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Abstract According to quantum mechanics, statements about the future made by
sentient beings like us are, in general, neither true nor false; they must satisfy a many-
valued logic. I propose that the truth value of such a statement should be identified
with the probability that the event it describes will occur. After reviewing the history
of related ideas in logic, I argue that it gives an understanding of probability which is
particularly satisfactory for use in quantum mechanics. I construct a lattice of future-
tense propositions, with truth values in the interval [0, 1], and derive logical properties
of these truth values givenby theusual quantum-mechanical formula for the probability
of a history.

Keywords Quantum theory · Temporal logic · probability

1 Introduction

The subject of this paper is the logic governing the expressions of present experience,
past memory and future expectations of a subject, regarded as a sentient and articulate
physical system and therefore governed by the laws of physics in the framework of
quantum theory. Since the expressions to be considered refer to the past, present and
future of the subject, they must be governed by some form of temporal logic, such
as is found in the work of Arthur Prior and his followers. Quantum theory being an
indeterministic theory, the problem of future contingents is particularly relevant. In
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order to incorporate indeterminism in statements in the future tense, the temporal
logic proposed here, differing from Prior’s, has truth values which are not bivalent but
take real values between 0 and 1 (inclusive)—the truth of a future-tense statement is
identified with the probability that it will turn out to be true. Maybe this thesis will be
of interest to philosophers of probability and philosophers of quantum mechanics as
well as temporal logicians.

Classically, it would be natural to take the past and present as definite: statements in
the present and past tenses have truth values 0 or 1. For a apeaker governed by quantum
theory, it is not clear that this can be incorporated in the framework suggested here
withoutmodification. This is currently being investigated. The present paper, therefore,
is restricted to the study of the present and future tenses.

The paper is organised as follows. In Sect. 2 I outline the physical framework being
used, that of quantum mechanics, and define the propositions in question: statements
about the present and future experiences of the speaker, regarded as a physical system in
a world governed by quantummechanics. This requires a distinction between external
statements about the physical world, made from a standpoint outside the world, and
internal statementsmadeby a speaker in theworld; it is the latter that are discussedhere.
I argue that the superposition principle of quantum mechanics makes it impossible,
in general, for such future-tense propositions to be either definitely true or definitely
false, and I introduce my main proposal concerning the relation between probabiliy
and the truth values of future-tense propositions in a many-valued logic. In the next
section I acknowledge some of the problems with this idea, and attempt to trace the
idea, and some of the reactions to these problems, in previous writers.

In Sect. 5 I examine the logical properties of the temporal logic as it might apply
to the utterances of a speaker satisfying the laws of quantum mechanics. The logical
system consists of a lattice T of tensed propositions with truth values in the interval
[0, 1] of real numbers. The lattice T is constructed from a tenseless lattice E containing
propositions about the experiences of a particular sentient system; the elements of T
are elements of E , each associated with a time, and elements constructed from them
by operations ∧,∨ and ¬ which are assumed to satisfy the same rules as conjunction,
disjunction and negation.A further assumption on the tense operators (that they respect
the logical operations in the tenseless lattice E) leads to the characterisation of the
elements of the lattice T as disjunctions of histories: conjunctions of statements of
experience at different times.

An assignment of truth values to the elements of T is defined to be a function from
T to real numbers which takes the value 0 or 1 on present and past propositions, but
can take any value between 0 and 1 for future propositions. The bulk of this section
is devoted to exploring the logical properties of the assignments of truth values to
future-tense propositions which are obtained from the quantum-mechanical formula
for the probability of a single history; the truth value of a disjunction of histories is
defined by means of the formula

τ(p ∨ q) = τ(p) + τ(q) − τ(p ∧ q)

which would be expected for probabilities. It has to be shown that this gives values
between 0 and 1, and that it is consistent to apply it for all elements p, q of the lattice
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T . This is the content of Theorem 11, to which the preceding chain of theorems has
been leading. The usual truth tables for ∧ and ∨ would follow from this if truth values
were restricted to 0 and 1, but in general the usual relation between the truth value
of a compound proposition and the truth values of its components is weakened; the
extent of this weakening is laid out in Theorem 14. This is followed by a discussion
of whether the connective ∨ in this logic can legitimately be regarded as a generalised
form of “or” for future-tense statements.

Finally, in Sect. 6 I take a critical look at the theory adumbrated here and try to
assess its relevance to different forms of indeterministic physical theory. I claim that
it is the appropriate logic for a classical theory of an open future, and for a quantum
theory applied to a world in which a mechanism of decoherence operates, as it does in
the world1 we live in. The section concludes with a discussion of weaknesses in this
proposal and possible alternative formulations. The results of the paper are summarised
in the concluding Sect. 6.

2 Outline of quantum theory

2.1 Living in the quantum world

Quantum mechanics boasts a simple, well-defined mathematical formalism and an
unprecedentedly successful record of calculation and prediction in physical applica-
tions. Following Schrödinger (1996), Everett (1957) and Wheeler (1957), I assume
that everything in the mathematical formalism can be taken as a true description of
the universe, and that no extra apparatus is needed to relate this description to what
we measure and observe.

The clean mathematical formalism, in its nonrelativistic form, offers a single
mathematical object |�(t)〉 to describe whatever physical system we are interested
in—ultimately the whole universe U . This object is a vector in a Hilbert space HU

(the marks |〉 in the symbol indicate the vector nature of |�〉), varying with time t
in accordance with a first-order differential equation (the Schrödinger equation). It
follows that if the value of |�(t)〉 is known at some one time, its value at all other
times is determined.

This paper is concerned with the experiences and utterances of a sentient being S
(which could be you or me) regarded as a physical system in the universe. As such, S
has states which are described by the elements of a Hilbert spaceHS . The states of the
rest of the universe (which I will sometimes call “the outside world”) are described
by the elements of a Hilbert spaceHU ′ , and the state spaceHU of the whole universe
is the tensor product

HU = HS ⊗ HU ′ .

1 Here, and elsewhere, I use the word “world” in its usual sense, or in theWittgensteinian sense: “everything
that is the case”. No reference is intended to the “worlds” of the many-worlds interpretation of quantum
mechanics.
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Among the states2 inHS are those in which the sentient being S is having a definite
experience which it can describe by present-tense propositions. It is probably true
(Tegmark 2000) of the brain states of human beings that these experience states have
definite values of various physiological and neurological quantities, and I will take this
as part of the definition of a sentient physical system.According to quantummechanics,
then, the states of definite experience are eigenvectors of the corresponding experience
operators. The full set of eigenvectors of these operators is a basis for the Hilbert space
HS which I will call the experience basis, although it will also include many vectors
which do not correspond to experiences (or even to anythingwhich looks like a sentient
animal).

