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We focus on the decomposition problem for nonstationary multicomponent signals involving Big Data. We propose the kernel
sparse learning (KSL), developed for the T-F reassignment algorithm by the path penalty function, to decompose the instantaneous
frequencies (IFs) ridges of the overlapped multicomponent from a time-frequency representation (TFR). The main objective of
KSL is to minimize the error of the prediction process while minimizing the amount of training samples used and thus to cut
the costs interrelated with the training sample collection. The IFs first extraction is decided using the framework of the intrinsic
mode polynomial chirp transform (IMPCT), which obtains a brief local orthogonal TFR of signals. Then, the IFs curves of the
multicomponent signal can be easily reconstructed by the T-F reassignment. After the IFs are extracted, component decomposition
is performed through KSL. Finally, the performance of the method is compared when applied to several simulated micro-Doppler
signals, which shows its effectiveness in various applications.

1. Introduction

In practical applications such as oceanic investigation [1],
radar [2], biomedical application [3], and mechanical fault
diagnosis [4], we need to represent and process nonstationary
signals. While Big Data can be explicitly regarded as a
good fortune, great challenges also appear with extensive
datasets. In general, Big Data introduce challenges in which
properties, such as time domain, space-time domain, com-
putational complexity, and information energy, are min-
gled in complicated ways with data resources, as shown
in Figure 1. Particularly, a multicomponent signal (MCS)
is a superposition of monocomponent signals whose may
overlap (or cross) in time-frequency (T-F) domains. The
fundamental problem in processing signals is to extract the
useful information stored in the amplitude-modulated (AM)
and/or the frequency-modulated (FM) signals. The time-
frequency analysis (TFA) is a central tool to capture the time-
varying features of multicomponent chirp signals. To analyze

further characteristics of these signals, we are more eager to
decompose them into monocomponent signals.

L1 Related Work. In the past few decades, many signal
decomposition approaches have been developed to capture
the accurate monocomponent signals. Commonly, the typical
methods can be summarized as time-frequency distributions
[5], the empirical mode decomposition [6] and its multi-
variate extensions [7], the local mean decomposition [8], the
reassignment method [9, 10] such as the synchrosqueezing
transform (SST) [9], the sparsification methods [11, 12], and
so on.

However, most of the decomposition methods are signal-
dependent and presume that the signal components meet
strict divisible conditions in the T-F domain [9], and thus they
are affected by additive noise and close or overlapped instan-
taneous frequencies (IFs) of signal components. Recently, the
intrinsic chirp component decomposition (ICCD) method
proposed in [13] and used in [14] revealed the incapable of
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FIGURE 1: Signal processing challenges and applications for Big Data.

separating crossed or overlapped chirp signals by using a
joint-estimation scheme. Essentially, the ICCD based on the
short-time Fourier transform (STFT) can accurately recon-
struct overlapped components. Unfortunately, according to
the Heisenberg uncertainty principle, the STFT, as the liner
TFA, cannot achieve an arbitrarily high T-F resolution. The
overlapped components are very close in the T-F plane and
the mask with low T-F resolution may cover all components
and the unwanted cross terms, which limits the applications
of the ICCD.

To analyze overlapped signal components, TFA is an
important issue which deserves to be mentioned for the
extraction of feature information from the components.
Currently, the extraction accuracy relies on the energy con-
centration of TFR generated by TFA methods. There exist a
variety of types of TFA methods, and they can be normally
divided into two categories: the parametric TFA (PTFA)
methods and the nonparametric TFA (NPTFA) methods.
PTFA methods, such as polynomial [1, 15], spline-kernelled
chirplet transform (SCT) [16], and sinusoidal models [17],
often involve the high-dimensional search of the IFs, which is
very time consuming. Moreover, the predesigned parametric
models may be only suitable for special applications. In this
paper, we are more concerned about the NPTFA methods
which are known for their more adaptability in practical
applications. The traditional NPTFA methods by short-time
Fourier transform (STFT), continuous wavelet transform
(CWT), and Wigner-Ville distribution (WVD) are subjected
to poor energy concentration. Recently, a class of TFA tech-
niques, referred to as T-F reassignment method, proposes to
improve the readability of TFR clearly. The synchrosqueezing
transform (SST), belonging to this class, is a postprocessing
technique based on the CWT to obtain better localized
TFR of nonstationary signals [18, 19]. The SST provides a
higher resolution that moderates the limitations of linear
projection based traditional NPTFA methods, such as STFT,
CWT, and SWT [19, 20]. Moreover, the SST reconstructs the
energies of these transforms, so that the resulting energies
of coefficients are condensed around the IF curves of the
components. However, the interference of serious noise on
TFA has attracted a major attention, since it brings about a

