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Abstract Frauchiger and Renner have recently claimed to prove that “Single-world

interpretations of quantum theory cannot be self-consistent”. This is contradicted by

a construction due to Bell, inspired by Bohmian mechanics, which shows that any

quantum system can be modelled in such a way that there is only one “world” at

any time, but the predictions of quantum theory are reproduced. This Bell–Bohmian

theory is applied to the experiment proposed by Frauchiger and Renner, and their

argument is critically examined. It is concluded that it is their version of “standard

quantum theory”, incorporating state vector collapse upon measurement, that is not

self-consistent.

Keywords Wigner’s friend · Single world · Quantum theory

1 Introduction

In 1984 Bell [4] proposed an interpretation of quantum field theory in which certain

field variables always have definite values. This can be generalised to any quantum

system [8], giving a theory in which any chosen set of commuting observables—the

beables of the theory—always have definite values, and yet the results of measure-

ments are always distributed as predicted by quantum mechanics. Bell’s theory was

an extension of Bohmian quantum mechanics.

Recently Frauchiger and Renner have declared that this is impossible [7]. They

describe an experiment, the “extended Wigner’s friend experiment”, in which, they

claim, the predictions of quantum mechanics and the assumption that each measure-
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ment in the experiment has a unique result, together lead to a contradiction. In this

paper we examine the Bell–Bohmian description of the extended Wigner’s friend

experiment in an attempt to identify the source of this contradiction.

The contents of the paper are as follows. Section 2 is an outline of the Bell–Bohmian

theory. Section 3 contains a description of the extended Wigner’s friend experiment

and a summary of the argument of Frauchiger and Renner. In Sect. 4 we analyse the

experiment in terms of Bell–Bohmian theory and show how it avoids the contradic-

tion found by Frauchiger and Renner. Section 5 contains discussion, leading to the

conclusion that the source of the contradiction is the use of the projection postulate

for measurements by different agents.

2 Bell–Bohmian Theory

This interpretation was inspired by Bohm’s interpretation of non-relativistic many-

particle quantum mechanics (see e.g. [6, p. 145]), according to which particles always

have definite positions. The motion of the particles is governed deterministically by

the wave function, which thus has the role of a force acting on the system rather than

a description of the state of the system. To emphasise this role, Bell [3] calls the wave

function a “pilot wave”. This evolves according to the time-dependent Schrödinger

equation.

In Bell’s generalisation of this interpretation ([4], [8, p. 215]), the many-particle

system can be replaced by any quantum system S, with states described by vectors in

a Hilbert space S, and the positions of the particles replaced by any set of commuting

variables, which are known as beables. These are taken to have definite values, so the

actual real state of the system is described by a state vector in one of the simultaneous

eigenspaces Si of the beables (which are also known [8] as viable subspaces). The

evolution of this state is governed by another time-dependent vector, the pilot vector

|�〉 ∈ §, which satisfies the time-dependent Schrödinger equation with the Hamilto-

nian H determined by the physics of the system. This pilot vector can be decomposed

into its components in the viable subspaces Si :

|�(t)〉 =
∑

i

|ψi (t)〉 with |ψi (t)〉 ∈ Si ,

and the real state at time t is taken to be one of the components |ψi (t)〉.
The real state changes in time, not deterministically as in the original Bohmian

mechanics, but stochastically: it makes transitions between the preferred subspaces Si

with transition probabilities given by

Bell’s Postulate: The real state of the system is one of the components of the pilot

state vector in one of the viable subspaces Si . If, at time t , the real state is the component

|ψi (t)〉 ∈ Si , then the probability that at time t + δt the real state is |ψ j (t + δt)〉 ∈ S j

is wi jδt where the transition probability wi j is given by

wi j =

{

2Re[(i h̄)−1〈ψ j (t)|H |ψi (t)〉]
〈ψi (t)|ψi (t)〉 if this is ≥ 0

0 if it is negative
(2.1)
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It follows from this [8]1 that the probability pi (t) that the real state of the system at

time t is |ψi (t)〉 is given by the Born rule (pi (t) = 〈ψi (t)|ψi (t)〉) at all positive times

t , if the probabilities are so given at the initial time t = 0.