I will denote the experiences of S by ηi , pretending for notational convenience that
they are countable, and the corresponding elements of the experience basis by |ηi 〉;
abusing notation slightly, I will use the same symbol for a general element of the
experience basis.

Similarly, among the states of the whole universe are tensor products3 |�〉 =
|η〉|ψ ′〉, in which |η〉 ∈ HS is an experience state and |ψ ′〉 is a state of the rest of the
universe which conforms to the experience η in the sense that if η includes the experi-
ence of seeing, for example, a tiger about to pounce, then |ψ ′〉 is a state of the outside
world including a tiger about to pounce. Such product states are understandable; this
is what we expect the sentient system and the outside world, together, to be like.

But according to quantum theory, the laws of physics, in the form of the Schrödinger
equation, will often cause such a product state of the universe to change into a less
understandable state

|�〉 =
∑

i

|ηi 〉|ψ ′
i 〉 (1)

in which a number of different experience states enter, each associated with a different
state of the outside world. In such a state the sentient system is entangled with the
outside world, and has no definite, unique experience. Eq. (1) is the form of the most
general state of the universe; since the experiences states |ηi 〉 form a basis forHS , any
vector in HS ⊗ HU ′ can be written in this form. To take account of changes in time,
we should write this as

|�(t)〉 =
∑

i

|ηi 〉|ψ ′
i (t)〉 (2)

in which the experience states |ηi 〉 are independent of time, being a fixed basis ofHS ,
and the states of the external world, |ψ ′

i 〉, are time-varying vector coefficients with
respect to this basis.

There are two ways of approaching this strange equation without doing violence to
the laws of physics as encapsulated in theSchrödinger equation.Both originate inHugh

2 From now on, I will no longer be careful to distinguish between a state of a physical system and the vector
in its Hilbert space which describes that state.
3 In this notation, due to Dirac, juxtaposition of vector symbols |〉 denotes the tensor product of vectors.
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Everett’swork in the 1950s, and are expressed in the titles of his PhD thesis and his only
published paper in physics. The title of his thesis is “The theory of the universal wave
function”, which expresses his main motivation: the idea that quantum mechanics, as
expressed in (2), should be taken seriously and literally: however hard to understand,
this is a statement of fact about the whole universe. (Schrödinger also expressed this
idea in unpublished lectures in the early 1950s, 1996). The title of Everett’s paper is
“‘Relative state” formulation of quantum mechanics’, which emphasises another way
of understanding (2): any statement about the external world made by an observer
must be understood as being relative to a particular state of that observer: if, for any
reason, we are entitled to say that the state of the observer at time t is |ηn〉, then we are
entitled to assert that the state of the rest of the universe is |ψ ′

n(t)〉. And, of course, as
an observer I am entitled to say which |ηn〉 is my experience state, precisely because
it is my experience.

These two assertions about the state of the universe appear to be in contradiction.
One of them asserts that the truth about the universe at time t is given by the whole
state (2); the other that it is given by one of the components |ηi 〉|ψ ′

i (t)〉. I now want
to argue that they are, nevertheless, compatible, once it is recognised that they belong
in different perspectives.

2.2 Internal and external

This contradiction is of the same type as many familiar contradictions between objec-
tive and subjective statements. It can be resolved in the way put forward by Nagel
(1979, 1986): we must recognise that there are two positions fromwhich we can make
statements of fact or value, and statements made in these two contexts are not com-
mensurable. In the external context (the God’s-eye view, or the “view from nowhere”)
we step outside our own particular situation and talk about the whole universe. In the
internal context (the view from now here), we make statements as agents inside the
universe. Thus in the external view, |�(t)〉 is the whole truth about the universe; the
components |ηi 〉|ψ ′

i (t)〉 are (unequal) parts of this truth. But in the internal view, from
the perspective of some particular experience state |ηi 〉, the component |ηi 〉|ψ ′

i (t)〉 is
the actual truth. I may know what the other components |η j 〉|ψ ′

j (t)〉 are, because I can
calculate |�(t)〉 from the Schrödinger equation; but these other components, for me,
represent things that might have happened but didn’t. From the external perspective
the universal state vector |�(t)〉 is a true description of the world at time t , and each
component |η j 〉|ψ ′

j (t)〉 is just part of that description; from the internal perspective of
the experience state |ηi 〉 at time t , the state vector |ηi 〉|ψ ′

i (t)〉 is a true and complete
description of the world, and the universal state vector |�(t)〉 is not a description of
the world but a true statement of how the world might change.

2.3 Time and chance

Two questions present themselves. First, time: if it is unproblematic that at time t
I can identify my experience |ηi 〉 and the corresponding state |ψ ′

i (t)〉 of the rest of
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the universe, what can I say about other times? For past times, memory might be
expected to provide an answer: it seems that we are constructed in such a way that
each experience state |ηn〉 that actually occurs at time t (i.e. for which |ψ ′

n(t)〉 is
non-zero) contains information about a unique experience state at each time before
t . However, quantum mechanics apparently does not allow such a simple model of
memory, for reasons related to the “watched-pot effect” (Misra and Sudarshan 1977;
Sudbery 1984). For this reason I will only treat present and future tenses in this paper,
and leave the past tense for future work.

In general, for a being having a definite experience ηi at time t , there is nothing in the
physics to pick out the experience that the being will have at some future time t ′: there
is no “thin red line” stretching into the future; no fact of the matter, even relative to the
experience η, about what the subject’s experience will be at time t ′.4 The Schrödinger
equation can be applied to |ηi 〉|ψ ′

i (t)〉 to yield a state vector e−i H(t ′−t)/�
(|ηi 〉|ψ ′

i (t)〉
)

to which it will evolve at a given future time t ′; but in general this will not be another
product state in which the subject has a definite experience, but a superposition of
such states in which the subject is entangled with the outside world.

Second, probability: quantum mechanics is an indeterministic theory, describing
chance events. Its empirical success rests on its ability to give probabilities for such
events. But how can there be any place for probability in the framework I have
described? In the external view, |�(t)〉 develops deterministically according to the
Schrödinger equation; nothing is left to chance. In the internal view, as we have just
seen, there are no definite future events and therefore, it seems, no chances. How
can “the probability that my experience will be η j tomorrow” mean anything if “my
experience will be η j tomorrow” has no meaning?

2.4 Probability and truth

My answer to these two questions is to propose that they answer each other. If there
is no experience that can be identified as the experience I will have at a future time
t ′, then for each η the statement “I will experience η at t ′” is not true. Nevertheless,
if that experience is very likely then this statement is nearly true; in other words,
it has a degree of truth less than, but close to, 1. This leads to the suggestion that
the probability of a future event E should be identified as the degree of truth of the
future-tense statement “E will occur”.