dominant error source when it appears in the contaminated
signal. Errors on account of the serious noise induces false
maxima (maxima other than the autoterms) in the T-F plane.
In [21], an ant colony optimization (ACO) algorithm and TFR
by WVD is adopted to estimate IFs of the components under
serious noise. This method is applicable to represent over-
lapped multicomponent signals. Nevertheless, we find that
these algorithms mentioned above cannot further decom-
pose the nonstationary overlapped components, which may
be often seen in various signal processing of practical
applications.

1.2. Proposed Method. Notice that despite all those efforts
decomposing overlapped MCSs is still a challenging task.
In this paper, we develop the intrinsic mode polynomial
chirp transform (IMPCT) which takes into account IFs
characteristics and a novel KSL method is proposed in order
to obtain a robust decomposition overlapped components
in high noise. For a nonstationary signal, instantaneous
amplitudes (IAs) and IFs are two of the foremost properties.
In [22], the IAs of the real signal are approximated by a third-
order or more orders polynomial. To represent complex chirp
signals, the IFs and IAs are both modeled as discrete chirp
series in the IMPCT, which enables energy concentration
and refines the most important coeflicients in high noise.
The coefficients for this model are distributed according
to the time-varying band-pass filter in the T-F plane and
not projected from either side. In addition, the distributed
properties of the IMPCT method and carefully designed
series make the representation more robust to swift IFs
variations.

For the practical implementation of a decomposition
method, a very interesting solution is the kernel sparse
learning (KSL) approach, which has not yet been devel-
oped for the multicomponent decomposition. While we
propose the KSL, as an active learning, similar to kernel
dictionary learning, which has been successfully applied to
classification problems [23-25], this model works differently.
In fact, the purpose of the algorithm is to maximize the
accuracy to minimize the amount of training samples. For
such aim, smart strategies are adopted to pick out the most
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prominent training samples. An advantage of our approach
is that it separates closer crossing components by KSL in
parallel.

The remainder of this paper is organized as follows. In
Section 2, the theory of IMPCT is described in detail. The IFs
estimation by T-F reassignment by the path penalty function
and the decomposition model by kernel sparse learning
are given in Section 3. Section 4 shows simulation results
of decomposing some real and micro-Doppler signals are
provided, and conclusions are followed in Section 5.

2. IMPCT for TFR

2.1. The Motivation of IMPCT. First of all, a numerical
example of a noisy environment is applied to demonstrate
the motivation of our method proposed. A simulated signal
is considered as follows:

s(t)=s,(t) +s, (1) 1)
with
sy (t) = (1 + 0.5 cos (27t))

x cos (27 (0.2 + 532t — 474t> + 369¢°) ),

(2)
s, (t) = (1 + 0.5 cos (27t))

x cos (27 (0.8 + 50¢ + 550¢* — 300£°)) ,

which is sampled at a sampling frequency of 2000 Hz and
the signal is polluted by a noise with SNR=-2dB. The T-F
representations shown in Figures 2(a) and 2(b) are generated
by SCT [16] and SWT [19], respectively.

The SWT, the continuous wavelet transform- (CWT-
) based SST, sharpens the time-frequency representation
of a multicomponent signal but suffers from a lower T-F
resolution, as shown in Figure 2(a). The T-F coefficients
of the IFs trajectories are obtained by SWT only in the
frequency domains. Thus, it is no wonder that the SWT
cannot accurately estimate time-varying IFs of an overlapped
signal as well. In Figure 2(b), the SCT is able to generate a
TFR with a poor energy concentration for the contaminated
signal with nonlinearly time-varying IFs. If the chirp rate of
SCT deviates from the true IFs, the T-F representation will
smear heavily.

An intuitive solution stems from a combination of high-
energy concentrations that partially result from the different
modulation frequencies. The new T-F representations of the
IMPCT will have better performance than the SCT, as shown
in Figures 2(c) and 2(d) with 50 iterations.

