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Extreme events, which are usually characterized by generalized extreme value (GEV)models, can exhibit long-termmemory, whose
impact needs to be quantified. It was known that extreme recurrence intervals can better characterize the significant influence of
long-term memory than using the GEV model. Our statistical analyses based on time series datasets following the Lévy stable
distribution confirm that the stretched exponential distribution can describe a wide spectrum of memory behavior transition
from exponentially distributed intervals (without memory) to power-law distributed ones (with strong memory or fractal scaling
property), extending the previous evaluation of the stretched exponential function using Gaussian/exponential distributed
random data. Further deviation and discussion of a historical paradox (i.e., the residual waiting time tends to increase with an
increasing elapsed time under long-term memory) are also provided, based on the theoretical analysis of the Bayesian law and
the stretched exponential distribution.

1. Introduction

Extreme events in complex systems have been widely
explored for decades, such as natural hazards including
extreme climate events [1], megalandslides [2], and earth-
quakes [3, 4] that cause severe challenges in economy,
society, and environment. The clustering phenomena of
extreme events imply the existence of long-term memory
[5, 6]. Those phenomena were widely observed in river water
levels [7], ocean temperature fluctuations [8], large-scale cli-
mate temperature [9], and so on. The generalized extreme
value (GEV) distribution model (or the interval model) is
designed to analyze the maximum within the interval R (see
Figure 1(a), where the artificial random data is generated
using the Lévy stable distribution, which will be further dis-
cussed in Section 2). According to the traditional extreme
value theorem, these extremes will converge to the three

generalized extreme value distributions: Fréchet, Gumbel,
and Weibull [10]. Though the GEV model has achieved
many successful and empirical results [10, 11, 12], it is a sta-
tistical model based on independently and identically distrib-
uted (i.i.d.) data to investigate the probability density
distribution characteristics without the impact of the tempo-
ral memory [13]. Prediction of the tail of the distribution,
which has low probability but high impact, cannot be
obtained accurately using the traditional extreme statistics,
since it is impossible to obtain the effective description from
the spatial probability density distribution or the i.i.d.

Previous studies have confirmed that the recurrence time
analysis (see Figure 1(b)) is a powerful tool to characterize
the temporal scaling properties and derive quantitative risk
estimation of hazardous events [14]. This method can more
efficiently use experimental data and characterize the physi-
cal correlations of time scales. Meanwhile, previous studies
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show that the recurrence of extreme events is not necessary to
follow a pure memoryless Poisson distribution [15, 16].

This study aims at investigating extreme events with
memory using two major steps. First, we will identify the
memory effect embedded in extreme events. The memory
effect can be characterized by the autocorrelation function
[17, 18], given, for example, a normalized time series {xi}
(where i = 1,… ,N):

Cx s = xixi+s ≡
1

N − s
〠
N−s

i=1
xixi+s, 1

with a power law decay Cx s ~s−γ and the correlation expo-
nent γ ∈ 0, 1 . In this study, we use the detrended fluctuation
analysis (DFA) [21] to detect this long-correlated behavior
with Hurst exponent H. For long-term correlated data, the
Hurst exponent equals to [22–25]

H = 1 − γ

2 , 2

where 0 5 <H < 1. The stretched exponential distribution
with the correlation exponent γ proposed in [17–20] is then
adopted to characterize the recurrence time.

Second, we will explore the influence of temporal mem-
ory on the forecast of extreme events based on the artificial
data following the Lévy stable distribution. Under the mem-
ory behavior of previous events, there may be an improved
estimate of the probability of a future event occurrence. To
directly quantify this influence, we refer to Davis et al. [26]:
“The longer it has been since the last earthquake, the longer
the expected time till the next?” Therefore, we will apply
the stretched exponential distribution, which is a widely used
statistical model describing temporal memory features, to
explore the possible “paradox” between the residual waiting
and elapsed times. By extending the numerical analysis in lit-
erature [26–28], Sornette and Knopoff proposed a rigorous
statistical framework for a quantitative conditional probabil-
ity response and found that this framework is very sensitive
to the assumed distribution [29]. Hereby, we will make an
attempt to offer a derivation to this paradox (residual waiting
time increases with the elapsed time under long-term mem-
ory), based on the theoretical analysis of the Bayesian law
and the stretched exponential distribution.