This argument reflects the way that probabilities are calculated in quantum
mechanics. The vector e−i H(t ′−t)/�

(|ηi 〉|ψ ′
i (t)〉

)
to which an experience eigenvec-

tor |ηi 〉|ψ ′
i (t)〉 evolves from time t to time t ′, following the Schrödinger equation, will

not in general be an experience eigenvector; but it may be near an experience eigen-
vector, and the nearness is measured by a number (close to 1 if the vectors are near

4 It might seem hard to abandon the assumption, by which we seem to live our lives, that there is something
that is going to happen tomorrow, whether or not it is determined by the laws of physics; this might look
like just another unacceptable example of scientists dismissing as an illusion a perception which is too
immediate to be deniable (like consciousness or free will). However, it has been argued (Sudbery 2011;
Wallace 2012 p. 274) that the openness of the future accords better with our pre-scientific intuition than the
existence of a definite future.
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to each other) which, in conventional quantum mechanics, is identified (according to
the “Born rule”) with a probability.

What exactly is a “degree of truth” for a future-tense statement? In the rest of the
paper I will explore the possibility that it can be taken to be a truth value in a temporal
logic.

3 Truth values as probabilities

3.1 Problems

1. One function of truth values is to define the meaning of logical connectives
such as and and or by means of truth tables. The existence of such tables is
made a prerequisite for many-valued logics in Gottwald’s comprehensive treatise
(Gottwald 2001). This is not possible with probabilities. Using τ to denote the
probability of a proposition, the values of τ(p∧q) and τ(p∨q) are not determined
as functions of τ(p) and τ(q); the two equations which this would require are
replaced by a single relation

τ(p ∧ q) + τ(p ∨ q) = τ(p) + τ(q) (3)

with inequalities

0 ≤ τ(p ∧ q) ≤ min{τ(p), τ (q)}, (4)

max{τ(p), τ (q)} ≤ τ(p ∨ q) ≤ 1. (5)

2. Another use of truth values is to identify logical tautologies, which are defined as
formulae,with propositional variables, which have truth value 1 for all assignments
of truth values to the variables. If truth values were replaced in this definition by
probabilities satisfying (3), it would not yield a useful set of tautologies. Instead,
the usual procedure in probability logic (Adams 1998) is to require that the value
of probability should be 1 for all logical tautologies, assuming that these have
already been identified.

3.2 History

Aristotle’s discussion of future contingents in De Interpretatione is often taken to
support a three-valued logic for statements about the future. But Aristotle says more
than denying truth or falsity to “There will be a sea-battle tomorrow”; he also notes
that it may be more or less likely that there will be a sea-battle. Thus if there is
a case for regarding Aristotle as a proponent of many-valued logic for future-tense
statements, there might also be a case that he would regard the appropriate truth values
as probabilities.

Łukasiewicz’s first system of many-valued logic (Łukasiewicz 1913) had truth
values related to probabilities, though of a rather different kind from those considered
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here (he was concerned with propositions containing variables, giving them truth
values equal to the proportion of values of the variable which made the proposition
true). Later (Łukasiewicz 1930) hewasmotivated by the problem of future contingents
and expressed a preference for many-valued logic in which the truth values could be
any real number between 0 and 1; he asked how this was related to probability theory.
In his system the truth values do not satisfy (3), but they satisfy (4) with inequality
replaced by equality, so that the logical connectives are truth-functional.

The failure of probabilities to be truth-functional led to a reluctance among logi-
cians to accept them as truth values, but this viewwas defended byReichenbach (1949)
(thoughhis frequentist conceptionof probabilitywas different from that espousedhere)
and especially by Rescher (1969). Both these authors claimed to prove that the tautolo-
gies of ordinary two-valued logic can all be obtained as tautologies of probability logic,
but Reichenbach’s argument depended on his frequentism and Rescher’s, thoughmore
formal, required axioms which themselves refer to the classical tautologies, giving his
argument an element of circularity.

In a discussion of time, quantum mechanics and probability, Saunders (1998) puts
forward a view of time and probability similar to that of this paper: “events in the future
…are indeterminate; …probabilities …express the degrees of this indeterminacy”
(emphasis in the original). The identification of probabilities with truth values of
future-tense propositions has been developed by Pykacz (2014) and references therein,
who applies this idea to quantum mechanics and uses it to throw interesting light on
the GHZ paradox. Pykacz’s many-valued logic, however, is different from the one
developed here.

The notion of degrees of truth also occurs in fuzzy logic (Zadeh 1975; Edgington
1992; Sainsbury 1986), and in this context also Edgington proposed replacing the
classical truth tables by the relation (3). More complicated truth values occur in topos
theory (Lawvere and Schanuel 1997), which has been proposed as a suitable logical
formalism for the foundations of physics by Isham (2011) and for the discussion of
partial truth by Butterfield (2000). Döring and Isham have identified probabilities with
truth values in topos theory (Döring and Isham 2012), but the probabilities they discuss
seem to be credences rather than chances, occurring in both classical and quantum
physics but, in the latter, relevant to mixed states and not to pure states. Isham has
also formulated a temporal form of quantum logic (Isham 1994) in which histories are
treated as propositions.

4 The logic of tensed propositions in our quantum world

4.1 The lattice of propositions

Living in the quantum world, as we do and as we are described in Sect. 2.1, what can
we say about it? Statements about our possible experiences form a Boolean lattice
related to the experience state vectors |ηi 〉. In the fiction that there is a countable basis
|ηi 〉, reports of the experiences ηi are atoms in this lattice; more generally, it is a
Boolean sublattice E of the lattice of closed subspaces of the Hilbert space HS . To
form the lattice T of statements that we want to make about our experience we need
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maps N : E → T (to give statements about our present experience), Pt : E → T for
each positive real number t (to give statements about our experience a time t in the
past) and Ft : E → T (for the future). The complete lattice T is then generated by the
images N (E), Pt (E) and Ft (E). This lattice consists of statements that we make, and
should conform to the structure of our language; I therefore assume that the lattice
has a classical structure, and in particular that ∧ distributes over ∨. (The non-classical
features will enter when we consider the relation of this lattice to the physical world,
given by truth values—“everything that is the case”). The map N simply embeds the
lattice E into T —it adds the word “now” to a report of an experience—and therefore
respects the structure of these reports, so N is an injective lattice homomorphism.
Since we are assuming that memory gives reports of past experience with the same
quality of definite truth or falsehood as present experiences, I also take the maps Pt to
be injective homomorphisms.