Therefore, it is necessary to develop alternative
approaches to deal with the challenging cases that there
exist components overlapping in the T-F domain. We
provide the following definition.

Definition 1. The two components x;(t) and x,,(t) in model
(3) are said to cross (or overlap) in the T-F domain. If there

exist a time instant , a bound d > 0 and a step  shift up and
down such that their IFs satisfy

IF () = IF,, (),

IF (7) +h =1IF,, (?) ¥ h, 3)
|IF, () - IF,, ()| = d.

Equation (3) illustrates a strict definition of these over-
lapped components for our algorithm to identify the case that
some components are tangent to each other (i.e., IF (f) =
IF,'n(ﬂ). Figure 3 shows the strict overlapping and tangent
of the two components. After shifting up and down, if there
is a point such that IF,(7) + h = IF,(7) + hit + ©
at other intersecting time 7, the components are strictly
overlapping. It is worth noticing that the IFs of the arbitrary
two components have different curvature at the intersecting
time £.

A signal s(t) = 1, A(t) cos(f(t)) can be
considered an intrinsic mode chirp function, with accuracy
eand A(t) and f(t) meeting the following conditions [14]:

eJom®  _

AeC'(R)nL,, (R),
feC®)
infA (1) >0,

nff )< oo

SupA (t) < oo, (4)
teR

sup f (t) < 0o,
teR

sup'f' (t)' < 00
teR

|A’ (t)|,|f’ (t)| <elf@), VteR.

Here, to overcome these limitations, a robust technol-
ogy architecture for overlapped nonstationary signals is
proposed, as shown in Figure 4. Initially, the input signal
is passed by the N-point IMPCT stage. The stage brings
about the IMPCT coefficients shown as r,,7,,--- ,7,,. The
inverse IMPCT operation for a signal sequence of length
A Ay, -, A, is performed. These characterized polynomial
coeflicients are concatenated and rearranged to the IFs esti-
mation for each of the input nonstationary signals. Then, to
decompose overlapped components in practical applications,
we need to deal with a very significant but challenging
issue of how to estimate IFs of overlapped components for
the IMPCT. The second problem is how to determine the
criterion which can separate the signals under micro-Doppler
effect and noise interference. In the following sections, the
solution for these two problems will be provided about
detailed theoretical analysis.

2.2. IMPCT Representation. The Fourier series analysis
brings to light the sinusoidal property, so it may be utilized
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FIGURE 2: TFs representations by (a) SWT, (b) SCT, (c) Iteration=0 IMPCT, and (d) Iteration=50 IMPCT.

for the reconstruction of some signals with linear phase
[14]. However, when processing nonlinear polynomial phase
signals (NPPS) often involved in the practical application, a
signal representations can be obtained by using the IMPCT.
Namely, the IMPCT can be adopted to demodulating com-
ponents of interest, reducing them to the sparse sinusoidal
components. In this section, the Fourier series is stretched
into the complex polynomial Fourier signal model as the
IMPCT. Consider a multicomponent polynomial phase sig-
nal contaminated by a white Gaussian noise as

M .
x(t)= Y1, re), (5)
m=1

where r,, is the amplitude coefficient function and ¢,,(t) =
a,t + o0+ a,,t"/n! indicates the phase of the m-th

component; (t) shows the noise. In general, the IMPCT of
x(t) can be formulated as follows:

Mk

X(fores fa) =

T'm

1

3
I

(6)
(e} ) "

« J I = P4 (= £ 3,
—00

For all points in the n-dimensional frequency domain that
correspond to the positions of signal components character-
ized by f; = &y, -r [ = Apyom = 1, ..., M, we can acquire

X(fl’“' ’fn) = errrm(s(fl T T ’fn_‘xnm)' 7)
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That is to say, X(f}, -, f,,) — 00 at the positions of signal
components: f; = &, > [, = A Thus, X(f1,--+, f,)
can be deemed to a sparse M-component representation. In
addition, for f; # ay,, -, f, # &ypm = 1,---, M has
limited value, negligible when compared to (7).

