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The large scale, time varying, and diversification of physically coupled networked infrastructures such as power grid and
transportation system lead to the complexity of their controller design, implementation, and expansion. For tackling these
challenges, we suggest an online distributed reinforcement learning control algorithm with the one-layer neural network for each
subsystem or called agents to adapt the variation of the networked infrastructures. Each controller includes a critic network and
action network for approximating strategy utility function and desired control law, respectively. For avoiding a large number of
trials and improving the stability, the training of action network introduces supervised learning mechanisms into reduction of
long-term cost. The stability of the control system with learning algorithm is analyzed; the upper bound of the tracking error and
neural network weights are also estimated. The effectiveness of our proposed controller is illustrated in the simulation; the results
indicate the stability under communication delay and disturbances as well.

1. Introduction

The increasing interconnection of physical systems through
cybernetworks or physical networks has been observed in
many infrastructures, such as power grid [1, 2], transporta-
tion networks, and unmanned systems. One critical issue of
these called cyberphysical systems is complexity of the system
when it grows very large, especially the control problem.
Consequently, distributed schemes are suggested for reducing
the communication and computational cost compared with
centralized control scheme [3]. However, the coupling of
subsystems and nonstatic environment in both cybernet-
works and physics networks bring many challenges, such as
physical interference among subsystems, time-varying plant
parameters, communication delay, and expansibility of the
cyberphysical system.

To increase expansibility of the cyberphysical system, the
multiagent concept is usually introduced. The cyberphysical
system can be divided into many agents. Each agent has its
own control policy and a unified framework for pursuing

its target [4]. The expansion of the cyberphysical system
turns into simply duplicating agents without accommodat-
ing control policy. To deal with the physical coupling of
networked system, one common approach is to decouple
subsystems in control design [5–8]. Each subsystem may
utilize state information of neighbored subsystems for mit-
igating their physical interference, or the designer treats their
physical interference as random disturbance [9, 10]. On the
other hand, for addressing nonstatic environment with time-
varying plants, online supervised learning, adaptive control,
and reinforcement learning algorithm are suggested; they all
enable adaptively adjusting their control parameters online,
while the combination of neural network and reinforcement
learning usually leads to better control performance com-
pared with conventional supervised learning and adaptive
control scheme [11]. Reinforcement learning constructs a
long-run cost-to-go function to predict the consequence
cost;, each control action takes the estimated future result
into account [12], while, compared with adaptive control,
the adaptive ability is limited in the number of time-varying
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parameters; the number of time-varying parameters of plant
model may very large in practice.

Recently, many researches are focused on reinforce-
ment learning with neural network. These researches are
classified into two categories. The first category is to sim-
ply utilize neural network to approximate unknown part
about system model or control strategy, such as cost-to-go
function and optimal control law. Prokhorov and Wunsch
discussed three families of reinforcement learning control
design [13], Heuristic dynamic programming (HDP), dual
heuristic programming (DHP), and globalized dual heuristic
programming (GDHP) and their application in optimal
control. Xu et al. focus on experimental studies of real-time
online learning control for nonlinear systems using kernel-
based ADP methods [14]. Lee et al. focus on a class of
reinforcement learning (RL) algorithms, named integral RL
(I-RL), that solve continuous-time (CT) nonlinear optimal
control problems with input affine system dynamics [15].
The second category is to combine the approach in the
first category with supervised learning algorithm for guar-
anteeing convergence of the learning system; the supervised
reinforcement learning also reduces a large number of trials
by employing the error signal with domain knowledge [16–
18]. It generates instinct feedback for correcting the control
actions. Xu et al. suggest a novel adaptive-critic-based neural
network (NN) controller which is investigated for nonlinear
pure-feedback systems [19]. Liu et al. were concerned with
a reinforcement learning-based adaptive tracking control
technique to tolerate faults for a class of unknown multiple-
input multiple-output nonlinear discrete-time systems with
less learning parameters [20]. Besides these, researchers try
to employing multilayer/deep neural network for approx-
imating the functions in control, so that the precision of
model is enhanced and the performance can be improved
in a consequence [21, 22]. However, it is hard to analyze its
stability of learning algorithm. Moreover, the learning rate
may be slow as the number of tuned parameters is very large
in the deep neural network [23].

In this paper, we suggest a distributed neural controller
for the physically coupled networked discrete-time systemvia
online reinforcement learning. We model each subsystem as
an agent; each agent can obtain its state and some physical
neighbored subsystem state information to figure out optimal
control action. One-layer adaptive critic neural network and
action neural network are proposed for modeling the cost
function and optimal action law.With deterministic learning
algorithm, we incorporated supervised learning into our
reinforcement learning algorithm for accelerating conver-
gence rate. The stability of the learning algorithm is analyzed
and the boundary of each parameter is also estimated. The
contribution of this paper is two-fold.

(1) We propose a distributed online reinforcement learn-
ing algorithm for controlling physically coupled networked
discrete-time system.

(2) Sufficient condition for guaranteeing learning algo-
rithm stability and system stability are derived and the upper
bound of parameters is estimated.

The rest of the paper is organized as follows: We model
the physically coupled networked system and control system
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Figure 1: A physical-coupling networked system structure.

in a mathematical dynamic equation in Section 2, and some
assumptions are made for simplifying the analysis; then,
control system design via online reinforcement learning
algorithm is depicted in Section 3; the stability analysis
is detailedly discussed in Section 4; simulation results for
illustrating the effectiveness and advantage of our algorithm
are elaborated in Section 5. Section 6 is the conclusion part.

2. Physically Coupled Networked Control
System and Problem Statement

In the physically coupled networked system, their subsystems
may physically interfere with neighbored subsystems and
change its state trajectory or dynamic. The structure is
shown in Figure 1. In order to improve the control sys-
tem performance, some cyberconnections of communication
infrastructures are installed for exchanging the states of
neighbored subsystems [3]. The topology of cyberconnec-
tions and physical connections may not be the same for
probably practical constraints in cyberresources.