It is not so clear that the future operators Ft should be homomorphisms, but it is
not clear what “and” and “or” should mean for tensed statements with truth values
between 0 and 1. I will assume that each Ft is a homomorphism in order to give a
meaning to p ∧ q and p ∨ q for all tensed statements p and q, but these meanings
might be different from “p and q” and “p or q”. This is discussed further at the end
of this section. A major objective of the mathematical development in this section is
to delineate the differences between ∧ and “and”, and between ∨ and “or”; this is the
content of Theorem 14.

On the assumption that T is a distributive lattice, it follows that every proposition
in T is a disjunction of histories hP ∧ h0 ∧ hF where

h0 = N (�0), hF = Ft1(�1) ∧ . . . ∧ Ftn (�n) with 0 < t1 < · · · < tn, (6)

and hP is formed similarly with past operators Pt . Here each�k represents an element
of the lattice of subspaces E , being the linear operator of orthogonal projection onto
the subspace. I will refer to n as the length of the history hF. Since the departures from
classical logic in this system occur only in future-tense propositions, the rest of this
section will be concerned only with the sublattice TF generated by Ft (E) for all t .

4.2 The truth of histories: conjunction

Truth values are assigned to elements of T from the perspective of a particular experi-
ence η0 at a time t0. Past and present propositions are taken to obey classical logic, so
any element N (�) or Pt (�) has a truth value of 0 or 1, and elements of the sublattice
generated by these have truth values determined by the usual truth tables.

The truth value of a future proposition Ft (�), however, is equated with its prob-
ability and could lie anywhere in the closed unit interval [0, 1]. It is determined by
quantum mechanics as follows. The component of the universal state vector deter-
mined by the experience |η0〉 at the time t0 is |E0〉 = |η0〉|ψ ′

0(t0)〉, which would
evolve by the Schrödinger equation to e−i Ht/�|E0〉 after a time interval t , where H is
the universal Hamiltonian. On the other hand, the experience state |η j 〉 will, after the
lapse of time t , be associated with the component
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|η j 〉|ψ ′
j (t0 + t)〉 = (� j ⊗ 1)|�(t0 + t)〉 = (� j ⊗ 1)e−i Ht/�|E0〉

of the universal state vector. The geometrical measure of the closeness of these two
vectors is taken to be the truth value of the statement “I will have experience η j after
a time t” in the context of experience η0 at time t0 (from now on this context will be
understood):

τ
(
Ft (� j )

) = 〈E0|�̃ j |E0〉 (7)

where τ denotes truth value and

�̃ j = ei Ht/�(� j ⊗ 1)e−i Ht/�.

Eq. (7) is the usual expression (theBorn rule) for the probability in quantummechanics.
To extend this to a conjunction of future-tense propositions, i.e. to a history hF given

by (6), we adopt the standard extension of the Born rule (Griffiths 2002;Wallace 2012)
to the probability of a history hF = Ft1(�1) ∧ . . . ∧ Ftn (�n):

τ(hF) = 〈E0|�̃1 . . . �̃n−1�̃n�̃n−1 . . . �̃1|E0〉
= 〈E0|ChC

†
h |E0〉 (8)

where Ch is the history operator

Ch = �̃1 · · · �̃n . (9)

Note that if t1 = t2,

τ(h1 ∧ h2) = 〈E0|�̃1�̃2|E0〉 = 〈E0|�̃2
1�̃2|E0〉 = 〈E0|�̃1�̃2�̃1|E0〉

since the projectors �1 and �2 commute and therefore so do �̃1 and �̃2 if t1 = t2.
So the formula (8) for τ(h1 ∧ h2) holds for t1 = t2 as well as t1 < t2.

I will now explore the logical properties of this definition. First we note the ele-
mentary fact

Lemma 1 Let � be a projection operator and |ψ〉 any state vector. Then

(i) 0 ≤ 〈ψ |�|ψ〉 ≤ 〈ψ |ψ〉,
(ii) 〈ψ |�|ψ〉 = 1 ⇐⇒ �|ψ〉 = |ψ〉.

Proof

〈ψ |ψ〉 − 〈ψ |�|ψ〉 = 〈ψ |(1 − �)|ψ〉 = 〈ψ |(1 − �)2|ψ〉 ≥ 0,

with equality if and only if �|ψ〉 = |ψ〉. ��
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Theorem 1 For any future history hF,

0 ≤ τ(hF) ≤ 1.

Proof By repeated application of Lemma 1(i), using 〈E0|E0〉 = 1. ��

Theorem 2 For any two future histories h1, h2,

τ(h1 ∧ h2) = 1 ⇐⇒ τ(h1) = τ(h2) = 1.

Proof First note that if k1, . . . kn are one-time histories ki = Fti (�i ) with t1 ≤ · · · ≤
tn ,

τ(k1 ∧ . . . ∧ kn) = 1 ⇐⇒ τ(k1) = · · · = τ(kn).

This is proved by induction on n, using Lemma 1(ii). Now if h1 and h2 are any
two future histories, τ(h1 ∧ h2), τ(h1) and τ(h2) are all conjunctions of one-time
histories, so both sides of the equivalence in the theorem are equivalent to τ(k) = 1
for all one-time histories occurring in h1 and h2. ��

Corollary τ(h1 ∧ h2) �= 1 �⇒ τ(h1) �= 1 or τ(h2) �= 1.

Theorem 3 For one-time histories h1, h2 with t1 < t2,

τ(h1) = 0 �⇒ τ(h1 ∧ h2) = 0.

Proof

τ(h1) = 0 �⇒ �̃1|E0〉 = 0 �⇒ τ(h1 ∧ h2) = 0.

��

Theorem 4 For one-time histories h1, h2 with t1 < t2,

τ(h1 ∧ h2) + τ(h1 ∧ ¬h2) = τ(h1)

Proof

τ(h1 ∧ h2) + τ(h1 ∧ ¬h2) = 〈E0|�̃1�̃2�̃1|E0〉 + 〈E0|�̃1
(
1 − �̃2

)
�̃1|E0〉

= 〈E0|�̃1|E0〉 = τ(h1).

��
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Corollary τ(h1 ∧ h2) ≤ τ(h1).