It is also noteworthy that we select the Lévy stable distri-
bution to quantify the heavy-tailed distribution of time series
when analyzing extreme events. Cautions are needed when
generating the time series data with long-term memory,
because the non-Gaussian distribution feature of power-law
processes cannot be well analyzed using traditional statistical
models, such as the Gaussian distribution and lognormal
distribution [17, 18, 30]. Based on extensive successful inves-
tigations of the Lévy stable distribution in real-world applica-
tions [31, 32], here we characterize heavy-tail behavior of
time series using the Lévy stable distribution with a stability
index α (0<α < 2). We apply the Lévy stable distribution
and Hurst exponent in linear fractional stable noise (LFSN)
to simulate heavy-tail and long-term memory processes and
then investigate the property of extremal behavior using the
methods proposed above.

The rest of this work is organized as follows. In Section 2,
we introduce the LFSN model and explain the simulation
parameters used to test the extreme value statistical behavior.
In Section 3, we show the defects of traditional extreme value
statistical models in describing the temporal behavior. The
influence of temporal memory of the recurrence interval is
then described using the stretched exponential distribution.
In addition, based on the Bayesian theory and the stretched
exponential statistics model, the “paradox”mentioned above
is deduced in principle. Conclusions are drawn in Section 4.

2. Methods

2.1. Random Number Generation. The Lévy stable distribu-
tion includes four parameters: stability index α (0 < α ≤ 2),
skewness parameter β (−1 < β < 1), scale parameter γ (γ > 0),
and location parameter δ (δ ∈R). We employ the Lévy stable
distribution to provide insight on the heavy-tail probability
distribution, and this heavy-tail simulated fluctuation pro-
cess is controlled by stability index α< 2 in this study [33].
In the following, we use the random number generation
method of the Lévy distribution proposed by Chambers
et al. for analysis [34]. More details of the algorithm can be
found in [35].

Linear fractional stable motion (LFSM) is a generaliza-
tion of fractional Brownian motion (fBm) [36]. LFSN, which
is an increment process of LFSM, displays both abnormal
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Figure 1: (a) Illustration of maxima seriesMk in the GEV model, where R represents the interval size (here R = 365 days) andMi represents
the maximum value of the ith interval. (b) Definition of the return interval rk in time series xj for the threshold value q. The return interval rk
is the distance between two adjacent events that exceed the threshold q. The black dotted line in (b) represents the next unknown events that
exceed the threshold q at the moment of “NOW”; t is the elapsed time since the last event; and t′ is the residual waiting time to the next
extreme event.
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fluctuations and long-term memory through Hurst exponent
H and stability index α. The LFSM stochastic process is given
as follows [37]:

MH,α t = C−1
H,α

ℜ
t − s H−1/α − −s H−1/αdLα s , 3

where

CH,α =
ℜ

1 − s H−1/α − −s H−1/α
+

α
ds

1/α
, 4

in which 0 <H < 1, 0 < α < 2, and Lα Lα, s ∈R are a stan-
dard symmetric α-stable Lévy random measure onR. Linear
fractional stable noise as the LFSM increment process is
stated as

XH,α t =MH,α k −MH,α k − 1

= −C−1
H,α

ℜ
s H−1/α

+ − s − 1 H−1/α
+ dLα k − s ,

5

where k ∈ Z and XH,α t presents the long-term memory
whenH > 1/α, and it reduces to the fractional Gaussian noise
when α = 2. In our artificial data generation, the stability
index is α = 1 8, the Hurst parameter is H = 0 8 which corre-
sponds to correlation exponent γ = 0 4 (see 2), and the num-
ber of generated data is N = 218.

2.2. Influence of Long-Term Memory and Non-Gaussian
Processes on GEV Statistics. In the classical GEV model, one
assumes that X1, X2,… , Xn are independent and identically
distributed data described by the cumulative distribution
function F x . The maximum value Mn =max X1, X2,… ,
Xn is also an element of the original data. Hence, the distri-
bution PR Mn of the maxima Mn satisfies

PR Mn ≤ x = PR X1 ≤ x,… , Xn ≤ x = Fn x 6

According to the Fisher-Tippett extreme value theo-
rem, if there are constant columns an > 0 and bn , PR
Mn − bn /an ≤ x = Fn anx + bn =H x is a nondegenerate

distribution function. Hence, H x must converge to one of
the three types of extreme value distributions according to
the distribution of the original data, when the number of data
n→∞ [9]. For the original data following a power-law dis-
tribution, H x converges to Fréchet distribution, or type II
distribution, which is defined as

H x = exp − 1 + ξ
x − μ

σ

−1/ξ
, ξ > 0, 7

where μ is the location parameter, σ represents the scale
parameter, and ξ is the shape parameter.

