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Lyapunov functions play a key role in the stability analysis of complex systems. In this paper, we study the existence of a class of
common weak linear copositive Lyapunov functions (CWCLFs) for positive switched linear systems (PSLSs) which generalize the
conventional common linear copositive Lyapunov functions (CLCLFs) and can be used as handy tool to deal with the stability of
PSLSs not covered by CLCLFs. We not only establish necessary and sufficient conditions for the existence of CWCLFs but also
clearly describe the algebraic structure of all CWCLFs. Numerical examples are also given to demonstrate the effectiveness of the
obtained results.

1. Introduction

Positive dynamical system is one for which nonnegative
initial conditions give rise to nonnegative trajectories [1–3].
In recent years, stability issue for PSLS has been addressed
for both practical applications in cooperative control of mul-
tiagent systems [4–8] and for theoretical reasons in [9–17] to
name a few. For PSLSs, linear copositive Lyapunov functions
play an important role in the stability analysis. It is well known
that the existence of CLCLFs implies asymptotic stability of
PSLSs under arbitrary switching. Moreover, necessary and
sufficient conditions for the existence of CLCLFs have been
extensively investigated in [18–22].

Since the existence of CLCLFs is only a sufficient condi-
tion for asymptotic stability of PSLSs under arbitrary switch-
ing [18], it is necessary and significant to study asymptotic
stability of the PSLS when it does not have a CLCLF. Moti-
vated by the idea in [23, 24], where common joint quadratic
Lyapunov functions were introduced for the first time, a
class of common joint linear copositive Lyapunov functions
(CJCLFs) were proposed to design time-dependent switching
signals under which the PSLS is asymptotically stable [25,
26]. Moreover, such a method in [26] has been successfully
applied to consensus of multiagent systems.

Notice that CJCLFs play an important role in the stability
analysis of the PSLS. It is necessary to make it clear whether
the PSLS has a CJCLF. So far, the existence of CJCLFs is still
untouched except for the simpler cases 𝑛 = 2 and 𝑛 = 3
in [27]. Unlike CLCLFs, CJCLFs are determined by a series
of nonstrict inequalities on each individual system combined
with a strict inequality satisfied jointly, which leads to some
difficulty in the analysis of the existence of CJCLFs.

In order to better solve the existence of CJCLFs, we will
first introduce a class of common weak linear copositive
Lyapunov functions (CWCLFs) determined only by a series
of nonstrict inequalities on each individual system. By using
matrix theory, necessary and sufficient conditions for the
existence of CWCLFs have been established. What is more,
the algebraic structure of all CWCLFs for PSLSs has been
portrayed clearly. Consequently, the existence of CJCLFs
becomes easily verifiable based on the algebraic structure of
CWCLFs.

The paper is organized as follows. In Section 2, we will
present the notations used throughout this paper as well
as some preliminary results that are used later. Section 3
then focuses on deriving necessary and sufficient conditions
for the existence of CWCLFs for PSLSs. In Section 4, we
give two examples to demonstrate the effectiveness of the
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obtained theoretical results. Finally, conclusions are drawn in
Section 5.

2. Problem Statement and Preliminaries

Throughout this paper, ⟨𝑚⟩ is the set of integers {1, 2, . . . , 𝑚}
for any positive integer𝑚. If all entries of vector 𝑥 are positive
(nonpositive, negative), we denote 𝑥 ≻ 0 (⪯ 0, ≺ 0). For
a matrix 𝐴, denote 𝐴 ⪯ 0 if all its entries are nonpositive.
Denote the 𝑗-th column and the (𝑖, 𝑗)-th component ofmatrix𝐴𝑘 by col𝑗(𝐴𝑘) and 𝑎(𝑘)𝑖𝑗 , respectively. 𝐼𝑛 is an 𝑛-dimensional
identity matrix. A Metzler matrix is a real square matrix,
whose off-diagonal entries are nonnegative. A square matrix
isHurwitz if the real part of each of its eigenvalues is negative.

Consider the following continuous-time switched linear
system: 𝑥̇ (𝑡) = 𝐴𝜎(𝑡)𝑥 (𝑡) , 𝑡 ≥ 0, (1)

where 𝑥 is the 𝑛-dimensional state vector, the piecewise
continuous function 𝜎 : [0, +∞) → ⟨𝑚⟩ is the switching
signal, and 𝐴𝑘 is an 𝑛 × 𝑛-matrix for each 𝑘 ∈ ⟨𝑚⟩.

