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The Representational Semantic Conception 

 

Abstract: This paper argues for a representational semantic conception (RSC) of scientific 

theories, which respects the bare claim of any semantic view, namely that theories can be 

characterised as sets of models. RSC must be sharply distinguished from structural 

versions that assume a further identity of ‘models’ and ‘structures’, which we reject. The 

practice-turn in the recent philosophical literature suggests instead that modelling must be 

understood in a deflationary spirit, in terms of the diverse representational practices in the 

sciences. These insights are applied to some mathematical models, thus showing that the 

mathematical sciences are not in principle counterexamples to RSC. 
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1. The Semantic Conception of Theories: Structures and Representations 

 The semantic conception of scientific theories has had a long and distinguished 

history. It originates in the 1960’s and replaced the older syntactic conception around 1980 

as the central or received view of scientific theories. As is well known, in the syntactic 

conception, theories are identified with sets of statements in a particular language. By 

contrast, in the semantic conception, they are identified with sets of models, which are in 

principle expressible in any language. But this is a rather thin, minimal statement that 

leaves much still to be described. What exactly are those ‘models’ models of, and how may 

they be characterized independently of language? How can the conception’s account of 

“theory” as a set of models be reconciled with the apparent differences in scientific 

practice between theories and models? And how does its account of empirical adequacy 

differ from that within the syntactic conception? These and similar questions have 

occupied philosophers for decades now, but are still to be conclusively resolved (see 

Suárez 2005; Halvorson 2012, 2013). A dominant view is that the semantic conception 

amounts to a form of structuralism – since it takes models to be set-theoretical structures of 

the sort famously defined by Suppes (2002). But we believe things are much more 

nuanced, and have moreover been moving fast in the last two decades. The semantic 

conception is meant to inform us about the nature of theory. But one has to pay attention to 

the different “identity claims” that have been made on its behalf.  
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 The semantic conception at least in part developed as a response to the perceived 

failures of the syntactic account of theories defended by the logical empiricists. The logical 

empiricists were seen to endorse an identity claim roughly along the following lines: “a 

scientific theory is a consistent set of sentences in some mixed vocabulary 𝐿 comprising 

both theoretical and observational terms”. The logical empiricists then supposedly for this 

reason focused their attention and energy on getting right the structure of the language of 

science – in particular, the form of its sentences, and the relation between theoretical and 

observational terms in what was known as the “mixed” vocabulary. Such efforts are seen to 

have failed for a very large number of reasons – amongst which stood up the inability to 

fully characterize the theoretical and empirical content of most scientific theories in any 

given language. The semantic conception was in the first instance a post-positivistic 

attempt to move away from such intricate issues regarding the form and logical syntax of 

theories, and towards a characterization of scientific theories in non-linguistic terms (Van 

Fraassen 1981, ch. II; Giere 1988; Hughes 1992; Suppes 2002). It aimed at a wholesale 

rejection of the core identity claim of the syntactic view. The defenders of the semantic 

conception at least initially endorsed a different identity claim, according to which “a 

scientific theory is a set of models”. The new identity claim clearly signals a change in 

emphasis away from language; but the details must still be filled in, and have given rise to 

some significant debate.  
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 One possible way of filling in this new identity claim within the semantic 

conception is to appeal to a further straightforward identification of models with 

mathematical structures. If it is the case that “all scientific theories are sets of models” and 

it is also the case that “all models are mathematical structures”, then trivially it is the case 

that “all scientific theories are sets of mathematical structures”. During the 1980’s and 

1990’s this looked like the definitive rendition of the semantic conception of theories, and 

several philosophers of science at one point or another during those years seemingly staked 

their intellectual efforts and professional careers on something like this identity claim. 