2.1. System Dynamic Equation. For a physically coupled
networked system, consider that it consists of 𝑛 nonlinear
dynamic subsystems, which are given in the discrete-time
form:

𝑥𝑖,1 (𝑘 + 1) = 𝑥𝑖,1 (𝑘) ,
𝑥𝑖,2 (𝑘 + 1) = 𝑥𝑖,3 (𝑘) ,

...
𝑥𝑖,𝑝 (𝑘 + 1) = 𝑓𝑖 (𝑥𝑖 (𝑘)) + ∑

𝑗∈𝑁𝑝(𝑖)

𝑓𝑗𝑖 (𝑥𝑗,𝑝 (𝑘))
+ 𝑔𝑖 (𝑥𝑖 (𝑘)) 𝑢𝑖 (𝑘) + 𝑑𝑖 (𝑘) ,

(1)
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where 𝑖 = 1, . . . , 𝑛, 𝑥𝑖,𝑙 ∈ 𝑅𝑚×1, 𝑙 = 1, 2, . . . , 𝑝, and 𝑥𝑖 =(𝑥𝑖,1𝑇, . . . , 𝑥𝑖,𝑝𝑇)𝑇 ∈ 𝑅𝑝𝑚×1. 𝑥𝑖, 𝑢𝑖 ∈ 𝑅𝑞×1 and 𝑑𝑖 ∈ 𝑅𝑚×1
are system state vector, control input vector, and disturbance
vector for subsystem 𝑖. 𝑓𝑖(𝑥𝑖(𝑘)) ∈ 𝑅𝑚×1, 𝑓𝑗𝑖(𝑥𝑗,𝑝(𝑘)) ∈ 𝑅𝑚×1,
and 𝑔𝑖(𝑥𝑖(𝑘)) ∈ 𝑅𝑚×𝑞 are smooth vector function about local
system dynamic, neighbor interference, and control input
interference which are all unknown. 𝑁𝑝(𝑖) is physically con-
nected neighbor set of subsystems 𝑖, which can interfere with
the state trajectory of subsystem 𝑖. In order to simplify the
analysis, the following reasonable assumptions are made [11].

Assumption 1. The disturbances are bounded ‖𝑑𝑖‖ ≤ 𝑑max.

Assumption 2. 𝑔𝑖 is an invertible matrix.

𝑑max is a positive real number, it means the magnitude
of disturbances are bounded. Assumption 2 is made for
simplifying the analysis of action network which will be
discussed in next section.

The control objective is to track the state target vector 𝑦𝑖;
then we have the error equation

𝑒𝑖,𝑙 (𝑘) = 𝑥𝑖,𝑙 (𝑘) − 𝑦𝑖,𝑑 (𝑘 + 𝑙 − 𝑝) . (2)

Therefore, the subsystem dynamic in a form of error is

𝑒𝑖,1 (𝑘 + 1) = 𝑒𝑖,2 (𝑘) ,𝑒𝑖,2 (𝑘 + 1) = 𝑒𝑖,3 (𝑘) , ...
𝑒𝑖,𝑝 (𝑘 + 1) = 𝑓𝑖 (𝑥𝑖 (𝑘)) + ∑

𝑗∈𝑁𝑝(𝑖)

𝑓𝑗𝑖 (𝑥𝑗,𝑝 (𝑘))
+ 𝑔𝑖 (𝑥𝑖 (𝑘)) 𝑢𝑖 (𝑘) + 𝑑𝑖 (𝑘) − 𝑦𝑖,𝑝 (𝑘 + 1) .

(3)

2.2. Distributed Control System and Control Objective. Dis-
tributed control system is more flexible and scalable than
centralized control. Moreover, it divides a large system
controller intomany small subsystems controllers, which lead
to the system state dimension reduction in a controller, so that
much computational resource and time can be saved [24].

The control objective is to decrease the error vector 𝑒𝑖
as fast as possible and bound in a small region for a given
bounded disturbance. For subsystem controller, usually, an
exponential damping rate of error is expected with a form of

𝑒𝑖 (𝑘 + 1) = Γ𝑖𝑒𝑖 (𝑘) , (4)

where ‖Γ𝑖‖ < 1. Therefore, the desired control input of
subsystem 𝑖 can be in a form of

𝑢𝑑,𝑖 (𝑘) = −𝑔𝑖 (𝑥𝑖 (𝑘))−1 [[ ∑
𝑗∈𝑁𝑝(𝑖)∩𝑁𝑐(𝑖)

𝑓𝑗𝑖 (𝑥𝑗,𝑝 (𝑘))

+ 𝑓𝑖 (𝑥𝑖 (𝑘)) − 𝑦𝑖,𝑝 (𝑘 + 1) − Γ𝑖𝑒𝑖,𝑝 (𝑘)]] .
(5)

𝑁𝑐(𝑖) is the cyberconnected neighbor set of subsystems𝑖, which means the controller of subsystem 𝑖 utilizes the

received state information from neighbored subsystems via
communication network.

However, 𝑓𝑖(𝑥𝑖(𝑘)), 𝑓𝑗𝑖(𝑥𝑗,𝑝(𝑘)), and 𝑔𝑖(𝑥𝑖(𝑘)) are
unknown. A reinforcement learning scheme with neural
network is proposed for approximating the desired control
strategy and strategy utility function about long-term cost.

3. Control System Design by Reinforcement
Learning and Neural Network

The proposed distributed control scheme with reinforcement
learning consists of three parts: the first part will introduce a
strategy utility function (also called long-term cost function);
the second part depicts the critic neural network and online
training algorithm; the last part of this section elaborates the
action neural network and parameter updating algorithm.

3.1. Strategy Utility Function. The utility function defined for
subsystem 𝑖 is based on the current filtered state error 𝑒𝑖(𝑘); it
is formulated as

𝑝𝑙𝑖 (𝑘) = {{{
0, if 𝑒𝑙𝑖 (𝑘)2 ≤ 𝑐𝑙𝑖
1, otherwise, (6)

where 𝑙 = 1, 2, . . . , 𝑚𝑝, 𝑝𝑙𝑖(𝑘) ∈ 𝑅, and 𝑐𝑙𝑖 is a given constant
positive scalar threshold for lth element of state error vector 𝑒𝑖
for subsystem 𝑖. 𝑝𝑙𝑖(𝑘) is also an indicator of current tracking
performance; if𝑝𝑙𝑖(𝑘) equals 1, it means the control system has
a bad state, and the state deviates the desired value a lot. On
the other hand, if𝑝𝑙𝑖(𝑘) equals 0, it indicateswell-tracking per-
formance and the lth state error is in a small bounded region.