Let us inspect the signal vector x with elements 2'(k),
superimposed of a sum of M NPPS:

M
=Y 2, (k) +e(k)

i ®)
_ Z Q1K) (ka2 Gy [ 244K Gy 1)
= r,,e >

m=1

where the polynomial coeflicients are supposed to be
bounded integers and K is the total number of discrete
samples. To offer a sparse representation of nonlinear signals,
the discrete form of the IMPCT is adopted, which may be
expressed as

X()Ll"" ’An)

K-1 M ) N
_ Z z r ej(Zn/K)(ka1m+k ay, [24+K" ay,,, [nl)
m

k=0 m=1

)

oIV A (244K A, ) =2/ KOKA,
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When the set of IMPCT parameters (A, -+, A,,) is selected to

obtain the adaptive coeflicients of the NPPS (a,;, a,;,- - - ,a,;),
thus we can obtain
(/\1"" ’/\n) = (alm’a2m"" > nm) (10)

the m-th signal component is demodulated and the sinu-
soid eV mam) is baramount in the IMPCT spectrum.
Under this circumstances, the energy of the spectrum is
extremely concentrated at A = a,,,. On the contrary, while
A5 A,) # Ay Gy > ay,,) foralm € (1,--- , M)
the spectrum consisted of some dispersed phase. Under
high noise environment, we suppose that the minimum
spectral component having amplitude coefficient K|r,,,;,,| can
be also primary in the spectrum, meaning that it is above the
aggregate value of all other components (in the worst case

above their accumulation): K|r,,;,,| > szl |I7,,|, where r,,;, is

min
the minimum of all r,,,, form = 1,--- , M. Therefore, a search
is performed for M sets of parameters {(A,,,, " ,A,,) |
m = 1,--- ,M} so that (A,,---,A,) = (A1, Gop> " > Gp)

holds, and x(A,,,,--- ,A,,,) is strongly concentrated. All in
all, multicomponent set of parameters are calculated to obtain
the optimal concentrated vector (A, ---,A,) for all m =
1,--+, M. The maximized component will lie in the frequency
Ay =ay,.

The IMPCT representation explains the motivation for
obtaining an initial IFs estimate in the algorithm. The IFs
estimate will be based on the value of y(A,,---,A,). In the
next section, the T-F reassignment algorithm by the path
penalty function is proposed in order to more accurately
estimate IFs with the serious noise cases.

3. Multicomponent Decomposition

3.1. IFs Estimation by the T-F Reassignment. There are several
methods to implement the IFs estimation. Here, we will adopt
areassignment by the path penalty function to further reduce

Complexity

search space. The set of the IFs estimation is detected in the
selected points with the best path penalty function gain. The
algorithm is performed recursively until we are no longer able
to search out a new point that can reduce values of the path
penalty function.

In T-F plane, the frequencies F and time sequence T' can
be contained. The set of paths between two ending points is
FT, which aids in searching out the optimal path impossible.
Fortunately, the algorithm can be implemented recursively
as an example about the generalized Viterbi algorithm [26].
The optimal paths can be obtained as P;(; f;) which join the
moment ¢, and entire points to the moment ¢;, t € [t,,t;], for
j € [1,M]. It can be defined as

Bi( f;) = arg min p(A(0)3t: (8 £;))
! (11)
jell,M],

where the set M;; is obtained in (9) and contains all paths
between the moment t; and entire points to the moment
t;. Simultaneously, a sum of the path penalty functions is
revealed by p(A(1); t,-,(tl-,fj)) for each ridge A(t). In the
Viterbi algorithm, a chirplet path (11) is known as the partial
optimal path. Currently, the IFs estimation, within the time
interval [t;,t,,], can be expressed as

p(B(tf)ste(t0 1)) (2)

®: (t) = ar min
i (t) 8o el M]

At the next moment t;,,, the partial optimal paths will be
represented as the cascade of (11) with the points at the new
moment P, (t; fj) = [P(t; fr)» (ti+1;fj)], je[LM]k €
(1, M].

By selecting paths with shorter chirplets, one can search
out chirplets with an increasing function R(®;,®;) of the
distance |@; — @,/ to further decrease search space. A new
minimum value at the next moment is represented as

arg min p (P, (t; fi) st (8 fi)) + R (‘Dk’oj)
+{xlin1)

for each @;. It is worth noting that C(x(t;,,, f;)) is positive
constant to capture solutions of the constrained partial
optimal path with different values of length. To illustrate
algorithm, an example about two overlapping signals is
shown in Figure 5. In the considered case, an optimal path
(IFs estimation) connects points (2,1) and (1,1).

