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In order to satisfy the diverse demand of travel service in the context of big data, this paper puts forward a unified framework for
optimal routing choice under guidance information.With consideration of the influence of big data, the scenario analysis of routing
choice is implemented, and the routing choice under guidance information is discussed. The optimal routing choice problem is
abstracted into the collaboration optimization model of travel route choice, departure time choice, and travel mode choice.
Based on some basic assumptions, the collaboration optimization model is formulated as a variational inequality model. The
method of successive averages is applied to solve the proposed model. A case study is carried out to verify the applicability and
reliability of the model and algorithm.

1. Introduction

With the rapid development of mobile internet, Internet of
Things, cloud computing, and so on, the era of big data is
coming and new data are generated day by day. Handling
big data is a significant problem. A special issue on Big Data
was published for the first time by Nature in 2008 [1] and
Dealing with Data by Science in 2011 [2]. In 2012, the United
States launched the Big Data Research and Development
Initiative [3]. China issued A Survey on China’s Big Data
Development in 2015 [4]. In recent years, the technologies
and applications of urban traffic data have grown rapidly.
Recently, a lot of new technologies and applications of
traffic have come into the market. There is a big issue to
handle the data of traffic. The traditional methods to collect
traffic data are induction coil [5], microwave radar [6], and
floating car system [7], and nowadays, new ways for the
collection of the data are new compass navigation system
[8] and smartphone [9].

(A) Multisource data: big data technologies, such as
smartphone [10], social media [11], Internet of
Vehicles [12], variable message sign [13], and vehicle
navigation system [14], provide more approaches of
information detection and release, not only enrich-
ing the reliable sources of information but also
expanding the scope of information dissemination.
Therefore, the optimal routing choice can be imple-
mented when the travelers fully understand the
traffic condition based on big data.

(B) New travel modes: the deep integration of big data
technology and the concept of sharing economy
have created some new travel modes with a new sys-
tem, for example, the online car-hailing system [15],
the bike-sharing system [16], and the car-sharing
system [17]. These new travel modes based on the
sharing system expand the range of combined travel
mode, which is becoming one of the most popular
and common travel modes these days.
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Recently, there is a vivid discussion in the literature con-
cerning about optimal routing choice. For example, Chen
and Hsueh [18], Abdul Aziz Ukkusuri [19], and Long et al.
[20] studied the combination selection of travel route and
departure time. Nakayama et al. [21], Meng et al. [22], and
Shi et al. [23] studied the combination selection of travel
route and travel mode. Moreover, travelers are influenced
by the guidance information. Ren et al. [24], Huang et al.
[25], and Sun et al. [26] divided travelers into two groups
according to whether they assembled the advanced traffic
information system (ATIS). Zhong et al. [27], Liao and Chen
[28], and Zhong et al. [29] studied the route choice behavior
in the ATIS context.

The optimal routing choice problem is abstracted into the
collaboration optimization model of travel route choice,
departure time choice, and travel mode choice. However,
there is still a problem in the optimization model. In addi-
tion, influenced by big data, many new problems are created
in the mathematical modeling. The following are examples:

(A) The mathematical modeling is very complex. The
collaboration optimization involves multiple deci-
sion variables, such as travel route, departure time,
and travel mode, which have a close connection of
mutual influence and mutual cause and effect.

(B) The travel mode needs to be redefined under big
data. These new mode technologies to be merged
and combined together are very popular and com-
mon in current life. The map of trips has changed
under this background.

(C) The guidance efficiency should be considered in the
mathematical modeling, because of the increase of
information publishing ways in the context of big
data. Having different information types and format,
these information publishing ways affect the guid-
ance efficiency.

With the consideration of these problems, this paper
establishes a unified framework for optimal routing choice
under guidance information. The rest of the paper is orga-
nized as follows: in Section 2, the problem statement is put
forward. In Section 3, the optimal routing choice problem
is formulated as a variational inequality model. In Section
4, the method of successive averages is used to solve the pro-
posed model. In Section 5, a case study is discussed to verify
the applicability and reliability of the model and algorithm.