This framework can be generalised still further [1,10] to allow for the possibility

that the viable subspaces Si vary with time; it then includes the modal interpretation

of quantum mechanics.

Although this theory is indeterministic, it can be shown [9,11] that Bohm’s deter-

ministic theory can be obtained as a continuum limit of Bell’s original theory of the

above form, in which he took the points of space to be a discrete lattice.

3 The Extended Wigner’s Friend Experiment

This section contains a description of the experiment designed by Frauchiger and

Renner [7] to demonstrate that any theory which is compliant with quantum theory

and describes a single world cannot be self-consistent. After describing the experiment,

we will outline the argument of Frauchiger and Renner for this conclusion.

The experiment contains two experimenters F1 and F2 (Wigner’s friends), who

perform experiments on two two-state quantum systems, a coin C with orthonormal

basis states |head〉C and |tail〉C , and an electron S with spin states | ↑〉S and | ↓〉S ; it

also contains Wigner W and his assistant A, who can perform measurements on F1

and F2 as well as the coin C and the electron spin S. Irrelevant degrees of freedom of

the four experimenters are suppressed, so each of them is regarded as having just two

independent states, which record the results of their measurements.

Before the experiment starts the coin is prepared in the state

√

1
3
|head〉 +

√

2
3
|tail〉.

At time t = 0 experimenter F1 observes the coin and records the result r = “head”

or “tail”, thereby being put into a memory state |r〉F1 .

At time t = 1, F1 prepares the electron as follows: if the result of the measurement

at t = 0 was r = “head”, F1 prepares the electron in spin state | ↓〉S ; if r = “tail”,

they prepare it in spin state | →〉S = 1√
2

(

| ↑〉S + | ↓〉S

)

.

At time t = 2 experimenter F2 measures the spin z 1
2

h̄ of the electron (z = ±) in

the basis {| ↑〉, | ↓〉} and records the result, thereby being put into a memory state

|z〉F2 .

At time t = 3 Wigner’s assistant A measures F1, together with the coin, in the basis

|ok〉F1C = 1√
2

(

|head〉F1 |head〉C − |tail〉F1 |tail〉C

)

|fail〉F1C = 1√
2

(

|head〉F1 |head〉C + |tail〉F1 |tail〉C

)

,

and records the result x = “ok” or “fail”.

1 The proof in [8] refers to a slightly different, and less satisfactory, form of Bell’s postulate, but it is easily

adapted so as to apply to the form given here.
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At time t = 4 Wigner measures F2, together with the electron, in the basis

|ok〉F2 S = 1√
2

(

|−〉F2 | ↓〉S − |+〉F2 | ↑〉S

)

|fail〉F2 S = 1√
2

(

|−〉F2 | ↓〉S + |+〉F1 | ↑〉S

)

,

and records the result w = “ok” or “fail”.

At the end of the experiment Wigner and his assistant compare the results of their

measurements. They repeat the experiment again and again, stopping when they find

x = w = “ok”. The question is whether it is possible for the procedure to stop.

Frauchiger and Renner argue as follows. Let us assume that the experiment is

described by a theory T with the following three properties:

QT Compliance with quantum theory: T forbids all experimental results that are

forbidden by standard quantum theory.

SW Single world: T rules out the occurrence of more than one single outcome if

an experimenter measures a system once.

SC Self-consistency: T ’s statements about measurement outcomes are logically

consistent (even if they are obtained by considering the perspectives of different exper-

imenters).2

Then we have the following implications:

1. Suppose that F1, in the measurement at t = 1, gets the result r = “tail”. Then F1

prepares the electron spin S in the state | →〉S . When F2 measures S at t = 2,

F2 and S are put into the entangled state |fail〉F2 S . This is not affected by A’s

measurement of F1C at t = 3, so W , on measuring F1C at t = 4, will, by QT,

get the result w = “fail”. Thus

r(1) = tail 
⇒ w(4) = fail (3.1)

(this allows for the possibility that the values of r and w might vary with time).

