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LOGIC OF ALGORITHMIC KNOWLEDGE

Abstract. In this paper we consider the construction of a LAK system of
temporal-epistemic logic which is used to formally describe algorithmic know-
ledge. We propose an axiom system of LAK and discuss the basic properties
of this logic.

Keywords: time, algorithmic knowledge, epistemic logic, temporal logic.

Formal analysis of knowledge and beliefs focuses the attention of
philosophers, logicians, IT specialists, economists and researchers of many

other fields of science. The best known method of formalization of know-
ledge and beliefs is formalization of these terms in terms of modal epistemic

logic. The main achievement of modal logics is the transformation of ex-
tensional languages (with the use of which sentences are expressed which

logical values depend only on the values of the component sentences) to
intensional languages. The modal epistemic logic was being developed for

the needs of formalization of the term of the current knowledge. It turned
out quite quickly that such a notion of knowledge cannot be described with

the use of any interesting logic [5]. On the basis that an agent has know-
ledge of specific facts, it cannot be concluded that the agent knows anything

else. It cannot be assumed that the agent knows even the most elemen-
tary logical consequences of what he actually knows. Even the simplest of

mathematical facts cannot be recognized as certain, if the knowledge is
interpreted in such a way as it is understood, for example, during a “nor-

mal” discussion. In order to be able to describe a notion of knowledge us-
ing modal epistemic logic, an idealization of the cognitive capabilities of

agents must be performed. In the systems of modal epistemic logics it is
assumed, that the agent knows all the tautologies and has immediate access

to all the logical consequences of his knowledge. With such assumptions
the agents would have to have an unlimited store of memory and unlim-

ited computational power. Also, the time which is necessary to perform the
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necessary calculations and inferences is not taken into consideration. The
modal epistemic logic suffers therefore from an affliction called a logical om-

niscience. The problem of the logical omniscience causes the formal systems
which use epistemic logic, not to perform well in modelling the real agents

and the idealization of the real agents performed by the epistemic logics
is too strong in order to use this formalism to describe the knowledge of

the real agents.
In order for the modal epistemic logic to be regarded as a logic of

knowledge, a notion of implicit knowledge has been introduced. The epis-
temic logics do not formally describe what the cognitive subject actually

knows, but they describe what is indirectly represented in the information
state of a given agent. In other words, they represent what logically results

from his current knowledge. That which the agent currently knows is called
an explicit knowledge.
From the point of view of theory of knowledge, explicit knowledge is

certainly a more important knowledge than implicit knowledge. The implicit
knowledge that a certain path that links all the cities in a region is the

shortest way, is useful for a sales representative who wants to maximize his
turnover. This knowledge should become, in the case of this representative,

explicit knowledge in the process of making a decision as to, which path to
choose if he wants to visit all the cities in the region.

Because the explicit knowledge is so important for agents’ actions, con-
tinuous efforts are being undertaken to find newer and better logic systems

which can be used to formally describe this type of knowledge. A number
of solutions have been proposed. An overview of some of them as well as

a broad discussion of this subject can be found in the works of [2], [5], [6].
Even though specific solutions are very different, the main strategy is the

same: the agents’ capabilities to reason are limited by some ad hoc postu-
lates. In the case of using such an approach, the problem of logical omni-

science can be avoided. This makes an epistemic logic construction possible,
and it could be used to describe the explicit knowledge. Such a solution how-

ever, is not without side-effects, because, as a result of such an approach,
weak epistemic logics are constructed. In weak epistemic logics, rejection of

the logical omniscience is realised through limiting the agents’ rationality.
If solving the problem of the logical omniscience is achieved through weak-

ening of the logic of knowledge, there is nothing else left that can constitute
the agents’ rationality. Weak systems of the epistemic logic are thus not a

very good solution when modelling the knowledge of intelligent agents.
While constructing knowledge logic which has a more solid epistemic