Theorems 2, 3 and 4 show that the truth values of two-time histories (conjunctions
of one-time propositions) have some of the properties that we would expect for the
truth and falsity of conjunction. However, the strict falsity of a conjunction (as opposed
to its lack of truth) does not imply the strict falsity of one of the conjuncts. This is not
surprising, given the probabilistic nature of the truth values. The quantum nature of the
truth values becomes apparent in Theorems 3 and 4 which display a lack of symmetry
between the conjuncts. The falsity of a proposition h2 at the later time t2 does not imply
the falsity of the conjunction h1∧h2, because the interposition of a fact h1 at t1 affects
the truth of h2 at t2. However, this quantum effect should not be visible at the level of
our experience. In order to restore the symmetry of conjunction, to make it possible to
extend some theorems which would otherwise only apply to one-time histories, and to
complete the logic generally, we need the following Consistent Histories assumption:

CH Let h = Ft1(�1) ∧ · · · ∧ Ftn (�n) be any history in the lattice of temporal
propositions, and for any binary sequence α = (α1, . . . , αn) (αi = 0 or 1), let

hα = Ft1(�
α1
1 ) ∧ . . . ∧ Ftn (�

αn
n ).

where �0 = �, �1 = ¬� = 1 − �. Then

〈E0|ChαC
†
hβ

|E0〉 = 0 if α �= β.

where Ch is the history operator of (9).
This is part of a much wider assumption that demarcates the admissible histories in

the “consistent histories” formulation of quantummechanics (Griffiths 2002), and can
be justified for macroscopic states like our experience states by decoherence theory
(Wallace 2012).Wedo not need the full strength of the consistent histories formulation.

Lemma 2 If CH holds, the truth value of a history h = Ft1(�1) ∧ . . . ∧ Ftn (�n) is
given by

τ(h) = 〈E0|�̃1 . . . �̃n|E0〉. (10)

Proof By CH, for each non-zero (α1, . . . , αn) ∈ {0, 1}n we have

〈E0|�̃1 · · · �̃n�̃
αn
n · · · �̃α1

1 |E0〉 = 0. (11)

Taking αn = δir for some r gives

τ(h) = 〈E0|�̃1 · · · �̃n�̃n · · · ]�̃r [· · · �̃1|E0〉 (12)

where ]�̃r [ denotes that �̃r is omitted from the product. We now prove by downward
induction on r that for any subset R = {i1, . . . , ir } of {1, . . . , n},

τ(h) = 〈E0|�̃1 · · · �̃n�̃ir . . . �̃i1 |E0〉. (13)
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Taking α so that αn = 0 if i ∈ R,αn = 1 if i /∈ R, (11) gives the right-hand side of (13)
as a sum of terms with r + k factors to the right of �̃n , with

(n−r
k

)
terms if k > 0, all

multiplied by (−1)k+1, and all equal to τ(h) by the inductive hypothesis. This sum is

∑

k �=0

(−1)k+1
(
n − r

k

)
τ(h) = τ(h).

��
We can now restore symmetry to Theorems 3 and 4 and extend them to multi-time

histories.

Theorem 5 If CH holds,

τ(h1) = 0 �⇒ τ(h1 ∧ h2) = 0

for any two histories h1 and h2.

Proof First take h2 = Ftr (�r ) to be a one-time history and h1 to be given by

h1 = Ft1(�1) ∧ · · · ∧ Ftr−1(�r−1) ∧ Ftr+1(�r+1) ∧ · · · ∧ Ftn (�n).

If CH holds, τ(h1 ∧ h2) is given by (12). But if τ(h1) = 0,

�̃n · · · ]�̃r [· · · �̃1|E0〉 = 0

so that τ(h1 ∧ h2) = 0.
Now any h2 can be written as a conjunction of one-time histories, say h2 = h21 ∧

· · · ∧ h2k , so

τ(h1) = 0 �⇒ τ(h1 ∧ h21) = 0 �⇒ · · · �⇒ τ(h1 ∧ h21 ∧ · · · ∧ h2k) = 0

�⇒ τ(h1 ∧ h2) = 0.

��
Theorem 6 If CH holds, and h2 is a one-time history,

τ(h1 ∧ h2) + τ(h1 ∧ ¬h2) = τ(h1).

Note that in general¬h1 is a disjunction of histories, so τ(¬h1∧h2) is not yet defined.

Proof Suppose that h1 and h2 are as in the proof of Theorem 5, so that ¬h2 =
Ftr (1 − �r ). Then the result follows immediately from Lemma 2. ��
Theorem 7 If CH holds,

τ(h1 ∧ h2) ≤ τ(h1)

for any two future histories h1, h2.
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Proof By Theorem 6, the inequality holds if h2 is a one-time history. Nowwe argue by
induction on the length of h2, using the associativity of ∧. If h3 is a one-time history
and the inequality holds for h1 and h2,

τ(h1 ∧ h2 ∧ h3) ≤ τ(h1 ∧ h2) ≤ τ(h1)

so the inequality holds for h1 and h2 ∧ h3. ��
Theorem 8 If CH holds,

τ(h1) + τ(h2) − 1 ≤ τ(h1 ∧ h2)

for any two future histories h1 and h2.

Proof First suppose that h1 and h2 are one-time histories. By Lemma 2, CH gives

τ(h1 ∧ h2) = 〈E0|�̃1�̃2�̃1|E0〉 = 〈E0|�̃2�̃1|E0〉. (14)

Hence

1 − τ(h1) − τ(h2) + τ(h1 ∧ h2) = 〈E0|(1 − �̃1 − �̃2 + �̃2�̃1)|E0〉
= 〈E0|(1 − �̃2)(1 − �̃1)|E0〉
= τ(¬h1 ∧ ¬h2) by Lemma 2 again

≥ 0.

Now we proceed by double induction on the lengths of h1 and h2: if h3 is a one-time
history, and the inequality holds for h1 and h2, then

τ(h1) + τ(h2 ∧ h3) − 1 = τ(h1) + τ(h2) − τ(h2 ∧ ¬h3) − 1 by Theorem 6

≤ τ(h1 ∧ h2) − τ(h2 ∧ ¬h3) by the inductive hypothesis

= τ(h1 ∧ h2 ∧ h3) + τ(h1 ∧ h2 ∧ ¬h3) − τ(h1 ∧ ¬h3) by Theorem 6

≤ τ(h1 ∧ h2 ∧ h3) by Theorem 7

so the inequality holds for h1 and h2 ∧ h3. Hence, by induction it holds for one-time
h1 and any h2. Now a similar induction on h1 shows that it holds for all h1, h2. ��

4.3 Disjunction

If it is clear what is meant by a future history and how to assign its truth value in
quantum theory (though whether this really is clear will be discussed in the next
section), it is not so clear how to approach a disjunction of histories. However, with
the assumption CH, which will be a standing assumption for the remainder of this
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section, we can, as anticipated in Sect. 3 (Eq. (3)), adopt the following definition from
probability logic:

τ(h1 ∨ h2) = τ(h1) + τ(h2) − τ(h1 ∧ h2) (15)

since Theorems 7 and 8 assure us that this lies between 0 and 1.
We extend this to disjunctions of any finite number of future histories, i.e. to general

elements of the lattice TF, by the following definition, expressing the principle of
inclusion and exclusion:

τ(h1 ∨ · · · ∨ hn) = H (n)
1 − H (n)

2 + · · · + (−)n−1H (n)
n (16)

where

H (n)
r =

∑
τ(hi1 ∧ · · · ∧ hir ) (17)

in which the sum extends over all r -subsets {i1, . . . , ir } of {1, . . . , n}. This satisfies

τ(h1 ∨ · · · ∨ hn) = τ(h1 ∨ · · · ∨ hn−1) + τ(hn) − τ
(
(h1 ∨ · · · ∨ hn−1) ∧ hn

)

(18)

where, by the assumed distributivity of the lattice TF, the argument of the last τ can
be expanded into a disjunction of n − 1 histories. However, we do not take it as an
inductive definition of τ(h1 ∨ · · · ∨ hn) since it would be necessary to show that it
is well-defined, i.e. independent of the ordering of h1, . . . , hn . We must show that
the definition (16) gives a result between 0 and 1, and for this we need to extend
Theorem 6:

Theorem 9 If p is any disjunction of histories and h is a one-time history, then

τ(p) = τ(p ∧ h) + τ(p ∧ ¬h).

Proof This is a straightforward induction on the number of disjuncts in p. ��
Theorem 10 If τ(h1 ∨ · · · ∨ hn) is given by (16), then

0 ≤ τ(h1 ∨ · · · ∨ hn) ≤ 1.

Proof This follows the same lines as the proof of Theorem 8. If hn is a one-time
history, Theorem 9 gives

τ(h1 ∨ · · · ∨ hn−1) ≥ τ
(
(h1 ∨ · · · ∨ hn−1) ∧ hn

)

and arguing by induction on the length of hn , as in Theorem 7, we can extend this to
general hn . Hence, by (18),

τ(h1 ∨ · · · ∨ hn) ≥ τ(hn) ≥ 0.
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For the right-hand inequality, first suppose that h1, . . . , hn are one-time histories,
with τ(hn) = 〈E0|�̃n|E0〉; then in the definition (16) we have, from Lemma 2,

H (n)
r =

∑
〈E0|�̃i1 . . . �̃in |E0〉

and therefore

τ(h1 ∨ · · · ∨ hn) = 1 − 〈E0|(1 − �̃n)(1 − �̃n−1) · · · (1 − �̃1)|E0〉
= 1 − τ(¬h1 ∧ · · · ∧ ¬hn).

Since ¬h1 ∧ · · · ∧ ¬hn is a single history, this lies between 0 and 1.
The right-hand inequality can be extended to arbitrary histories h1, . . . , hn by a

similar argument to the last part of the proof of Theorem 8, using successive inductions
on the lengths of h1, . . . , hn . ��

We can now show that (15) is true in general. This is the replacement for the truth
table for ∨ in truth-functional many-valued logic.

Theorem 11 If p and q are any two future propositions (elements of the lattice TF),

τ(p ∨ q) = τ(p) + τ(q) − τ(p ∧ q).

Proof Suppose p = h1∨· · ·∨hm and q = k1∨· · ·∨kn where hi and k j are histories.
The definition (16) gives expressions for τ(p), τ(q), τ(p ∨ q) and τ(p ∧ q) which
can be rewritten in a factorised form as follows.

For any set X , we write 2X for the set of subsets of X , as usual. Let U (X) be the
commutative ring generated by the subsets of X with union as the ring multiplication
(in other words, U (X) is a Z-module with basis 2X , with the additional operation
of union defined on the basis and extended by Z-linearity). We continue to use the
symbol ∪ for this extended operation. Then the empty set is a multiplicative identity
in U (X), and we will denote it by 1.

Let M = {1, . . . ,m} and N = {1, . . . , n}. Let M � N be the disjoint union of M
and N , realised as

M � N = {(1, 0), . . . , (m, 0), (0, 1), . . . , (0, n)} ⊂ Z × Z

(so M � N is the union of the projections of M × N onto the axes in Z × Z). Define
real-valued functions τp : 2M → [0, 1], τq : 2N → [0, 1], τp∨q : 2M�N → [0, 1]
and τp∧q : 2M×N → [0, 1] by

τp({i1, . . . , ir })=τ(hi1 ∨ · · · ∨ hir ),

τq({ j1, . . . , js})=τ(k j1 ∨ · · · ∨ k js ),

τp∨q
({(i1, 0) . . . , (ir , 0), (0, j1), . . . , (0, js)}

)=τ
(
hi1 ∨ · · · ∨ hir ∨ k j1 ∨ · · · ∨ k js

)
,

τp∧q
({(i1, j1), . . . , (it , jt )}

)=τ
(
hi1 ∨ k j1 ∨ · · · ∨ hit ∨ k jt

)
.
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Then the definition (16) can be stated as

τ(p) = τp
(
1 − (1 − {1}) ∪ · · · ∪ (1 − {m}))

with corresponding expressions for τ(q), τ(p ∨ q) and τ(p ∧ q). To write the last
two, it is convenient to introduce the abbreviations en = {(i, 0)}, f j = {(0, j)} and
gi j = {(i, j)} for the singleton sets in 2M�N and 2M×N , which generate the rings
U (M � N ) and U (M × N ). Then

τ(p ∨ q) = τp∨q
(
1 − (1 − e1) ∪ . . . ∪ (1 − em) ∪ (1 − f1) ∪ · · · ∪ (1 − fn)

)
,

τ (p ∧ q) = τp∨q

⎛

⎝1 −
⋃

i j

(1 − gi j )

⎞

⎠ .

Define a map f : 2M×N → 2M�N by projecting M × N ⊂ Z × Z onto the axes:

f
({(i1, j1), . . . (ir , jr )}

) = {i1, . . . , ir } � { j1, . . . , jr }
= {(i1, 0), . . . , (ir , 0), (0, j1), . . . , (0, jr )}.