Since, by SW, the value of r(1) must be either “head” or “tail”, and the value of

w(4) must be either “ok” or “fail”, it follows that

w(4) = ok 
⇒ r(1) = head. (3.2)

2. Suppose, on the other hand, that F1 gets the result r = “head” at t = 1. Then the

state of the electron spin after this measurement must be | ↓〉. Hence, by QT, F2,

in the measurement at t = 2, must get the result z = −. Thus

r(1) = head 
⇒ z(2) = −. (3.3)

2 This is the formulation of Frauchiger and Renner. Elsewhere they state that this property “demands that

the laws of a theory T do not contradict each other”. These are not the same. If the laws of a theory T

contradicted each other, then T simply would not exist as a theory. But as stated here, SC is not a very

interesting requirement: there is no logical reason why statements existing in different perspectives should

be consistent (think of statements about the order of events in different frames of reference, in special

relativity). However, we show in this paper that even in this form there is no contradiction between QT,

SW and SC.

123



662 Found Phys (2017) 47:658–669

3. Now consider F2’s measurement of z at t = 2. After F1’s preparation of the

electron spin, the state of F1, the coin and the electron is

√

1
3
|head〉F1C | ↓〉S +

√

2
3
|tail〉F1C | →〉S =

√

1
3
|tail〉F1C | ↑〉S +

√

2
3
|fail〉F1C | ↓〉S .

Hence if the result of F2’s measurement of S is z = −, then the result of A’s

measurement of F1C at t = 3 must be x = “fail”:

z(2) = − 
⇒ x(3) = fail. (3.4)

4. After F2’s measurement of the electron spin, the state of F1 and F2 (and their

laboratories) is

√

1
3
|tail〉F1 |tail〉C |+〉F2 | ↑〉S +

√

2
3
|fail〉F1C |−〉F2 | ↓〉S

= 1

2
√

3

(

|ok〉F1C |ok〉F2 S − |ok〉F1C |fail〉F2 S + |fail〉|ok〉F2 S

)

+
√

3
2

|fail〉F1C |fail〉F2 S .

This has non-zero coefficient of |ok〉F1C |ok〉F2 S , so

x(4) = w(4) = ok is possible.

But W ’s measurement of F2S does not affect the state of A, so x(4) = x(3). Thus in

the measurements of A and W at t = 3 and 4,

x(3) = w(4) = ok is possible. (3.5)

Now we have

w(4) = ok 
⇒ r(1) = head by (3.2)


⇒ z(2) = − by (3.3)


⇒ x(3) = fail by (3.4)

which contradicts (3.5). Frauchiger and Renner conclude that no theory can have all

three properties SW, QT and SC.

4 Bell–Bohmian Theory of the Experiment

Bell–Bohmian theory assumes a pilot vector in the Hilbert space of the whole experi-

ment, evolving purely according to the unitary operator describing the dynamics (i.e.

with no application of the projection postulate after measurements). In this it resem-

bles Everettian quantum mechanics, but the metaphysical interpretation is different,

as described in Sect. 2. The Hilbert space in question is
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HF1 ⊗ HF2 ⊗ HA ⊗ HW ⊗ HC ⊗ HS

where HC and HS are two-dimensional, with orthonormal bases {|head〉, |tail〉} and

{| ↑〉, | ↓〉} respectively; and HF1,HF2 ,HA and HW are all 3-dimensional, with bases

labelled by r, z, x and w, each taking the two values described in Sect. 2 and also a third

value 0 to describe the “ready” state of the observer before making any measurement.

We take r, z, x and w to be the beables of the system, which always have definite

values. Thus the real state vector of the system always lies in one of the 81 viable

subspaces

|r〉F1 |z〉F2 |x〉A|w〉W ⊗ HC ⊗ HS .

and is one of the projections of the pilot vector onto these subspaces.

In order to analyse the experiment, we need to be more precise about the way in

which F1 prepares the spin state after the coin toss at t = 0. I will assume that before

the coin toss, the electron spin is prepared in some known initial state |0〉S ∈ HS ; after

the coin toss, F1 applies to the electron either a unitary operator which takes |0〉 to

| ↓〉 or one which takes |0〉 to | →〉, according to the result of the toss. Then the real

state vector before the experiment starts is the same as the pilot state, namely

|0〉F1 |0〉F2 |0〉A|0〉W

(

√

1
3
|head〉C +

√

2
3
|tail〉C

)

|0〉S .

