 
cooperation. The goal of both organizations was to publish a complete list of mathematical literature, as well as to develop 
classification schemes that would provide a degree of organizational unity to mathematics. The role of these publications 
in unifying mathematics and mathematicians was recognized at the time (Galdeano 1897). International mathematical 
cooperation reached its zenith with the congresses and with the joint publication in German and French of the 
Encyclopedia of Mathematical Knowledge (Meyer 1899-1916; Molk 1904-16) but disintegrated during World War I, as did 
cooperation in many international scientific organizations (Crawford 1992; Schroeder-Gudehus 1990). The Encyclopedia 
was never completed, and congresses did not take place in 1916 or from 1937 to 1949. When the congresses resumed 
after World War I, they became politicized, with most mathematicians from Germany and other central powers excluded 
from Strassbourg (1920) and Toronto (1924). When the congresses were again opened to all mathematicians in 1928 
(Bologna), there was a call by some German mathematicians to boycott them. Hilbert personally led a delegation of 
German mathematicians to the congress in order to break the boycott, speaking in favor of internationalism in 
mathematics during his address (Albers et al. 1986, p. 20; Reid 1970, p. 188).

Peano and Couturat were both strong supporters of artificial universal languages. At the first mathematical congress in 
Zurich, Couturat set up a commission to study the use of artificial auxiliary languages in mathematics. Although the need 
to find a common language was taken quite seriously by mathematicians at the turn of the century, only a few went as far 
as Peano and Couturat. Peano published his works in Latin and French, as well as Italian, in a conscious attempt to be 
more internationalist, and invented the artificial auxiliary languages Latino Sine Flexione and Interlingua for his 
publications. Couturat was involved in the Esperanto movement but broke off to support another artificial auxiliary 
language, Ido, that he advocated with his journal Progreso (Lyons 1963, pp. 208-15). The other mathematician 
philosophers mentioned did not follow Peano and Couturat in their support of auxiliary languages, but Russell, at least, did 
become an internationalist in a political sense. In an exchange of letters around 1900, Couturat took Russell to task for his 
support of the Boer War and for not supporting free trade, a position that at the time was equated with internationalism. 
Russell very quickly came around to Couturat’s position; indeed, free trade became the first of the many controversial 
liberal causes that Russell would champion (Rempel 1979; Russell 1985). In several letters to Couturat, Russell also 
acknowledged that an international language for science would be useful and expressed support for Couturat’s 
efforts.(11)

The turn of the century represented an end and a new beginning, a time of grandiose displays of science and technology 
and of antiscience backlash (Paul 1968). There were mobs at the sight of an airplane; larger and larger crowds at the 
world’s fairs; monumental projects such as railroads, tunnels, bridges, electrification, and plumbing; international scientific 
cooperation; celebration of colonialism; "scientific study of primitive people"; and great claims of progress. It also seems 
that the turn of the century marked a return of some philosophers to science. The cooperation between philosophers and 
mathematicians at the turn of the century led to the creation of the philosophy of mathematics as a specialization in 
philosophy, and knowledge of modern logic and the foundations of mathematics became the cornerstone of scientific 
philosophy.

Standard histories of mathematics and of analytic philosophy maintain that work on the foundations of mathematics was 
motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. I 
have argued that the study of the foundations of mathematics was motivated in part by a compelling interest in the 
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unification of mathematics on the part of mathematicians who, in response to the fragmentation and rapid expansion of 
nineteenth-century mathematical practice, had particular reasons for being concerned with the unity of their discipline. The 
work on foundations provided mathematics a new thematic unity. Despite Godel’s demonstration of the impossibility of 
proving the consistency of arithmetic by finite means, the formalist and logicist programs still succeeded in providing 
methods that enabled mathematicians and philosophers to clarify the logical structure of mathematics. The standard 
historical accounts that reinforce the idea of the unity of mathematics stemming from the study of foundations were used 
to legitimate the formal conception of mathematics.