basis, we have to deal with the problems which occur when we formalise
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a “normal” notion of knowledge, i.e. with the problem of logical omniscience.
As contended by D. N. Ho in works by [4] and [5] the problem of logical omni-

science is only a symptom of a greater general problem. The fact that logical
omniscience is a problem arises from the fact that modal epistemic logic is

not capable of modeling the behaviour of agents with limited knowledge.
The approach, where agents with limited knowledge are considered, offers

a natural solution to the problem of the logical omniscience of cognitive
subjects. A rational agent may calculate all the consequences resulting from

his explicit knowledge. Then, he will have logical omniscience1 only, when
he has a large enough source of knowledge. When the knowledge sources

necessary to achieve logical omniscience are not available, then the agents
do not know most of the consequences of their knowledge. Therefore, they

are not logically omniscient.
Usually in discussions on the subject of the representation of knowledge

which is changing over time, in the language of logic it is assumed that the

agent on the basis of premises has automatic and immediate access to all
logical consequences resulting from these premises. The time cost which

the agent incurs in order to infer the logical consequences, is not taken into
consideration. Such an assumption may be taken when the knowledge of the

ideal agents is being described. When describing the knowledge of the real
agents, we should take into consideration not only what the agent currently

knows, and what he can deduce (whenever), but also that what the agent
is capable to deduct, in specified conditions, in a specified time.

Let us consider the following example. During a Gilotine2 quiz show
a participant taking part in the finale has sixty seconds to choose a word

which matches five other words. Some participants guess the correct word,
some unfortunately do not. It happens that just after the time for providing

the answer runs out, the participant, who put down an incorrect answer on
paper, offers the correct answer. It could be said that the finalist had the

right knowledge to provide the correct answer, however the specific condi-
tions (pressure, stress, etc.) and limited time to provide a correct answer

caused him to provide an incorrect answer or no answer at all. In the case
of real agents we have to consider what they can know or what they can

deduce in a specific time period. Instead of problems of the type:

the agent knows (currently) that ϕ,

we should analyse problems of this type:

if I ask about ϕ, then the agent is able to provide me with a correct

answer in n time units.
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Questions of the above type are not connected with the classical notion
of knowledge, but with the notion of algorithmic knowledge. Algorithmic

knowledge have been defined in many ways.
Binmore and Shin [1] defined algorithmic knowledge in the following

way:

An agent’s algorithmic knowledge is whatever the agent can infer using
a Turing machine.

Another definition of this type of knowledge was provided by Halpern,
Moses and Vardi [3]:

An agent is said to know a fact at a certain state if at that state he can

compute that he knows that fact.

Our understanding of algorithmic knowledge is close to the definition
provided by Ho [4]. He defines algorithmic knowledge as knowledge satisfy-

ing the following postulates:

1. The agent knows, that ϕ when ϕ is an element of the subject’s current

knowledge or ϕ (due to the logic used by the agent) infer logically from
this knowledge

2. The agent has an algorithm which is used to deduce ϕ and is capable
of choosing this algorithm in order to use it, when he makes a choice of

ϕ deduction,
3. The calculations take up at most n time units3.

In order to estimate the time complexities of algorithms used by agents,

we need some model of time measure. To keep it simple let us assume that
the semantic time is a discreet time with a starting moment. Let us assume

then that a set of time moments is isomorphic to the set of natural num-
bers N. In order to express temporal context in the language of constructed

logic, we introduce the following temporal operators:
• Fnϕ – there will be ϕ after at most n time units

• Fϕ – sometimes in the future ϕ
Additionally we will enrich the language with epistemic operators:

• Kiϕ – agent i knows ϕ.
Let us consider a multi-agent system, so that index i in epistemic operators

represents the agent’s number.
Syntax of the constructed language is following

ϕ ::= p | ¬ϕ |ϕ→ ψ |Kiϕ |Fnϕ |Fϕ

where: n ∈ N, i ∈ AG (AG is a set of agents).
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Formula KiF
nKiϕ is read as: the agent i knows that he will find out

that ϕ in n time units. If then the agent decides to deduce ϕ from his

current knowledge, then he will do it after at least n time units. It is not
only expected of the agent that he has at least one procedure to calculate

ϕ, but also that he has the skill to choose a correct procedure leading to
obtain ϕ in a specified time period.