As usual, system (1) is said to be positive, if 𝑥(𝑡) ⪰ 0 for
any 𝑡 ≥ 0, any 𝑥(0) ⪰ 0, and arbitrary switching [12]. We
know that system (1) is positive if and only if 𝐴𝑘 is a Metzler
matrix for each 𝑘 ∈ ⟨𝑚⟩. A CLCLF method is usually used
for asymptotic stability of PSLS (1) under arbitrary switching.
Given an 𝑛-dimensional vector V ≻ 0, 𝑉(𝑥) = V𝑇𝑥 (or briefly
V) is said to be a CLCLF of PSLS (1) (or the family of Metzler
matricesA = {𝐴1, 𝐴2, . . . , 𝐴𝑚}) if

V𝑇𝐴𝑘 ≺ 0, 𝑘 ∈ ⟨𝑚⟩ . (2)

Note that (2) is only a sufficient condition for asymptotic
stability of PSLS (1) under arbitrary switching. There are
obviously many examples where such a sufficient condition
does not hold even if PSLS (1) is asymptotically stable under
arbitrary switching. Therefore, we consider the following
weaker condition:

V𝑇𝐴𝑘 ⪯ 0, 𝑘 ∈ ⟨𝑚⟩ . (3)

In order to guarantee asymptotic stability of PSLS (1)
under appropriately chosen switching signals, CJCLFs were
proposed in [27]. Given an 𝑛-dimensional vector V ≻ 0,𝑉(𝑥) = V𝑇𝑥 is said to be a CJCLF of PSLS (1) if (3) holds and

V𝑇
𝑚∑
𝑘=1

𝐴𝑘 ≺ 0. (4)

For the case 𝑚 = 2, it was shown in [25] that PSLS (1)
is asymptotically stable under arbitrary switching if it has
a CJCLF. Therefore, CJCLFs play an important role in the
analysis for asymptotic stability of PSLS (1).

For particular cases 𝑛 = 2 and 𝑛 = 3, the existence of
CJCLFs of PSLS (1) has been studied in [27]. For the general
case, it remains unexplored so far. In this paper, we will
introduce the definition of CWCLFs. Given an 𝑛-dimensional
vector V ≻ 0, 𝑉(𝑥) = V𝑇𝑥 (or briefly V) is said to be a CWCLF

of PSLS (1) (or A) if (3) holds. If the algebraic structure of
all CWCLFs can be clearly described, condition (4) becomes
easily verifiable, and hence the existence of CJCLFs can be
solved accordingly.

Under the assumption that there exists a CWCLF of A,
we have (H1): 𝑎(𝑘)𝑗𝑗 ≤ 0 for any 𝑗 ∈ ⟨𝑛⟩ and 𝑘 ∈ ⟨𝑚⟩; 𝑎(𝑘)𝑖𝑗 = 0
for all 𝑖 ∈ ⟨𝑛⟩ if 𝑎(𝑘)𝑗𝑗 = 0 for some 𝑗 ∈ ⟨𝑛⟩ and 𝑘 ∈ ⟨𝑚⟩. In the
following, it is always assumed that (H1) holds. Otherwise,A
does not have a CWCLF.

Note that A has a CWCLF if and only if the family of
Metzler matrices {𝐴𝑘𝐷−1𝑘 : 𝑘 ∈ ⟨𝑚⟩} has a CWCLF, where𝐷𝑘 = diag{𝑑(𝑘)1 , 𝑑(𝑘)2 , . . . , 𝑑(𝑘)𝑛 } is a diagonal matrix with

𝑑(𝑘)𝑖 = {{{−𝑎(𝑘)𝑖𝑖 , if 𝑎(𝑘)𝑖𝑖 < 0,1, if 𝑎(𝑘)𝑖𝑖 = 0. (5)

For the sake of convenience, assume throughout this paper
that 𝑎(𝑘)𝑖𝑖 = −1(0) for 𝑖 ∈ ⟨𝑛⟩ and 𝑘 ∈ ⟨𝑚⟩.