Finally, in Section 6, there is conclusion and discussion for
future research.

2. Problem Statement

2.1. Analysis of Routing Choice Based on Big Data

2.1.1. Guidance Information. Based on a variety of informa-
tion detection methods, abundant traffic data can be
obtained, as long as the supply and demand characteristics
of the traffic system. Moreover, by means of a variety of infor-
mation publishing methods, the guidance information is
issued to travelers. There are lots of ways to information pub-
lishing, such as static traffic sign, variable message sign, vehi-
cle navigation system, cell phone app, internet, TV service,
and radio broadcast. The first two ways are usually laid out
on the key sections of the urban traffic network. Compara-
tively speaking, the latter five ways cover a wider range. The
types of information publishing include real-time traffic con-
dition, traffic incidents, traffic control, traffic guidance, and
query service. Different ways of information publishing, lim-
ited by a hardware device, have different information types,
as shown in Table 1.

Different ways of information publishing have different
formats as shown in Table 2.

2.1.2. Combined Travel Mode. In addition, the emergence of
the online car-hailing system, bike-sharing system, and car-
sharing system greatly enriched the choices of travel mode,
which perfects the chain of travel. Based on the descriptions
above, the map of trips in the context of big data can be plot
as shown in Figure 1.

Table 1: Ways and types of information publishing.

Ways of publishing Real-time traffic condition Traffic incidents Traffic control Traffic guidance Query service

Static traffic sign ○ ○
Variable message sign ○ ○ ○ ○
Vehicle navigation system ○ ○ ○ ○ ○
Cell phone APP ○ ○ ○ ○ ○
Internet ○ ○ ○ ○ ○
TV service ○ ○ ○ ○ ○
Radio broadcast ○ ○ ○

Table 2: Information format.

Ways of publishing
Information format

Script
Image
(live)

Image
(status)

Numerical
value

Static traffic sign ○ ○
Variable message sign ○ ○ ○
Vehicle navigation
system

○ ○

Cell phone APP ○ ○ ○ ○
Internet ○ ○ ○ ○
TV service ○ ○ ○ ○
Radio broadcast ○ ○
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2.2. Routing Choice considering Guidance Information. Con-
sidering the guidance information, the optimal routing
choice can be described as a series of choices with a tree struc-
ture [30], as shown in Figure 2.

Optimal routing choice involves the choice of whether to
travel, travel route, departure time, travel mode, and so on. It
has a wide range and many influencing factors. In this paper,
the latter three choices are discussed. Then, the optimal rout-
ing choice problem is abstracted into a collaboration optimi-
zation model of travel route choice, departure time choice,
and travel mode choice (TRC-DTC-TMC collaboration opti-
mization model), which is the main job of this paper.

2.2.1. Travel Route Choice (TRC). In the case of travel route
choice, the traveler chooses a route with the minimum neg-
ative utility. Assuming that crsp t denotes the negative util-
ity of pth route of OD (origin-destination) pair rs at time
interval t. The optimization model of travel route choice
is given below:

min
p

 crsp t ,

s t  〠
p

f rsp t = qrs t , f rsp t ≥ 0,
1
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Figure 1: Map of trips in the context of big data.
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Figure 2: Sustainable routing choice considering guidance effects.
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where f rsp t is the arrival rate of the pth route of OD pair
rs at time interval t and qrs t is the traffic demand of the
OD pair rs at time interval t.