Especially the second claim regarding models as structures found favour within both the 

German and American “structuralism” schools (Sneed 1994; Moulines 1996). The 

mathematical structures in question would often come in one of three different kinds: i) 

set-theoretical predicates; ii) phase spaces; iii) state spaces. However, in all these cases, 

regardless of the details, the central idea is to identify a theory with a set domain D and a 

bunch of relations Ri defined upon the elements of the domain. So, let us count any of 

these versions of the semantic conception as part of a more general ‘structuralist semantic 

conception’ of scientific theories. It is defined by its endorsement of the identification of 

scientific theories with mathematical structures. 1 

																																																								
1  This assumes that the semantic conception is indeed committed to an identity 

claim. The commitment is sometimes weakened to an alternative ‘best-model’ claim, 

according to which the semantic conception is only committed to the claim that scientific 
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 More recently, Bas van Fraassen (2014) has suggested that the semantic conception 

of scientific theories has evolved contemporaneously into a more general 

“representational” view. He signals Hughes (1997) as the turning point, an influential 

article advocating a pragmatic notion of representation in the spirit of Nelson Goodman 

(1968). Hughes then explicitly linked scientific models to representations of just this type. 

Van Fraassen points out that Giere (1999) and Suárez (1999) developed similar views at 

around the same time. And indeed, these three papers defend the claim that a scientific 

model is a representation – and they provide a suitably pragmatic understanding of this 

claim. The move has significant implications for the semantic conception. For – as we have 

seen – a structuralist version of the semantic conception necessarily fills in the identity 

claim structurally, i.e., it understands a theory to be composed or constituted by structures. 

Yet, the ‘representational’ version, which Van Fraassen takes to be the latest stage of the 

semantic view, fills in the identity claim very differently – in terms of representational 

models. These two conceptions are not identical since representations are not structures. 

What’s more, on the pragmatic understanding that their proponents advance, 

																																																																																																																																																																								
theories are ‘best modelled’ as sets of models. The weakening does not affect our argument 

against structural renditions of the semantic conception, and brings in added complications 

(deriving from the more general second order claim that some entity X is ‘best-modelled’ 

as a model), so we ignore it here.	
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representations are inconceivable as bare structures, since representations are essentially 

“targeted” towards their objects. Thus Suárez (1999) argues that a model cannot be 

understood as a ‘flat surface’, or bare structure, but must be understood as essentially 

pointing towards its target within its context of application and use. Giere (2004) develops 

a four-place account that is essentially agent-centred, since it builds in agents’ purposes.  

 

 We may then refer to this representational version of the semantic conception as the 

‘representational semantic conception’, or RSC. The RSC is not just distinct but 

incompatible with its structural predecessor. While the bare identity claim for theories that 

minimally characterizes the semantic view continues to hold (that is, it is still defensible 

that “scientific theories are just sets of models”) the content of this claim is filled in very 

differently. On the older structuralist version models are structures and therefore the 

identity claim entails that “theories are just sets of structures”. By contrast, on the latest, 

representational version – as characterized by Van Fraassen, and defended by Hughes, 

Giere and Suárez – scientific theories are not structures, but representations of target 

systems.   

 

 The fact that these versions of the semantic view are incompatible may suggest that 

the latest representational version has no room to accommodate mathematical structures at 

all or, at any rate, it remains a mystery how it may do so. Attempts to bring together the 
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structural and representational variants of the semantic conception invariably end up 

reducing the latter to the former. Bueno and Colyvan (2011) and Pincock (2012) are 

egregious cases of ultimate reduction. But even those, like Chakravartty (2010), who 

cannot be suspected to favour formal or structural renditions of scientific theories, 

theorising, or their metaphysics, end up conceding that “informational” accounts of 

representation are basic or constituent, and functional accounts are merely pragmatic. Thus 

Chakravartty’s favourite informational account is not structural but similarity-based; yet he 

concedes that informational accounts, whatever they may be, address “the issue of what 

representation is” while functional accounts only address “the issue of how representations 

are used” (2010, 212). In other words, the only way the RSC seems to be able to account 

for structural or mathematical modelling is by surrendering the position. This inability to 

account for structural or mathematical representation in its own terms would seem to be a 

defect of the RSC, since it is undeniable that mathematical structures do play a role – often 

a very significant role – in scientific theorizing, particularly in physics. It cannot be denied, 

for instance, that both pillars of 20th century physics (quantum mechanics and relativity) 

have leaned considerably upon sophisticated mathematical structural representation. And 

the question then arises whether the RSC can do justice to the presence of structures in 

scientific theorizing. 
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 One of our purposes in this paper is to show that the assumption that the RSC 

cannot accommodate a role for mathematical structures in scientific theorizing is 

fallacious.2 It depends upon a conflation of the identity claim for theories with the 

additional thought that nothing that fails to constitute a theory can play a role within its 

development. In other words, it is another instance of a very common, yet fallacious, 

conflation of product and process (Suárez and Cartwright 2008). That a scientific theory is 

not constituted by a set of structures does not entail that there cannot be structures 

employed in its development and application.  

