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This study explores an operational-level container routing problem in the road-rail multimodal service network. In response to
the demand for an environmentally friendly transportation, we extend the problem into a green version by using both
emission charging method and bi-objective optimization to optimize the CO2 emissions in the routing. Two uncertain
factors, including capacity uncertainty of rail services and travel time uncertainty of road services, are formulated in order
to improve the reliability of the routes. By using the triangular fuzzy numbers and time-dependent travel time to separately
model the capacity uncertainty and travel time uncertainty, we establish a fuzzy chance-constrained mixed integer nonlinear
programming model. A linearization-based exact solution strategy is designed, so that the problem can be effectively solved
by any exact solution algorithm on any mathematical programming software. An empirical case is presented to demonstrate
the feasibility of the proposed methods. In the case discussion, sensitivity analysis and bi-objective optimization analysis are
used to find that the bi-objective optimization method is more effective than the emission charging method in lowering the
CO2 emissions for the given case. Then, we combine sensitivity analysis and fuzzy simulation to identify the best
confidence value in the fuzzy chance constraint. All the discussion will help decision makers to better organize the green
multimodal transportation.

1. Introduction

With the rapid development of globalization, companies are
seeking for specialized partners all over the world to out-
source their businesses and also for new markets to make
more profit. International trade and global commodity cir-
culation thus get significantly motivated during the last
decades [1]. Supported by the transportation industry, this
prosperity results in a remarkable expansion of the transpor-
tation network from a limited region to the entire world. The
expanded transportation network extends the distribution
channels and enhances the difficulty of transportation
organization from the viewpoint of economy, efficiency,

reliability, and environmental protection. The traditional
unimodal transportation is no longer suitable for this situa-
tion. Meanwhile, an advanced transportation mode, namely,
the multimodal transportation, emerges in the transportation
industry. It combines different transportation modes to gen-
erate origin-to-destination routes and integrates their respec-
tive advantages in the transportation process. Furthermore,
by using standardized containers, multimodal transportation
can be highly mechanized and the efficiency of the operations
at terminals is greatly improved [2]. Many empirical case
studies, for example, Bookbinder and Fox [3], Janic [4], and
Liao et al. [5], have demonstrated the superiority of the
multimodal transportation in the long-haul transportation
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setting. Nowadays, multimodal transportation is getting
more and more popular and plays a crucial role in interna-
tional trade. Since the transportation chains in this area are
usually long combining different actors, effective solutions
for their coordination are necessary in order to ensure that
the goods are delivered according to the customer’s require-
ments. In this context, the multimodal routing problem has
gained interest of both researchers and practitioners [6, 7].
This operational problem aims at selecting the best routes
to move containers from their origins to destinations through
the multimodal service network according to customer
demands [2]. In order to achieve this objective, a number of
different factors have to be considered.

First of all, multimodal transportation combines different
modes with different operational constraints that have to be
represented in the mathematical model. In general, it can
be distinguished between time-flexible modes (e.g., road) that
can be used whenever they are needed and schedule-based
modes (e.g., rail) that operate according to fixed schedules
planned in advance. These schedules regulate the route as
well as the (un-)loading, departure, and arrival times of the
transportation service. Since these schedules cannot be easily
changed, they should be considered when planning the
routes of the containers and their transshipment between dif-
ferent transportation services; otherwise, the multimodal
plans might be infeasible in reality.

Secondly, the actors and stakeholders involved in multi-
modal transportation systems have usually different interests
which are often in conflict. Whereas transportation operators
usually tend to minimize only the transportation costs, cus-
tomers are also interested in the reliability of the routes in
order to avoid situations where a plan becomes infeasible
due to late arrival of a service or insufficient capacity. Since
the multimodal routing is done before the start of transporta-
tion, when the information about the transportation services
(e.g., traffic situation, travel time, and capacity) is not
completely known, possible sources of uncertainty should
be considered already during the planning [8]. As an exam-
ple, the scheduled rail services have usually limited capacity
due to the limited length of the tracks in the railway stations
and limited locomotive power [9]. However, the available
capacities of rail services are uncertain since they are also
dependent on other transportation plans that are difficult to
predict [10]. If only deterministic capacities are considered
in the model, two consequences may happen in practice:
the planned routes are either infeasible if the capacities are
estimated to be too large, or the planned routes are not the
actual best ones if the capacity estimation is too small. There-
fore, capacity uncertainty is a factor that should be consid-
ered in the decision-making process. In addition to that,
road services frequently suffer from various disruptions, such
as natural disasters (e.g., bad weather) and manmade disrup-
tions (e.g., traffic accidents and congestion) [11]. Among
these disruptions, traffic congestion is very common due to
the rapidly increasing traffic volume in recent years [12].
Traffic congestion results in the travel time uncertainty and
delayed arrivals of the containers at the nodes, which disrupts
the transshipment if the containers have to take another
scheduled transportation service at the same node and also

possibly violates the due date constraint at the destination.
Thus, congestion is another factor that should be also consid-
ered in the decision-making process.

Thirdly, the environmental aspects of transportation
have drawn considerable attention from the public and the
government [13]. Among the various environmental issues,
global warming caused by greenhouse gas emissions has been
considered as a tremendous threat to human sustainable
development. CO2 accounts for approximately 80% of the
entire greenhouse gas emissions [5]. During recent decades,
large numbers of countries have proposed regulations to ease
the global warming by reducing CO2 emissions. For example,
in 2012, the National Development and Reform Commission
of China proposed a pilot project on trading carbon emis-
sions [2]. Since the transportation sector is one of the biggest
contributors to the CO2 emissions [14, 15], the transporta-
tion industry should accept this responsibility and consider
controlling and optimizing the CO2 emissions during the
transportation planning stage to promote the development
of an environmentally friendly transportation. In order to
respond to these environmental requirements, in this study,
we extend the multimodal routing problem into a green ver-
sion by considering the CO2 emissions.

The inclusion of uncertain factors and the combination
of multiple objectives (i.e., economic and environmental) in
multimodal transport planning is an emerging field which
has been studied in recent years [13–15]. However, the
authors usually consider only one source of uncertainty or
model the CO2 emissions in form of charges which limits
their influence on the resulting routes. Therefore, we present
a multimodal routing planning approach which deals with
the following question:

How can the sustainability and reliability of multimodal
routing be improved by considering environmental factors
and uncertainty?

The contributions of the paper are fivefold:

(1) A mixed integer nonlinear optimization model for
multimodal routing including multiple objectives
(i.e., economic and environmental) and multiple
uncertainty factors (i.e., road traffic congestion and
rail service capacity) is defined.

(2) A fuzzy logic is proposed to model the capacity
uncertainty, and a piecewise linear function is used
to represent the road traffic congestion.

(3) The influence of CO2 emissions on the routes is ana-
lyzed comparing the CO2 emissions charging method
and a bi-objective approach in which minimizing
CO2 emissions is set as an independent objective.

(4) Since the proposed optimization model is nonlinear,
a linearization approach is proposed in order to
reduce the complexity of the model.

(5) The planning approach is applied to a real-world case
study from China with specific network design and
parameters. In this case, the network is limited to
road and rail services; however, other modes with
fixed schedules (e.g., inland waterway and deep sea
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shipping) could be also treated in a similar way as it is
the case of rail.

The paper is organized as follows: In Section 2, we review
the current literature on multimodal transportation routing
problem. In Section 3, we present a detailed modelling meth-
odology. The improvements of our settings compared to the
existing multimodal routing literature are indicated by com-
paring the two sections. In Section 4, based on the pro-
posed modelling framework, we establish a fuzzy chance-
constrained mixed-integer nonlinear programming model
to mathematically describe the multimodal routing problem
explored in this study. Since the proposed model is nonlinear,
in Section 5 we design a linearization-based exact solution
strategy to solve the problem. In Section 6, an empirical case
study based on the Chinese scenario is given to demonstrate
the feasibility of the methods in dealing with the practical
problem. Also in the case study section, sensitivity analysis,
bi-objective optimization scenario analysis on CO2 emis-
sions, and fuzzy simulation are adopted to draw conclusions
which can further help the decision makers to better organize
the multimodal transportation. Finally, conclusions of this
study are drawn in Section 7.