The long-term cost is the sum of utility function at each
sampling time. Based on the utility function 𝑝𝑙𝑖(𝑘), strategic
utility function is defined as

𝐽𝑖 (𝑘) = 𝛼𝑁𝑝𝑖 (𝑘 + 1) + 𝛼𝑁−1𝑝𝑖 (𝑘 + 2) + ⋅ ⋅ ⋅
+ 𝛼𝑘+1𝑝𝑖 (𝑁) + ⋅ ⋅ ⋅ , (7)

where 0 < 𝛼 < 1, 𝑝𝑖(𝑘) ∈ 𝑅𝑚𝑝, and N is stage number. If 𝑁 is
infinite or very large, the strategy utility function is defined in
a rolling horizon with a fixed number of stages. It is obvious
that the control objective is to minimize 𝐽𝑖(𝑘) which improve
the control performance.

3.2. Critic Network Design. In our proposed scheme, one-
layer neural network is considered for approximating strategy
utility function 𝐽𝑖. For simplifying the stability analysis,
only output layer weights of neural network are designed
to be adjustable in online training. A one-layer network is
suggested to approximate strategy utility function; it is

𝐽𝑖 (𝑘) = 𝑊𝑐,𝑖 (𝑘) 𝜙𝑐,𝑖 (𝑘 − 𝜏) + 𝜀𝑐,𝑖 (𝑘) . (8)

The basis function 𝜙𝑐,𝑖(𝑘 − 𝜏) is a Gaussian vector function
which is defined as

𝜙𝑐,𝑖 (𝑘 − 𝜏) = [𝜙𝑐,𝑖,1, 𝜙𝑐,𝑖,2, . . . , 𝜙𝑐,𝑖,ℎ, . . . , 𝜙𝑐,𝑖,𝑞] ,
𝜙𝑐,𝑖,ℎ (𝑘 − 𝜏) = exp(−󵄩󵄩󵄩󵄩𝑒𝑖 (𝑘 − 𝜏) − 𝑐𝑐,𝑖,ℎ󵄩󵄩󵄩󵄩2𝜎𝑐,𝑖2 ) , (9)
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where 𝜏 is communication latency, 𝑐𝑐,𝑖,ℎ ∈ 𝑅𝑚𝑝 is the Gaussian
function center vector, and the centers should cover the
systemoperation state region asmuch as possible.𝜎𝑐,𝑖 is width
of Gaussian function. The approximation error 𝜀𝑐,𝑖 would be
very small if the dimension of basis function 𝜙𝑐,𝑖 ∈ 𝑅𝑞×1 is
large enough [11]. The relation between kth and (𝑘 + 1)th
optimal control action is

𝐽𝑖 (𝑘) = min
𝑢𝑖(𝑘)

{𝛼𝐽𝑖 (𝑘 − 1) − 𝛼𝑁+1𝑝𝑖 (𝑘)} , (10)

where 𝑢𝑖(𝑘) ∈ 𝑅𝑚 is control action for subsystem 𝑖. We
estimate the strategy utility function by

𝐽𝑖 (𝑘) = 𝑊̂𝑐,𝑖 (𝑘) 𝜙𝑐,𝑖 (𝑘 − 𝜏) . (11)

The prediction error of approximated strategy utility function𝐽𝑖 for critic NN is

𝑒𝑐,𝑖 (𝑘) = 𝐽𝑖 (𝑘) − 𝛼 (𝐽𝑖 (𝑘 − 1) − 𝛼𝑁𝑝𝑖 (𝑘)) . (12)

We define the objective function of critic NN for minimiza-
tion at 𝑘th sampling as

𝐸𝑎,𝑖 (𝑘) = 12𝑒𝑇𝑎,𝑖 (𝑘) 𝑒𝑎,𝑖 (𝑘) . (13)

One common way to decrease the objective function is to
update critic NN parameters along its gradient direction.
Applying chain rule, partial derivative of objective function
(13) with respect to 𝑊̂𝑐,𝑖(𝑘) is𝜕𝐸𝑎,𝑖 (𝑘)𝜕𝑊̂𝑐,𝑖 (𝑘) = 𝑒𝑐,𝑖 (𝑘) 𝜙𝑐,𝑖 (𝑘)𝑇

= [𝐽𝑖 (𝑘) − 𝛼 (𝐽𝑖 (𝑘 − 1) − 𝛼𝑁𝑝𝑖 (𝑘))] 𝜙𝑐,𝑖 (𝑘 − 𝜏)𝑇 .
(14)

Therefore, updating law for critic NN of subsystem 𝑖 is
𝑊̂𝑐,𝑖 (𝑘 + 1) = 𝑊̂𝑐,𝑖 (𝑘)

− 𝛿𝑖 [𝐽𝑖 (𝑘) − 𝛼 (𝐽𝑖 (𝑘 − 1) − 𝛼𝑁𝑝𝑖 (𝑘))]
⋅ 𝜙𝑐,𝑖 (𝑘 − 𝜏)𝑇 .

(15)

𝛿𝑖 is a given scalar, representing updating step size.The choice
of 𝛿𝑖 is very important. If 𝛿𝑖 is too large, the online learning
may diverge.

3.3. Action Neural Network Design. Our control objective
is to minimize the tracking error 𝑒𝑖 and also to minimize
the long-term cost function/strategy utility function 𝐽𝑖. They
depend on the control action in each step. The desired
control action (5) is an expected strategy for approaching
this objective, and an action neural network is suggested for
approximating the desired control action.The desired control
action 𝑢𝑑,𝑖 can be equal to

𝑢𝑑,𝑖 (𝑘) = 𝑊𝑎,𝑖 (𝑘) 𝜙𝑎,𝑖 (𝑘 − 𝜏) + 𝜀𝑎,𝑖 (𝑘) , (16)

where 𝑊𝑎,𝑖 is the optimal weighting matrix for neural output
which minimizes the residual 𝜀𝑎,𝑖; 𝜙𝑎,𝑖 ∈ 𝑅𝑙×1 is the basis
function which has the same form as (9). 𝜀𝑎,𝑖 would be very

small if the dimension of 𝜙𝑎,𝑖 is very large. However, 𝑢𝑑,𝑖 and𝑊𝑎,𝑖 are unknown; the desired control action is proposed to
be estimated by

𝑢̂𝑖 (𝑘) = 𝑊̂𝑎,𝑖𝜙𝑎,𝑖 (𝑘 − 𝜏) , (17)

where 𝑊̂𝑎,𝑖 is the estimated weightingmatrix for𝑊𝑎,𝑖. And we
have the estimated error 𝑢̃𝑖 for desired control action.