 

2. Pragmatic Theories 

 Our other main purpose in this paper is to argue that the RSC is as close as it gets to 

a pragmatist account of theories as tools – the view defended by Suárez and Cartwright 

(2008), and characterised as a third “pragmatic view of theories”, beyond the syntactic and 

semantic views, in Rasmus Winther’s excellent entry for the Stanford Encyclopedia 
																																																								
2   We also henceforth employ the term “structure” instead of “mathematical 

structure” – which strikes us as redundant, since physical entities or objects can only be 

said to possess structure by mathematically instantiating them.  We also refrain henceforth 

from the terminology of “bare structure” – since it is trivial that something else (such as an 

intention) can always be added to a structure in order to generate a composite hybrid entity, 

which is by construction non-structural.	
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(Winther 2016). Winther (2016, 31) emphasises five main theses or themes in this 

pragmatic view of theories: 1) limitations; 2) pluralism; 3) non-formal aspects; 4) 

functions; 5) practice. Although Winther describes these theses as pertaining to the 

“structures-within-a-theory”, we prefer to think of them as the features of non-structurally 

characterised theories. Thus whereas Winther seeks a characterisation of “theory-structure” 

that satisfies these five themes, we have no such hopes for structure. Instead we locate 

these themes in the nature of non-structurally characterised scientific theories. Thus, on our 

account a structural characterisation of theory, no matter how rich, will always be “too 

weak for the predictive and explanatory work […] expected of it” (Winther 2016, 31). 

Similarly, on our account, theories are plural and complex precisely because they are not 

constituted by structures (cf. Winther’s very different claim that structures themselves must 

be complex and plural – a claim that we find hard to make mathematical sense of). 

Theories have non-formal aspects precisely because they are not solely constituted by 

structures (otherwise, on our view, they would certainly have fully formal 

characterisations). And so on.  

 

 In other words, whereas Winther looks to retain an essentially structural version of 

the semantic view, and then attempts to go pragmatist on the notion of structure, we remain 

conservative on the definition of mathematical structure, and seek a more radical departure 

as regards the conception of theory. This is why our RSC severs any constitutional 
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connection of theories with mathematical structures altogether. Yet, other than this critical 

difference our aim is similar in broad terms. Like Winther we are set on emphasising 

pragmatic elements and themes involved in a more flexible and open-ended approach to 

scientific theory. We simply claim that the semantic conception in its bare minimal 

expression – which we will refer to as claim #1 – is quite compatible with such an 

extension. In liberating the semantic conception from the shackles of structuralism, as we 

do, we open up the conceptual room required for a genuinely pragmatist understanding of 

theory. 

 

 Hence we first argue that on the RSC scientific theories are not constituted by 

structures, because theories are representations, and representations are not constituted by 

structures. However, we do not deny that structures can often be the means for the 

application and development of representations – and hence they can also be the effective 

means for the application and development of theories. What is needed here is the 

appropriate account of representation. A suitably deflationary account of representation 

will accept that in some cases – in some contexts – the representational source is, or can be 

mapped uniquely onto, a mathematical structure; the representational target is, or can be 

mapped uniquely onto another structure; and the relation between both that does the 

representational work in that very instance can also be characterised structurally as some 

kind of morphism. A deflationary conception is only committed to the denial that this 
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structural relation as best described constitutes representation even in that particular case – 

i.e., it will deny that it is the property in virtue of which the representation is such. 