In the sequel, we define a sequence of positive integers
(SPI) {𝑗1, 𝑗2, . . . , 𝑗𝑝} for 𝑝 ∈ ⟨𝑛⟩ such that 1 ≤ 𝑗1 < 𝑗2 < ⋅ ⋅ ⋅ <𝑗𝑝 ≤ 𝑛. Denote the 𝑛 × 𝑝-matrix:𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝= [col𝑗1 (𝐴𝑘𝑗1 ) , col𝑗2 (𝐴𝑘𝑗2 ) , . . . , col𝑗𝑝 (𝐴𝑘𝑗𝑝 )] , (6)

where 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 for 𝑖 ∈ ⟨𝑝⟩ and the nonempty index set Λ 𝑖 ={𝑘 ∈ ⟨𝑚⟩ : 𝑎(𝑘)𝑖𝑖 < 0} for 𝑖 ∈ ⟨𝑛⟩. Let
L𝑗1𝑗2 ⋅⋅⋅𝑗𝑝 = {𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 : 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 , 𝑖 ∈ ⟨𝑝⟩} , (7)

where 𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 is a 𝑝 × 𝑝-matrix obtained from 𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝
by deleting all its rows except those labelled by 𝑗1, 𝑗2, . . . , 𝑗𝑝.
Remark 1. It follows from assumption (H1) that A has a
CWCLF if and only ifL12⋅⋅⋅𝑛 has a CWCLF.Moreover, for any
SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝} and any 𝑝 ∈ ⟨𝑛⟩,L𝑗1𝑗2⋅⋅⋅𝑗𝑝 has a CWCLF if
L12⋅⋅⋅𝑛 has a CWCLF.

For 𝑝 ∈ ⟨𝑛 − 1⟩ (𝑛 ≥ 2), decompose the matrix𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 as follows:𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 = (𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 𝜉𝑘𝑗𝑝+1𝜂𝑇𝑘𝑗𝑝+1 −1 ) , (8)

where 𝜉𝑘𝑗𝑝+1 and 𝜂𝑘𝑗𝑝+1 are the corresponding 𝑝-dimensional
column vectors; 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 for 𝑖 ∈ ⟨𝑝 + 1⟩. If the matrix𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 is invertible, the equation𝑦𝑇𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 = −𝜂𝑇𝑘𝑗𝑝+1 (9)

has a unique solution, where 𝑦 is a 𝑝-dimensional column
vector. We denote the solution of (9) by 𝜃𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 when it
has a unique solution. LetΘ𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 = {𝜃𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 : 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 , 𝑖 ∈ ⟨𝑝 + 1⟩} . (10)



Complexity 3

We now introduce several lemmas required in the proof
of the main results. Since new notations are introduced in
this paper, the following lemmas in Wu and Sun (2013) are
rewritten appropriately.

Lemma 2 (see [22]). Given an SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝+1} and 𝑝 ∈⟨𝑛 − 1⟩ (𝑛 ≥ 2), if L𝑗1𝑗2⋅⋅⋅𝑗𝑝 has a CLCLF, then there exists a𝑝+1-tuple (𝑘𝑗1 , 𝑘𝑗2 , . . . , 𝑘𝑗𝑝+1), 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 , 𝑖 ∈ ⟨𝑝+1⟩, such that𝜃𝑇
𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1

𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 ⪯ −𝜂𝑇𝑘𝑗𝑝+1 , (11)𝜃𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 ⪯ 𝜃𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 , (12)

where 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 , 𝑖 ∈ ⟨𝑝 + 1⟩.
For 𝑝 = 1, noting that 𝐴𝑘𝑗1 = −1 for 𝑘𝑗1 ∈ Λ 𝑗1 , L𝑗1 ={−1} for any 𝑗1 ∈ ⟨𝑛⟩; it is obvious thatL𝑗1 has a CLCLF. By

Lemma 2, let𝜃𝑗1𝑗2 = 𝜃𝑘𝑗1𝑘𝑗2 ,𝜆𝑗1𝑗2 = max {𝜃𝑇𝑗1𝑗2𝜉𝑘𝑗2 : 𝑘𝑗2 ∈ Λ 𝑗2} . (13)