𝑢̃𝑖 (𝑘) = 𝑢̂𝑖 (𝑘) − 𝑢𝑑,𝑖 = 𝑊̃𝑎,𝑖𝜙𝑎,𝑖 (𝑘 − 𝜏) − 𝜀𝑎,𝑖 (𝑘) , (18)

where 𝑊̃𝑎,𝑖 = 𝑊̂𝑎,𝑖−𝑊𝑎,𝑖, and we denote 𝜍𝑖(𝑘) = 𝑊̃𝑎,𝑖𝜙𝑎,𝑖(𝑘−𝜏),
which causes dynamic (3) to be

𝑒𝑖,1 (𝑘 + 1) = 𝑒𝑖,2 (𝑘) ,
𝑒𝑖,2 (𝑘 + 1) = 𝑒𝑖,3 (𝑘) ,

...
𝑒𝑖,𝑝 (𝑘 + 1) = Γ𝑖𝑒𝑖,𝑝 (𝑘) + 𝑔𝑖𝜍𝑖 (𝑘)

+ ∑
𝑗∈𝑁𝑝(𝑖)\𝑁𝑐(𝑖)

𝑓𝑗𝑖 (𝑥𝑗,𝑝 (𝑘)) − 𝑔𝑖𝜀𝑖 (𝑘) + 𝑑𝑖 (𝑘) .
(19)

𝑁𝑝(𝑖) and𝑁𝑐(𝑖) are the neighbor subsystem sets of subsystem𝑖 which are connected to subsystem 𝑖 in physical way and
cyberway. In our proposed scheme, supervised learning is
incorporated into the action neural network training for
accelerating the convergence rate of online updating. The
objective of the policy is not only to minimize long-term cost𝐽𝑖 but also to approximate the desired control output 𝑢𝑑,𝑖 with
supervised learning.Thus, the error vector of action network
is defined as

𝑒𝑎 (𝑘) = √𝑔𝑖𝜍𝑖 (𝑘) + √𝑔𝑖−1 (𝐽𝑖 (𝑘) − 𝐽𝑑,𝑖) , (20)

where 𝐽𝑑,𝑖 is the desired utility function value for subsystem 𝑖,
it can be set as 0 [20], and√𝑔𝑖 is principal mean square root.
The following cost function is defined for each step:

𝐸𝑎,𝑖 (𝑘) = 12𝑒𝑎,𝑖 (𝑘)𝑇 𝑒𝑎,𝑖 (𝑘) . (21)

Then, the partial derivative of (21) with respect to 𝑊̃𝑎,𝑖 is
obtained by chain rule.

𝜕𝐸𝑎,𝑖 (𝑘)𝜕𝑊̃𝑎,𝑖 (𝑘) = 𝜕𝐸𝑎,𝑖 (𝑘)𝜕𝑒𝑎,𝑖 (𝑘)
𝜕𝑒𝑎,𝑖 (𝑘)𝜕𝜍𝑖 (𝑘)

𝜕𝜍𝑖 (𝑘)𝜕𝑊̃𝑎,𝑖 (𝑘)
= 𝜙𝑎,𝑖 (𝑘) [𝑔𝑖𝜍𝑖 (𝑘) + 𝐽𝑖 (𝑘)]𝑇 .

(22)

Therefore, with gradient descent principle, the action NN
weight matrix is updated by

𝑊̃𝑎,𝑖 (𝑘 + 1) = 𝑊̃𝑎,𝑖 (𝑘)
− 𝛽𝑖 [𝑔𝑖𝜍𝑖 (𝑘) + 𝐽𝑖 (𝑘)] 𝜙𝑎,𝑖 (𝑘 − 𝜏)𝑇 . (23)

𝛽𝑖 is the updating step size for online learning of action neural
network.The choice of𝛽𝑖 will be discussed in the next section,
which is associated with the stability of the online learning
algorithm.
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4. Stability Analysis

This section discusses the stability of online learning algo-
rithm and the tracking performance. It is necessary for con-
trol design. The upper bound of error and weight parameter
of neural networks are analyzed. Firstly, a theorem about the
stability of this scheme is proposed.

Theorem 3. For a given networked control system described in
(3) and the parameter updating algorithm in (15) (23), if 𝐴1 ≤0, 𝐴2 ≤ 0, 𝐴3 ≤ 0, and 𝐴4 ≤ 0, where
𝐴1 = −𝜇𝑖,12 [1 − 𝜅𝑖Γ𝑚𝑎𝑥𝑖 ] + ∑

𝑖∈𝑁𝑝(𝑗)\𝑁𝑐(𝑗)

𝜇𝑗,1𝜅𝑗𝑓𝑚𝑎𝑥𝑖𝑗2 ,
𝐴2
= −𝜇𝑖,22 𝛽𝑖 [2𝑔𝑚𝑖𝑛𝑖 − 1𝑔𝑚𝑎𝑥𝑖 − 2𝛽𝑖𝑔𝑚𝑎𝑥𝑖 󵄩󵄩󵄩󵄩𝜙𝑎,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2]

+ 𝜇𝑖,12 𝜅𝑖𝑔𝑚𝑎𝑥𝑖 ,
𝐴3
= 𝜇𝑖,22 [𝛽𝑖𝑔𝑚𝑎𝑥𝑖 + 2𝛽2𝑖 󵄩󵄩󵄩󵄩𝜙𝑎,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2]

− 𝜇𝑖,32 𝛿𝑖 [1 − 𝛼2 − 𝛼2(𝑁+1) − 3𝛿𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2]
+ 𝜇𝑖,42 ,

𝐴4 = 𝜇𝑖,32 [𝛿𝑖 + 3𝛼𝛿2𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2] − 𝜇𝑖,42 ,
𝐴5 = 𝜇𝑖,32 [3𝛿2𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2 + 1] ,
𝐴6 = 𝜅𝑖𝜇𝑖,12 ,