 

 There is nothing we find in the history of the semantic conception to deny the 

pragmatic turn advocated by the RSC. As is well known, the semantic conception was 

introduced as a program of philosophical analysis of theories, comprising different 

formulations with a common core of assumptions. The first assumption concerns the aim 

of this program, which is to provide a format for scientific theories (van Fraassen 1987, 

109), i.e., a possible way to present a theory. The second assumption concerns the nature of 

the theory: while the format of theories may vary slightly according to the mathematics 

employed by the supporters of the view, theories are generally assumed to be 

extralinguistic and eminently set-theoretical. 3  

																																																								
3   To quote Suppe (1989, 199): “The “semantic conception” gets its name 

from the fact that it construes theories as what their formulations refer to when the 

formulations are given a (formal) semantic interpretation. Thus “semantic” is used here in 

the sense of formal semantics or model theory in mathematical logic. On the semantic 

conception, the heart of a theory is an extra-linguistic theory structure. Theory structures 

variously are characterized as set-theoretic predicates (Suppes and Sneed), state spaces 

(Beth and Van Fraassen), and relational systems (Suppe). Regardless of which sort of 
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 A non-explicit assumption within the view, which is often overlooked in the 

secondary literature, is the modesty that has to characterize the formalization employed. 4 

The sense in which the formalization is modest is twofold: It is not meant to be the only 

philosophical analysis available of the theories in question; nor is it meant to apply to all 

empirical sciences. Both points have been stressed by Suppes, who claims that “to argue 

that such formalization is one important method of clarification is not in any sense to claim 

that it is the only method of philosophical analysis” (1968, 653). More recently, Suppes 

extensively argued against the idea that a philosophical analysis of theories could ever be 

universally applicable, that is, that it could apply to all scientific theories, claimining that 

the “severe limitations” of set-theory as a possible framework to organize scientific 

theories should be recognized (see Sneed 1994, 214)  

 It is then possible to interpret appositely the claims made in the seminal paper by Suppes 

(1961) about the fundamental character of the Tarskian concept of models: The concept is 

																																																																																																																																																																								
mathematical entity the theory structures are identified with, the do pretty much the same 

thing – they specify the admissible behaviours of state transition systems”. 	

4   See in this regard also Le Bihan (2012) for what she calls the ‘modest 

interpretation of the semantic view’, conceived as the “methodological prescription to use 

model theory as a tool for the rigorous analysis of the structure of what scientists typically 

use to represent the world in actual practice” (ibid, 251).	
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fundamental in the sense that it can be employed as “technical meaning” shared by 

different sciences (empirical and mathematical), as well as in the sense that it can be 

employed to deal with different issues internal to a specific science. Despite a common 

apprehension to the contrary (even amongst sympathetic commentators such as Landry, 

2007), Suppes is not in this paper setting the basis for reducing all the different concepts of 

models to the Tarskian one. 5 In other words, the format of a theory given within the 

semantic view is never canonical (i.e., universal).  

 

 Neither can the semantic view be used to provide a demarcation criterion to figure 

out whether or not a theory is scientific.  Suppe explicitly claims that the semantic view 

does provide a “defensible account of what is to be a theory” and yet this status does not 

make it an “adequate account of what a scientific theory is” (1989, 198-199).  Given such 

strong restrictions upon the applicability of its analysis, a legitimate question is whether the 

																																																								
5   Landry appeals to Suppes’ commitment to “the set theoretical 

foundationalist program” to ground her interpretation of the role that Suppes assigns to the 

Tarskian concept of model (Landry 2007, 5). And she is quite right that the goal of the 

program is to reduce all the branches of mathematics to set-theory (see Suppes 1972, 1). 