2. Literature Review

The multimodal routing problem is a combinatorial optimi-
zation problem which deals with finding the optimal routes
for customer demands respecting the constraints of the net-
work [16]. Customer demands are represented by transpor-
tation orders characterized by their origin, destination,
volume of containers, release time at origin, and due date at
destination. Whereas the release time is usually considered
as fixed, the due date can be either considered as a hard
constraint (see, e.g., Verma et al. [17], Sun and Lang [2,
18], and Sun et al. [19]) or delayed deliveries can be
accepted causing additional penalty costs (see, e.g., Demir
et al. [20], Hrušovský et al. [14], and Zhang et al. [21].

However, considering only late arrivals might not be
sufficient since early deliveries can also cause problems with
the storage of the goods until they are needed. Therefore,
various studies consider due date time windows instead of
time points [8, 22], which is also the case in this study.
Moreover, modelling a soft time window is more suitable
than a hard one, because customers allow the violation to
the time window (i.e., early and delayed deliveries) within
a certain degree.

The containers from transportation orders need to be
transported in the multimodal service network by various
transportation services with their specific characteristics.
One of these characteristics is the usually fixed schedule of
the high-capacity and environmentally friendly transporta-
tion modes (e.g., railway or inland waterway) in contrast to
the time-flexible (nonscheduled) road service. However, the
majority of the related articles neglects the schedules and
considers rail services to be also time-flexible. This facilitates
the modelling since only transshipment times between ser-
vices in terminals need to be considered (Sun et al. [23], Jiang
and Lu [24], Cai et al. [25], Zhang et al. [21], and Xiong and

Wang [26]). However, this does not correspond to reality
where railway services are usually planned well in advance
[2, 19]. Therefore, the schedules are usually fixed in the tacti-
cal network design phase (see, e.g.,Wieberneit [27], Andersen
et al. [28], and SteadieSeifi et al. [29] for this area) and have to
be accepted in the operative multimodal routing considered
in this paper (Liu et al. [30], Lin [31], Demir et al. [20], and
Hrušovský et al. [14]).

The routes can be optimized according to different cri-
teria. Traditionally, the optimization models concentrate on
costs or time [32]. However, various surveys show that mul-
tiple criteria, among others also sustainability and reliability,
are important for transportation planners [33, 34]. In case of
sustainability, vast majority of available literature only con-
siders economic and environmental criteria whereas social
aspects of transportation are neglected [35, 36]. As a result,
the comparison of transportation costs and CO2 emissions
is decisive for finding the optimal routes.

The CO2 emissions can be either integrated into the cost
objective function as emission charges or modelled as an
independent objective in multiobjective optimization. The
majority of the articles on optimizing CO2 emissions in
transportation adopts the first approach (e.g., Chang et al.
[37], Zhang et al. [21], Wen et al. [38], Sun and Lang [2],
Chen et al. [39], Demir et al. [20], and Hrušovský et al.
[14]), whereas only a few studies used the second approach
(e.g., Sun and Chen [40] and Qu et al. [41]). However, it is
difficult to decide which method is better to use since the
charging method is easier to implement but might not always
be applicable, especially in cases where the emission charges
are too low in comparison to transportation costs and there-
fore do not have any influence on the resulting routes [22].

Another important decision is the choice of the emission
calculation method since most of the models require a lot of
parameters (e.g., fuel type, vehicle and route characteristics,
and traffic condition) that cannot be always estimated in
advance [20, 42–45]. As an alternative, the activity-based
method that multiplies activity intensity (unit: TEU-km)
with the CO2 emission factor (unit: g/TEU-km) to calculate
the total CO2 emissions [5] yields a better feasibility in trans-
portation practice and has been already applied in various
studies [2, 5, 37, 39, 41, 46].

The reliability of transportation is influenced by various
sources of uncertainty (e.g., weather, accidents, congestion,
and technical issues) that can cause disruptions in transpor-
tation processes. Despite this fact, most of the existing
models consider all factors as deterministic and do not take
into account uncertainty [47]. In order to improve the reli-
ability of transportation plans, the uncertainty should be
considered during the planning phase. Despite the variety
of possible reasons for disruption, their effects influence
either the demand, the travel time, or the supply (capacity)
of transportation.Whereas extensive literature about demand
uncertainty in multimodal routing is available (see, e.g., Lium
et al. [48] and Ho et al. [49]), the consideration of travel time
and capacity uncertainty is rather limited [50, 51]. Moreover,
usually the models deal with only one source of uncertainty.
However, the consideration of multiple uncertainties at the
same time might lead to improved routes and therefore in
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our study the travel time uncertainty for road services and
capacity uncertainty for rail services should be combined.

Road traffic congestion leads to travel time uncertainty of
road services. Only a few studies, for example, Demir et al.
[20], Sun and Chen [40], and Uddin and Huynh [11],
adopted stochastic programming to formulate the multi-
modal service network problem under disruptions. However,
in practical planning, due to the lack of reliable historical data
[52], it is quite difficult to fit the probability distributions to
the travel times of all road services in the multimodal service
network. Such disadvantage of stochastic programming in
addressing the uncertainty is emphasized by Zarandi et al.
[52] in a location-routing problem. Furthermore, the fuzzy
programming that uses fuzzy variables (usually triangular
or trapezoidal numbers) to evaluate the uncertainty fails
to represent the variation of the travel time of a road ser-
vice en route with respect to the time of the day [53].
Therefore, it is worthwhile to find an applicable approach
(e.g., time-dependent travel time that is widely discussed
in the vehicle routing problems [53, 54]) to formulate the
road traffic congestion and introduce it to the multimodal
routing modelling.

The capacity uncertainty has only been considered by a
few studies in different transportation planning problems,
for example, multiobjective solid minimal cost flow problem
by Wang [55], multiobjective multi-item solid trans-
portation problem by Kaur and Kumar [56], and resource
allocation problem for containerized cargo transportation
networks by Kundu et al. [57]. Whereas Wang [55] used
stochastic programming to address this issue, Kaur and
Kumar [56] and Kundu et al. [57] formulated the capacity
uncertainty from a fuzzy programming viewpoint. The
fuzzy programming approach has been also used in the con-
text of vehicle routing problem [52, 58] and shortest path
problem [59], since it can avoid the infeasibility of the sto-
chastic programming in case of lack of historical data [58].
However, to the best of our knowledge, there exists no study
which would consider capacity uncertainty in multimodal
routing problem.

The considered aspects of the multimodal routing
approach increase the complexity of the problem. The
modelling of constraints for schedule-based services leads
to the nonlinearity of the model, which can be seen in the
models proposed by Liu et al. [30], Lin [31], and Chang
[60]. Moreover, the modelling of uncertainty sources might
also lead to nonlinearity of the model. As for the problem for-
mulated by a nonlinear model, Xie et al. [61] pointed out that
the nonlinearity makes the problem very difficult to solve,
while using linearization technique to get the equivalent lin-
ear model can enable the problem to be relatively easily
solved. The linearization technique should be designed
according to the specific nonlinearity of the nonlinear model.
Its main idea is to introduce new linear forms to replace the
nonlinear components in the model equivalently.

As the literature review shows, the interest of researchers
in multimodal routing has been increasing during the last
years, considering different aspects of the studied planning
problem. However, there still exists potential for improve-
ment especially in the area of sustainability and reliability

of transportation. Therefore, our paper contributes to these
aspects of the multimodal routing since it introduces and
compares two different methods for modelling CO2 emis-
sions. Moreover, two different sources of uncertainty (travel
time and capacity) are considered within the planning pro-
cess which should reduce the influence of potential disrup-
tions on created transportation plans and improve the
reliability. In case of rail service capacity, the fuzzy program-
ming approach is used in order to better represent the pos-
sible capacity variations. Although the application of the
model to the Chinese case study requires some specific
assumptions, the general model can be used for any multi-
modal service network.

In order to give an overview of the current state of the lit-
erature, the most important articles with the covered aspects
are shown in Table 1.

3. Modelling Methodology

As already mentioned, the objective of the multimodal rout-
ing problem in this study is to select the best green routes to
move containers from multiple transportation orders
through the multimodal service network with road traffic
congestion and rail service capacity uncertainty. The multi-
modal service network is composed of nodes and arcs,
where nodes represent the terminals serving as origins and
destinations of transportation orders as well as transship-
ment points between rail and road services. The arcs repre-
sent the services connecting the nodes. Related information
on road and rail services, such as schedules, transportation
distance, and capacity, is regarded as the parameters of the
nodes and arcs.