Figure 2 shows a comparison of the probability density
distribution pR Mn for both the correlated (γ = 0 4) and
uncorrelated shuffled data for R = 365 (corresponding to
the annual maxima). The distribution of long-term memory
data (blue color) shifts to the left compared with the uncorre-
lated sequence, and the left tail exhibits an obvious broaden-
ing trend, which is consistent with the one offered in [18]. It

is noteworthy that the skewness of the probability density
distribution of the correlated data following the Lévy stable
distribution focused by this study is apparently larger than
that following the Gaussian and exponential distributions
considered in [18]. This discrepancy is mainly because the
Lévy stable distribution is a middle part-dominated distri-
bution with a heavy tail, compared with the Gaussian and
exponential distributions. It is also clear that the distribution
of long-term memory data (represented by the blue line in
Figure 2) is more divergent compared with the uncorrelated
sequence, especially on the left-hand side. This result indi-
cates the influence of the memory or the role of correlation,
which can make many large value events be clustered in cer-
tain time intervals while the maximum values in other
periods are generally small. Because the large values will
be still identified as annual maxima, the right tail of the
extreme distribution is almost unaffected by the correlations.
The GEV model cannot make a clear response to the tempo-
ral behavior.

When we investigate the extreme value problem, the cal-
culation of the extreme value of the reoccurrence period is a
very important part. For the T-year maximum value, the cor-
responding probability P = 1/T . Therefore, the maximum
value of the return period T is estimated as the quantile M∗

of the probability P = 1 − M∗

−∞pR M dM = 1 −H M∗ , and
we can get

M∗ = μ −
σ

ξ
1 − −log 1 − P −ξ 8

Here, we let T = 100 and then estimate a hundred-year
maximum of two different memory behavior data (analyzed
in Figure 2). Through (8), M∗

γ=0 4 = 28 0728, M∗
uncorr =

28 9301, and we can find M∗
γ=0 4 ≈M∗

uncorr. It is noteworthy
that the obtained reoccurrence value has strong one-
sidedness in practical sense, and the traditional extreme value
model does not describe the factors of time-related behavior.
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Figure 2: Comparison of the probability density distribution pR M
of the maxima for two different data, where R = 365, representing
the annual interval. The blue line represents the long-range
correlation data (γ = 0 4), and the red line is shuffled uncorrelated
data.
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3. Results and Discussion

3.1. Statistics of Extreme Recurrence Times. We analyzed the
return interval rq over threshold values q for the return time
statistics of long-term correlated time series. For uncorre-
lated data, such as “white noise,” the return intervals are also
uncorrelated and follow the exponential distribution accord-
ing to Poisson statistics [12]. When the return interval is
affected by the long-term correlation, Pq r exhibits a signif-
icant slower decay than the Poisson exponential distribution.
This slower decay can be captured by the stretched exponen-
tial distribution [38, 39]:

Pq r ≅
aγ
Rq

exp −bγ
r
Rq

γ

, 9

where the exponent γ is the correlation exponent to charac-
terize the memory of the data, the parameters αγ and bγ are
independent of q, and Rq is the average of the return interval
at the given threshold q. In the study of the universality of (9),
the return interval functions of four different original distri-
bution data (Gaussian, exponential, power-law, and lognor-
mal) were fitted in [14], where the results show that the
stretched exponential agrees well with the Gaussian data
and also good for the other distributions. It is also worth of
note that the stretched exponential distribution of the recur-
rence time can be derived exactly from a deeper process,
namely, the Hawkes process of interevent triggering [40].

Figure 3 shows the distribution of Pq r of the return
intervals r for both the original data (red symbols) and the
shuffled data (rescaled by 10−1, shown by the black symbols).
In both cases, since RqPq r reflects only the variation of the
ratio r/Rq, the application of the recurrence time analysis is
no longer limited to the actual threshold q. Figure 3 also con-
firms that the distribution function is exponential for the
shuffled data.

Compared with the results of the uncorrelated data, the
influence of the exponent γ in (9) makes the return intervals
to exhibit an obvious two-stage differentiation. More intui-
tively speaking, the return intervals for both r/Rq ≪ 1 and r/
Rq ≫ 1 are considerably more frequent for memory records
than for the uncorrelated data. It means that the mean Rq is
a poor description, because the analysis object has no typical
scale or the “characteristic” scale is missing, or broadly
referred to as “scale-free” phenomenon [41]. It also implies
that the distribution changes from the exponential (γ = 1)
to the power-law distribution (γ→ 0) when the index γ
decreases (the degree of correlations increases) [42]. It means
that the stretched exponential distribution is a subslow decay
distribution between the exponential distribution and the
power-law distribution with 0 < γ < 1, in which the power-
law relation is a statistical form of fractal which emphasizes
the similarity of all scales [19, 43]. Therefore, the subslow
decay of the stretched exponential distribution is in fact a
scale-free statistical form or the result of transition from a
nonsimilarity structure to a fully statistical fractal structure.