However, as just pointed out, Suppes gave up the idea of applying the set theoretical 

foundationalist program to the philosophical analysis of scientific theories more than 

twenty years ago. 	
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semantic view can be faithful to scientific practice. Suppe’s (1977, 655) answer on behalf 

of “historically oriented philosophy of science” seems to us to still hold water.  The 

method of a historically oriented philosopher of science is to abstract patterns of scientific 

reasoning from the history of science, to examine whether they are valid patterns for the 

purposes at hand, and in case they are, to extract the structure of the pattern and eventually 

formulate claims of the form “if any elements that ground this good pattern of reasoning 

feature in the theory, then the theory is likely to be successful”. In particular, for Suppe, 

three elements at least must hold for a good application of the semantic conception to any 

case of scientific theorising. Roughly: i) the historically informed philosopher of science 

notices a central use of the theory in relation to characterizing the changes in an isolated 

system’s behaviour; ii) further reflection on its historical role shows some invariant 

features of the use of the theory in actual practice, that can thus be abstracted (such as a 

particular class of states used to characterize the behaviour of systems, the dynamical laws 

employed to describe the changes, etc); iii) a precise set theoretical analysis of these 

abstract descriptions of the central uses of a theory can then be provided. The adequacy of 

the analysis will very sensitively depend upon the extent to which its characterization of 

the use of the theory in practice as a model of physical systems is adequate. It is clear that 

adequacy here will always come in degrees, and therefore any identity claim of a theory 

with a particular set-theoretical formalization shall be correspondingly always open to 

debate and refinement.  
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 Therefore, the core claim of any semantic view, which states that theories are sets 

of models, far from providing necessary and sufficient conditions for the identity of 

theories, opens them up to a very context dependent consideration of the diverse inferential 

practices, or patterns of reasoning, that such models historically ground in actual 

representational practice. It is this practice of representation that must then be placed at 

the heart of a study of theory. In the next section we review discussions regarding 

representation within the semantic conception in its multiple guises. We defend a 

distinction between two questions referred to as the problems of constitution and means, 

and review the inferential account of representation that will frame our views. In section 4, 

we defend that some of the means of scientific representation, particularly in the physical 

or mathematical sciences, are structural. We then show how to accommodate such means 

within the inferential conception of representation more generally – and hence how to 

accommodate them within the RSC. In section 5, we argue that structural accounts of the 

constituents of representation are wrong because they lay down impossible conditions on 

models that are not – and cannot – be met in practice. This forecloses any version of the 

semantic conception of theories that identifies them with structures. The upshot in the 

conclusion is that the RSC has no problem accommodating the use of structures in 

modelling the phenomena, so long as it does not identify them with representation itself. 
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3. Means and Constituents of Representation: The Inferential Account 

 

 Our argument must then be understood as support for the RSC identity claim that 

“scientific theories are sets of representations”. There are, however, some caveats or 

presuppositions that is best to present upfront. First, our claim is conditional on a 

deflationary account of scientific representation – and, in particular, the type of inferential 

accounts that have in recent years been defended by several authors (Suárez, 2004; De 

Donato and Zamora Bonilla 2009; Kuorikoski and Ylikoski 2015). We shall consequently 

use our terms (including “constituents” and “means”) in accordance with the technical 

definitions provided within such inferential conceptions. Second, the full identity claim of 

the representational semantic conception may yet turn to be false – the semantic view even 

in its most sophisticated latest stage could be false –, and it is important to realize that the 

Hughes-Giere-Suárez thesis regarding models as representations could nonetheless stand.  

In other words, the first identity claim that characterises the RSC (claim #1: theories are 

sets of models) is logically independent from the second identity claim that informs the 

Hughes-Giere-Suárez thesis regarding models (claim # 2: models are representations). It is 

only the conjunction of both claims (#1 & #2) that yields the full claim that theories are 

sets of representations. We are committed to claim #2, which one of us has defended 

extensively in the past, and we are here also tentatively committing to claim #1. Therefore 

we are tentatively committing to the conjunction. We argue, at any rate, that the 
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conjunction of claims #1 and #2 has hitherto unexplored advantageous consequences for 

the semantic tradition. Indeed it may be that this conjunction of claims is the only way to 

make the semantic conception viable (at least we know of no other way of rendering it 

viable).  

 

 References to the semantic conception are ubiquitous in the recent literature about 

scientific representation. Even when they do not appear explicitly, they are often implicit. 