That is, 𝜃𝑗1𝑗2 and 𝜆𝑗1𝑗2 are always well defined.
Generally speaking, given an SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝+1} and𝑝 ∈⟨𝑛 − 1⟩, ifL𝑗1𝑗2 ⋅⋅⋅𝑗𝑝 has a CLCLF, by Lemma 2, we can define𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 = 𝜃𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 , (14)𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 = max {𝜃𝑇𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1𝜉𝑘𝑗𝑝+1 : 𝑘𝑗𝑝+1 ∈ Λ 𝑗𝑝+1} . (15)

Lemma 3 (see [22]). Given an SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝+1} and 𝑝 ∈⟨𝑛 − 1⟩ (𝑛 ≥ 2),L𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 has a CLCLF if and only if 𝜆𝑗1𝑗2 <1, 𝜆𝑗1𝑗2𝑗3 < 1, . . . , 𝜆𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 < 1.
Lemma 4 (see [28]). For an 𝑛 × 𝑛-Metzler matrix 𝐴, if 𝐴 is
Hurwitz, then 𝐴−1 ⪯ 0.
3. Main Results

We first present the following lemma which plays a key role
in the proof of the main results.

Lemma 5. Given 𝑝 ∈ ⟨𝑛 − 1⟩ (𝑛 ≥ 2), assume that L𝑗1𝑗2⋅⋅⋅𝑗𝑝
has a CLCLF for any SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝}. Suppose also that
L𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 has a CWCLF for some SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝+1}; then𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 ≤ 1, and all CWCLFs of L𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 have the form𝜇(𝜃𝑇𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 , 1)𝑇 when 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 = 1, where 𝜇 > 0 is a constant.
Proof. SinceL𝑗1𝑗2⋅⋅⋅𝑗𝑝 has a CLCLF, by using Lemma 2, we see
that 𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 and 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 are well defined by (14) and (15)
for the given SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝+1}. Suppose that V ≻ 0 is a
CWCLF of L𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 . Set V = 𝜇(𝑢𝑇, 1)𝑇, where 𝑢 ≻ 0 is a𝑝-dimensional column vector and 𝜇 > 0 is an appropriate

constant. It is obvious that (𝑢𝑇, 1)𝑇 is also a CWCLF of
L𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 . Consequently, we get from (8) that𝑢𝑇𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 ⪯ −𝜂𝑇𝑘𝑗𝑝+1 , ∀𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 , 𝑖 ∈ ⟨𝑝 + 1⟩ , (16)𝑢𝑇𝜉𝑘𝑗𝑝+1 ≤ 1, ∀𝑘𝑗𝑝+1 ∈ Λ 𝑗𝑝+1 . (17)

On the other hand, by the definition of 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 , we have that𝜃𝑇𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 = −𝜂𝑇𝑘𝑗𝑝+1 , (18)

where 𝑘𝑗𝑖 ∈ Λ 𝑗𝑖 , 𝑖 ∈ ⟨𝑝 + 1⟩, are defined as in Lemma 2. This
together with (16) yields that[𝑢 − 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1]𝑇𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 ⪯ 0. (19)

Noting that𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝 is Hurwitz sinceL𝑗1𝑗2 ⋅⋅⋅𝑗𝑝 has a CLCLF,
it follows from Lemma 4 and (19) that𝑢 ⪰ 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 . (20)

Substituting (20) into (17) gives𝜃𝑇𝑗1𝑗2⋅⋅⋅𝑗𝑝+1𝜉𝑘𝑗𝑝+1 ≤ 𝑢𝑇𝜉𝑘𝑗𝑝+1 ≤ 1, ∀𝑘𝑗𝑝+1 ∈ Λ 𝑗𝑝+1 . (21)

It implies that 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 ≤ 1.
Next, we show that 𝑢 = 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 if 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 = 1. By the

definition of 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 , there exists an index 𝑘𝑗𝑝+1 ∈ Λ 𝑗𝑝+1 such
that 𝜃𝑇𝑗1𝑗2⋅⋅⋅𝑗𝑝+1𝜉𝑘𝑗𝑝+1 = 1. (22)

From (21) and (22), we have[𝑢 − 𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1]𝑇 𝜉𝑘𝑗𝑝+1 = 0. (23)