To form a best chirplet path using the path penalty
functions, two key constraints in the connections stage from
each point should be satisfied as

13)

@, - @ < Ao,
(14)
FEPHEFV

where A, A stand for the estimated polynomial chirp phase
in (9), respectively. The parameters A®@ and AA are deter-
mined by the boundaries of the frequency modulation rates



Complexity
700

600

Freq (Hz)

100

0 0.2 0.4 0.6 0.8
Time (Sec)

()

FIGURE 6: The relative IFs estimation result of a numerical signal. (a) The spectrogram of IMPCT; (b) the IFs estimation result.

of the considered signal. In Figure 3, it can be easily seen
that two best chirplet paths are synthesized by connecting the
partial optimal path to points (2,1) and (1,1), as well as (1,2)
and (2,2), respectively. Note that the new IFs estimation can
perform an update of the previous value.

Furthermore, we only need to solve the 1D optimization
problem in partial optimal path to estimate IFs ridges. Thus,
our method can be efficiently used in various real applications
and a numerical overlapped signal mentioned in Figure 2(a)
is analyzed in the high noise. The relative result of the
IFs estimation is shown in Figure 6. Each mode occupies
difference boundary region of the T-F domain as shown in
Figure 6(a), and the corresponding energy is concentrated
around the IFs ridges in Figure 6(b).

In [27], the grid search method is adopted to solving
the optimization problem. Especially assuming that the
chirp phase search space is [A;, A;], the set of the discrete
polynomial chirp phase can adjust the grid resolution. Con-
sidering the training set in the kernel sparse learning, our
method searches out proper path from a dictionary which
is reconstructed by possible partial optimal paths in the set
(13). Each subset is generated from a different starting point
of the sample, implemented independently to link the each
other and used to update a different pool of optimal paths.
Therefore, a parallel optimization calculation can be adopted
in our learning method.

3.2. Decomposition by Kernel Sparse Learning. One can
rewrite equation (5)

M
S= ) TpXy 11 (15)
m=1
where s = [s(t;) -+ S(tN_1)]T; n = [nty) - n(tN_l)]T; X,, =

7
700
600
500
< 400
T
o'
L
= 300
200
100
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Time (Sec)
(b)
a\T ( bNT T, .
[(x;,)" (x,,) ] with
a 0 L =0 —L
x4 = [, eak,a@l, - ah], (16)
b _ [0 L 70 oL
%, = [ bbby 17)
0 L =0 —L 0 L 70 L. ..
where a,,---a .4, --a, and b_,---b ,b,,---b, indicate

complex polynomial Fourier coefficients which should be
identified. For each signal component x(f), its inversion
formula corresponding to (7) is written as

N/2

t +t
2 'E["( 12 Z’k)

k=—N/2 (18)

% ej(Zfr/(NH))k(il*tz)’

1
N+1

x(t)x" () =

=1,2,--- , M,

where x(¢;) shows a column vector whose elements are the
signal values and x” (¢,) indicates the Hermitian transpose of
x(t,). The signal x(t) is supposed to be time limited within
[n| < N/2. We have obtained the IMPCT ,(t, k) of this
i-th component, according to (8). Through accumulating
the above relationship for i = 1,2,---, M, the following is

available:
M N2 M
* t,+t
Yx(e)x ()= s Y > (M 2k)
i=1 Ly -N/2i=1 (19)

x ej(2n/(N+1))k(t1—t2)'

Considering formula (9), for the signals meeting the
proposed model, this relation can be rewritten as

ZX (t)x" (t,) =

NJ/2

Z <t1+t2 k)

k -N/2

(20)

x ej(Zﬂ/(N+1))k(t1 _tz).
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By indicating
N/2
1 t, +t
R (t),t) = —— Y X,-( 1 2,k>
N+1, .5, 2 (21)

s« I @mI(N+D)K(t—t;)

and the decomposition of the kernel matrix & with the
elements %(t,t,), we obtain

N
R =Y Ak, (W& (n), (22)
i=1

where x;(n1) will be equal to the i-th signal components.
To recover the expected components, we need to deal
with nonlinear equations in (15). Since this inverse problem is
commonly ill-posed, the kernel sparse learning is employed
to process real data. In traditional kernel dictionary learning
the dictionary is expressed as a linear combination of a
nonlinear representation of the data in [23]. This is defined

as
k(X) =x (X) VY,

dictionary

(23)

where Y is defined as a series of coeflicients and x(X) is
nonlinear function. V¥ is the sparse weight matrix combining
fixed basis in order to engender the dictionary atoms.