Thus, recent discussions regarding the applicability of mathematics – which are often a 

subterfuge by another name of the more general issue of representation by mathematical 

models – tacitly appeal to a structural account of representation supposedly necessitated by 

the semantic conception (Bueno and Colyvan  2011; Pincock, 2012). As Nguyen and Frigg 

(forthcoming) aptly point out, the claim that mathematical models are explanatory tacitly 

involves an antecedent account of scientific representation, which is often understood in 

this context to be provided by the semantic view. It thus becomes easy to be misled into the 

thought that the semantic conception requires a particular structural account of 

representation (and indeed even critics like Frigg (2006) seem to have been misled this 

way). Yet, historically, advocates of the semantic conception have typically kept quiet on 

the nature of representation, focusing instead on the formal structures that appear in 

mathematical models – all the way down from theory to data, as in Suppes (1960/1969) 

now classic treatment of models of the phenomena. And indeed, detailed philosophical 
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discussion of representation within the semantic conception is a very recent development – 

just twenty years old, since the pioneering contribution in Hughes (1997). How are we to 

understand this apparent contradiction?  

 

 When it comes to the bearing of the semantic conception on representation, two 

distinct questions are at play, which it is important not to conflate or run together. First, 

one may want to ask questions about what the semantic conception actually entails 

regarding representation. We would like to suggest that the answer is: surprisingly very 

little, if anything at all. Second, one may want to consider how it historically came about 

that the semantic conception is implicitly linked in the minds of so many authors to a 

particular structural conception of representation. It is logically perfectly possible that the 

answer to the first question be very thin, or inexistent, while the answer to the second be 

thickly informative. In fact, it stands to reason that if the semantic conception does not 

entail a structural account of representation, then some richly textured historical 

explanation should be forthcoming for why it has been understood by many to so entail it. 

There is plenty of historical and sociological detail that can shed light on why the 

‘structural semantic conception’ was understood to be the only possible rendition of the 

view (Suppe 1977). Our concern in this paper is theoretical and we shall have to set such 

detailed historical considerations aside. The key minimal claim for our present purposes is 

that nothing in the history of the discipline requires a tight logical connection between the 
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semantic view, minimally construed as the mere statement of its core claim #1, and any 

particular view of representation. The ‘structural semantic conception’ goes beyond the 

statement of claim #1: It adds an assimilation of models to structures that is not a core 

commitment of the semantic view. 

 

 Another way to make this point appeals to different problems one may address in 

relation to representation. On the one hand, there is what we shall call the problem of 

means, or application, namely the problem of studying how different representational 

sources relate to their target systems, within their particular contexts of application, where 

the relation minimally requires the possibility of surrogative reasoning from source to 

target (Swoyer 1991), but can otherwise vary greatly. The diversity is so large in fact that 

one should properly speak of the “problems” of application or means – since the solution to 

this problem can differ maximally from case to case. On the other hand, there is the 

problem of constitution, which is the problem of defining the general conditions in virtue 

of which sources represent their targets across contexts. This requires a universal answer in 

all circumstances, so it is properly speaking just one very large and abstract problem. Now, 

there are, occasionally, structural answers to the first kind of problem – some mathematical 

models relate structurally to (an appropriately structural description of) their targets within 

the context of their application. But we argue that there is no structural answer to the 

second problem: there is no structural morphism between sources and targets in virtue of 
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which representation in general obtains. Yet, the structuralist semantic conception has been 

taken by many, friends and foes alike, to implicitly carry a response to this problem of 

constitution, according to which representation is itself a structural relation, and is 

constituted by some morphism or mapping (for paradigmatic examples, see Van Fraassen 

1980; Frigg 2006). But in fact, we argue, structuralism merely can answer the problem of 

application of mathematical models – it can only inform us as to what structural means are 

typically employed in particular instances of successful representation. And there is no 

confusing a means of mathematical representation, however typical, with the constitutive 

relation of representation in general.   