In the studied network, rail services are the backbone for
multimodal container transportation, while road services
play an important role in origin pickup and destination deliv-
ery. In some cases, road services also take direct origin-to-
destination transportation. Figure 1 shows the basic topolog-
ical structure of the multimodal service network. Overall, the
network structure is similar to a hub-and-spoke network
with multiple hubs where origins and destinations represent
spokes while railway container stations represent hubs.

3.1. Modelling Transportation Services. Service characteristics
are dependent on the chosen transportation mode. In case of
road service, the trucks are assumed to be fully flexible which
means that they are available every time they are needed and
it is possible to assign as many trucks as necessary to carry the
containers. As a result, the road services are uncapacitated
and their departure time can be adjusted according to the
customer requirements and the current state of the network.
This means that the departure time can be either immedi-
ately after the containers are loaded on the vehicle, but can
be also postponed in order to avoid traffic congestion. How-
ever, it has to be ensured that the truck arrives to its destina-
tion before the loading cutoff time of the next planned service
in order to avoid infeasibility of the transportation plan.
Besides that, too early arrivals should be also avoided as
inventory costs can be charged for containers waiting for
the next service at a terminal. Therefore, it is important to
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determine the planned departure time of a truck from the
current node.

In contrast to that, rail services are modelled as block
container trains driving between two nodes according to
fixed schedules with the following characteristics:

(1) Operation time window at the loading/unloading
organization station that regulates the operation
start time and cutoff time regarding loading/unload-
ing containers on/off the train

(2) Scheduled departure/arrival time from/at the load-
ing/unloading organization station

(3) Operation period. For the convenience of modelling,
same rail services in different operation periods are
considered as different services.

Since the loading/unloading operations of both road
and rail services are highly mechanized, the time needed
for loading/unloading is relatively low. Consequently, we
assume that these times can be neglected in the multimodal
routing model. Besides that, the capacities of rail services
are limited. Taking into account these assumptions, the
origin-to-destination transportation process combining road
and rail services is depicted in Figure 2 and can be described
as follows:

Table 1: Literature review of the articles in the multimodal routing problem.

Articles

Due date
consideration

Rail schedule
constraints

CO2 emission
optimization

Road traffic
congestion

Rail service capacity

Time
point

Time
window

Yes No
Charging
method

Bi-objective
optimization

Yes No Uncapacitated Capacitated

Chang (2008) [60]
American
scenario

★ Deterministic

Sun et al. (2008) [23] ★ ★ Deterministic

Jiang and Lu (2009) [24] Hard ★ ★ ★

Çakır (2009) [62] ★ ★ Deterministic

Cai et al. (2010) [25] ★ ★ Deterministic

Chang et al. (2010) [37] ★ ★ ★ Deterministic

Liu et al. (2011) [30] Hard
Scheduled
departure

time
★ Deterministic

Zhang et al. (2011) [21] Soft ★ ★ ★ ★

Moccia et al. (2011) [63]
Italian
scenario

★ Deterministic

Ayar and
Yaman (2012) [64]

Hard ★ ★ Deterministic

Verma et al. (2012) [17] Hard ★ ★ Deterministic

Sun and Chen (2013) [40] ★ ★ ★ ★

Wen et al. (2013) [38] Hard ★ ★ ★ Deterministic

Xiong and
Wang (2014) [26]

★ ★ ★

Demir et al. (2015) [20] Soft
Scheduled
departure

time
★ Stochastic Deterministic

Lin (2015) [31]
Scheduled
departure

time
★ Deterministic

Sun and Lang (2015) [2] Hard
Chinese
scenario

★ ★ Deterministic

Uddin and
Huynh (2016) [11]

Hard ★ Stochastic Deterministic

Hrušovský et al. [14] Soft
Scheduled
departure

time
★ Stochastic Deterministic

Qu et al. (2016) [41] ★ ★ ★ Deterministic

Sun et al. (2016) [19] Hard
Chinese
scenario

★ Deterministic

Zhang et al. (2017) [22] Hard ★ ★ ★ ★
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(1) The containers will first depart from the origin (node
1) at the planned departure time that is not earlier
than the earliest release time defined by the cus-
tomer, and then arrive at the loading organization
station (node 2).

(2) In order to be able to load the containers on the train
operated from node 2 to node 3, their arrival time at
node 2 should be no later than the operation start
time. If the arrival time is earlier than the operation
start time, there will be an inventory period from
the arrival time to the operation start time at node
2, and the containers should wait until the operation

start time and then get loaded. Moreover, there
exists a free-of-charge period for inventory costs
[64]. Only when the inventory period is longer than
this period will inventory costs be created.

(3) When loaded on the train, the containers will wait
until the scheduled departure time and then leave
node 2 along with the train.

(4) The containers will arrive at the unloading organiza-
tion station (node 3) at the scheduled arrival time of
the train. However, they should wait until the oper-
ation start time and then get unloaded. Therefore,

1: Pickup service

Origin

Railway
container station

Block container train route
1

1

2: Delivery service

Destination

2

3: Direct origin-destination road service

Shippers’ area

2

Receivers’ area

3

Figure 1: Basic topological structure of the multimodal service network.

Earliest release time

Location

Planned departure time

Range of th
e feasible

departure tim
e

Range of the feasible

departure time

Inventory tim
e

Inventory

tim
e

Range of the feasible

arrival tim
e

Operation start time

Operation cutoff time
Time

Time

Time

Time

Scheduled departure time

Scheduled arrival time

Operation start time (earliest departure time)

Planned departure time

1 2 3 4

1: Origin

2: Loading organization station

3: Unloading organization station

4: Destination

Transshipping

Transshipping

Container
transportation

Figure 2: Diagram of a simple road-rail multimodal route.
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the effective arrival time of the containers at node 3
is the operation start time instead of the scheduled
arrival time.

(5) After unloading from the train, the transportation
organizer can select a planned departure time that
is no earlier than the operation start time to move
containers to their destination (node 4). In case of
an early arrival to the destination, the containers
have to be stored again until the planned delivery
date in a warehouse provided by the third-party
inventory companies that can have different condi-
tions in comparison to warehouses used in inter-
modal terminals [65].

3.2. Modelling Uncertainty. Considering the uncertainty
factors, traffic congestion is an important factor in road
transportation that influences the travel times. Congestion
can occur either regularly due to insufficient road capacity
or unexpectedly due to, for example, an accident. Since the
latter one is hard to predict, only regularly occurring conges-
tion is considered in this study. However, this congestion can
vary with the time of the day or the section considered, there-
fore piecewise linear functions can be used to model such sit-
uations [53, 54]. By combining limited historical data and
experiences from the experts, such travel time functions can
be established. Figure 3 shows an example of the time-
dependent travel time function. There are two peak hours
from 9 am to 10 am and from 6pm to 8pm on the arc served
by road services.

Besides the road congestion, the available capacity of a
rail service can be also uncertain due to various reasons
(e.g., order cancellation, vehicle breakdown, and lack of avail-
able vehicles). Since the reasons are manifold and the histor-
ical data about capacity variation might not be available,
using the stochastic programming for capacity uncertainty
might not be feasible. As a consequence, capacity uncertainty
can be effectively expressed in a fuzzy way by using the trian-
gular fuzzy variable represented by the minimum of the pos-
sible capacities, most possible capacity and maximum of the
possible capacities. Similar to the traffic congestion issue,
fuzzy capacity can be attained by limited historical data and
expert experiences.

3.3. Modelling and Optimizing the CO2 Emissions. As stated
in Section 2, there are two approaches to optimize the CO2
emissions, including the CO2 emission charging method
and the bi-objective optimization method. The optimization
model is firstly constructed in Section 4 using the charging
method, and the bi-objective method is then introduced in
Section 6 where both methods are compared. For calculating
the CO2 emissions, the activity-based method is used. This
method calculates the total CO2 emissions for a transporta-
tion service using the formula (EM ·Q · L) where EM is the
CO2 emission factor of the service (unit: g/TEU-km), Q is
the number of the containers carried by the transportation
service (unit: TEU), and L is the corresponding transporta-
tion distance (unit: km).

3.4. Modelling the Customer Demands. Transportation orders
are considered to be unsplittable which means that all con-
tainers of an order have to use the same route. The release
times of orders are fixed whereas the delivery can be done
within a due date time window limited by a lower and
upper bound. For each transportation order, it is best if
the arrival time of the containers falls within the time win-
dow. In this case, there will be no extra costs at the destina-
tion. However, if the containers arrive at the destination
earlier than the lower bound, inventory costs will be cre-
ated, because the goods need to be stored before being
processed at the destination. If the arrival time is later than
the upper bound, penalty costs should be charged for the
delayed delivery.