There is an equilibrium state for the optimization prob-
lem of travel route choice, satisfying dynamic user optimal
(DUO) condition. That is to say, for any OD pair rs, in any
time interval t, the actual impedance of the route used by
the traveler is equal and minimal; simultaneously, the
actual impedance of all routes not used is not less than
the minimum actual impedance. Mathematical expressions
are given below:

f rsp t crsp t − crsmin t = 0,

crsp t − crsmin t ≥ 0,

f rsp t ≥ 0,

2

where crsmin t is the minimum of crsp t . That is,

crsmin t =min
p

crsp t 3

2.2.2. Departure Time Choice (DTC). In the case of departure
time choice, the traveler chooses the departure time with the
minimum negative utility. Assuming that φrs t denotes the
negative utility of the traveler of the OD pair rs at time inter-
val t, the optimization model of departure time choice is
given below:

min
t

 φrs t ,

s t  〠
t

qrs t =Drs, qrs t ≥ 0,
4

where Drs is the traffic demand of the OD pair rs.
There is an equilibrium state for the optimization prob-

lem of the departure time choice, satisfying dynamic user
optimal (DUO) condition. That is to say, for any OD pair
rs, the departure time chosen by the traveler should mini-
mize the negative utility of the traveler, and the negative util-
ity of the other departure times is no less than the minimum
negative utility. Mathematical expressions are given below:

qrs t φrs t − φrs
min = 0,

φrs t − φrs
min ≥ 0,

qrs t ≥ 0,

5

where φrs
min is the minimum of φrs t . That is,

φrs
min = min

t
φrs t 6

2.2.3. Travel Mode Choice (TMC). In the case of travel
mode choice, the traveler chooses the travel mode with
the minimum negative utility. Assuming that μrsm t is the
negative utility of the mth travel mode of the OD pair rs
at time interval t, the optimization model of travel mode
choice is given below:

min
m

 μrsm t ,

s t  〠
m

qrsm t = qrs t , qrsm t ≥ 0,
7

where qrsm t is the traffic demand of the mth travel mode of
the OD pair rs at time interval t.

There is an equilibrium state for the optimization prob-
lem of the travel mode choice, satisfying dynamic user opti-
mal (DUO) condition. That is to say, for any OD pair rs at
any time t, the traveler’s choice of travel mode should mini-
mize the traveler’s negative utility, and the negative utility
of other travel modes is no less than the minimum negative
utility. Mathematical expressions are given below:

qrsm t μrsm t − μrsmin t = 0,

μrsm t − μrsmin t ≥ 0,

qrsm t ≥ 0,

8

where μrsmin t is the minimum of μrsm t . That is,

μrsmin t =min
m

μrsm t 9

2.3. Basic Assumptions for Mathematical Modeling. Based on
big data, a unified framework for route choice under guid-
ance information is put forward in this paper. Some basic
assumptions are considered.

2.3.1. Model Simplification considering Super Networks.
Travel mode choice, especially the choice of combed mode
trips, needs consideration of transferring. However, the tra-
ditional traffic network studies the bus network, car net-
work, bicycle network, and so on independently. Only one
mode is used in each path. Therefore, it is difficult to adapt
to multimodal traffic assignment problems. Considering
these problems, Sheffi proposed the concept of the super
network [31], in which each path is a super path with both
travel route and travel mode. In recent years, the traffic
assignment problem of combined mode [32] and the opti-
mal design of bus lane network [33] is studied by using
the super network. If the travel time is taken into account
without considering the complex factors such as comfort
and cost, the super network can simplify the TRC-DTC-
TMC collaboration optimization problem into a TRC-DTC
collaboration optimization problem.

2.3.2. The Introduction of Utility Function at Arrival Time. At
peak hours, the ideal arrival time range is the same for the
travelers with the same destination. If ts indicates the ideal
arrival time and Δs indicates the flexible time, then the ideal
arrival time range is ts − Δs, ts + Δs . Arriving in the ideal
arrival time interval results in no negative utility; otherwise,
there is negative utility. The negative utility of the early
arrival and late arrival is expressed by τsp ⋅ .