In kernel sparse learning, the fixed basis is replaced by a
nonlinear combination of the input. In (22), a kernel could
only be used while solving the inverse problem. This allows
expressing (22) as

Y (X) 'k (X) =Y,

transform

(24)

where the kernelized data matrix is formulated instead of the
data matrix. One can give the kernel upfront #'(X,X) =
#(X)Tx(X), referred to as . We design the learning as

min {[WS - Y[ + A (I¥]; - logdet ¥) + u [¥lo} (25

For kernel sparse learning, one can notice that the
gradients for different terms and updating the coefficients in
(25) are easy to calculate. This is given by

Y— (YH >p)oPH. (26)

When the amount of samples is much bigger than the
dimension of the data, storing and processing the kernel
matrix are great difficulty in terms of memory. Consequently,
a more efficient scheme needs to be implemented. Using the
eigenvalue decomposition, the kernel matrix can be denoted
as

K= UNUT, (27)

where % shows the eigenvector matrix and A indicates the
diagonal matrix of eigenvalues sorted in descending order.
Alternating minimization of (25) brings about

¥ — min {PZA - VI + A (1%}, - logdet'¥)},  (28)

Y < min (1w %A Y3 +p ||°zzY’||0} ) (29)

Complexity

Solving (28) is straightforwardly updated along with the
update of IMPCT, identically; Z A plays the role of data. In
this study, we denote how (29) can be efficiently addressed by
adopting the separation variable method.

An agent variable » = %Y’ is introduced, which can
ideally ensure that the agents and variables are equivalent
in each iteration. In reality, the equality is only enforced
at convergence. Therefore, under the slight relaxation of
constraints, the augmented Lagrangian method [28] can be
applied to improve scalability and availability of KSL. One can
rewrite (29) as

Y — min {Iwu%A-YI} + 1 1P
(30)
rel| P - UL},

In the above description, the equivalence between the agents
and the variables can be guaranteed by the hyperparameter
y. By regulating the level of the value, the strength of the
constraint will be controlled to enforce the equivalence at
convergence. Initially, the algorithm sets a low value of u
and gradually enhances the value of the hyperparameter to
efficiently deal with the optimization problem.

In the high noise environment, one may choose more
complex methods to make sure the number of components
is accurate, such as by the split Bregman approach [29, 30].
To further relax the constraint, a Bregman variable is used in
the following mode:

Y — min {IW%A - Y + 4P,
(1)
ve|@ -y -y},

A relatively large W is conducive to make up for IFs estimation
errors. One starts a high value of the Bregman variable ¥
but it is automatically updated in each iteration. Therefore,
an effective approach is to automatically adapt the equality
between the agents and the variables to the noise level such
as the methods in [29].

In order to achieve parallel computing, through adopting
the alternating directions method of multipliers, (31) can be
decomposed into the following two easier subproblems.

Y — min {%A-YI} +e| P -2Y -1}, 62
Y — min {u| Pl + & |9 - %Y - ¥Il} . (33)

It can be easily seen that the first subproblem (32) is an
easy least squares problem forming a convergence in a mode
of the pseudo inverse problem. In the subproblem (33), a hard
threshold needs to be taken to enforce the equality between
the agents and the variables at convergence. The model is
efficient to deal with two subproblems in parallel. In addition,
the KSL has the ability of select optimal training samples in
order to minimize the error of the decomposition process
while minimizing the number of learning samples to label
and thus to cut down the costs interrelated with the training
sample collection.
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To test the result of the training samples, we need to
generate the features for the sample signal X,. Simultaneously,
we obtain a learned dictionary as shown in Figure 7, where
signals are merged only to provide a more valuable time-
frequency representation from the IMPCT. It is worth noting
that, in all the following simulation experiments, the initial
training samples can be obtained by the IMPCT based on
different feature modalities, such as noise, micro-Doppler
effect, and scattering. Feature modalities quantity and the
number of the generated samples corresponding to each
feature modality are determined according to the complexity
of the signal to be decomposed.