It sometimes happens that an agent may deduce ϕ, but it is not possible
to estimate time, which is needed to make necessary operations leading

to obtain ϕ. This happens in cases when the complexity of the algorithm
applied by the agent is not known or when his strategy of actions is not

known. Then the following statement is considered: there is a certain number
n (we do not know its value) such that the agent is able to deduce a fact

ϕ in at least n time units. This statement can be formally written in our
language in the following way: KiFKiϕ.
Formula KiFKiϕ is weaker than formula KiF

nKiϕ because it says

nothing about how much time the agent needs to calculate ϕ. The formula
KiFKiϕ says only that calculations end after a finite time.

Now, we will give the set of axioms of the LAK.

Axioms of LAK

1. All propositional tautologies of the language LLAK.

2. Temporal axioms for linear discrete time.

3. (KiFKiϕ ∧KiFKi(ϕ→ ψ)) → KiFKiψ.

4. KiF
nKiϕ→ KiF

n
′

Kiϕ, for all n, n
′ ∈ N such that n < n′.

5. KiF
nKiϕ→ KiFKiϕ, for all n ∈ N.

6. KiFKiϕ→ ϕ.

7. Kiϕ→ ¬FnKi¬ϕ, for all n ∈ N.

8. Kiϕ→ FKiKiϕ.

9. ¬Kiϕ→ FKi¬Kiϕ.

Rules:

MP:
ϕ,ϕ → ψ

ψ

RK:
ϕ

KiFKiϕ
, where i ∈ AG.

Axiom 3 states, that if the agent has an algorithm to deduce4 ϕ in some
finite time and if he has an algorithm to deduce ϕ→ ψ in some finite time,

then this agent has also an algorithm to deduce ψ in some finite time.
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Let us assume, that the agent requires n units of time to, when the need
arises, deduce ϕ. We can then with complete certainty assume that the agent

will be able to deduce ϕ when he will have more time at his disposal. This
property is described by axiom 4, which states that if the agent can deduce

ϕ in time not exceeding n units, then he can deduce ϕ in any time greater
than n. Axiom 5 states that if the agent has an algorithm to infer ϕ in time

not exceeding n units, then the agent has an algorithm to infer ϕ in a finite
time. Axiom 6 is an equivalent to axiom T. Axiom 7 states that the agent’s

knowledge is consistent. Agents, in LAK, have the property of positive in-
trospection, that is after deducing ϕ an agent may conduct an introspection

of his knowledge and discover that he knows ϕ. Similarly with negative in-
trospection. The properties of positive and negative introspections can be

presented respectively with the use of axioms 7 and 8.
Let us observe that, in a proposed formalism, the implicit knowledge

about formula ϕ is expressed with the use of KiFKiϕ. For example, if ϕ is

provable, then we can assume, that the agent has an algorithm to prove ϕ.
On the basis of ϕ we can then deduce that KiFKiϕ (rule RK).

In LAK we can derive the rule:

Lemma 1.

Rule:
ϕ→ ψ

KiFKiϕ→ KiFKiψ

is a derived rule in LAK.