This satisfies f (S ∪ T ) = f (S) ∪ f (T ) and therefore can be extended to a ring
homomorphism f : U (M × N ) → U (M � N ). It is completely specified by its action
on the generators:

f (gi j ) = ei ∪ f j . (19)

Now let S = {(i1, j1), . . . , (ir , jr )} be any subset of M × N . Then

τp∧q(S) = τ
(
hi1 ∨ k j1 ∨ · · · ∨ hir ∨ k jr

)

= τ
(
hi1 ∨ · · · ∨ hir ∨ k j1 ∨ · · · ∨ k jr

)

= τp∨q
(
ei1 ∪ · · · ∪ eir ∪ fi1 ∪ · · · ∪ f jr

)

= τp∨q( f (S)),

so τp∧q = τp∨q ◦ f . Hence

τ(p ∧ q) = τp∧q

⎛

⎝1 −
⋃

i j

(1 − gi j )

⎞

⎠ = τp∨q ◦ f

⎛

⎝1 −
⋃

i j

(1 − gi j )

⎞

⎠

= τp∨q

⎛

⎝1 −
⋃

i j

(
1 − ei ∪ f j

)
⎞

⎠ .
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We now note that for any e, f1, . . . , fn ∈ U (M � N ) satisfying e ∪ e = e, in
particular if e is one of the generators of U (M � N ),

n⋃

j=1

(1 − e ∪ f j ) = 1 − e + e ∪
n⋃

j=1

(1 − f j ).

which can be proved by a simple induction on n. Hence

⋃

i j

(1 − ei ∪ f j ) =
m⋃

i=1

(1 − ei + ei ∪ F)

where

F =
n⋃

j=1

(1 − f j ).

Note that (1 − fn) ∪ (1 − fn) = 1 − fn , so F ∪ F = F . Induction on m can now be
used to show that

m⋃

i=1

(1 − en + en ∪ F) = E + F − E ∪ F

where

E =
m⋃

i=1

(1 − ei ).

We now have

τ(p ∧ q) = τp∨q(1 − E − F + E ∪ F)

= τp∨q(1 − E) + τp∨q(1 − F) − τp∨q(1 − E ∪ F). (20)

But

τp∨q(1 − E) = τp∨q

(
1 −

m⋃

i=1

(1 − {i, 0})
)

= τp

(
1 −

m⋃

i=1

(1 − {i})
)

= τ(p),
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and similarly

τp∨q(1 − F) = τ(q), τp∨q(1 − E ∪ F) = τ(p ∨ q).

Eq. (20) therefore gives the stated result. ��

4.4 Negation

For a one-time history h = Ft (�), negation is defined by the usual orthocomplement
in the lattice of closed subspaces of Hilbert space:

¬h = Ft (1 − �)

with truth value

τ(¬h) = 1 − τ(h). (21)

For a general history h = h1 ∧ · · · ∧ hr where hn are one-time histories, we take
negation to be given by

¬h = ¬h1 ∨ · · · ∨ ¬hr ,

and for a general proposition p = k1 ∨ · · · ∨ kr , where kn are multi-time histories,

¬p = ¬k1 ∧ · · · ∧ ¬kr .

The truth values of such general h and p are aleady covered by the definition in the
previous section. Our aim in this subsection is to prove that (21) still holds.

Lemma 3 If h1 and h2 are any two histories,

τ(h1) = τ(h1 ∧ h2) + τ(h1 ∧ ¬h2)

Proof By induction on the length of h2. By Theorem 6, the theorem holds for all h1
and all one-time histories h2. Suppose it holds for all h2 of length n, and let h′

2 be a
history of length n+1, so h′

2 = h2∧h3 where h2 has length n and h3 has length 1. Then

τ(h1 ∧ h′
2) + τ(h1 ∧ ¬h′

2) = τ(h1 ∧ h2 ∧ h3) + τ
(
h1 ∧ (¬h2 ∨ ¬h3)

)

= τ(h1 ∧ h2 ∧ h3) + τ
(
(h1 ∧ ¬h2) ∨ (h1 ∧ ¬h3)

)

= τ(h1 ∧ h2 ∧ h3) + τ(h1 ∧ ¬h2) + τ(h1 ∧ ¬h3)

− τ(h1 ∧ ¬h2 ∧ ¬h3)

= τ(h1 ∧ h2 ∧ h3) + τ(h1 ∧ ¬h2 ∧ h3) + τ(h1 ∧ ¬h3)

by Theorem 6

= τ(h1 ∧ h3) + τ(h1 ∧ ¬h3)
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by the inductive hypothesis

= τ(h1) by Theorem 6 again.

��
Lemma 4 If h is any history,

τ(¬h) = 1 − τ(h)

Proof By induction on the length of h. Suppose the result holds for all histories of
length n, and let h′ be a history of length n + 1, so that h′ = h0 ∧ h where h0 is a
one-time history and h has length n. Then

τ(¬h′) = τ(¬h0 ∨ ¬h)

= τ(¬h0) + τ(¬h) − τ(¬h0 ∧ ¬h).

But τ(¬h) = 1 − τ(h) by the inductive hypothesis, and

τ(¬h0) − τ(¬h0 ∧ ¬h) = τ(¬h0 ∧ h) by Theorem 3,

so

τ(¬h′) = 1 − τ(h) + τ(¬h0 ∧ h)

= 1 − τ(h0 ∧ h) by Theorem 6

= 1 − τ(h′).

The result holds for n = 1 by (21), and therefore holds for all n. ��
Theorem 12 If p is any disjunction of histories,

τ(¬p) = 1 − τ(p)

Proof By induction on the number of disjoined histories in p. Suppose the theorem
holds for all p = h1 ∨ · · · ∨ hn , and let p′ = p ∨ k where k is another history. Then

τ(¬p′) = τ(¬p ∧ ¬k)

= τ(¬p) + τ(¬k) − τ(¬p ∨ ¬k)

= τ(¬p) + τ(¬k) − τ
(¬(p ∧ k)

)

= 1 − τ(p) + 1 − τ(k) − [1 − τ(p ∧ k)]

by the inductive hypothesis, since p ∧ k is also a conjunction of n histories hn ∧ k.
Hence

τ(¬p′) = 1 − τ(p ∨ k) = 1 − τ(p′)

and the theorem is established for all p by induction. ��
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A similar double induction can be used to prove the general version of Theorem 6:

Theorem 13 If p and q are any two elements of the lattice TF,

τ(p) = τ(p ∧ q) + τ(p ∧ ¬q).

We can now state the general logical properties of conjunction and disjunction in
this temporal logic:

Theorem 14 Let p and q be any two temporal propositions.

(i) τ(p ∧ q) = 1 ⇐⇒ τ(p) = τ(q) = 1;
(ii) τ(p) = 0 or τ(q) = 0 �⇒ τ(p ∧ q) = 0;
(iii) τ(p ∨ q) = 0 ⇐⇒ τ(p) = τ(q) = 0;
(iv) τ(p) = 1 or τ(q) = 1 �⇒ τ(p ∨ q) = 1.