4. Mathematical Model for the Multimodal
Routing Problem

4.1. Notations. In this study, G = N , A, S represents a road-
rail multimodal service network in form of a directed graph,
where N , A, and S separately denote the node set, arc set, and
transportation service set in the network. For each transpor-
tation order k (∀k ∈ K where K is the transportation order
set), its five attributes are represented as origin ok, destination
dk, volume qk (unit: TEU), earliest release time tkrelease at ori-
gin, and due date tkdue = tLk , tUk where tLk and t

U
k are separately

the lower bound and upper bound of the due date time
window, respectively. The rest of the symbols in the math-
ematical model and their respective representations are
summarized as follows in Table 2.

4.2. A Fuzzy Chance-Constrained MINLP Model. The frame-
work of the mathematical model is derived from the classical
arc-node-based formulation that has been widely used in the
routing problems of various research fields, for example, tele-
communication systems, manufacturing systems, and inter-
net service systems [1]. The mathematical model for the
multimodal routing problem explored in this study is pre-
sented as follows. The proposed model is a combination of
the fuzzy chance-constrained programming and the mixed
integer nonlinear programming (MINLP).

Objective function:

minimize 〠
k∈K

〠
i,j ∈A

〠
s∈Sij

ckijs · qk · x
k
ijs, 1

+〠
k∈K

〠
i∈N

〠
h∈δ− i

〠
r∈Shi

cr · qk · x
k
hir + 〠

j∈δ+ i

〠
s∈Sij

cs · qk · x
k
ijs , 2

+〠
k∈K

〠
i,j ∈A

〠
s∈Sij

csi · qk ·w
k
ijs + 〠

k∈K
ckdest · qk · max tLk − ydk , 0 ,

3

+〠
k∈K

ckpen · max ydk − tUk , 0 , 4

+〠
k∈K

〠
i,j ∈A

〠
s∈Sij

cco2 · ems · qk · dijs · x
k
ijs, 5
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Eqs. (1), (2), (3), (4), and (5) are successively the trans-
portation costs en route, loading and unloading costs at the
nodes, inventory costs, penalty costs caused by delayed
deliveries at destinations, and CO2 emission costs. Their lin-
ear summation represents the generalized costs. The objec-
tive function minimizes the generalized costs for multiple
transportation orders using multimodal transportation.
This setting reflects the objective of satisfying customer
demands and minimizing monetary expenditures. There-
fore, the multimodal routing in this study is a kind of service-
oriented planning.

Subject to

〠
j∈δ+ i

〠
s∈Sij

xkijs − 〠
h∈δ− i

〠
r∈Shi

xkhir

=

1 i = ok

0 ∀i ∈N \ ok, dk

−1 i = dk

∀k ∈ K , ∀i ∈N ,
6

〠
s∈Sij

xkijs ≤ 1 ∀k ∈ K , ∀ i, j ∈ A 7

Eq. (6) is the flow conservation constraint which
ensures the continuity of the nodes and arcs on the planned
routes, which is a common constraint in the node-arc-based
formulation [1]. Eq. (7) means that no more than one
transportation service on one arc can be utilized to serve a
transportation order. The combination of the two equations
above ensures that containers in a transportation order are
unsplittable, which is claimed in Section 3.4.

Cr 〠
k∈K

qk · x
k
ijs ≤ vijs ≥ α ∀ i, j ∈ A, ∀s ∈ Γij 8

Eq. (8) is the fuzzy chance constraint of the rail service
capacity based on the fuzzy credibility measure [66]. In
this equation, Cr · represents the credibility of the event
in · . Eq. (8) ensures that the credibility of the event that
the entire loaded container volume on a rail service does

not exceed its available capacity should not be lower than a
predetermined confidence α ∈ 0, 1 . The value of α indicates
the decision makers’ preference for addressing the corre-
sponding decision-making.

ykok = tkrelease ∀k ∈ K 9

Eq. (9) assumes that the arrival time of the containers
of transportation order k at the origin equals its earliest
release time.

yki ≤ zki  ∀k ∈ K , ∀i ∈N \ dk , 10

nki =
zki
24

 ∀k ∈ K , ∀i ∈N \ dk , 11

tkijs = f ijs zki − 24 · nki  ∀k ∈ K , i, j

∈ A, ∀s ∈Ωij,
12

zki + tkijs − ykj · xkijs = 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij 13

Eqs. (10), (11), (12), and (13) compute the arrival times of
the containers of transportation order k at the nodes on the
route by road services. First, we determine the planned
departure time of the containers at the current node i by
(10). Then, we normalize such departure time into range
[0, 24] by using the floor integral function (11) and normal-
ization formula zki − 24 · nki , so that we can further generate
the corresponding travel time tkijs of the containers on arc
i, j by road service s according to the piecewise linear
function (12). Finally, we can gain the arrival time of con-
tainer flow k at the following node j by (13).

lri − yki · xkhir = 0 ∀k ∈ K , ∀ h, i ∈ A, ∀r ∈ Γhi 14

Eq. (14) computes the arrival times of the containers of
transportation order k at the nodes on the route by rail
services. As claimed in Section 3.1, lri is the effective arrival
time of containers at node i. Because we assume that

Departure time from node i
0
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Figure 3: Time-dependent travel time formulated by piecewise linear function.
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loading/unloading time can be neglected, yki is also the ear-
liest departure time of containers at transshipping node.

yki ≤ usi · x
k
ijs +M · 1 − xkijs  ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Γij 15

Eq. (15) is the rail service operation cutoff time con-
straint. It ensures that the arrival time of the containers

of transportation order k at node i should not exceed the
operation cutoff time of rail service s at the same node, if
this rail service has to be used in order to move these con-
tainers on arc i, j .

max lsi − yki − τsi , 0 −wk
ijs · xkijs

= 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Γij,
16

Table 2: Notations.

Indices Representations

i, j, h Indices of the nodes, i, j, and h ∈N .

s, r Indices of the transportation services, s and r ∈ S.
h, i Directed arc from node h to node i, and h, i ∈ A.
i, j Directed arc from node i to node j, and i, j ∈ A.
Sets Representations

Γij Set of the rail services on arc i, j .
Ωij Set of the road services on arc i, j .
Sij Set of the transportation services on arc i, j , Sij = Γij ∪Ωij, and Sij ⊆ S.

δ− i Set of the predecessor nodes to node i, and δ− i ⊆N .

δ+ i Set of the successor nodes to node i, and δ+ i ⊆N .

Variables Representations

wk
ijs Charged inventory time for transportation order k at node i before its containers are moved on arc i, j by service s, unit: h.

xkijs A binary variable. xkijs = 1 if service s on arc i, j is used for transportation order k; xkijs = 0 otherwise.

yki Arrival time of the containers of transportation order k at node i.

zki Planned departure time of the containers of transportation order k from node i.

nki A nonnegative integer variable that indicates how many periods (24 hours) zki exceed.

tkijs

Travel time of road service s on arc i, j when used for transportation order k, unit: h. tkijs = f ijs zki where f ijs is the piecewise
linear function of the travel time with respect to the corresponding planned departure time. Note that in this function, the input
departure time zki should fall within range [0, 24]. Otherwise, it should be first normalized into such range before being input

into the function.

Parameters Representations

lsi Loading/unloading operation start time of rail service s at node i.

usi Loading/unloading operation cutoff time of rail service s at node i.

v~ijs Fuzzy available capacity of rail service s on arc i, j and v~ ijs = vmin
ijs , vMijs, vmax

ijs where vmin
ijs < vMijs < vmax

ijs , unit: TEU.

dijs Travel distance of service s on arc i, j , unit: km.

cijs Unit transportation cost when service s is used to move containers on arc i, j , unit: ¥/TEU.
cs Unit loading/unloading operation costs of service s, unit: ¥/TEU.

csi Unit inventory costs of transportation service s at node i, unit: ¥/TEU-h.

ckdest Unit destination inventory costs for transportation order k, unit: ¥/TEU-h.

ckpen Unit penalty costs for transportation order k caused by delayed delivery at its destination, unit: ¥/h.

cco2 Unit CO2 emission costs, unit: ¥/g.

ems CO2 emission factor for service s, unit: g/TEU-km.