4 Complexity



τsp t + crsp t =

αs ts − Δs − t − crsp t , t + crsp t < ts − Δs,

0, ts − Δs ≤ t + crsp t ≤ ts + Δs,

βs t + crsp t − ts − Δs , ts + Δs < t + crsp t ,

10

where αs, βs, and γs are penalty coefficients.
Then, φrs

p t , the negative utility of the traveler of the pth
route of the OD pair rs at time interval t, can be expressed as

φrs
p t = γsc

rs
p t + τsp t + crsp t 11

Literature [34] assumes that ts and Δs and penalty
coefficients αs, βs, γs are only related with destination s.
And literature [35] found that

βs > γs > αs > 0 12

2.3.3. Routing Choice Behavior under Guidance Information.
Considering stochastic user equilibrium (SUE), the nested-
logit function is applied to express the choice behavior of
departure information. The departure time choice behavior
can be expressed as

qrs t =Drs exp −θTφrs t
〠texp −θTφrs t

, 13

where θT is the correction parameter, which reflects the
degree of perceived error of departure time-negative utility
of travelers.

According to expected utility theory,

φrs
min = −

1
θT

ln 〠
t

exp −θTφ
rs t

= φrs t +
1
θT

ln
qrs t
Drs

14

Routing choice behavior can be expressed as

f rsp t = qrs t
exp −θPφrs

p t

〠pexp −θPφrs
p t

, 15

where θP is the correction parameter, which reflects the
degree of perceived error of route negative utility of travelers.

According to expected utility theory,

φrs t = −
1
θP

ln 〠
p

exp −θPφ
rs
p t

= φrs
p t +

1
θP

ln
f rsp t

qrs t

16

Substitute (15) and (16) into (14), and (17) is obtained as

φrs
min = φrs

p t +
1
θP

ln
f rsp t

qrs t
+

1
θT

ln
qrs t
Drs

= φrs
p t +

θT − θP
θPθT

ln
f rsp t

qrs t
+

1
θT

ln
f rsp t

Drs

=
θP
θT

φrs
p t +

θP − θT
θPθT

ln 〠
p

exp −θPφ
rs
p t

+
1
θT

ln
f rsp t

Drs

17

According to (17), for φrs
p t , universal negative utility of

the pth route of the OD pair rs at time interval t can be
expressed by φrs

p t as

φ rs
p t = φrs

p t + 1
θP

ln
f rsp t

qrs t
+ 1
θT

ln qrs t
Drs

= θP
θT

φrs
p t + θP − θT

θPθT
ln 〠

p

exp −θPφ
rs
p t

+ 1
θT

ln
f rsp t

Drs

18

3. Mathematical Model

3.1. Variational Inequality Model. Based on basic assump-
tions, the super network can simplify the TRC-DTC-TMC
collaboration optimization problem into a TRC-DTC collab-
oration optimization problem. That is, the traveler chooses
the travel route and departure time with the minimum nega-
tive utility. The optimization model is given below:

min
t

  min
p

φrs
p t ,

s t  〠
rs

〠
t

〠
p

f rsp t =〠
rs

Drs, f rsp t ≥ 0
19

There is an equilibrium state for TRC-DTC collabora-
tion optimization problem, satisfying dynamic user optimal
(DUO) condition. That is to say, for any OD pair rs, changing
departure time and travel route cannot reduce negative utility
of travelers, and the departure time choice and the travel
route choice are met with (13) and (15), respectively, which
can be expressed as

f rsp t φrs
p t − φrs

min t = 0, 20

φ rs
p t − φrs

min t ≥ 0, 21

f rsp t ≥ 0, 22

where φrs
min t is the minimum of φrs

p t :

φrs
min t =min

t
min
p

φrs
p t 23

The set Ω represents the feasible region of f rsp t .

5Complexity



Ω = f rsp t ≥ 0 ∣〠
rs

〠
t

〠
p

f rsp t =〠
rs

Drs 24

The optimization model (19) clearly reflects the physical
meaning of TRC-DTC collaboration optimization. However,
it is difficult to be solved. Therefore, we need to find an equiv-
alent model, which is easy to be solved. With the consider-
ation of the advantages of the problem-solving process,
variational inequality (VI) is used in this paper.