(24)

where 𝜅𝑖 = 3 + |𝑁𝑝(𝑖)\𝑁𝑐(𝑖)|, 𝑔𝑚𝑎𝑥𝑖 = 𝜆𝑚𝑎𝑥(𝑔𝑇𝑖 𝑔𝑖), Γ𝑚𝑎𝑥𝑖 =𝜆𝑚𝑎𝑥(Γ𝑖)2, 𝑔𝑚𝑖𝑛𝑖 = 𝜆𝑚𝑎𝑥(𝑔𝑖𝑇𝑔𝑖)1/2, and 𝑓𝑚𝑎𝑥𝑖 = 𝜆𝑚𝑎𝑥(𝜕𝑓𝑇𝑗𝑖/𝜕𝑒𝑗,𝑝𝜕𝑓𝑗𝑖/𝜕𝑒𝑗,𝑝). Then, there exist upper bounds for‖𝑒𝑖(𝑘)‖2 ‖𝜍𝑖(𝑘)‖2 ‖𝐽𝑖(𝑘)‖2, when 𝑡 → +∞, and they are

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑘)󵄩󵄩󵄩󵄩2 ≤ −𝐴5 + 𝐴6𝑑𝑚𝑎𝑥2𝐴1 ,
󵄩󵄩󵄩󵄩𝜍𝑖 (𝑘)󵄩󵄩󵄩󵄩2 ≤ −𝐴5 + 𝐴6𝑑𝑚𝑎𝑥2𝐴2 ,
󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2 ≤ −𝐴5 + 𝐴6𝑑𝑚𝑎𝑥2𝐴3 .

(25)

And the system is stable.

Proof of Theorem 3. For the dynamic system described in
(3), (15), and (23), we first define a Lyapunov function which

consisted of quadratic of tracking error, action network
weight error, and the error of critic neural network. It is

𝑉 (𝑘) = ∑
𝑖∈𝑆

𝑉𝑖 (𝑘) , (26)

where

𝑉𝑖 (𝑘) = 𝑉𝑖,1 (𝑘) + 𝑉𝑖,2 (𝑘) + 𝑉𝑖,3 (𝑘) + 𝑉𝑖,4 (𝑘) ,
𝑉𝑖,1 (𝑘) = 𝜇𝑖,12 𝑒𝑖,𝑝 (𝑘)𝑇 𝑒𝑖,𝑝 (𝑘) ,

𝑉𝑖,2 (𝑘) = 𝜇𝑖,22 tr [𝑊̃𝑎,𝑖 (𝑘)𝑇 𝑊̃𝑎,𝑖 (𝑘)] ,
𝑉𝑖,3 (𝑘) = 𝜇𝑖,42 tr [𝑊̃𝑐,𝑖 (𝑘)𝑇 𝑊̃𝑐,𝑖 (𝑘)] ,

𝑉𝑖,4 (𝑘) = 𝜇𝑖,52 tr [𝐽𝑖 (𝑘 − 1)𝑇 𝐽𝑖 (𝑘 − 1)] ,

(27)

where 𝑊̃𝑐,𝑖 = 𝑊̂𝑐,𝑖 − 𝑊𝑐,𝑖 and 𝐽𝑐,𝑖 = 𝑊̃𝑐,𝑖𝜙𝑐,𝑖. For a subsystem 𝑖,
we have

Δ𝑉𝑖,1 = 𝜇𝑖,12 [𝑒𝑖 (𝑘 + 1)𝑇 𝑒𝑖 (𝑘 + 1) − 𝑒𝑖 (𝑘)𝑇 𝑒𝑖 (𝑘)]
= 𝜇𝑖,12 [

[
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Γ𝑖𝑒𝑖,𝑝 (𝑘) + 𝑔𝑖𝜍𝑖 (𝑘)

+ ∑
𝑗∈𝑁𝑝(𝑖)\𝑁𝑐(𝑖)

𝑓𝑗𝑖 (𝑒𝑗,𝑝 (𝑘) + 𝑦𝑖,𝑑 (𝑘)) − 𝑔𝑖𝜀𝑖 (𝑘)

+ 𝑑𝑖 (𝑘)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

− 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑘)󵄩󵄩󵄩󵄩2]] ≤ 𝜇𝑖,12 {{{− [1 − 𝜅𝑖Γmax
𝑖 ]

⋅ 󵄩󵄩󵄩󵄩󵄩𝑒𝑖,𝑝 (𝑘)󵄩󵄩󵄩󵄩󵄩2 + ∑
𝑗∈𝑁𝑝(𝑖)\𝑁𝑐(𝑖)

𝜅𝑖𝑓max
𝑗𝑖

󵄩󵄩󵄩󵄩󵄩𝑒𝑗,𝑝 (𝑘)󵄩󵄩󵄩󵄩󵄩2

+ 𝜅𝑖𝑔max
𝑖 (󵄩󵄩󵄩󵄩𝜀𝑖 (𝑘)󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝜍𝑖 (𝑘)󵄩󵄩󵄩󵄩2) + 𝜅𝑖𝑑𝑖 (𝑘)}}} ,

(28)

where 𝜅𝑖 = 3 + |𝑁𝑝(𝑖)\𝑁𝑐(𝑖)|, 𝑔max
𝑖 = 𝜆max(𝑔𝑇𝑖 𝑔𝑖), 𝑓max

𝑖 =𝜆max((𝜕𝑓𝑇𝑗𝑖/𝜕𝑒𝑗,𝑝)(𝜕𝑓𝑗𝑖/𝜕𝑒𝑗,𝑝)), Γmax
𝑖 = 𝜆max(Γ𝑖)2, and

Δ𝑉𝑖,2 = 𝜇𝑖,22 {tr [𝑊̃𝑎,𝑖 (𝑘 + 1)𝑇 𝑊̃𝑎,𝑖 (𝑘 + 1)]
− tr [𝑊̃𝑎,𝑖 (𝑘)𝑇 𝑊̃𝑎,𝑖 (𝑘)]} ≤ 𝜇𝑖,22 {−2
⋅ tr [𝛽𝑖𝜍𝑖 (𝑘)𝑇 (𝑔𝑖𝜍𝑖 (𝑘) + 𝐽𝑖 (𝑘))]
+ 𝛽2𝑖 󵄩󵄩󵄩󵄩𝜙𝑎,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝑔𝑖𝜍𝑖 (𝑘) + 𝐽𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2}
≤ 𝜇𝑖,22 {−𝛽𝑖 [2𝑔min

𝑖 − 1𝑔max
𝑖

− 2𝛽𝑖𝑔max
𝑖

󵄩󵄩󵄩󵄩𝜙𝑎,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2] 󵄩󵄩󵄩󵄩𝜍𝑖 (𝑘)󵄩󵄩󵄩󵄩2 + [𝛽𝑖𝑔max
𝑖

+ 2𝛽2𝑖 󵄩󵄩󵄩󵄩𝜙𝑎,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2] 󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2} ,

(29)
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where 𝑔max
𝑖 = 𝜆max(𝑔𝑖𝑇𝑔𝑖) and 𝑔min

𝑖 = 𝜆max(𝑔𝑖𝑇𝑔𝑖)1/2. For
strategy utility function, (10) leads to

𝐽𝑖 (𝑘) = 𝛼𝐽𝑖 (𝑘 − 1) − 𝛼𝑁+1𝑝𝑖∗ (𝑘) , (30)

and 𝑝𝑖∗ is the utility function under the optimal strategy.