The question is how to determine the dictionary size
hyperparameter y. Note that although the same initial value
u = 1/N* is adopted for all proposed numerical results, a
more appropriate choice of this parameter may bring about
better estimation results. The choice is an empirical balance
between the MSE acquired on the training features, the
sparsity of the kernel dictionary, and the interpret-ability of
the final dictionary (decision criteria that rely on the specific
application can also be considered).

Having estimated the IFs of the signal (SNR = -2dB)
in the previous section, the decomposition of signal with
severely overlapped components is executed by KSL as
shown in Figure 8. It indicates that all the components are
successfully separated and the SNR is obviously improved.
The detected IFs ridges from the TFR of the signal are

generated in Figure 8(a). Figures 8(b) and 8(c) denote the
corresponding individual components. The improvement of
the superimposed of all components (SNR = 16.75dB) is
shown in Figure 8(d).

4. Validation

It is known that micro-Doppler effect has been diffusely
applied to target detection and recognition in sonar systems
[31, 32]. In general, such signals from scattering points of
the transmitted signal (or from the time delay and Doppler
shift of the received echo) may seriously overlap in the T-
F domain. To accurately characterize the TFR of micro-
Doppler signals, it is key to decompose overlapped signal
components, first and foremost.

In this section, the presented approach will be used to
decompose both simulated micro-Doppler signals to verify
the performance of the proposed method. The maximum
number of iterations is set to 80 and we adopt a more suitable
= 2/N*. To quantify the noise level of the inspected signal
or the accuracy of IFs estimation and signal reconstruction,
the SNR (unit: dB) of the signal is defined as

llew ()12 )
lo (£) - @ ()]

where w(t) indicates original signal or true IFs; @(t) is
reconstructed signal or estimation IFs.

SNR = 10log,, ( (34)
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FIGURE 8: Component separation for the simulated signal by the KSL.

In all simulated examples, a zero-mean Gaussian white
noise &(t) with variance o” and with i.i.d. real and imaginary
parts is artificially added to the resulting micro-Doppler
signal to analyze the effect of complicated AWGN.

Example 2. Consider an FM signal

s(t) = sin (27 (25t + 105sin (t)))

(35)
+ sin (30 + 271 (25t — 10 sin (¢))),

induced by some typical moving targets [2] (such as rotating,
tumbling, and coning targets); the signal is contaminated
with noise with SNR = -5dB. Herein, the sampling
frequency is 100 Hz and the time duration of the signal is set
to 15 s. The IMPCT of the signal, as the starting point of the
presented algorithm, is displayed in Figure 9(a).

The experimental results are observed after every 10
iterations, until the 80th iteration, are shown in Figures
9(b)-9(i). It can be easily seen that after the 10th iteration
a large amount of elements has concentrated the spectrum
energy at many T-F points. However, due to the nonlinear
polynomial phase effect in (6), the spectrum energy has
already started to concentrate at the autoterm, as shown
in Figure 9(b). With the iteration, the stronger the spec-
tral energy is enhanced, in contrast, the weaker the noise
interference is. The optimal TFR with a superior energy
concentration from the 80th iteration is shown in Figure 9(i)
due to the energy positioning update mechanism (7) and
a sparse representation (8) avoiding the noise interference,
used in (9).

The detected IFs ridges from the TER of the signal are
revealed in Figures 10(a)-10(c). It reveals the results of IFs
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ridges with Oth iteration, 10th iteration, and 80th iteration,
respectively. Before the 10th iteration, the T-F reassignment
detector by the path penalty function cannot track precise
IFs for the micro-Doppler signal with highly overlapped
components. On the other hand, the proposed T-F reassign-
ment can effectively distinguish these crossed components by
considering the partial optimal path of the ridges. To abate
the noise interference, one can further smooth the estimated
IFs by nonlinear spline adaptive fitting [33] with a polynomial
Fourier model, as illustrated in Figure 10(c).