Because the equilibrium conditions (20), (21), and (22)
describe the equilibrium state of optimal routing choice,
namely, TRC-DTC collaboration optimization, we should
put forward a variational inequality (VI) problem, which is
equal to the three equilibrium conditions.

We find that equilibrium conditions (20), (21), and (22)
equal the variational inequality (VI) problem with a feasible
region Ω:

〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp t − f rsp
∗ t ≥ 0, 25

where variables with ∗ need to be resolved.
Therefore, the VI problem (25) is the mathematical

model for the collaboration optimization. In order to show
the equivalence property, the following 3 problems need to
be proved.

(A) Optimum solution f rsp
∗ t (f rsp

∗ t ∈Ω), which sat-
isfies equilibrium conditions (20), (21), and (22), is
also the optimum solution of VI problem (25).

Proof 1. The following formula can be conducted from (21)
and (22):

f rsp t φ̂rs
p t − φ̂rs

min t ≥ 0 26

And the following formula can be conducted from (20):

f rsp
∗ t φ̂rs

p t − φ̂rs
min t = 0 27

Subtract (26) from (27), and sum it by rs, t, and p; then VI
problem (25) can be obtained.

(B) The optimum solution f rsp
∗ t (f rsp

∗ t ∈Ω) of VI
problem (25) also satisfies equilibrium conditions
(20), (21), and (22).

Proof 2. Since f rsp
∗ t (f rsp

∗ t ∈Ω) is the optimum solution of
VI problem (25), then

〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp t

≥〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp
∗ t

28

Define that

ω f rsp t =〠
rs

〠
t

〠
p

f rsp t −〠
rs

Drs, 29

where f rsp t is the vector form of f rsp t , which satisfies

ω f rsp t = 0 30

Introduce a sufficiently large positive number M, which
satisfies

〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp t +M ω f rsp t
2

≥〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp
∗ t

+M ω f rsp t
2

31

Then, the optimum solution f rsp
∗ t (f rsp

∗ t ∈Ω) of VI
problem (25) is also the optimum solution of the following
minimization problem:

min  〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp t +M ω f rsp t
2
,

s t  f rsp t ≥ 0

32

The following Lagrange function is constructed:

L =〠
rs

〠
t

〠
p

φ̂rs
p t − φ̂rs

min t f rsp t +M ω f rsp t
2

33

According to Karush-Kuhn-Tucker (KKT) conditions,
the following conditions are satisfied at the extreme points
of Lagrange function (33):

f rsp t
∂L

∂f rsp t
= 0, 

∂L
∂f rsp t

≥ 0 34

The equilibrium conditions (20), (21), and (22) are fur-
ther obtained.

(C) Existence and uniqueness of solutions for VI prob-
lem (25) are proved as follows:

Proof 3. Considering the monotone condition and that the
feasible domain is a bounded closed convex set, with the help
of Brouwer’s fixed-point theory, it is easy to prove the exis-
tence and uniqueness of the solution.

Besides, after substituting (18) into (25) and with trans-
formation, the following VI problem is obtained:
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〠
rs

〠
t

〠
p

φrs
p
∗ t +

1
θP

ln
f rsp

∗ t

qrs∗ t
f rsp t − f rsp

∗ t

+
1
θT

ln
qrs t
Drs qrs t − qrs∗ t ≥ 0

35

VI problem (35) is transformed from VI problem (25).
There is no need to prove again its equivalence with equilib-
rium conditions (20), (21), and (22) and the existence and
uniqueness of its solutions.

3.2. Dynamic Constraint Condition

3.2.1. Section State Equation. The discretized section state
equation can be expressed as

xa t + 1 = xa t + f a t − va t , 36

where xa t is the flow (state variable) of section a at the tth
time interval, f a t is the arrival rate, and va t is the depar-
ture rate.