Reevaluating the development of scientific philosophy in the twentieth century requires a full understanding of issues that 
led to the study of the foundations of mathematics and the development of modern logic. Contextualizing the early work 
on the foundations of mathematics leads to a different picture of the important role it played in the development of 
twentieth-century philosophy. The study of the foundations of mathematics is connected to broader philosophical and 
disciplinary concerns and is not reducible to epistemological concerns within philosophy. Furthermore, the collaborative 
work of nineteenth-century philosophers and mathematicians who saw philosophy as a science, who used science to 
answer philosophical questions, belies the widespread assumption that scientific philosophy originated with the logical 
positivists of the 1920s and 1930s, undermining the logical positivists’ claims to priority in making philosophy scientific.

I would like to thank Zdenek Hedrlin, Don Howard, Masato Mitsuda, Eric Palmer, George Reisch, Andrea Smith, and an 
anonymous referee for helpful comments on this paper and the University of San Francisco faculty development fund for 
support. Half of this article was developed at an National Endowment for the Humanities Summer Seminar directed by 
Rachel Laudan, and earlier versions of parts of the article were read at the History of Science Society meeting in 1994 
and at the History of the Philosophy of Science meeting in 1996.

(1.) of course there were some mathematicians who were critical of set theory prior to 1903, notably Kronecker.

(2.) Rodriguez-Consuegra gives an excellent overview of Russell’s motivations for studying foundations and many 
references to other literature (Rodriguez-Consuegra 1991, esp. pp. 185-89).

(3.) Michael Hallett emphasizes that Hilbert had multiple aims and contrasts them with those of Frege (Hallett 1994, pp. 
163-65). Hallett also notes that the unity of mathematics was an important issue for Hilbert in that he emphasized the use 
of the same logical methods in all branches of mathematics (Hallett 1994, pp. 170, 176-77; see also Detlefsen 1994, p. 8).

(4.) Grattan-Guiness claims that it was precisely this monism that impeded many philosophers’ understanding of the new 
logic, so it is important to distance the argument here from that kind of unity (1986, p. 129). Of course, an inability to 
understand modern mathematics was another major impediment. We now know that Russell took longer than was once 
thought to break with idealism (Griffin 1991; Hager 1994; Hylton 1990; Rodriguez-Consuegra 1991), but whether he was 
influenced by monism is a question that cannot be addressed in this article. Boole may be another figure who advocated a 
different kind of unity than is discussed here, but there is debate over his views (cf. Laita 1980 and Smith 1983, p. 28). For 
recent reflections on the theme of unity, see Galison and Stump (1996). The idea of the unity of mathematics also 
continues well beyond the period discussed here. For example, Beaulieu points out that the most widely read and 
influential of Bourbaki’s works strongly emphasized the unity of mathematics and that showing the unity of mathematics 
was an important part of their program (1994, p. 242; Bourbaki 1948, 1950). Even more recently, category theory has 
been seen by some as an intriguing unifying program (Mac Lane 1988).

(5.) "Des recherches deja anciennes, mais qui ont passe inapercues jusqu’a ces derniers temps, ont mis hors de doute 
que la demonstration de l’axiome 11 d’Euclide (notre axiome IV) ne peut pas se deduire des axiomes precedents. Ces 
recherches ont ete faites vers l’annee 1829, par deux geometres, Lobatchewsky and J. Bolyai." All translations from 
original sources are mine.

(6.) Peano had a notorious teaching record. He claimed that the Formulario could serve as a textbook, but his actual use 
of it in the classroom apparently led to a large number of student complaints (Kennedy 1980, pp. 100-102).