If 𝜉𝑘𝑗𝑝+1 ≻ 0, we can directly conclude that 𝑢 = 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 from
(20) and (23). Otherwise, 𝜉𝑘𝑗𝑝+1 has at least one zero entry. For
the sake of convenience, assume that the last component of𝜉𝑘𝑗𝑝+1 is zero, and all the others are positive. That is,𝜉𝑘𝑗𝑝+1 = (𝜉𝑇𝑘𝑗𝑝+1 , 0)𝑇 , (24)

where 𝜉𝑘𝑗𝑝+1 ≻ 0 is a (𝑝 − 1)-dimensional column vector. Set𝑢 = [𝑢̃𝑇, 𝑢̂]𝑇 ,𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 = [𝜃𝑇𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 , 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1]𝑇 , (25)

where 𝑢̃ and 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 are the corresponding (𝑝 − 1)-
dimensional column vectors; 𝑢̂ and 𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 are appropriate
constants. From (22)–(25), we obtain𝜃𝑇𝑗1𝑗2⋅⋅⋅𝑗𝑝+1𝜉𝑘𝑗𝑝+1 = 1, (26)[𝑢̃ − 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1]𝑇 𝜉𝑘𝑗𝑝+1 = 0. (27)
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Since 𝜉𝑘𝑗𝑝+1 ≻ 0, we can get from (20) and (27) that𝑢̃ = 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 . (28)

Now, it is sufficient to show that 𝑢̂ = 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 . Otherwise, 𝑢̂ >𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 from (20). We now decompose the (𝑝 + 1) × (𝑝+ 1)-
matrix 𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝+1 into the following form:

(𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝−1 𝜉𝑘𝑗𝑝 𝜉𝑘𝑗𝑝+1𝜂𝑇
𝑘𝑗𝑝

−1 0𝜂𝑇
𝑘𝑗𝑝+1

𝜂𝑘𝑗𝑝+1 −1 ) . (29)

From (19), (25), and (28), we have[𝑢̂ − 𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1] 𝜂𝑇𝑘𝑗𝑝 ⪯ 0. (30)

Since 𝑢̂ > 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 , the above inequality implies that 𝜂𝑘𝑗𝑝
is a zero vector. Based on (9) and (25), a straightforward
computation yields that𝜃𝑇𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1𝐴𝑘𝑗1𝑘𝑗2 ⋅⋅⋅𝑘𝑗𝑝−1 = −𝜂𝑇𝑘𝑗𝑝+1 . (31)

It implies that 𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 ∈ Θ𝑗1𝑗2 ⋅⋅⋅𝑗𝑝−1𝑗𝑝+1 . From (12), (14), (15),
and (26), we get𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝−1𝑗𝑝+1 ≥ 𝜃𝑇𝑗1𝑗2⋅⋅⋅𝑗𝑝+1𝜉𝑘𝑗𝑝+1 = 1, (32)

which is a contradiction with the fact thatL𝑗1𝑗2 ⋅⋅⋅𝑗𝑝−1𝑗𝑝+1 has a
CLCLF. Consequently, 𝑢 = 𝜃𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 when 𝜆𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 = 1; that
is, all CWCLFs of L𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 have the form 𝜇(𝜃𝑗1𝑗2⋅⋅⋅𝑗𝑝+1 , 1)𝑇.
This completes the proof of Lemma 5.

Remark 6. Assume that the family of Metzler matricesA has
a CWCLF. Noting that there is always a CLCLF of L𝑗1 for
any 𝑗1 ∈ ⟨𝑛⟩, we get from Lemma 5 that 𝜆𝑗1𝑗2 ≤ 1 for any SPI{𝑗1, 𝑗2}. If 𝜆𝑗1𝑗2 < 1 for any SPI {𝑗1, 𝑗2}, Based on Lemma 3,
L𝑗1𝑗2 has a CLCLF for any SPI {𝑗1, 𝑗2}. By using Lemma 5
again, we further get 𝜆𝑗1𝑗2𝑗3 ≤ 1 for any SPI {𝑗1, 𝑗2, 𝑗3}.
Therefore, the existence of CWCLFs of A implies that there
is at least one 𝑝 ∈ {2, 3, . . . , 𝑛} (𝑛 ≥ 2) such that 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑞 < 1
for any SPI {𝑗1, 𝑗2, . . . , 𝑗𝑞} and any 𝑞 ∈ ⟨𝑝 − 1⟩. For the trivial
case 𝑞 = 1, we denote 𝜆𝑗1 = 0.