Extended to the route level, the discretized route state
equation can be expressed as

xrsp t + 1 = xrsp t + f rsp t − vrsp t , 37

where xrsp t is the flow (state variable) of the pth route of the
OD pair rs at the tth time interval, f rsp t is the arrival rate,
and vrsp t is the departure rate.

3.2.2. Section Impedance. Taking the travel time as the section
impedance, the point queuing model considers that the travel
time function of the section can be expressed as

ca t = c0a +
xa t
Qa

, 38

where ca t is the impedance of section a at the tth time
interval, c0a is the free flow travel time of section a, and
Qa is the capacity of a.

As explained by “Buckets Effect,” the section with the
minimum capacity of the whole route affects the capacity of
the entire path; that is,

Qrs
p =min

a
Qa, 39

where Qrs
p is the capacity of the pth route of the OD pair

from rs.
Then, the section impedance is

crsp t =〠
a

c0a +
xrsp t

Qrs
p

40

3.2.3. Propagation Characteristic Function. The method for
calculating the departure rate of a section is

va t =
xa t + f a t , Qa > xa t + f a t ,

Qa, Qa ≤ xa t + f a t
41

Extended to the route level, section a − 1, the immediate
predecessor of section a, should satisfy the conservation
constraints:

va−1 t = f a t 42

The method for calculating the departure rate of a
route is

vrsp t =
xrsp t + f rsp t , Qrs

p > xrsp t + f rsp t ,

Qrs
p , Qrs

p ≤ xrsp t + f rsp t
43

3.2.4. General Constraints. The traffic conservation con-
straint assumes that the traffic demand is fixed and known,
as shown in (3), (6), and (23). The boundary condition
assumes that there is no traffic at the initial moment, as
shown in (44). Nonnegative constraints guarantee the non-
negativity of inflow for routes and sections, as shown in
(21) and (45).

xa 1 = 0, 44

xa t ≥ 0 45

4. Solution Algorithms

Taking 0, δT as a research time interval, with the help of the
basic idea of the method of successive average (MSA) algo-
rithm, VI problem (25) is resolved with the following
algorithm.

Step 1. In initialization, with iteration number h = 0, Qrs is
equally allocated to routes and time intervals to get the initial

value of f rsp t h .

Step 2. According to f rsp t h , dynamic random distribution

and load on the network are performed to obtain φrs
p t h .

Step 3. According to φrs
p t and with the help of (13) and (15),

f rsp
∗ t h is calculated.

Step 4. Set h = h + 1 , and the traffic volume of each route is
updated:

f rsp t h = f rsp t h−1 f rsp
∗ t h−1 − f rsp t h−1 /h 46

Step 5. In convergence judgment, if the results of the two
iterations are not much different, then stop the algorithm.
Otherwise, h = h + 1 and return to Step 2.
The convergence criterion is

1
η
〠
rs

〠
p

〠
t

f rsp t h − f rsp t h−1 2
≤ ε, 47

where η is the number of f rsp ⋅ and ε is the threshold of the
standard deviation of f rsp ⋅ for two consecutive iterations;
generally, ε = 0 01.
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5. Case Study

5.1. Traffic Network. According to the map of trips in the
context of big data, the multimode transportation network
in Figure 3 is designed as the research object, and a case
study is conducted. The connecting sections of the network
only indicate the trip process without travel time. In addi-
tion, it is assumed that there is no transferring between cars
and buses.

Based on big data, the following known conditions can be
achieved:

(A) The traffic demand of each OD (origin-destination)
pair (Drs)

(B) The value of penalty coefficients and correction
parameters for routing choice (αs, βs, γs, θT, and θP)

(C) The multimode traffic network (as shown in
Figure 3)

(D) Others

This paper focuses on the mathematical model under the
background of big data and does not pay attention to the data
collection method.

5.2. Calculation Process. The multimodal traffic network is
converted into a super network, as shown in Figure 4. The
super route is used to express the combined travel mode,
and the route 2-7-11-8-9-14 is the super route of bicycle-
bus transferring travel.