(7.) "Haben wir uns bis jetzt an die Mathematiker gewendet, so mochten wir doch auch die Philosophen auf unser Buch 
aufmerksam machen, denn die Parallelentheorie steht mit verschiedenen philosophischen Grundproblem in enger 
Verbindung, streift doch, wie Gauss sich ausdruckt, der Fragepunkt unmittelbar an der Metaphysik."
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(8.) It is worth pointing out that Bonola’s whiggism seems quite self-conscious. He "steps out" of purely chronological 
historical presentation to introduce a section on "Hypotheses equivalent to Euclid’s Postulate" (Bonola [1912] 1955, pp. 
118-21), where he introduces a contemporary definition of logical equivalence, and in an appendix on "The [logical] 
Independence of Projective Geometry from Euclid’s postulate" (pp. 227-37). As Gray notes, the appendix did not appear 
in the original 1906 Italian edition.

(9.) Bowne notes this feature of Couturat’s logicism, citing different passages (1966, p. 52).

(10.) It has been noted that axiomatization tends to come late in the development of a field: See the consensus that 
developed in Sacks’s discussion (1975, p. 528).

(11.) Most of the Couturat-Russell correspondence remains unpublished, but one published reference appears in Russell 
(1992, 1:210). I thank Kenneth Blackwell and Henrique Carlos Jales Ribeiro for these references.
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Appendix

Table A1. Occurrence of Topics in Geometry

                     Period

Topic            To 1870   1871-80   1881-90

Theory 
of parallels       470       41        41
                 (78.6)     (14)     (7.3)
Foundations 
of geometry        105      149       164
                 (17.5)     (51)      (29)
No. of
dimensions          41      120       374
                    (8)     (41)      (67)

                       Period

Topic            1891-1900   1901-10   Total

Theory 
of parallels         61         79       692
                  (5.5)      (5.5)      (17)
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Foundations 
of geometry         513        708     1,639
                   (46)       (48)      (41)
No. of
dimensions          566        731     1,832
                   (51)       (49)      (45)

NOTE.--This table shows the number of papers and books written on various topics in geometry and the percentage of 
the total that they represent, taken from Sommerville’s bibliography ([1911] 1970). Theory of parallels is an old topic, and 
it diminished quickly after 1870. Foundations of geometry peaked around the general acceptance of the non-Euclidean 
geometries in 1870 and rose again at the turn of the century when interest in the general foundations of mathematics was 
on the rise. Dimension theory is given for comparison. Numbers in parentheses are percentages.

Table A2. Topics and References in a Random Sample of Standard Undergraduate Geometry Textbooks

                                                        Histories
Author                   Date         History   Logic   Mentioned

Robinson                 1940, 1963   Yes       No      None
Wolfe                    1945         Yes       No      B, S
Coxteter                 1961         Yes       No      B, S
Wylie                    1964         Yes       Yes     n.a.
Tuller                   1967         Yes       No      B
Golos                    1968         Yes       Yes     B
Greenberg                1973         Yes       Yes     B
Hess                     1977         Yes       No      n.a.
Kelly and Matthews       1981         Yes       No      n.a.
Martin                   1982         Yes       Yes     n.a.
Ryan                     1986         Yes       No      M
Trudeau                  1987         No        Yes     B, M
Beneditti and Petronio   1991         No        No      M
Perry                    1992         No        Yes     n.a.
Stahl                    1993         Yes       No      B, M

NOTE.--All of these texts treat geometry axiomatically and all mention some historical figures. I have marked those that 
emphasize history by having a separate section, those that emphasize axiomatics and logic by introducing it generally 
rather than only in a geometric context, and also noted the histories of non-Euclidean geometry mentioned in the 
bibliography (B = Bonola [1912]; S = Stackel and Engel [1895]; M = Milnor [1982]; n.a. = no bibliography). From 1940 to 
1986, all of the texts in this survey have a separate historical section; of those that have a bibliography, only two do not list 
Bonola. From 1987 on, only one of the texts has a separate historical section, and only one lists Bonola. However, from 
1982 on, all those with bibliographies list Milnor (1982).
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