𝑒𝑐,𝑖 (𝑘) = 𝐽𝑖 (𝑘) − 𝛼𝐽𝑖 (𝑘 − 1) + 𝛼𝑁+1𝑝𝑖 (𝑘)
= 𝐽𝑖 (𝑘) − 𝛼𝐽𝑖 (𝑘 − 1) + 𝛼𝑁+1𝑝𝑖 (𝑘) − 𝐽𝑖 (𝑘)

+ 𝛼𝐽𝑖 (𝑘 − 1) − 𝛼𝑁+1𝑝𝑖 (𝑘)
= 𝐽𝑖 (𝑘) − 𝛼𝐽𝑖 (𝑘 − 1) + 𝛼𝑁+1𝑝𝑖 (𝑘) ,

(31)

and 𝑝𝑖(𝑘) = 𝑝𝑖(𝑘) − 𝑝𝑖∗(𝑘), and ‖𝑝𝑖(𝑘)‖ ≤ 1. The updating
equation (15) yields

Δ𝑉𝑖,3 = 𝜇𝑖,32 {tr [𝑊̃𝑐,𝑖 (𝑘 + 1)𝑇 𝑊̃𝑐,𝑖 (𝑘 + 1)]
− tr [𝑊̃𝑐,𝑖 (𝑘)𝑇 𝑊̃𝑐,𝑖 (𝑘)]} ≤ 𝜇𝑖,32 {−2𝛿𝑖 tr [𝑊̃𝑐,𝑖 (𝑘)
⋅ (𝐽𝑖 (𝑘) − 𝛼𝐽𝑖 (𝑘 − 1) + 𝛼𝑁+1𝑝𝑖 (𝑘)) 𝜙𝑐,𝑖 (𝑘 − 𝜏)𝑇]
+ 𝛿2𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘) − 𝛼𝐽𝑖 (𝑘 − 1)
+ 𝛼𝑁+1𝑝𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2} ≤ 𝜇𝑖,32 {−𝛿𝑖 [1 − 𝛼2 − 𝛼2(𝑁+1)
− 3𝛿𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2] 󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2 + [𝛿𝑖
+ 3𝛼𝛿2𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2] 󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘 − 1)󵄩󵄩󵄩󵄩󵄩2
+ [3𝛿2𝑖 󵄩󵄩󵄩󵄩𝜙𝑐,𝑖 (𝑘 − 𝜏)󵄩󵄩󵄩󵄩2 + 1]} .

(32)

The last part of the variation of 𝑉 is

Δ𝑉𝑖,4 = 𝜇𝑖,42 {𝐽𝑖 (𝑘)𝑇 𝐽𝑖 (𝑘) − 𝐽𝑖 (𝑘 − 1)𝑇 𝐽𝑖 (𝑘 − 1)} . (33)

With the sum of all the above variations, we get

Δ𝑉 = Δ𝑉𝑖,1 + Δ𝑉𝑖,2 + Δ𝑉𝑖,3 + Δ𝑉𝑖,4
= 𝐴1 󵄩󵄩󵄩󵄩󵄩𝑒𝑖,𝑝 (𝑘)󵄩󵄩󵄩󵄩󵄩2 + 𝐴2 󵄩󵄩󵄩󵄩𝜍𝑖 (𝑘)󵄩󵄩󵄩󵄩2 + 𝐴3 󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2

+ 𝐴4 󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘 − 1)󵄩󵄩󵄩󵄩󵄩2 + 𝐴5
+ 𝐴6 (󵄩󵄩󵄩󵄩𝜀𝑖 (𝑘)󵄩󵄩󵄩󵄩2 + 𝑑max

2) ,
(34)

where 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, and 𝐴6 are given in Theorem 3.
Therefore, if 𝐴1 ≤ 0, 𝐴2 ≤ 0, 𝐴3 ≤ 0, and 𝐴4 ≤0, the upper boundary of ‖𝑥𝑖(𝑘)‖2 ‖𝜍𝑖(𝑘)‖2 ‖𝐽𝑖(𝑘)‖2 can be
estimated, when 𝑡 → +∞, ‖𝜀𝑖(𝑘)‖2 is very small which can

Subsystem
2

Subsystem
3

Subsystem
1

Subsystem
4

Physical connection
Cyberconnection

f12 f41

f23 f34

Figure 2: The structure of networked system I.

be neglected if the dimension of basis function 𝜙𝑖 is large
enough. The upper bound can be estimated by

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑘)󵄩󵄩󵄩󵄩2 ≤ −𝐴5 + 𝐴6𝑑2max𝐴1 ,
󵄩󵄩󵄩󵄩𝜍𝑖 (𝑘)󵄩󵄩󵄩󵄩2 ≤ −𝐴5 + 𝐴6𝑑2max𝐴2 ,
󵄩󵄩󵄩󵄩󵄩𝐽𝑖 (𝑘)󵄩󵄩󵄩󵄩󵄩2 ≤ −𝐴5 + 𝐴6𝑑2max𝐴3 .

(35)

Remark 4. The stability of this system depends on the control
parameters Γ𝑖, 𝛽𝑖, 𝛿𝑖, and 𝛼, system functions 𝑔𝑖 and 𝑓𝑗𝑖, and
the communication networks which affect parameter 𝜅𝑖. It
is obvious that if subsystem can obtain all state information
from physically connected neighbors, the parameter 𝜅𝑖 would
be smaller, it improves the system performance because the
absolute value of𝐴1 and𝐴2 will be larger, and it decreases the
upper bound of 𝑒𝑖(𝑘) and 𝜍𝑖. Moreover, the sign of𝐴5 and𝐴6
cannot be necessarily definite, as they are not the coefficients
of the estimated variable in the following Lyapunov function
variation expression (34).