The valid route set is shown in Table 3.
The basic parameters of the road sections are shown

in Table 4.

4

1 2 3 5 6

Route of cars

Route of Bus no.1

Route of bycicles Connecting section

Route of Bus no.2

Figure 3: Multimode traffic network.
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Taking 0, 2400 s as the research interval, T = 240 and
δ = 10 s. If ts = 2000 s and Δs = 100 s, then the ideal arrival
time interval is 1900, 2100 s. Besides, αs = 0 5, βs = 1, γs =
0 8, θT = 0 005, and θP = 0 010.

By solving the variational inequality model based on the
MSA algorithm, the results are obtained within 5 iterations.
The standard deviation is stable after 5 iterations, as shown
in Figure 5.

5.3. Results and Discussion. The relationship between depar-
ture time choice and travel route choice is shown in Figure 6.
The departure time choice functions of different routes have
the same trends. The travel peak is influenced by the ideal
arrival time interval 1900, 2100 s, with the overall situation
of the trip volume shown in Figure 7. Comparatively speaking,

travel peak of car travel (route 1 and route 2) is later than that
of bicycle-bus transferring trip (route 3 and route 4).

The relationship between departure time choice and
travel negative utility is shown in Figure 8. The travel cost
of different routes decreases first and then increases, because
of the negative utility of arriving early and late. The relation-
ship between departure time and τsp ⋅ , the negative utility of
early/late arrival, is shown in Figure 9. A traveler who set off
within 1100, 1470 s happens to arrive within the ideal time
interval when choosing route 1. If choosing route 2, he needs
to set off within 1100, 1490 s, route 3 within 860, 1190 s,
and route 4 within 820, 1160 s.

From the results of the calculation, it is not difficult to
find that collaboration optimization makes the route choice,
departure time choice, and travel mode choice of travelers
more reasonable, the significance of which on urban traffic
management is embodied in the following aspects:

(a) Travel mode choice is more reasonable, which
reduces the traffic flow under signal control and
relieves the pressure on city traffic management.

Table 3: Valid route set.

Number Routes Travel mode

1 1-3-4-6-13 Car travel

2 1-3-5-13 Car travel

3 2-7-11-8-9-14 Bicycle-bus transferring travel

4 2-7-12-10-15 Bicycle-bus transferring travel

Table 4: Basic parameters of the road section.

Sections c0a Qa

3 100 6

4 350 3

5 600 6

6 200 4

7 150 2

8 380 12

9 220 12

10 690 15

11 50 60

12 10 60
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Figure 5: Iterative process.
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Figure 6: The relationship between departure time choice and
travel route choice.
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(b) The choice of departure time is more reasonable,
which stabilizes the traffic flow under signal control,
avoids the sudden increase of traffic flow, and reduces
the pressure on urban traffic management.

(c) The comprehensive consideration of the choice of
travel route, departure time, and travel mode can
improve the accuracy of OD estimation and then
assists urban traffic management.

6. Conclusion

The significance of this research lies in an explanation-
unified framework for optimal routing choice under guid-
ance information.

(A) Discussing the guidance information and com-
bined travel mode, the analysis of routing choice

based on big data is employed to study the map
of trips in the context of big data. Moreover, rout-
ing choice considering guidance information is
analyzed and some basic assumptions are pro-
posed for mathematical modeling.

(B) The optimal routing choice problem is abstracted
into the collaboration optimization model of travel
route choice, departure time choice, and travel
mode choice. Based on the basic assumptions, the
collaboration optimization model is formulated as
a variational inequality model. With the help of
the MSA algorithm, a case study verifies the model
and algorithm.

As this paper is devoted to the research of a unified
framework, the collaboration optimization model presented
in this paper is relatively simple, and a traffic network is
abstracted for case study. In future research, the proposed
model needs to be further deepened based on actual data.
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