We first establish a result for the case when 𝑝 = 𝑛
in Remark 6. That means (H2) 𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑞 < 1 for any SPI{𝑗1, 𝑗2, . . . , 𝑗𝑞} and any 𝑞 ∈ ⟨𝑛 − 1⟩ (𝑛 ≥ 2).
Theorem 7. Assume that (H2) holds. There exists a CWCLF
of A if and only if 𝜆12⋅⋅⋅𝑛 ≤ 1 and 𝜃12⋅⋅⋅𝑛 ≻ 0 when 𝜆12⋅⋅⋅𝑛 = 1.
Moreover, all CWCLFs ofA are the same as CLCLFs if 𝜆12⋅⋅⋅𝑛 <1, and all CWCLFs ofA have the form 𝜇(𝜃𝑇12⋅⋅⋅𝑛, 1)𝑇 if 𝜆12⋅⋅⋅𝑛 =1, where 𝜇 > 0 is a constant.

Proof.

Necessity. We first get from (H2) and Lemma 3 that L𝑗1𝑗2 ⋅⋅⋅𝑗𝑞
has a CLCLF for any SPI {𝑗1, 𝑗2, . . . , 𝑗𝑞} and any 𝑞 ∈ ⟨𝑛 − 1⟩.
By using Lemma 5, we have that 𝜆12⋅⋅⋅𝑛 ≤ 1. If 𝜆12⋅⋅⋅𝑛 < 1,
we conclude from Lemma 3 that A has a CLCLF. Therefore,
all CWCLFs of A are the same as CLCLFs. If 𝜆12⋅⋅⋅𝑛 = 1,
from Lemma 5, we see that all CWCLFs of A have the form𝜇(𝜃𝑇12⋅⋅⋅𝑛, 1)𝑇, and hence 𝜃12⋅⋅⋅𝑛 ≻ 0.
Sufficiency. If 𝜆12⋅⋅⋅𝑛 < 1, we get from (H2) and Lemma 3 that
there is aCLCLFofA, which is also aCWCLFofA. If𝜆12⋅⋅⋅𝑛 =1, we get from (11), (14), and (15) that (𝜃𝑇12⋅⋅⋅𝑛, 1)𝑇 is a CWCLF
ofA since 𝜃12⋅⋅⋅𝑛 ≻ 0. This completes the proof of Theorem 7.

For the particular case when 𝑎(𝑘)𝑛𝑖 > 0 for 𝑖 ∈ ⟨𝑛 − 1⟩ and𝑘 ∈ ⟨𝑚⟩, if there is a CWCLF of A, then there is a CLCLF
of L12⋅⋅⋅𝑛−1, and hence 𝜆12 < 1, 𝜆123 < 1, . . ., 𝜆12⋅⋅⋅𝑛−1 < 1
by Lemma 3. Suppose also that 𝑎(𝑘)𝑖𝑛 > 0 for 𝑖 ∈ ⟨𝑛 − 1⟩
and 𝑘 ∈ ⟨𝑚⟩. Following the proof of Lemma 5, we see that
Lemma 5 holds true under the assumption that L12⋅⋅⋅𝑛−1 has
a CLCLF. Similar to the proof of Theorem 7, we have the
following corollary.

Corollary 8. Assume that 𝑎(𝑘)𝑛𝑖 > 0 and 𝑎(𝑘)𝑖𝑛 > 0 for 𝑖 ∈ ⟨𝑛 − 1⟩
and 𝑘 ∈ ⟨𝑚⟩.There exists a CWCLF ofA if and only if 𝜆12 < 1,𝜆123 < 1, . . ., 𝜆12⋅⋅⋅𝑛−1 < 1, 𝜆12⋅⋅⋅𝑛 ≤ 1, and 𝜃12⋅⋅⋅𝑛 ≻ 0 when𝜆12⋅⋅⋅𝑛 = 1.Moreover, all CWCLFs ofA are the same as CLCLFs
if 𝜆12⋅⋅⋅𝑛 < 1, and all CWCLFs ofA have the form 𝜇(𝜃𝑇12⋅⋅⋅𝑛, 1)𝑇
if 𝜆12⋅⋅⋅𝑛 = 1, where 𝜇 > 0 is a constant.