5. Simulation Results

This simulation illustrates the effectiveness and advantage of
our proposed control scheme in four aspects: (1) The effec-
tiveness of our proposed control scheme of physical coupling
networked control system in tracking sine wave signal with
disturbances; (2) its effectiveness with communication delay;
(3) its advantages comparedwith conventional reinforcement
learning; (4) its effectiveness in multicontrol input system.

The first simulation considers a networked system called
system I as shown in Figure 2. System I consisted of four
subsystems, each subsystem physically coupled with other
subsystems. Each subsystem is a nonlinear system. Their
equations are
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Figure 3: The state curves of system I with the proposed control scheme.

𝑥𝑖,1 (𝑘 + 1) = 𝑥𝑖,1 (𝑘) ,
𝑥𝑖,2 (𝑘 + 1) = −58 [𝑥𝑖,1 (𝑘) + 𝑥𝑖,2 (𝑘)2] + 0.3𝑥𝑖,2 (𝑘)

+ 𝑢 (𝑘) + ∑
𝑗∈𝑁𝑝(𝑖)

𝑓𝑗𝑖 (𝑥𝑖 (𝑘)) + 𝑑𝑖 (𝑘) .
(36)

𝑖 = 1, 2, 3, 4. The initial value of states for this simulation are𝑥1 = [0.1 0.2]𝑇, 𝑥2 = [0.1 0.3]𝑇, 𝑥3 = [0.1 0.2]𝑇, and 𝑥4 =[0.5 0.2]𝑇. The target signals for 𝑥𝑖,2(𝑘) (𝑖 = 1, 2, 3, 4) are
𝑦1 (𝑘) = 0.2 sin (0.1𝑘 + 2) ,
𝑦2 (𝑘) = 0.2 sin (0.1𝑘 + 1) ,

𝑦3 (𝑘) = 0.2 sin (0.1𝑘 + 1.2) ,
𝑦4 (𝑘) = 0.2 sin (0.1𝑘 + 1.4) .

(37)

The details of other functions and variables are listed in
Table 1.

Figure 2 illustrates both the physical connection and the
cyberconnection of system I. The communication network
can send state information from subsystems 1 to 2, 2 to 3, 3
to 4, and 4 to 1.The parameters of the proposed controller are
illustrated in Table 2.

The simulation results are shown in Figures 3 and 4. From
Figure 3, it is obvious that all of the subsystems converge to
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Table 1: Function and parameters in networked system I.

Function/parameter name Description Mathematical expression𝑓12 The interference function on subsystem 2 from subsystem 1 0.1𝑥1,2𝑓23 The interference function on subsystem 3 from subsystem 1 0.01𝑥2,1 + 0.05𝑥2,2𝑓34 The interference function on subsystem 3 from subsystem 1 0.03𝑥3,1 + 0.1𝑥3,2𝑓41 The interference function on subsystem 1 from subsystem 4 0.1𝑥4,1 + 0.002𝑥4,2𝑑1 The disturbance on subsystem 1 Gaussian noise with magnitude of 0.01𝑑2 The disturbance on subsystem 2 Gaussian noise with magnitude of 0.01𝑑3 The disturbance on subsystem 3 Gaussian noise with magnitude of 0.01𝑑4 The disturbance on subsystem 4 Gaussian noise with magnitude of 0.01
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Figure 4: Control outputs of subsystem neural controllers with the proposed control scheme.

the target state with small errors. The curves converge to the
target curves at about 125th control actions, which mean the
online learning algorithm successfully obtained the desired
action network and critic network. From Figure 4, it can be
seen that the fluctuant of control output is decreased along the
time during the online learning process. They also illustrate
the effectiveness of our proposed control scheme.

In order to present the advantage of our suggested con-
trol scheme, we select conventional reinforcement learning
without supervised learning scheme; the updating of action
network solely depends on the backpropagation of critic
network with the objective of minimizing the output of critic
network [12]. The result is shown in Figure 5. The results
explicitly indicate the divergence of the learning algorithm
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Table 2: The parameters of controllers.

Parameter name Description Value𝑞 Dimension of basis vector function 𝜑𝑐,𝑖 for critic network. 𝑖 = 1, 2, 3, 4. 40𝑙 Dimension of basis vector function 𝜑𝑎,𝑖 for action network. 𝑖 = 1, 2, 3, 4. 40𝜎𝑐,𝑖 The width of radial basis function for critic network. 𝑖 = 1, 2, 3, 4. 1.414𝜎𝑎,𝑖 The width of radial basis function for action network. 𝑖 = 1, 2, 3, 4. 1.414𝑐𝑐,𝑖,ℎ, 𝑐𝑎,𝑖,ℎ󸀠 The center vector for basis function. 𝑖 = 1, 2, 3, 4. ℎ = 1, . . . , 𝑞. ℎ󸀠 = 1, . . . , 𝑙. Element distributed in [−1, +1]𝑁 The horizon length of strategy utility function. 100𝛿𝑖 The update rate for critic network weight matrix. 𝑖 = 1, 2, 3, 4. 0.05𝛽𝑖 The update rate for action network weight matrix. 𝑖 = 1, 2, 3, 4. 0.05Γ𝑖 The damping rate of tracking error. 𝑖 = 1, 2, 3, 4. 0.05
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Figure 5: The state curve of subsystem with conventional reinforcement learning.
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Figure 6: The state curves of subsystems with control delay 𝜏 = 3 under the proposed control scheme.

because of the fast changing of target signal. And the conven-
tional reinforcement learning may need off-line learning in
advance. The results illustrate our proposed control scheme
is more stable and has more powerful online learning ability
than the conventional method.

In practice, the controller usually encounters action delay
or communication delay. It is also modeled in our suggested
model. To illustrate the effectiveness of our proposed con-
trol scheme under communication delay, we chose three
communication delay values 𝜏 = 3, 5, 10 to carry out the
simulation. The simulation results are shown in Figures 6–8.
These results show our proposed control scheme is stable
under communication delay. However, static error increases
with the communication delay. It is clear that the error of

simulation with 𝜏 = 3 is relatively smallest and the error of
simulation with 𝜏 = 10 is largest in the results.