τsi Free-of-charge inventory period of service s at node i, unit: h.

M A significant large positive number.

α Confidence in the fuzzy chance constraint.
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max zki − yki − τsi , 0 −wk
ijs · xkijs

= 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij

17

Eqs. (16) and (17) compute the charged inventory time of
the containers of transportation order k at node i before
being moved on arc i, j by a rail service and a road service,
respectively. In (17), especially if i = ok and s ∈Ωij, τ

s
i = 0.

nki ∈ 0, 1, 2,…  ∀k ∈ K , ∀i ∈N , 18

tkijs ≥ 0 ∀k ∈ K , i, j ∈ A, ∀s ∈Ωij, 19

wk
ijs ≥ 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Sij, 20

xkijs ∈ 0, 1  ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Sij, 21

yki ≥ 0 ∀k ∈ K , ∀i ∈N , 22

zki ≥ 0 ∀k ∈ K , ∀i ∈N \ dk 23

Eqs. (18), (19), (20), (21), (22), and (23) are the variable
domain constraints.

The above mathematical model for the multimodal rout-
ing problem is summarized in Figure 4. Figure 4 classifies all
equations (excluding variable domain constraints) into three
categories, including “Modelling the network” which realizes
the methodology proposed in Section 3, “Setting the objec-
tive” which reflects that satisfying customer demands is the
core of the routing problem, and “Basic assumptions” which
are the basic conditions of the model. This should help the
readers to better understand the functions and roles of vari-
ous equations in the mathematical model.

By using the solution strategy designed in the next sec-
tion, the proposed model can be used to optimize any green
multimodal routing problems that are composed of sched-
uled rail services with uncertain capacities and time-flexible
road services with uncertain travel times. It can plan the best
multimodal routes to accomplish multiple transportation
orders with soft due date time windows.

5. An Exact Solution Strategy

5.1. Determining the Solution Strategy. The proposed
mathematical model in Section 4.2 is easily understood,
because it is established straightforwardly according to
the settings of the specific multimodal routing problem.
However, the mathematical model contains three catego-
ries of nonlinearity, including (1) fuzzy chance constraint
as (8), (2) piecewise linear constraint as (12), and (3) gen-
eral nonlinear components as (3), (4), (13), (14), (16), and
(17). Such nonlinearity increases the difficulty of the prob-
lem to be effectively solved by the exact solution algo-
rithms (e.g., branch-and-bound algorithm and simplex
algorithm). Especially for the large-scale real-world prob-
lem, due to the nonlinearity, the solution to the problem
will usually get into the local optimum, and massive com-
putational time will be consumed to generate the solution.
Therefore, if we can eliminate the nonlinearity of the
model by designing the equivalent linear reformulations

to the nonlinear equations in the model, then the problem
can be solved with the help of the mathematical program-
ming software (e.g., LINGO, CPLEX, and GAMS) where
exact solution algorithms can be implemented efficiently.

We devote this study to developing a linearization-based
exact solution strategy to address the multimodal routing
problem. Although it is widely acknowledged that heuristic
algorithms have better performance than the exact solution
algorithms in dealing with the multimodal routing, which is
known as an NP-hard problem, exact solution algorithms
have two significant advantages. The first one is that they
can test if the model observes the mathematical logic. The
second is that they can provide an exact benchmark to verify
the efficiency and accuracy of the heuristic algorithms [67].
Fazayeli et al. [68] also highlighted that the development of
an exact algorithm and the comparison between the algo-
rithms will be their future work for the location-routing
problem on a multimodal transportation network.

5.2. Model Linearization Technique

5.2.1. Crisp Equivalent and Linearization of the Fuzzy Chance
Constraint. From the definition of the fuzzy creditability, (24)
can be obtained where a is a deterministic number while b
is a triangular fuzzy number described by b1, b2, b3 and
b1 < b2 < b3. [69]:

Cr a ≤ b =

1, if a ≤ b1

2b2 − b1 − a
2 b2 − b1

, if b1 ≤ a ≤ b2

b3 − a
2 b3 − b2

, if b2 ≤ a ≤ b3

0, if a ≥ b3

24

According to (24), we can gain the crisp equivalency to
the fuzzy chance constraint (8) by replacing a with ∑k∈Kqk ·
xkijs and b with vijs. However, the crisp equivalency is a piece-
wise linear function which is still essentially a nonlinear for-
mula. Thus, we conduct following modifications shown as
(25) and (26) to transform it into a pure linear function.
After such modification, during the simulation process, we
can use (25) to substitute (8) if α ∈ 0 5, 1 , (26) to substitute
the same equation otherwise.

2 1 − α · vMijs + 2α − 1 · vmin
ijs ≥ 〠

k∈K
qk · x

k
ijs if 0 5 ≤ α

≤ 1, ∀ i, j ∈ A, ∀s ∈ Γij,
25

2α · vMijs − 2α − 1 · vmax
ijs ≥ 〠

k∈K
qk · x

k
ijs if 0 ≤ α

≤ 0 5, ∀ i, j ∈ A, ∀s ∈ Γij
26

5.2.2. Linearization of the Piecewise Linear Function. Simi-
larly to (24), the piecewise linear function f ijs · is also a non-

linear expression where · represents zki − 24 · nki for the
sake of conciseness. Let Pijs represent the set of the linear seg-
ments of f ijs · , p the index of the segments (p = 1,… , Pijs ),
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and ttkp−ijs , tt
kp+
ijs the departure time interval corresponding to

the linear segment f pijs · . Then, f ijs · has a universal formu-
lation shown as (27).

f ijs · =

f 1ijs · ,   · ∈ tt1−ijs , tt
1+
ijs

⋮

f pijs · ,   · ∈ ttp−ijs , tt
p+
ijs ∀ i, j ∈ A, ∀s ∈Ωij

⋮

f
Pijs
ijs · ,   · ∈ tt

Pijs −
ijs , tt

Pijs +
ijs

27

To linearize the piecewise linear function (27), the fol-
lowing procedures are conducted.

Step 1. Define a 0-1 variable φkp
ijs. φ

kp
ijs = 1, if zki − 24 · nki falls

within ttp−ijs , tt
p+
ijs . φ

p
ijs = 0 otherwise. And φp

ijs should observe
the following constraint.

〠
p∈Pijs

φkp
ijs = 1∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij 28

Step 2. Define two nonnegative variables λkp−ijs and λkp+ijs ,

and distribute them to the lower bound ttp−ijs and upper

bound ttp+ijs of the corresponding departure time interval

ttp−ijs , tt
p+
ijs as their weights. Hence, we have the following

equations.

zki − 24 · nki = 〠
p∈Pijs

λp−ijs · tt
p−
ijs + λp+ijs · tt

p+
ijs  ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij,

λkp−ijs + λkp+ijs = φkp
ijs ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij, ∀p ∈ Pijs,

λkp+ijs ≥ 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij, ∀p ∈ Pijs,

λkp−ijs ≥ 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij, ∀p ∈ Pijs

29

Step 3. Modify the piecewise linear function as follows.

f ijs zki − 24 · nki = f ijs 〠
p∈Pijs

λkp−ijs · ttp−ijs + λkp+ijs · ttp+ijs

= 〠
p∈Pijs

f ijs λkp−ijs · ttp−ijs + λkp+ijs · ttp+ijs

= 〠
p∈Pijs

f pijs λkp−ijs · ttp−ijs + λkp+ijs · ttp+ijs

= 〠
p∈Pijs

λkp−ijs · f pijs ttp−ijs + λkp−ijs · f pijs ttp+ijs ,

30

Departure time
selection problem

Time-dependent
travel time

Road traffic
congestion

Piecewise linear
function

Rail service
capacity

uncertainty

Triangular fuzzy
numbers

Fuzzy chance
constraint

Fuzzy credibility
measure

Road-rail
multimodal

transportation
process

Modelling the process
shown as Figure 2

Eq.8

Eqs.10–13

Eqs.14–17

Modelling the
network

Optimization
principle

Minimizing the total generalized
costs for multiple orders

Eqs.1–5

Customer demand
orientation

Optimization
object

Setting the
objective

Basic
assumptions

Mathematical
model

Containers in a transportation order are unsplittable. Eqs.6 and 7

The arrival time of the containers of a transportation
order at the origin equals its earliest release time.