Next, we consider the case when the assumption in
Theorem 7 does not hold. By Remark 6, we have that (H3)
there exists an integer 𝑝 ∈ ⟨𝑛 − 2⟩ with 𝑛 ≥ 3 such that𝜆𝑗1𝑗2⋅⋅⋅𝑗𝑞 < 1 for any SPI {𝑗1, 𝑗2, . . . , 𝑗𝑞} and any 𝑞 ∈ ⟨𝑝⟩.
In addition, there exists an SPI {𝑗1, 𝑗2, . . . , 𝑗𝑝+1} such that𝜆𝑗1𝑗2 ⋅⋅⋅𝑗𝑝+1 = 1.

For the sake of convenience, we assume in the sequel
that 𝑗𝑖 = 𝑖 for 𝑖 ∈ ⟨𝑝 + 1⟩. Otherwise, we can adjust the
corresponding columns and rows of all matrices in A by
permutation matrices such that the above assumption holds.
It is not difficult to see that such a transformation does not
change the existence of CWCLFs ofA.

If assumption (H3) holds, by using Lemmas 2 and 3, we
know that the𝑝-dimensional vector 𝜃12⋅⋅⋅𝑝+1 is well defined by
(14). Construct the (𝑛 − 𝑝) × 𝑛-matrix of the form𝐵𝑘 = diag {(𝜃𝑇12⋅⋅⋅𝑝+1, 1) , 𝐼𝑛−𝑝−1}𝐴𝑘. (33)

Let

M𝑞 = {𝐵𝑞𝑘 : 𝑘 ∈ ⟨𝑚⟩} , (34)

where 𝑞 ∈ ⟨𝑝 + 1⟩ and the (𝑛 − 𝑝) × (𝑛 − 𝑝)-matrix 𝐵𝑞𝑘 has
the form𝐵𝑞𝑘 = [col𝑞 (𝐵𝑘) , col𝑝+2 (𝐵𝑘) , col𝑝+3 (𝐵𝑘) , . . . ,

col𝑛 (𝐵𝑘)] . (35)
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Theorem 9. Assume that (H3) holds. There exists a CWCLF
of A if and only if 𝜃12⋅⋅⋅𝑝+1 ≻ 0, and there exists a CWCLF
of ⋃𝑞∈⟨𝑝+1⟩M𝑞. In addition, all CWCLFs of A have the form𝜇(𝜃𝑇12⋅⋅⋅𝑝+1, 1, 𝜙𝑇)𝑇, where 𝜇 > 0 is a constant, 𝜙 ≻ 0 is a(𝑛 − 𝑝 − 1)-dimensional vector, and (1, 𝜙𝑇)𝑇 is a CWCLF of⋃𝑞∈⟨𝑝+1⟩M𝑞.
Proof.

Necessity. We first get from (H3) and Lemma 3 that L𝑗1𝑗2 ⋅⋅⋅𝑗𝑞
has a CLCLF for any SPI {𝑗1, 𝑗2, . . . , 𝑗𝑞} and any 𝑞 ∈ ⟨𝑝⟩.
By using (H3) and Lemma 5, all CWCLFs of L12⋅⋅⋅𝑝+1 have
the form 𝜇(𝜃𝑇12⋅⋅⋅𝑝+1, 1)𝑇 with 𝜇 > 0, and hence 𝜃12⋅⋅⋅𝑝+1 ≻0. Assume that V is a CWCLF of A. Then, there exists
appropriate 𝜇 > 0 such that V = 𝜇(𝜃𝑇12⋅⋅⋅𝑝+1, 1, 𝜙𝑇)𝑇, where 𝜙 is
the corresponding (𝑛 − 𝑝 − 1)-dimensional vector. Based on
a straightforward computation, it is not difficult to conclude
from (33) and (35) that (1, 𝜙𝑇)𝑇 is a CWCLF of⋃𝑞∈⟨𝑝+1⟩M𝑞.
Sufficiency. Since 𝜃12⋅⋅⋅𝑝+1 ≻ 0, we first have that (𝜃𝑇12⋅⋅⋅𝑝+1, 1)𝑇
is a CWCLF of L12⋅⋅⋅𝑝+1 from (11), (14), and (15). If (1, 𝜙𝑇)𝑇
is a CWCLF of ⋃𝑞∈⟨𝑝+1⟩M𝑞, we can get from (33) and (35)
that (𝜃𝑇12⋅⋅⋅𝑝+1, 1, 𝜙𝑇)𝑇 is a CWCLF of A according to a direct
computation. This completes the proof of Theorem 9.