At t = 0, after F1’s measurement of the coin, the pilot vector becomes

|�(0)〉 =
(

√

1
3
|head〉F1C +

√

2
3
|tail〉F1C

)

|0〉S|0〉F2 |0〉A|0〉W ,

where |head〉F1C = |head〉F1 |head〉C and similarly for “tail”, but the real state vector

is one of the two summands in this. We will consider

|�(0)〉 = |tail〉F1C |0〉S|0〉F2 |0〉A|0〉W .

At t = 1, after F1 has prepared the electron spin, the pilot state is

|�(1)〉 =
(

√

1
3
|head〉F1C | ↓〉S +

√

2
3
|tail〉F1C | →〉S

)

|0〉F2 |0〉A|0〉W

The real state is one of the two summands in |�(1)〉; we take

|�(1) =
√

2
3
|tail〉F1C | →〉S|0〉F2 |0〉A|0〉W .

After F2’s measurement of S at t = 2, the pilot state becomes

|�(2)〉 =
√

1
3

(

|head〉F1C |−〉F2 S + |tail〉F1C |+〉F2 S + |tail〉F1C |−〉F2 S

)

|0〉A|0〉W ,
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which has three components with definite values of r, z, x and w (viable components),

one of which is

|�(2)〉 =
√

1
3
|tail〉F1C |+〉F2 S|0〉A|0〉W .

After A’s measurement of F1 and C at t = 3, the pilot vector becomes

|�(3)〉 =
(

√

1
6

(

− |ok〉F1C |ok〉A + |fail〉F1C |fail〉A

)

|+〉F2 S〉

+
√

2
3
|fail〉F1C |fail〉A|−〉F2 S

)

|0〉W

which has six viable components, one of which is

|�(3)〉 =
√

1
12

|tail〉F1C |+〉F2 S|ok〉A|0〉W .

After W ’s measurement of F2 and S at t = 4, the pilot vector becomes

|�(4)〉 =
√

1
12

(

|ok〉F1C |ok〉A + |fail〉F1C |fail〉A

)

|ok〉F2 S|ok〉W

+
√

1
12

(

− |ok〉F1C |ok〉A + 3|fail〉F1C |fail〉A

)

|fail〉F2 S|fail〉W

which has sixteen viable components, one of which is

|�(4)〉 = −
√

1
24

|tail〉F1C |−〉F2 S|ok〉A|ok〉W .

According to Bell–Bohmian theory, at all times Wigner, his assistant and his two

friends are in a single world with definite values of r, z, x and w, the results of their

measurements. But Frauchiger and Renner argue that this leads to the contradictory

implications (3.1), (3.3), (3.4) and (3.5). We will show, on the contrary, that in Bell–

Bohmian theory it is possible that the real state undergoes the transitions

|�(0)〉 −→ |�(1)〉 −→ |�(2)〉 −→ |�(3)〉 −→〉|�(4)〉.

It follows that in this theory the implication (3.1) (r(1) = tail 
⇒ w(4) = fail) does

not hold: it is possible for F1 to get the result r = “tail” (and, incidentally, to remain

in a state registering this result) while W gets the result w =“ok”.

To establish this, we will need to see what transitions between viable states are

allowed by Bell’s postulate, and for this we need a model of the processes by which

the measurements are made. The following is a general theory of such a process. We

consider an experimenter E measuring an observable X on a system S, whose basis

of eigenstates of X is {|1〉S, |2〉S}, and suppose that the process takes place as follows.