Eq.9

Multiple transportation
orders

Figure 4: Framework of the mathematical model.
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where f pijs tt
p−
ijs and f pijs tt

p+
ijs for ∀ i, j ∈ A, ∀s ∈Ωij, ∀p ∈ Pijs

are all known. Finally, the pure linear equivalency to (12) is
shown as (31).

tkijs = 〠
p∈Pijs

λp−ijs · f
p
ijs ttp−ijs + λp−ijs · f

p
ijs ttp+ijs

 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij

31

5.2.3. Linearization of Other Nonlinear Components

(1) Linear Reformulation 1. Eq. (3) with nonlinear compo-
nent ∑k∈Kc

k
dest · qk · max tLk − ydk , 0 can be linearized by

(32), (33), and (34) where gk is a newly introduced variable.

〠
k∈K

〠
i,j ∈A

〠
s∈Sij

csi · qk ·w
k
ijs + 〠

k∈K
ckdest · qk · gk, 32

gk ≥ tLk − ydk ∀k ∈ K , 33

gk ≥ 0 ∀k ∈ K 34

If the containers arrive at the destination earlier than
tLk , tLk − ydk > 0. Consequently, max tLk − ydk , 0 = tLk − ydk .

According to (32) and (33), gk ≥ tLk − ydk . Minimization of

(32) will then lead to gk = tLk − ydk . In this case, ∑k∈Kc
k
dest · qk

· max tLk − ydk , 0 is equivalent to (32) and (33).

If the containers arrive at the destination later than tLk ,
tLk − ydk < 0. Consequently, max tLk − ydk , 0 = 0. According
to (32) and (33), gk ≥ 0. Minimization of (32) will then lead
to gk = 0. In this case, ∑k∈Kc

k
dest · qk · max tLk − ydk , 0 is also

equivalent to (32) and (33).
Above all, the equivalency above is verified. Similarly, we

have the following linear reformulation.

(2) Linear Reformulation 2. Nonlinear component ∑k∈K

ckpen · max ydk − tUk , 0 in (4) can be linearized by (35),
(36), and (37) where σk is also a newly introduced variable.

〠
k∈K

ckpen · σk, 35

σk ≥ ydk − tUk  ∀k ∈ K , 36

σk ≥ 0 ∀k ∈ K 37

(3) Linear Reformulation 3. Nonlinear constraint nki =
zki /24 ∀k ∈ K , ∀i ∈N \ dk (12) can be reformulated by
linear constraints (38) and (39).

nki ≤
zki
24

 ∀k ∈ K , ∀i ∈N \ dk , 38

nki >
zki
24

− 1 ∀k ∈ K , ∀i ∈N \ dk 39

We take zki = 60 as example to verify the equivalency
above. According to (12), nki = 60/24 = 2 5 = 2. Mean-
while, according to (45) and (46), there exists 1 5 < nki ≤ 2 5.

Because nki is a nonnegative integer, finally nki = 2. Conse-
quently, the equivalency above is tenable.

(4) Linear Reformulation 4. By using the same lineariza-
tion technique, nonlinear constraints zki + tkijs − ykj · xkijs =
0∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij (13) and lri − yki · xkhir = 0∀k ∈
K , ∀ h, i ∈ A, ∀r ∈ Γhi (14) can be reformulated by linear
constraints (40) and (41) and (42) and (43), respectively.

zki + tkijs − ykj ≥M · xkijs − 1  ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij,

40

zki + tkijs − ykj ≤M · 1 − xkijs  ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij,

41

lri − yki ≥M · xkhir − 1  ∀k ∈ K , ∀ h, i ∈ A, ∀r ∈ Γhi,

42

lri − yki ≤M · 1 − xkhir  ∀k ∈ K , ∀ h, i ∈ A, ∀r ∈ Γhi
43

(5) Linear Reformulation 5. By using the same linearization
form, nonlinear constraints max 0, lsi − yki − τ −wk

ijs ·
xkijs = 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Γij (16) and max 0, zki −
yki − τ −wk

ijs · xkijs = 0 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij (17) can
be reformulated by linear constraints (44) and (45) and
(46) and (47).

wk
ijs ≥M · xkijs − 1 + lsi − yki − τsi  

∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Γij,
44

wk
ijs ≤M · xkijs ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Γij, 45

wk
ijs ≥M · xkijs − 1 + zki − yki − τsi  

∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij,
46

wk
ijs ≤M · xkijs ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈Ωij 47

For detailed proofs of Linear Reformations 4 and 5,
readers can refer to our previous study [2].

5.3. Improved Linear Reformulation. For the sake of readabil-
ity, the improved linear reformulation derived from the
mathematical model in Section 4.2 is summarized as follows.

Objective function:
Minimize (1)+(2)+(32)+(35)+(5)
Subject to:
Constraints (6), (7), (9), (10), (15), (18–23), (25), (26),

(28), (29), (31), (33), (34), (36–47)
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6. Empirical Case Study Based on the
Chinese Scenario

6.1. Case Description. In this section, we present a real-world
case to demonstrate the feasibility of the proposed model and
exact solution strategy in optimizing the practical problem.
This empirical case is oriented on a Chinese scenario. In this
scenario, several consignments of containers need to be
transported from the western inland cities (e.g., Lanzhou
and Hohhot) to the eastern sea ports (e.g., Qingdao) through
the road-rail multimodal service network.

In the multimodal service network, “road services” refer
to the container trucks and “rail services” refer to the block
container trains. The topological structure of the multimodal
service network is shown in Figure 5. In the multimodal ser-
vice network, there are 10 periodically operated rail services
(block container trains) and 15 road services (container
trucks). The schedules of the rail services and the time-
dependent travel times of the road services are separately pre-
sented in Appendix A (available here) and Appendix B
(available here) in the supplementary material. Note that all
the values in Appendix A (available here) and Appendix B
(available here) are expressed as real numbers; for example,
10 : 30 is rewritten as 10.5 and 5 : 00 at the second day of the
planning horizon is 29 (24+5). Other times in different days
can be expressed in the same way.

There are10 transportationorderswithina short-termplan-
ning horizon. The containers in these orders need to be trans-
ported from Lanzhou and Hohhot (inland cities in Northwest
China) to Jiaozhou and Huangdaogang (sea ports in Qingdao,
Shandong Province) and Lianyungang (a sea port in Jiangsu
Province) through the multimodal service network shown in
Figure 5. The detailed information on the multiple transporta-
tion orders is given in Appendix C (available here) in the sup-
plementarymaterial. Note that in Appendix C (available here),
if the destination inventory costs equal zero, it means that the
receivers have their own inventory facilities and there is no
need to rent them from other warehouse companies.

6.2. Parameter Setting. The unit transportation costs en route
(unit: ¥/TEU) regarding the two transportation services are
determined by (48).

ckijs =
c1rail + c2rail · dijs s ∈ Γij
c2road · dijs s ∈Ωij

 ∀k ∈ K , ∀ i, j ∈ A, ∀s ∈ Sij

48

As can be seen in (48), the unit transportation costs for
rail services en route include two parameters: c1rail which is
the costs related to the container volume (unit: ¥/TEU) and
c2rail which is the costs related to the turnover of the con-
tainers (the multiplication of the container volume and cor-
responding transportation distance, unit: ¥/TEU-km). For
road services, such costs only relate to one parameter c2road
which is similar to c2rail (unit: ¥/TEU-km). The values of all
these parameters above are regulated by the Ministry of
Transport of China and China Railway Corporation [70].

20 ft ISO containers are utilized to contain goods in the
empirical case. According to 2015 China Railway Statistical
Bulletin [71], the national railways consumed 15.69 million
tons of the standard coal and accomplished 33,503.67 hun-
dred million ton-kilometers of freight transportation. The
unit CO2 emission rate of the standard coal is 0.69, and
approximately 92% carbon is conversed into CO2. Assuming
that the 20 ISO containers are all fully loaded (each container
weights 24 tons), we can then calculate the CO2 emission fac-
tor of rail service as the following formula [72] where 44 is
the molecular weight of one CO2 molecule and 12 is the
atomic weight of one C atom.