 

 We shall throughout this paper assume the deflationary view that the constitution 

problem is unanswerable. The ‘representational semantic conception’ (RSC) that we favour 

thus carries no commitment to any particular substantive account of representation – and it 

is certainly not possible to sneak structuralism in through the back door, as it were. Yet, 

staying resolutely quiet on the problem of constitution does not prevent us from addressing 

the problem of application. And it does not prevent us from giving the appropriate 

structural rendition of the means of particular representations by mathematical models in 

any given context in which indeed that is appropriate. 
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 In the burgeoning modelling literature of the last two decades or so, there is 

widespread acceptance and recognition of the fact, first stated by Swoyer (1991), that a 

main use – if not the main use – of scientific modelling is surrogative inference about 

diverse aspects of the model’s target (where the model’s target may be a real or an 

imaginary entity, system or process). On this fact, to our knowledge, all commentators 

agree, even when they disagree about the explanation of this one fact (Hughes 1997; 

Chakravartty 2001; Giere 2004; Frigg 2006; Van Fraassen 2008). It may thus be said to be 

a platitude about scientific modelling and representation that all models are at least in 

principle able to license some inferences regarding its target – the main point of building a 

model is to allow such surrogative inferences, and it is such inference-drawing actions 

(Boesch 2017), if anything at all, that are constitutive of communal representing acts. 

(Note also that, as is commonly emphasised these days as well, such inferences may well 

not be to true conclusions regarding the target. Faithfulness is not in other words required: 

it is only required that the inferences, whether or not sound, be pertinently about the target. 

The emphasis is on the inferential action in its social context, not on the validity of the 

inference per se.)  

 

 A substantive account of representation assumes that this fact about surrogative 

inference stands to be explained by ulterior facts regarding the nature of the 

representational relation between representational sources and targets. Thus, on similarity 
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accounts of representation, the similarity between representational source and target is 

what explains the fact that surrogative inference is possible. On isomorphism accounts, the 

structural identity of the source model and its target explains the fact that inferences may 

be drawn from the source about the target. And so on. On such views, it is the facts about 

the nature of the deeper representational relation that explain its surface features. Yet, as is 

very well known by now, such substantive accounts run into a myriad of problems that 

make them entirely implausible, inappropriate, or unviable as accounts of the 

representational relation. 6 

 

 A deflationary account, by contrast, rejects any explanatory demand on any of the 

surface features of a representation, such as its surrogative inferential prowess. 

Deflationists do not require an explanation of the capacity of a scientific model source to 

license inferences about its target – and particularly not so in virtue of any deeper features 

of the representational relation between source and target. Instead the inferential capacity 

of the model source towards its target is taken to be an un-analysable component of the 

representation. Other aspects of the modelling relation (such as its faithfulness, or the 

effectiveness of its means) are rather to be understood in terms of such surface features. On 

																																																								
6   There is no space here to review these problems, which are by now well-

known. See Pero (2015) for a review.	
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this view, there are no deeper facts about the representational relation that may illuminate 

such surface features; the latter stand on their own, requiring no explanation. 

 

 It is possible to gain a better grasp of the distinction between “surface” and “deep” 

features of a representation in practice by reference to a further philosophical distinction 

between “constituents” and “means”. In a representation of some objects, system or 

process b by means of some model a, we have adopted the stipulation to refer to a as the 

“source” and b as the “target”. 7 We can then say that the relation R (a,b) constitutes the 

representation – or, that it is the constituents of the representation – if and only if for any 

(course, target) pair in any context: R(source, target) is the relation of representation. On 

the other hand, the relation R(a,b) is the means of the representation of b by a in a 

particular context of use if and only if R(a,b) is the one relational property of a and b that is 

actively employed by the agent who, in the particular context, employs the representation 

in order to draw or infer conclusions about b from a. More simply put, R(a,b) constitutes 

the representational relation if it is the general relational property of source and targets that 

defines it, and happens to be instantiated in the context by a and b. But even if there is no 

constitutive general relation that it instantiates, it is still the case that R(a,b) as it obtains in 

the particular context, and only in that context, is the means by which a represents b.  