The relevant states of the experimenter are taken to be |0〉E , |1〉E , |2〉E , where |0〉E is

the state of the experimenter before the measurement, and |1〉E and |2〉E are the states
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of the experimenter registering the results X = 1 and X = 2. In the course of the

measurement the joint state |1〉S|0〉E evolves to |1〉S|1〉E and the joint state |2〉S|0〉E

evolves to |2〉S|2〉E . We assume that each of these evolutions is a simple rotation in

the joint state space HE ⊗ HS , lasting for a time τ :

|k〉S|0〉E −→ |�k(t)〉 = cos λt |k〉S|0〉E + sin λt |k〉S|k〉E

(k = 1, 2; 0 ≤ t ≤ τ) where λ = π/2τ . At times outside the interval [0, τ ], the

joint state of the system and the experimenter is assumed to be stationary (with zero

energy). This time development is produced by the Hamiltonian

H = i h̄λ

(

|1〉〈1|S ⊗
[

|1〉〈0| − |0〉〈1|
]

E
+ |2〉〈2|S ⊗

[

|2〉〈0| − |0〉〈2|
]

E

)

,

which is switched on at t = 0 and off at t = τ .

Suppose the system has just one beable M , the observation of the experimenter, with

values (0, 1, 2), and suppose the initial state of the joint system is
(

a|1〉S +b|2〉S

)

|0〉E .

This has the definite value 0 for the beable M , so it is both the real state vector for

the joint system and the pilot vector at t = 0. Then in the time interval [0, τ ] during

which the measurement is proceeding, the pilot state is

|�(t)〉 = a|�1(t)〉 + b|�2(t)〉
= cos λt

(

a|1〉 + b|2〉
)

S
|0〉E + sin λt

(

a|1〉S|1〉E + b|2〉S|1〉E

)

and the real state of the joint system at any time in this interval is one of the three

states |�(0)〉 = (a|1〉S + b|2〉S)|0〉E , |1〉S|1〉E or |2〉S|2〉E . It can make a tran-

sition from |�(0)〉 to |1〉S|1〉E or to |2〉S|2〉E because the (real) matrix elements

(i h̄)−1
(

〈k|S〈k|E

)

H
(

|k〉S|0〉E

)

(k = 1, 2) are both positive. It cannot make the reverse

transitions because the matrix elements (i h̄)−1
(

〈k|S〈0|E

)

H
(

|k〉S|k〉E

)

are negative,

and it cannot make transitions between |1〉S|1〉E and |2〉S|2〉E because the relevant

matrix elements of H are zero. Thus at time t = 0 the real state vector and the pilot

vector coincide; between t = 0 and t = τ the pilot vector |�(t)〉 changes smoothly

but the real state vector remains at its initial value |k〉S|0〉E until some undetermined

intermediate time at which it changes discontinuously to either |1〉S|1〉E or |2〉S|2〉E

and remains at that value until t = τ . A calculation of the final probabilities from the

transition probabilities as given by Bell yields the expected values |a|2 and |b|2.

To examine the implication (3.1), we will apply this theory to the measurements in

the extended Wigner’s friend experiment. We will assume that each of the measure-

ments has duration τ < 1 before the time assigned to it (e.g. A’s measurement “at

time t = 3” occupies the interval [3 − τ, 3]), and that each measurement consists of

a simple rotation as described above.

If the result of F1’s measurement at t = 0 is r =“tail”, then the component of

|�(0)〉 describing the actual world must be |�(0)〉. The pilot vector is still |�(0)〉.
F1’s preparation of the electron spin at t = 1 is accomplished by a unitary operator

acting only on F1 and S, such that there are no matrix elements of the Hamiltonian
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between states with different values of the beables r, x, z, w; therefore the real state at

t = 1 is |�(1)〉. The next measurement, by F2 at t = 2, is driven by the Hamiltonian

1F1C ⊗ (H2)F2 S ⊗ 1A ⊗ 1W where

H2 = i h̄λ

(

|−〉F2 S

(

〈↓ |S〈0|F2

)

−
(

| ↓〉S|0〉F2

)

〈−|F2 S

+ |+〉F2 S

(

〈↑ |S〈0|F2

)

−
(

| ↑〉S|0〉F2

)

〈+|F2 S

)

. (4.1)