15 69 ∗ 24
33503 67 ∗ 102

∗ 0 69 ∗ 92%∗
44
12

∗ 106 = 262
g

TEU − km
49

Similarly, by using the data from 2015 China Transporta-
tion Industry Development Statistical Bulletin [73], we can
also gain the CO2 emission factor of road services which is
1064 g/TEU-km. The values of all the parameters in the
empirical case are summarized as shown in Table 3. In addi-
tion, the values of the unit inventory costs of transportation
services at the nodes (csi) and the free-of-charge inventory
periods of services at the nodes (τsi) are all presented in
Figure 5. When the nodes are specifically the railway stations,
all the corresponding csi = 3 125 ¥/TEU and τsi = 48 h. When
the nodes are the origins of the transportation orders, csi var-
ies based on the locations of the nodes and τsi = 0 h if s ∈Ωij.

6.3. Simulation Environment. Described by the linearized
programming model shown in Section 5.3, the empirical case
can be solved by any exact solution algorithms, for example,
branch-and-bound algorithm and simplex algorithm. In this
study, we adopt the branch-and-bound algorithm to solve the
problem. The algorithm is conducted by the mathematical
programming software LINGO 12 designed by LINDO Sys-
tems Inc., Chicago, IL, USA [75], on a ThinkPad Laptop with
Intel Core i5-5200U 2.20GHz CPU 8GB RAM. The scale of
the empirical case is indicated by Table 4.

6.4. Optimization Result and Multimodal Route Illustration.
The optimization result of the empirical case and the perfor-
mance of the exact solution strategy are shown in Table 5.

The structure of the minimal generalized costs for the
multiple transportation orders is illustrated by Figure 6
where C1 to C5 are successively the transportation costs en
route, loading/unloading operation costs, inventory costs,
penalty costs, and CO2 emission costs, which also correspond
to (1) to (5) in the objective function.

The best routes for the containers in the multiple trans-
portation orders are given in Table 6. According to the
planned routes, the accomplishments of 4 transportation
orders satisfy their due date time windows exactly.

6.5. Case Discussion

6.5.1. Sensitivity of the Multimodal Routing with respect to
the CO2 Emissions. First of all, we analyze the effect of the
CO2 emissions on the multimodal routing. Let the unit
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emission costs vary from 50 to 100 ¥/ton, the sensitivity of
the multimodal routing result with respect to this variation
can be seen in Figure 7.

Figure 7 shows that the CO2 emission costs increase line-
arly due to the fact that the emission volume is a constant
(87.1 tons), while the rest of the generalized costs stay con-
stant with the unit emission costs increasing. Even though
we continue the simulation until the unit emission costs
reach up to 1000 ¥/ton, which is obviously infeasible in prac-
tice (according to the formulation of the Chinese Academy of
Environmental Planning [73], the feasible unit emission costs
should reach up to 100 ¥/ton at 2030), the sensitivity still
keeps the same tendency as shown in Figure 6. It means that
the best routes in the empirical case do not modify when the
emission costs vary and are hence insensitive to this variation.

Therefore, charging for CO2 emissions within a reasonable
range is not particularly helpful to promote the green multi-
modal transportation, at least in this empirical case.

6.5.2. Bi-Objective Optimization regarding CO2 Emissions.
Furthermore, we modify the proposed model into a bi-
objective optimization model with the objectives of minimiz-
ing the generalized costs (Z1 = Eq 1 + Eq 2 + Eq 3 + Eq 4)
and of minimizing the CO2 emissions (Z2 = Eq 51).

minimize 〠
k∈K

〠
i,j ∈A

〠
s∈Sij

ems · qk · dijs · x
k
ijs 50

Using the widely utilized weighted sum method [43]
defined in (51) and (52), we can solve the bi-objective
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Figure 5: Multimodal service network for the empirical case.
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optimization problem and generate its Pareto solutions
shown in Figure 7.

minimize  ω · Z1 + 1 − ω · Z2, 51

0 < ω ≤ 1 52

Especially, in Figure 8, compared with the last Pareto
solution, the second last one can lower the CO2 emissions
from 87.1 to 83.7 by 3.90% and cause only a slight increase
of the generalized costs from 1571.2 to 1586.0 by 0.94%. By
comparing Figure 8 with Figure 7, we can conclude that a
bi-objective optimization approach is much more effective
than charging for CO2 emissions in helping decision makers
to control and optimize the CO2 emissions in the multimodal
service network.

6.5.3. Sensitivity of the Multimodal Routing with respect to
the Confidence. Confidence α in the fuzzy chance constraint
(8) is set by the decision makers and reflects their preference
for the reliability of the multimodal routing such that all the
loaded volume of a rail service does not exceed its carrying
capacity. Its value has a remarkable effect on the optimization
result of the multimodal routing, which can be investigated
by using sensitivity analysis. Let α vary from 0.1 to 1.0 with
a step size of 0.1, we can obtain the sensitivity of the multi-
modal routing result (indexed by the minimal generalized
costs) with respect to such variation, which can be seen in
Figure 9.

We can also draw some helpful insights from Figure 9
summarized as follows.

(1) Overall, larger values of confidence α will lead to
larger generalized costs for the best routes.

(2) The variation of the generalized costs with respect to
the confidence is stepwise. In this case study, the

multimodal routing is sensitive to the confidence
when its value exceeds 0.3.

(3) The economy and reliability of the multimodal rout-
ing cannot reach their respective optimum simulta-
neously. The economy will be sacrificed if the
decision makers decide to improve the reliability of
the planned best routes, and vice versa.

6.5.4. Fuzzy Simulation. During the decision-making process
regarding the multimodal routing, it is challenging for deci-
sion makers to determine an objective confidence value. In
order to help them select reasonable confidence values, fuzzy
simulation is adopted in this study.

The fuzzy simulation simulates the actual deterministic
transportation scenario by randomly generating the carrying
capacities of rail services according to the membership
degree of the triangular fuzzy numbers. The simulation pro-
cess is shown in Figure 10 [8].

After the simulation, we can first gain deterministic car-
rying capacities vijs for i, j ∈ A, s ∈ Γij. Eq. (8) can be conse-
quently transformed into a deterministic carrying capacity
constraint as (53).

〠
k∈K

qk · x
k
ijs ≤ vijs ∀ i, j ∈ A, ∀s ∈ Γij 53

Then, we can check if the planned routes given by the
fuzzy programming model satisfy (15) or not. If the planned
routes satisfy the constraint, we define them as a successful
plan; otherwise, a failed plan which means that the planned
routes are infeasible due to the violation of the capacity con-
straint when adopted to move containers in the practical
transportation. If the transportation starts and a plan is
found to be infeasible due to the insufficient actual capacities
of some rail services, an alternative plan should be generated
according to the following principle in order to reduce the
additional costs and CO2 emissions caused by the alterna-
tive: the rail service with insufficient capacity should be pref-
erentially used by the transportation orders with larger
container volumes initially assigned to it as many as possible
on the condition that (53) must be satisfied, that is, the
transportation orders with larger container volumes should

Table 3: Values of the parameters in the empirical case.

Parameter Description Value Unit

c1rail Railway cost parameter regarding the volume of the containers 500 ¥/TEU

c2rail Railway cost parameter regarding the turnover of the containers 2.025 ¥/TEU-km

c2road Road cost parameter regarding the turnover of the containers 6 ¥/TEU-km

cs Unit loading/unloading operation costs of the transportation services
25∗

¥/TEU
195∗∗

cco2 Unit CO2 emission costs 50∗∗∗ ¥/ton

α Confidence in the fuzzy chance constraint (8) 0.9 —

ems CO2 emission factors for the transportation services
1064∗

g/TEU-km
262∗∗

∗Road service; ∗∗rail service. ∗∗∗Suggested by the research group at the Chinese Academy of Environmental Planning [74].

Table 4: Scale of the empirical case problem.

Total variables Integer variables Constraints

5829 1980 8417
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be accomplished by the initial plan as far as possible, and the
rest transportation orders usually with smaller container
volumes assigned to the rail service should be accomplished
by the origin-to-destination road services. The fuzzy simula-
tion should be conducted several times. In this study, we ran
the simulation 50 times, and the fuzzy simulation result is
shown in Figure 11.

As we can see from Figure 11, the successful times of the
planned routes increase remarkably when the confidence
value changes from 0.7 to 0.8. Although the generalized costs
increase approximately by 1.29%, the success ratio of the
planned routes considerably increases from 26% to 100%
by more than 3.8 times when the confidence value is set to
0.8 instead of 0.7.