For further demonstrating the effectiveness of our sug-
gested schemewithmultiple control input, we choose another
system called system II for simulation. The model of system
II is 𝑥𝑖,1 (𝑘 + 1) = 𝑥𝑖,2 (𝑘) ,𝑥𝑖,2 (𝑘 + 1) = 𝑥𝑖,3 (𝑘) ,

𝑥𝑖,3 (𝑘 + 1) = −58 (𝑥𝑖,1 (𝑘) + 𝑥𝑖,3 (𝑘)2) + 𝑥𝑖,1 (𝑘)
+ 110 + 𝑥𝑖,1 (𝑘)2 + 𝑥𝑖,3 (𝑘)2 𝑢𝑖,1 (𝑘)
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Figure 7: The state curves of subsystems with control delay 𝜏 = 5 under the proposed control scheme.

+ 𝑑𝑖,1 (𝑘) + ∑
𝑗∈𝑁𝑝(𝑖)

𝑓𝑗𝑖,1 (𝑥𝑗 (𝑘)) ,
𝑥𝑖,4 (𝑘 + 1) = −58 (𝑥𝑖,2 (𝑘) + 𝑥𝑖,4 (𝑘)2) + 𝑥𝑖,1 (𝑘)

+ 110 + 𝑥𝑖,2 (𝑘)2 + 𝑥𝑖,4 (𝑘)2 𝑢𝑖,2 (𝑘)
+ 𝑑𝑖,2 (𝑘) + ∑

𝑗∈𝑁𝑝(𝑖)

𝑓𝑗𝑖,2 (𝑥𝑗 (𝑘)) .
(38)

𝑖 = 1, 2, 3, 4. The system structure is the same as shown in
Figure 2. The target signals for 𝑥𝑖,3 and 𝑥𝑖,4 are

𝑦1,3 (𝑘) = 0.2 sin (0.01𝑘 + 2) ,
𝑦1,4 (𝑘) = 0.2 sin (0.01𝑘 + 2) ,
𝑦2,3 (𝑘) = 0.2 sin (0.01𝑘 + 1) ,
𝑦2,4 (𝑘) = 0.2 sin (0.01𝑘 + 2.2) ,
𝑦3,3 (𝑘) = 0.2 sin (0.01𝑘 + 1.2) ,
𝑦3,4 (𝑘) = 0.2 sin (0.01𝑘 + 2.5) ,
𝑦4,3 (𝑘) = 0.2 sin (0.01𝑘 + 1.4) ,
𝑦4,4 (𝑘) = 0.2 sin (0.01𝑘 + 1) .

(39)

Other model parameters are illustrated in Table 3.
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Figure 8: The state curves of subsystems with control delay 𝜏 = 10 under the proposed control scheme.

The controller parameters are set as shown in Table 4.
The simulation results are shown in Figure 9. They

show that all the subsystem states converge to the target
signals within a small number of time steps (it is about
120). The tracking errors are small, and each of the state
variables converges to its corresponding target signal. It
illustrates the effectiveness of our suggested control scheme
in application of multicontrol input systems with a relatively
larger dimension compared with the previous simulation.

6. Conclusion

This paper suggests online reinforcement learning with
one-layer neural network for controlling physically coupled

networked system. It is a distributed learning control scheme.
The networked system is divided into many subsystems;
each system is an individual agent with controller and
reinforcement learning algorithm. The reinforcement learn-
ing algorithm consists of the learning of critic network
and action network. The critic network approximates the
strategy utility function and the action network approximate
the defined desired optimal controller. The action network
weights updating decreases long-term cost with supervised
learning mechanism by incorporating the desired control
error 𝜍 with long-term cost function 𝐽. The effectiveness of
our proposed controller is illustrated in the simulation part.
The simulation results also indicate that the proposed control
scheme improves the tracking performance compared with
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Table 3: Model parameters of system II.
Function/parameter name Description Mathematical expression

𝑓12 The interference function on subsystem 2 from subsystem 1 (𝑓12,3
𝑓12,4) = (0.05 0.1 0.2 0.3

0.33 0.2 0.01 0.07)𝑥1
𝑓23 The interference function on subsystem 3 from subsystem 1 (𝑓23,3

𝑓23,4) = (0.01 0.05 0.01 0.07
0.04 0.04 0.1 0.3 )𝑥2

𝑓34 The interference function on subsystem 3 from subsystem 1 (𝑓34,3
𝑓34,4) = (0.03 0.1 0.1 0.3

0.02 0.07 0.2 0.04)𝑥3
𝑓41 The interference function on subsystem 1 from subsystem 4 (𝑓41,3

𝑓41,4) = ( 0.1 0.002 0.2 0.043
0.01 0.3 0.2 0.1 )𝑥4

𝑑1 The disturbance on subsystem 1 Gaussian noise with magnitude of 0.05𝑑2 The disturbance on subsystem 2 Gaussian noise with magnitude of 0.05𝑑3 The disturbance on subsystem 3 Gaussian noise with magnitude of 0.05𝑑4 The disturbance on subsystem 4 Gaussian noise with magnitude of 0.05
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Figure 9: The state curves of system II with the proposed control scheme.
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Table 4: Controller parameters of system II.

Parameter name Description Value𝑞 Dimension of basis vector function 𝜑𝑐,𝑖 for critic network. 𝑖 = 1, 2, 3, 4. 100𝑙 Dimension of basis vector function 𝜑𝑎,𝑖 for action network. 𝑖 = 1, 2, 3, 4. 100𝜎𝑐,𝑖 The width of radial basis function for critic network. 𝑖 = 1, 2, 3, 4. 1.414𝜎𝑎,𝑖 The width of radial basis function for action network. 𝑖 = 1, 2, 3, 4. 1.414𝑐𝑐,𝑖,ℎ, 𝑐𝑎,𝑖,ℎ󸀠 The center vector for basis function. 𝑖 = 1, 2, 3, 4. ℎ = 1, . . . , 𝑞. ℎ󸀠 = 1, . . . , 𝑙. Element distributed in [−1, +1]𝑁 The horizon length of strategy utility function. 100𝛿𝑖 The update rate for critic network weight matrix. 𝑖 = 1, 2, 3, 5. 0.001𝛽𝑖 The update rate for action network weight matrix. 𝑖 = 1, 2, 3, 5. 0.03Γ𝑖 The damping rate of tracking error. 𝑖 = 1, 2, 3, 4. 0.01

conventional reinforcement learning with only objective of
long-term cost (critic network). In the future research, wewill
investigate the application of our proposed control scheme in
a large cyberphysical system such as smart grid.
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