Having estimated the IFs ridges, the separation of the
multicomponent signal is executed by the KSL, as shown in
Figures 10(d) and 10(e). It displays that all the components are
successfully discomposed and the SNR is availably improved.

Example 3. Here, we consider again a poly-harmonic FM
signal, expressed as

s(t) =s;(t) +5,(F) + 55 () (36)
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with
s; (t) = cos (Zn (5 sin <gt) + 6t + 1.2t2>)

s, (t) = cos (2 (0.2 + 45t — 1.2¢%) ) (37)

55 (t) = cos (271 (20 sin (%t) + 20t + 0.2t2>) ,

where a sampling frequency is set to 100 Hz and the its
time duration is 15 s. The signal is contaminated by high
white noise and the SNR is 0 dB. The TFRs acquired by the
presented IMPCT are compared with the results acquired
by SWT and SCT, as shown in Figure 11. In addition, IFs
ridges of the noise signal are estimated by the proposed T-F
reassignment (see Figures 11(c), 11(f), and 11(i)).

The TFRs of nonnoisy and noise signal obtained by SWT,
shown in Figures 11(a) and 11(b), respectively, can barely show
the inherent T-F pattern of the signal. Specifically, the TFRs
only reveals the clear IFs trajectory for the autoterms of signal
due to an easy approximation by a linear function. However,
the TFRs of the cross terms are too blur to accurately estimate
the IFs ridges of the overlapping components. In Figures 11(d)
and 1l(e), it can be noticed that the TFRs obtained by SCT
scatter the energy around the IFs due to their rough frequency
resolution induced by the high noise, and it is inaccurate
to extract the IFs. In Figures 11(g) and 11(h), it is revealed
that, due to the proposed optimal concentrated vector, the

IMPCT surpasses SWT and SCT as it clearly shows the true
T-F pattern of the signal. The IMPCT generates the TFRs
with an outstanding concentration, based on which the IFs
can be extracted accurately (see Figure 11(i)). However, in
Figures 11(c) and 11(f), it can be seen that partial IFs ridges
of cross terms corresponding to some points are truncated
in disorder. The simulation results display that both methods
suffer from high noise and cross terms. Obviously, one cannot
accurately decompose the overlapped components by these
two methods.

For all the following tests, the MSE versus variable SNR
will be calculated (from -10 to 10 dB below, with a 1 dB step).
The MSE is expressed as

MSE = E[E(m) - & ()] ] (38)

where 2 (n) indicates the estimated IFs and &(n) the true IFs
index.

We consider the IFs estimation from the TFRs of IMPCT,
SWT, and SCT, using the T-F reassignment based on the
path penalty function. The obtained MSEs are displayed in
Figure 12. Signals with fast IFs variations have been chosen
to determine good performance of the presented method in
such scenarios. Because of the distributed property of the
optimization, the IMPCT is robust to characterize the TFRs,
i.e., to the nonlinearity IFs ridges. Analyzing the results in
Figure 12, we demonstrate that, through slightly promoting
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FIGURE 11: TFRs of the signal obtained SWT, SCT, and IMPCT, respectively, and estimated IFs by the proposed T-F reassignment.

the IFs variations or adding the noise, the better improvement
level of IMPCT over SWT and SCT is obtained.

5. Conclusion

In this paper, we presented a novel approach which combines
the KSL algorithm with the T-F reassignment to decompose
seriously overlapped components. The IMPCT is first pro-
posed for the TFRs of a multicomponent nonstationary signal
in high noise and can adapt to some practical applications.
Comparing with traditional the decomposition approaches,
the KSL based on the T-F reassignment can decompose

signals with overlapped components. The modified T-F
reassignment algorithm by the best path penalty function
estimates the main IFs ridges of all the components and then
reconstructs the obtained IFs ridges according to the partial
optimal path. To estimate performance of the presented
method, we analyze the numerical experiments including a
real-world signal, which clearly illustrates that it outperforms
the IMPCT based on the T-F reassignment and KSL in
high noise environments. In addition, it outperforms the
state-of-the-art TFRs methods when polynomial phase signal
is contaminated by a white Gaussian noise. It should be
emphasized that, in essence, the KSL algorithm involves
postprocessing of ridges to optimize the IFs estimation of
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components contaminated by noise or induced by moving
targets. Further, the applications in practical scenarios will be
the part of our research development.
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