Note that when α = 0 5, according to (25) and (26), the
fuzzy chance constraint can be rewritten as ∑k∈Kqk · xkijs ≤ vMijs

which is the deterministic capacity constraint widely
employed by the current literature (e.g., Sun and Lang [2]
and Sun et al. [19]). So we know that the successful ratio of
the multimodal routing with deterministic capacity consider-
ation is only 12% in the 50 simulations for the specific case.
As we can see from Figure 11, the successful ratio of the mul-
timodal routing can be significantly improved by more than
8.3 times by considering the capacity uncertainty and setting
the confidence to 0.8, 0.9, or 1.0. Therefore, it is of great value
to formulate the capacity uncertainty when planning the
multimodal routes, so that higher reliability of the multi-
modal routing decision-making can be guaranteed.

We can further achieve the optimization results of the 50
deterministic problems formulated by the linearized model
with (25) and (26) replaced by (53). The optimization results
are presented in Appendix D (available here) in the

Table 5: Optimization result and strategy performance.

Solution algorithm Solver state Best solution Computational time

Standard branch-and-bound algorithm Global optimum ¥ 1,575,559 1min 06 sec∗

∗Average value of 10 times simulation.
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Figure 6: Structure of the minimal generalized costs.

Table 6: Best routes in the empirical case.

Number Best multimodal routes Arrival time

1 Lanzhou {28} — (14) — Xinzhu — (4) — Jiaozhou 130.4

2 Lanzhou {37} — (14) — Xinzhu — (4) — Jiaozhou 130.4∗∗

3 Lanzhou {111} — (14) — Xinzhu — (5) — Huangdaogang 214.6

4 Lanzhou {15} — (17) — Putian — (10) — Lianyungang 79∗∗

5 Lanzhou {90} — (17) — Putian — (10)— Lianyungang 175∗∗

6 Hohhot — (7) — Xingang {96} — (23) — Jiaozhou 106.9∗∗

7 Hohhot — (7) — Xingang {101.5} — (23) — Jiaozhou 106.9

8 Hohhot — (7) — Xingang {148} — (23) — Jiaozhou 72∗

9 Hohhot — (7) — Xingang {192} — (23) — Jiaozhou 72∗

10 Hohhot {72} — (19) — Baotou — (6) — Xingang {171.5} — (25) — Lianyungang 186
∗Early delivery; ∗∗delayed delivery; numbers in {}: planned departure time.
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supplementary material. Such results can be considered as
the actual best routes. By comparing the actual best routes
with the planned ones, we can find the confidence value that
best matches the actual transportation.

In the 50 fuzzy simulations, the best actual routes whose
generalized costs are equal to ¥ 1,575,559 emerge 38 times
that account for 76% of the entire simulation times (see in
Figure 12). That is to say, such routes are the most likely best
ones in the practical transportation. The planned best routes
given by the fuzzy programming model with confidence
values of 0.8, 0.9, and 1.0 match the most likely best actual
routes better than others. Above all, the best values of the
confidence in this empirical case are recommended to be
0.8, 0.9, and 1.0.

6.6. Managerial Implications. It should be noted that the opti-
mization results and conclusions in this section are drawn
based on a specific case whose setting is shown in Sections

6.1 and 6.2. The results and conclusions are not universal
and are sensitive to the case itself andmight change if the case
changes. Therefore, the above analysis and discussion in this
section only provide a procedure and a demonstration on
how to adopt the proposed methods to deal with the practical
problems. Although the cases might be different, we can
always use such procedure to address them to draw corre-
sponding optimization results and conclusions.

Despite this fact, the results show important implications
for the practical implementation of the model:

(1) Although the multimodal service network is com-
plex, the linearized optimization model can deliver
the optimal solution in a very short time so that
new plans for incoming orders can be found very
fast.

(2) The objective of the optimization is to minimize the
total costs consisting of different cost categories

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:

Step 6:

Step 7:
Step 8:

Generate a random number 
Calculate its membership degree:

, if vijs ≤ vijs ≤ vijs

0, Otherwise

;

Generate a random number 𝜋 ∈ [0, 1];

Otherwise
Repeat Step 2 to Step 5;
End

End

For (i,j) ∈ A, s ∈ Гij
vijs ∈[vijs, vijs];

vijs −vijs

Qijs −Qijs
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L M
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Qijs −Qijs
MU

U

If 𝜇(vijs) ≥ 𝜋
vijs → the actual carrying capacity of rail service s ∈ 𝛤ij;

Figure 10: Fuzzy simulation process.
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(i.e., transportation, transshipment, inventory, pen-
alty, and emission costs). However, there is a clear
dominance of transportation costs over all other cost
categories which makes it difficult to influence the
optimal solution by changing other cost factors than
transportation costs.

(3) Based on the previous implication, it is clear that the
chargingmethod forCO2emissionsdoesnot improve
the environmental sustainability of the multimodal
routes if realistic values are used for emission costs.
Therefore, rather a bi-objective approach should be
used in order to be able to compare the cost-
optimal and emission-optimal solution. In this case,
often a solution can be found where one objective is
significantly improved whereas there is only a small
increase for the other one.

(4) The minimal values of total costs can be usually
achieved under the deterministic setting since no
buffer times or capacities need to be included. How-
ever, uncertainty plays an important role in practice
and therefore should be considered also in planning.
Although the total costs are increasing with the
increasing confidence level, this also reduces the risk
of disruptions during transportation which can be
seen in a lower ratio of failed plans. As a result, more
transportations can be performed as originally
planned and the need for re-planning for failed plans
is minimized. Since such re-planning usually leads to
additional costs, reducing the share of failed plans is
of high interest.

7. Conclusions

Nowadays, the multimodal transportation has been widely
promoted all over the world, and its routing optimization
has attached great importance by both researchers and prac-
titioners. Meanwhile, the public concern on environmental

protection raises, and environmentally friendly develop-
ment gets tremendous highlights in almost every industry.
Therefore, it is valuable to combine multimodal routing
with the environmental views. In addition to that, different
uncertainty factors can influence the performance of multi-
modal transportation and therefore should be considered
already in the planning phase. However, all these factors
increase the complexity of multimodal routing modelling
and therefore make the transportation planning very chal-
lenging in practice.

In order to respond to these challenges, we developed a
nonlinear mixed-integer optimization model covering mul-
tiple objectives (i.e., economic and environmental) and mul-
tiple uncertainty factors (i.e., traffic congestion and rail
service capacity). Moreover, in order to facilitate the solu-
tion of this problem, a linearization approach was proposed.
The application of the proposed model to a real-world case
study showed that it can deliver optimal results in a rela-
tively short time which is very helpful for the practical trans-
portation planning. Besides that, it was shown that the
inclusion of environmental criteria is meaningful only when
the bi-objective method is used, since the weight of the
emission costs is very low in comparison to transportation
costs if the charging method is used. Regarding the reliabil-
ity of transportation, including the uncertainty factors into
planning and increasing confidentiality levels significantly
reduce the risk of disruptions during the execution phase
but also lead to increased total costs. However, the reduced
risk of disruption also reduces the need for re-planning
and therefore helps to avoid additional costs connected with
this process.

Compared with the models proposed by other studies
listed in the literature review section, our model can compre-
hensively formulate the issues of road traffic congestion and
rail service capacity uncertainty that actually exist in the
routing decision-making process and thus have better feasi-
bility in dealing with the practical problem. Another
improvement is that by modifying the objective function,
our model can easily use two different approaches, including
charging for CO2 emissions and bi-objective optimization, to
separately optimize the CO2 emissions and identify which
one is more effective in planning green routes. Although
the model is nonlinear, it can be linearized, which enables
the problem to be effectively solved by any exact solution
algorithm on any mathematical programming software.

This study mainly focuses on the modelling and the utili-
zation of a classical exact solution algorithm based on a line-
arized model and does not involve any intelligent algorithms.
The exact solution strategy can efficiently optimize the pre-
sented case, but its performance is doubtful when the scale
of the case is increasingly expanded. As a result, for further
improvement to this study, we will test the feasibility of the
exact solution strategy in dealing with a larger-scale empirical
case. If the test result is not satisfactory, we will try to design
some advanced intelligent solution algorithms (e.g., heuristic
algorithms) with higher solution efficiency, so that the prob-
lem can be effectively optimized and routing suggestions can
be provided to the decision makers in time when the problem
scale gets larger.
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Figure 12: Ratios of the optimization results in the 50 fuzzy
simulations.
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