Proof. Let us suppose that ϕ → ψ is a theorem. By RK we can infer
KiFKi(ϕ→ ψ). The formula

KiFKi(ϕ→ ψ) → (KiFKiϕ→ KiFKiψ)

is equvalent to postulate 3. So, the formula KiFKiϕ→ KiFKiψ is inferred

by MP. �

In LAK we can prove the following statements:

1. KiFKiψ → KiFKi(ϕ→ ψ)

2. (KiFKiϕ ∧KiFKiψ) ↔ KiFKi(ϕ ∧ ψ)

3. KiFKi(ϕ ∧ ψ) → KiF (Kiϕ ∧Kiψ)

4. KiFKiϕ→ KiFKi(ϕ ∨ ψ)
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Algorithmic knowledge can be applied to represent not only what the
agent knows, or what he could know, but also to analyse a problem, how

much time the agent needs to deduce – on the basis of his knowledge –
that which he wants to know. The agent may not have knowledge about ϕ

at a certain point in time. He might have however an inference procedure,
which could lead him to obtain ϕ sentence in the future. The amount of

time necessary to perform operations needed to infer a given sentence de-
pends on a number of factors, out of which the most important seem to be:

complexity of the discussed sentence and the agent’s computational power.
If the complexity of the discussed sentence and the agent’s computational

power are known, then the time needed by the agent to infer a given sentence
may be estimated. In many cases not only the knowledge of the subject of

what the agent knows is important, but the knowledge of the subject of
what he does not know at a specified time is also important. Gaps in the
agent’s knowledge may limit his choices. His actions in such situations may

be predictable, or appropriately explained.
Let us consider a rational agent who must perform some task in a spec-

ified time period. Let’s also assume that finding a solution for completing
his task is relatively easy, but finding an optimal plan is a very difficult

problem, which is unsolvable in the allocated time period. In such a situa-
tion it is rational to find another, similar solution and give up searching for

an optimal solution. A good example of such a situation is the problem of
a traveling salesman. Calculating his route is quite an easy task, but select-

ing an optimal route is a very hard problem. Additionally, what is equally
important, finding a solution which is close to an optimal solution might be

a quite simple task. A rational agent then tries to select a route which is
close to optimum and use this knowledge, instead of calculating an optimal

route, calculating time of which might be very long.
Let us look at another example. When we use a public key to encrypt

a message, we want to be sure that anybody who does not know the pri-
vate key will be able to read the encrypted message. Although there are

algorithms to obtain a private key on the basis of a public key, with the
appropriate length of the key these algorithms work just long enough, that

we might have, at least for now5, a sense of maintained confidentiality in the
case of the encrypted message. Our conviction that our encrypted message

will not be quickly read is based on the complexity of the reasoning which
should be performed in order to be able to read the encrypted message

without the private key.
The lack of specific information can be deduced on the basis of other

available information, with the use of certain assumptions about non-
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contradiction of agents. For example, if the agent knows, that ϕ, then we
can assume that the agent does not know that ¬ϕ, as long as the agent is

reasoning in a non contradicting way. There is however another way, on the
basis of which we can deduce the lack of algorithmic knowledge. The expec-

tation that something cannot be known in specified time limits is based on
the complexity of reasoning necessary to solve a given problem. Sending on

encrypted message with the use of presently used cryptographic protocols,
we can assume that our message will not be decrypted before it reaches an

intended receiver, because the time necessary to deliver an electronic mes-
sage is very short, while in order to break modern encoding protocols a few

months are needed, and in some cases a few years. We can then rationally
assume that the content of an encrypted message which we send will not be

known by unauthorised persons for a few minutes.
When considering multi-agent systems we can ask a question: What can

we say on the subject of the agents’ meta-knowledge? What does agent j

know about the knowledge of agent i? If we ask agent j a question: How
much time does agent i need to solve a question?, then agent j will not have

to use a test algorithm himself, does ϕ. In such a situation it will be enough
for agent j to calculate the complexity of an algorithm needed to infer ϕ,

in order to provide the information that agent i needs n time units. With
the use of LLAK language it is possible to model the knowledge of rational

agents, who are not endowed with logical omniscience. Agents are rational
because they are able to derive the logical consequences of what they know

explicitly. On the other hand, because the agents have limited resources of
knowledge, they cannot derive all the consequences of their knowledge. The

explicit knowledge of the rational agents is not shut on any logical law, so
the problem of logical omniscience in this case does not exist.