The pilot state during the measurement is cos λt |�(1)〉 + sin λt |�(2)〉; the real state

must therefore be one of the viable components of |�(1)〉 or |�(2)〉. Since this

Hamiltonian has no matrix elements betweeen states containing |head〉F1C and states

containing |tail〉F1C , the only possible transitions from |�(1)〉 are to the second or

third term in |�(2)〉, followed by transitions back to |�(1)〉 or to other components

of |�(2)〉. But the Hamiltonian also has no matrix elements between different viable

components of |�(2)〉, and the only positive matrix elements of H/ i h̄ are those cor-

responding to transitions in the forward direction, so once a transition has been made

to one of the three terms in |�(2)〉, there will be no further transitions during this

measurement. Thus if the real state after F1’s measurement has r = “tail”, this will

still be the case after F2’s measurement and the real state will be the second or third

term of |�(2)〉, and both of these are possible. Thus there is a non-zero probability

that the real state evolves as |�(0)〉 → |�(1)〉 → |�(2)〉.
A’s measurement of F1 and C at t = 3 is driven by the Hamiltonian H3 ⊗ 1F2 S ⊗

1W where H3, acting in HF1C ⊗ HA, rotates |fail〉F1C |0〉A to |fail〉F1C |fail〉A and

|ok〉F1C |0〉A to |ok〉F1C |ok〉A. In terms of the viable states, this is

H3 = 1
2
i h̄λ

(

|head〉 + |tail〉
)(

〈head| + 〈tail|
)

F1C
⊗

(

|fail〉〈0| − |0〉〈fail|
)

A

+ 1
2
i h̄λ

(

|head〉 − |tail〉
)(

〈head| − 〈tail|
)

F1C
⊗

(

|ok〉〈0| − |0〉〈ok|
)

A
.

This Hamiltonian H has

〈�(3)|
H

ih̄
|�(2)〉 > 0,

and there are no positive matrix elements 〈φ| H
ih̄

|�(3)〉 for viable states |φ〉, so the

transition |�(2)〉 → |�(3)〉 is possible, and if it occurs the system remains in the state

|�(3)〉 until the next measurement.

W ’s measurement of F2 and S at t = 4 is driven by the Hamiltonian 1F1C ⊗1A ⊗ H4

where H4 is the following operator on HF2 S ⊗ HW :

H4 = i h̄λ|ok〉〈ok|F2 S

(

|ok〉〈0| − |0〉〈ok|
)

W

+ i h̄λ|fail〉〈fail|F2 S

(

fail〉〈0| − |0〉〈fail|
)

W
.

This has

〈�(3)|
H

ih̄
|�(4)〉 > 0,
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and there are no positive matrix elements 〈φ| H
ih̄

|�(4)〉 for viable states |φ〉, so the

transition |�(3)〉 → |�(4)〉 is possible during W ’s measurement, and if it occurs the

system remains in the state |�(4)〉.
Thus it is possible that W and A both get the result “ok” for their measurements,

and this happens even though F1 records the result r = “tail”. This contradicts the

theorem of Frauchiger and Renner.

5 Discussion

The purpose of this paper has been to show that there is a counter-example to the

theorem that Frauchiger and Renner claim to prove. There is a theory which is self-

consistent, in which any experiment has only one result, and which reproduces the

predictions of quantum mechanics. It is not the purpose of the paper to advocate this

theory as a true description of the experiment, but simply to show that it exists. This

disproves the theorem. But what is wrong with Frauchiger and Renner’s proof?

Let us examine the implication (3.1): if the result of F1’s measurement at t = 1 is

r = “tail”, then F1 acts on this information and calculates the future development of

the whole system by means of the Schrödinger equation, with the measurement result

“tail” as initial condition. This is to follow the instructions of the quantum mechanics

textbooks, so Frauchiger and Renner describe it as “compliance with quantum theory”.

It incorporates a collapse of the state vector on measurement, otherwise known as the

collapse postulate. In Bell–Bohmian theory, on the other hand, although the result

of measurement determines the real state, the Schrödinger equation is applied with a

different initial condition, namely the pilot vector. This includes a term corresponding

to the result of measurement which did not actually occur.