Proof (i) If τ(p ∧ q) = 1, then, by Theorem 13,

τ(p) = τ(p ∧ q) + τ(p ∧ ¬q) ≥ 1

and therefore τ(p) = 1. Conversely, if τ(p) = τ(q) = 1, then

τ(p ∧ q) = τ(p) + τ(q) − τ(p ∨ q) ≥ 1

and therefore τ(p ∧ q) = 1.
(ii) If τ(p) = 0, then

τ(p ∧ q) = τ(p) + τ(q) − τ(p ∨ q)

= τ
(¬(p ∨ q)

) − τ(¬q)

= τ(¬p ∧ ¬q) − τ(¬q)

= −τ(¬q ∧ p) by Theorem 13

≤ 0,

so τ(p ∧ q) = 0.
(iii) and (iv) follow from these by writing τ(p ∨ q) = 1 − τ(¬p ∧ ¬q). ��
A possibly disturbing feature of this list of properties is the one-sidedness of the

implications (ii) and (iv): p∧q might be false without either p or q being false (though
(i) shows that if p∧q is not definitely true, then p and q cannot both be definitely true);
and the truth of p∨ q does not imply the truth of either p or q (though (iii) shows that
this implication does hold if “truth” (τ = 1) is replaced by “possible truth” (τ �= 0)).
The first of these has already been discussed, but the second, concerning truth rather
than falsity, might be felt to cast doubt on whether ∨ can legitimately be regarded
as a generalised form of “or” (a similar objection has been made to quantum logic
Sudbery 1986). Such an objection would be an argument against any identification of
probabilities with truth values. However, far from being objectionable, this feature of
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disjunction seems to be necessary in a temporal logic that can deal with indeterminism.
As Prior noted (1962, p. 244), Aristotle’s assertion “Either there will be a sea-battle
tomorrow or there won’t” should be taken to mean, not what it appears to mean, but “
‘Either “There is a sea-battle going on” or “there is no sea-battle going on” ’ will be
true tomorrow”; in symbols,

By Ft (p) ∨ Ft (¬p) Aristotle meant Ft (p ∨ ¬p).

But in the logic proposed here Ft is taken to be a homorphism, so that

Ft (p) ∨ Ft (q) = Ft (p ∨ q),

showing that the meaning of the connective ∨ in this system is in accordance with
Prior’s reading of Aristotle. Aristotle’s usage (or confusion, if that is what it is) is of
course very common. I take Prior’s elucidation of it as grounds for claiming that the
disjunction ∨ occurring in this temporal logic is in fact the “or” of common usage in
talk about the open future.

5 Retrospect

In this final section I will consider to what extent the proposals in this paper meet the
objectives set out in Sect. 2.

5.1 The open future

The reader may well have observed that there is nothing new or specifically quantum-
mechanical about the indeterministic world of experiences which emerges from
quantum mechanics, as described in Sect. 2; this is the classical picture of an open
future. The assumption CH in Sect. 4.2 simply ensures the classical nature of our logic.
Thus the logic developed here is a temporal logic appropriate to a metaphysics of time
that incorporates an open future. It can be summarised as follows:

1. The lattice T of tensed (and dated) propositions is formed from a lattice E of
tenseless propositions bymeans of lattice homomorphisms {Pt , N , Ft : t ∈ R, t >

0} whose images generate T .
2. A set of truth values is a map τ : E → R satisfying
(i) 0 ≤ τ(p) ≤ 1;
(ii) τ(p) = 0 or 1 if p belongs to N (E) or Pt (E);
(iii) τ(p ∧ q) + τ(p ∨ q) = τ(p) + τ(q);
(iv) τ(p ∧ q) ≤ τ(p), τ (q) ≤ τ(p ∨ q).

The logic based on these axioms will be discussed elsewhere.
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5.2 Strictly quantum

The reader may also have observed that I have not kept to the faith boldly proclaimed
in Sect. 2. I there renounced the devil and all his works, such as the collapse postulate,
and his pomps, such as a separate classical realm. But the formula I took for the truth
value (or probability) of a history is taken from a calculation of probability based on
the collapse postulate; and the Consistent Histories assumption, which I introduced in
order to get a recognisable logic, is just a way of eliminating the characteristic features
of quantummechanics. This assumption can be justified by decoherence theory within
quantummechanics, but only if one restricts the set of possible histories (for example,
it will not be true if one wants to include times that are arbitrarily close to each other).
Moreover, there is no justification for the definite past propositions Pt (p); there is no
thin red line between experience states going into the past, any more than there is one
going into the future. There are only statements taken from present memory, which
are aspects of the present experience states (in other words, statements about the past
can only be in the perfect tense—which is one of the three aspects of the present tense
in English, Joos 1968).

These objections can be met by restricting the logic as follows. The present sublat-
tice N (E) describes present experience, including memory (so statements about the
past occur in the perfect tense as elements of N (E)). From the context of a particular
experience state η0, these elements of N (E) have truth values restricted to {0, 1}. It is
possible to make future-tense statements only about experiences at one future time. A
statement about a future history must be regarded as an element of Ftf(E), where tf is
the last time in the history; the other elements of the history are in the future perfect
tense, referring to the contents of memory at time tf (this, after all, is the only way
we can verify a statement referring to a number of future times: we wait until the last
time referred to and then consult records of earlier times).

In this austere approach, the set of propositions is not a lattice but is the union
of the sublattices N (E) and Ft (E) for all positive real numbers t . A conjunction or
disjunction of elements of different sublattices is not a well-formed proposition in
this logic. However, it can be regarded as a statement in the metalanguage, with the
usual bivalent truth values: if e and f are experience statements, so that Fs(e) and
Ft ( f ) are statements in the future tense, then the disjunction Fs(e)∨ Ft ( f ) means, as
usual, that one of the two propositions is (definitely) true, i.e. “either τ(Fs(e)) = 1 or
τ(Ft ( f )) = 1”.

6 Conclusion

In this paper I have proposed a way to understand the statements about the future
made by a sentient physical system in a universe described by quantum theory. I take
it that we are such sentient physical systems, living in such a universe. The proposal
is that the statements any one of us can make, from his or her own perspective in the
universe, form a lattice with the usual logical operations of conjunction, disjunction
and negation obeying conventional laws, but that the appropriate truth values for such
statements (or “histories”) are many-valued, with values in the unit interval [0, 1] of

123



4452 Synthese (2017) 194:4429–4453

real numbers, and are to be identified with probabilities. The paper has explored the
logical properties of the truth values given by quantum theory, delineating which of
these properties require the special assumption of “consistent histories”. We find that
this assumption is sufficient to prove all the logical properties to be expected from the
identification of truth values with probabilities.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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