Remark 10. By virtue ofTheorem 9, the existence of CWCLFs
of A reduces to the existence of CWCLFs of lower dimen-
sional Metzler matrices.

4. Numerical Examples

In this section, we present two examples to illustrate themain
results.

Example 1. Consider the family of 3×3Metzler matricesA ={𝐴1, 𝐴2} with
𝐴1 = (−1 13 451 −1 450 0 −1) ,
𝐴2 =(−1 1 015 −1 1212 0 −1).

(36)

Since the combination matrix

𝐴122 = (−1 1 01 −1 120 0 −1) (37)

has a zero eigenvalue, there is not any CLCLF ofA. We now
verify whetherA has CWCLF.

Step 1. For the SPI {1, 2}, we have that 𝜃12 = 1 and 𝜆12 = 1.
Step 2. From (33) and (35), a straightforward computation
yields that

M1 = {{{{{(0 850 −1) ,(−45 1212 −1)}}}}} ,
M2 = {{{(−23 850 −1) ,(0 120 −1)}}} . (38)

Step 3. It is not difficult to see that all CWCLFs of M1 ∪M2
have the form 𝜇(1, 8/5) for 𝜇 > 0.

Therefore, we get fromTheorem 9 that all CWCLFs ofA
have the form 𝜇(1, 1, 8/5) for 𝜇 > 0. Moreover, it is easy to see
that there is not a CJCLF ofA.

Example 2. Consider the family of 4×4MetzlermatricesA ={𝐴1, 𝐴2} with
𝐴1 =((

(
−1 0 13 00 −1 13 00 0 −1 141 1 0 −1

))
)

𝐴2 =((
(

−1 0 13 120 −1 13 120 0 −1 013 13 0 −1
))
)

.
(39)

Since the combination matrix

𝐴1112 =((
−1 0 13 120 −1 13 120 0 −1 01 1 0 −1

)
)

(40)

has a zero eigenvalue, there is not any CLCLF ofA. We now
verify whetherA has CWCLF.

Step 1. Note that 𝜆12 = 𝜆13 = 𝜆23 = 𝜆34 = 0 and 𝜆14 = 𝜆24 =1/2. That is, 𝜆𝑗1𝑗2 < 1 for any SPI {𝑗1, 𝑗2}.
Step 2. For an SPI {1, 2, 4}, a straightforward computation
yields that 𝜃124 = (1, 1)𝑇 and 𝜆124 = 1. We now adjust
the corresponding columns and rows of all matrices in A
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by permutation matrices such that they take the following
form:

𝐴1 =((
(

−1 0 0 130 −1 0 131 1 −1 00 0 14 −1
))
)

𝐴2 =((
(

−1 0 12 130 −1 12 1313 13 −1 00 0 0 −1
))
)

.
(41)

Step 3. According to a direct computation, we get from (33)
and (35) that

M1 = M2 = {{{(0 230 −1) ,(−23 230 −1)}}} ,
M3 = {{{{{(−1 2314 −1) ,(0 230 −1)}}}}} . (42)

Step 4. It can be seen that all CWCLFs ofM1∪M2∪M3 have
the form 𝑎(1, 𝑏)𝑇 for 𝑎 > 0 and 2/3 ≤ 𝑏 ≤ 4.

Therefore, we get fromTheorem 9 that all CWCLFs ofA
have the form 𝑎(1, 1, 𝑏, 1)𝑇 with 𝑎 > 0 and 2/3 ≤ 𝑏 ≤ 4. In
addition, it is easy to verify that (1, 1, 1, 1)𝑇 is a CJCLF ofA.

5. Conclusion

The existence of a class of CWCLFs has been investigated
in this paper, which generalize the usual CLCLFs and can
be applied to stability analysis of positive switched linear
systems. By usingmatrix theory, necessary and sufficient con-
ditions for the existence of CWCLFs have been established.
Moreover, the algebraic structure of all CWCLFs is described
clearly. Two numerical examples are also given to illustrate
the effectiveness of the obtained results.
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