3.2. The “Paradox” Phenomenon of the Residual Waiting
Time under Long-Term Memory Effect. According to the
discussion in the above section, the “cluster” phenomenon
means that the data has a long memory effect, and the
occurrence of the event is no longer a simple memoryless
Poisson exponential distribution. The stretched exponential
distribution of slow decay embodies the occurrence of
events as a “scale-free” process. This temporal behavior
can be quantified by the prior events, so there will be a cor-
responding predictable effect on the occurrence of the next
event. In general, it reflects the dependence of the last return
interval on the previous interval. The waiting time t′ to the
next event in the time interval also follows the stretched
exponential distribution.

Bunde et al. [17] discussed the existence of memory
effects according to the simulation data and obtained the
“paradox” phenomenon of the residual waiting time that
tq′ t ∣ r0 increases with increasing t and r0. Here, we try to
derive a specific demonstration and quantification to the
abnormal results, based on the fitting parameters for the
stretched exponential distribution shown in Figure 3. In the
following derivation, we adopt the numerical analysis method
introduced by Sornette and Knopoff [29].

First, we assume P(r) to be the return interval distribution,
and the unknown residual waiting time t′ satisfies the prior
hypothesis t′ + t = r. According to the Bayesian conditional
probability theorem, the distribution function of t′ satisfies

P t′ t =
P t′ + t
∞
t P r dr

10

Here, we let the expected waiting time t′ to be a func-
tion of time t and analyze the variation rule of d t′ /dt. From
(10), the expected waiting time is calculated as
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Figure 3: Normalized distribution density function RqPq r as
a function of r/Rq. The return interval r for the thresholds q = 2 0
(ΔRq ≈ 159), 2.5 (∗Rq ≈ 363), 3.0 (+Rq ≈ 632) for the simulated
long-term correlated records with γ = 0 4 (red symbols). Black
symbols represent the rescaled distribution (×10−1) for the
corresponding shuffled data with same thresholds.
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t′ =
∞
0 t′P t′ + t dt′

∞
t P r dr

11

To develop some intuition, we first analyze the Poisson
exponential distribution. From (10), we can get

P t′ =
exp −t′/Rq

Rq
12

Corresponding to the exponential distribution without
memory, the estimation of the time t′ does not depend on
the elapsed time t, with d t′ /dt ≡ 0. As for the stretched
exponential, from (9) and (10), we get

P t′ t =
aγ/Rq exp −bγ t′ + t/Rq

γ

∞
t aγ/Rq exp −bγ t/Rq

γ dr
13

We then calculate (13) using the Gauss-Kronrod inte-
gration method. Figure 4 shows the distribution of P t′
at time t = Rq, t = 2Rq, and t = 5Rq based on the fitting
results of Figure 3. It is obvious that P t′ has a progres-
sively broadening tail to the origin as t increases and lies
above P r at t′ > Rq; that is, the probability of large numbers
for the residual waiting time t′ increases as elapsed time t
increases. The answer to the anomalous result is positive,
and this property is evidently connected with the slow decay
in P t′ compared with the Poisson exponential distribution.

When we further investigate the relationship between the
expected time t′ ((1)) and the elapsed time t based on the
fitting results in Figure 3, one can find that the expected wait-
ing time t′ depends on t, compared with the exponential
distribution of the memoryless data. It clearly displays the
effect of different long-term correlations, where the expected
residual time to the next event increases with an increasing t.
At the same time, the degree of the anomalous behavior
increases, and this change is enhanced by decreasing γ. This
result implies that the dependence of the memory effect exists
not only between adjacent return intervals but also in the
unknown interval between the waiting time t′ and the
elapsed time t. This result confirms the finding in the previ-
ous statistical analysis [17].

4. Conclusion

This study investigates the influence of memory effect on
extreme value models, based on the random data generated
by the Lévy stable distribution, which is different from the
previous evaluation using the Gaussian or exponential distri-
bution in [17, 18]. Combining with non-Gaussian and mem-
ory effect, the LFSN is used to simulate the experimental data.
The simulation result shows that the stretched exponential
distribution provides a reliable way to estimate the scaling
behavior of extreme event intervals, generalizing the previous
evaluation of the stretched exponential function to analyze
random data following the Gaussian and exponential distri-
butions. Using the Bayesian conditional statistical principle

in conjunction with the stretched exponential distribution,
we also theoretically validate the “anomalous” behavior
identified by various studies [17, 18] (where the residual
waiting time can increase with an increasing elapsed time
under long-term memory or the so called “anomalous resi-
dence time”), whichmay shed light on the real-world extreme
event prediction.
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