The deliberations which we have conducted on the subject of algorith-
mic knowledge have focused on a single moment of time. A formula of the

type KiF
nKiϕ is a formula which talks about an agent’s current capability

to process knowledge. But this formula does not say anything about the

agent’s knowledge n time units from now (except in the case when n = 0).
An interesting problem is the relation of the agent’s algorithmic knowledge,

at different moments in time, with respect to his algorithmic knowledge at
other moments. Can we assume that the agent’s explicit knowledge will hold

in time? How do the agent’s capabilities to reason change over time? If at
the present moment in time we state that the following sentence is true:

agent i needs n time units to calculate ϕ, will this sentence remain true in
the future? Is the formula KiF

nKiϕ → FKiF
nKiϕ true? The answer to

these questions is negative. Such a formula cannot be an axiom of a logical
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system describing the knowledge of real agents, because we cannot assume
its truthfulness for any formula ϕ. This is not a universal truth, because

the logical value of ϕ may not be the same at different moments in time.
What’s more, in the future agent i may need more time to solve the same

problem. In case when the agent under consideration is a man, accepting the
assumption that cognitive or inference capabilities change over time seems

to be justified. At certain moments in time an agent might be rested, more
concentrated and need less time to decide ϕ at others, when he is tired, dis-

tracted, stressed-out, to settle the same question he might need more time.
The same situation applies when we deal with artificial agents (processors,

computers, robots, etc.). In the case of artificial agents we do not examine
fatigue, stress or lack of concentration as factors causing changes in cogni-

tive capabilities, but we look at for example an increase in the number of
parallel running processes, reduced amount of available memory, etc.
In the case of classic logical systems which are used for formalisation

of algorithmic knowledge, we accept usually the assumption that the com-
putational capabilities of agents are not reduced over time. With such an

assumption, the earlier considered formula might be true, if ϕ has a cor-
rect syntactic structure (for example ϕ is objective and does not contain

a negation mark). We can ask the question, in what circumstances is such
a formula true, or might some default rule of deduction be used for the

evolution of the explicit knowledge in time? The systems mentioned earlier
do not describe, however, the algorithmic knowledge of real agents, who

have cognitive capabilities which change over time and have limited com-
putational power and memory. These systems describe the knowledge of

idealized agents who have no limit on resources and possess ownership of
logical omniscience.

The main problem of single or multi-agent systems is however the de-
scription of real, implementable agents, namely ones that at the present

stage of knowledge might be constructed or at least an idea of their con-
struction (implementation) is known. This objective cannot be achieved

if the appropriate limits of agents’ knowledge are not properly included.
Modal epistemic logics are not adapted to formalisation of reasoning regard-

ing limits on knowledge resources, while the presented logic of algorithmic
knowledge fulfils this objective.

N O T E S

1 Speaking about logical omniscience here we have in mind the knowledge of all logical
consequences resulting from the agent’s explicit knowledge, as well as the knowledge of
all logical laws.
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2 This quiz show aired on Polish Television some time ago.

3 Algorithmic knowledge is connected then with the algorithm which creates it. It rep-
resents not only current knowledge, but also some sort of procedural knowledge.

4 We do not mean just deducing in a logical sense. The algorithm may be a computa-
tional algorithm or some method of obtaining knowledge ϕ.

5 When quantum computers will be accessible, modern cryptology, which is based on
factorisation of large prime numbers, will cease to be applicable. The speed of operation
of quantum computers, due to the simultaneous performance of a large number of com-
puting operations, will be so fast that they will be able to perform factorisation of large
prime numbers in a very short time. It is estimated that solving a problem, which for
contemporary computers would take about 5000 years, for a quantum computer would
take a dozen or so seconds.
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