Naturally, these two procedures give different results. They are both presented as

“compliant with quantum theory”, but this cannot be true if “quantum theory” has a

well-defined meaning. This does not seem to be so. The contradiction between the

Frauchiger-Renner claim that “It is impossible for any theory to obey (QT), (SW) and

(SW)” and the claim of this paper that “Bell–Bohmian theory obeys (QT), (SW) and

(SW)” is due to different meanings of (QT) in the two claims.

The version of quantum theory assumed by Frauchiger and Renner seems appro-

priate for use by a particular observer, existing as part of the system being described.

If F1 at t = 1 sees the result “tail”, then it is reasonable for F1 to use the state vector

|�(1)〉, incorporating this result, to describe the world they are part of. But does this

mean that they should use this to calculate what will happen at later times?

In the Frauchiger–Renner scenario F1 knows that the state vector at t = 0 is |�(0)〉,
which at t = 1 has evolved to the state containing a term corresponding to the result

of measurement which did not actually occur. F1 is therefore in a position to include

this term when calculating what can happen at t = 5.

The rules of “standard quantum theory”, as understood by Frauchiger and Renner,

are appropriate for use in the more usual situation where the only available knowledge

is the result of the experiment. In this situation the only option is to apply the projection

postulate. In principle, as the FR experiment shows, the result of such a calculation

will be different from one in which the projection postulate is not applied. However, in
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a realistic experiment with macroscopic apparatus, the difference between the results

of the two calculations will be utterly negligible.

In Bell–Bohmian theory, and in other interpretations of quantum theory, the pro-

jection postulate is an approximation which is valid in many circumstances when

a quantum system is entangled with a macroscopic system. It is not a fundamental

postulate of the theory (it is too ill-defined to be anything of the sort), and there will

be situations in which it does not apply. The extended Wigner’s friend experiment,

as presented by Frauchiger and Renner, is one such situation. The dimensions of the

system, consisting of a small number of qubits and qutrits, might be small enough to

make it possible to realise this experiment. It would be very surprising if the result

accorded with a calculation using the projection postulate.

Each of the agents in the experiment has a different perspective. This will lead them

to apply what Frauchiger and Renner call “standard quantum theory” in different ways.

Calculating at t = 0, they will obtain different predictions for the results at t = 4. Each

of F1, F2 and A will allow for the two possible outcomes of their own measurement,

with known probabilities, and calculate the evolution after their measurement as if one

result or the other had definitely occurred; that is, they apply the projection postulate

to their own measurement while treating the other measurements as purely quantum

processes, with no projection. The purely quantum evolution of all the measurements

can be regarded as a “God’s eye view” of the experiment. Wigner (who of course

is God) makes this calculation, as there is no evolution to be considered after his

measurement.

The results of these calculations are as follows. The probabilities of the four possible

results of measuring (x, w) at t = 4, as calculated by the four agents at t = 0, are

given in the following table:

(ok, ok) (ok, fail) (fail, ok) (fail, fail)

F1
1

12
5

12
1

12
5

12

F2
1

12
1

12
5

12
5

12

A 1
4

1
4

1
20

9
20

W 1
12

1
12

1
12

3
4

These calculations make no appeal to a “single-world” assumption. It is only

assumed that an observer who sees a result of an experiment sees just one result.

This is true, for example, in the “many worlds” interpretation, in which each world

contains just one result of the experiment. The contradiction between the predictions

in (5) comes from the different applications of the rules of standard quantum theory.

This appears to show that of the three assumptions QT, SW and SC of Frauchiger and

Renner, SW is not needed to obtain a contradiction: given the meaning they assign to
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“standard quantum theory”, QT by itself is self-contradictory. A similar conclusion

has been reached by [2].

The extended Wigner’s friend experiment devised by Frauchiger and Renner

remains of great conceptual value. It demonstrates that in a single-world theory like

Bell–Bohmian theory, possible experimental results which were not realised in the

actual world can still have an influence on the future of the actual world. The same

moral holds in interpretations of quantum theory which do not postulate a single world

in this sense, for example versions of Everett’s relative-state theory in which the expe-

rience of a sentient physical system is recognised as having its own reality [10]. Events

which, for such an observer, might have happened, but didn’t, can still affect real future

events.
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