																																																								
7   In other words, if “a represents b” is true then ‘a’ is the representational 

source and ‘b’ is the representational target, by the above stipulation. 	
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 If there can be means without constituents, there can be representation in a 

deflationary sense: it is permissible to say that a represents b because R(a,b) obtains even 

though there is no “deeper” constitutive relation that explains why this is so. The litmus 

case then against a substantive account of representation is the existence of 

representational means without constituents. We want to argue in what follows that the 

means of some scientific representations – typical in mathematical modelling that 

characterizes the physical sciences – are often structural. The relation R(a,b) that is 

employed in that particular context to carry out surrogate reasoning is a structural 

morphism. However, this does not mean that the particular morphism R(a,b) employed in 

that context is the constituent of the representational relation between a and b in any 

context.  On the contrary, we argue that no morphism-type constitutes representation. In 

the spirit of our deflationism, there is no need to postulate any constituents at all. In other 

words, our purpose in this paper is to argue that even in those cases where the means of 

representation are structural, it does not follow that representation per se is structural. On 

the contrary, even in those contexts where the means of representation are structural, we 

argue that if representation is to be identified with anything at all, it should be identified 

with whatever inferential practice is enacted in that context by those structural means at 

hand (and therefore not be identified with the structural means themselves). 
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4. Structural Means and Surrogative Reasoning 

  

 The means of the representation of b by a at a given time t and context c may be 

any kind of relation R(a,b) that holds between them – as long as this is actively employed 

in surrogative inference from a to b in that context at that time. However, this leaves open 

whether a and b are themselves structured in terms of relations or properties of the 

different elements in their domain. Let us assume that this is so. That is, suppose that a and 

b either are both structures, or can be described as such (perhaps because they are physical 

entities or processes that for the purposes of the representation at hand, in the right context, 

exemplify relevant structures). Then we can write Sa and Sb for the two structures that 

correspond to a and b, as follows: Sa = <Da, Ri>, and Sb = <Db, Rj>, where {Da}, {Db} are 

the domains of the structures, and {Ri}, {Rj} are the sets of relations defined over the 

elements of the domain. 8 

																																																								
8   We ignore the rank order of the diverse kinds of n-tuples. There are of 

course two-place relations, three-place relations, four-place relations, and so on. These are 

sometimes conventionally represented by means of a superscript: Ri
n would thus represent 

the ith n-tupled relation, etc. Amongst these there can be one-place relations too: Ri
0, which 

represent the monadic properties of the elements in the domain. There is no loss in 

generality in assuming them all to be in the class of relations, ordered by the i-index. 

Similarly, sometimes structures are said to be strictly triadic entities: < Ds, Ri, fj>, 
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  We are likely to find structural means of representation in science whenever the 

relevant (source, target) pairs are structures themselves. Those structures may be presented 

as set-theoretical predicates, phase spaces, or state spaces, or whatever mathematical 

equations these are defined by. We may consider any number of examples from theoretical 

physics. The Hilbert state space formalism for quantum systems is one. It assigns a state to 

a system and represents it as a vector or a ray (family of vectors) in a complex higher 

dimensional vector space. It then represents any of the system’s properties as one of a 

family of operators acting on the space. The commutativity property of the operators for a 

particular system then defines an equivalence class of isomorphic states: those that 

establish the same probability distribution over the eigenstates of the commuting operators. 

Alternative approaches to quantum mechanics where the Hilbert space does not play such a 

																																																																																																																																																																								
containing not only relations over the domain, but also functions over those relations 

(Chang and Kleiser, 1973). We ignore these complexities here since they do not affect 

anything we go on to say, but it is worth reminding ourselves that a full structural 

homomorphism must involve mapping of functions as much as relations – a sort of 

homology that captures some of the “dynamical” aspect of the structure. This complexity 

makes the job if anything harder for any account of the constituents of representation as 

any particular morphism. So ignoring the complexities does not weaken our argument 

against them. 	
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representational role, such as Bohmian mechanics, provide further examples. A Bohmian 

system’s state (the position and velocity of its constituent particles) is at all times defined 

by its Hamiltonian, and the dynamical Schrödinger equation, and is thus represented in 

configuration space (where the configuration space of a n-particle system is a 3n-

dimensional space). And the motion of a system of Bohmian particles is hence isomorphic 

to the motion of the universal Bohmian particle in configuration space.  

 

These turn out to be complex examples, since the isomorphism is never to the intuitive 

physical 3-d space. But there are even simpler examples, such as the simple harmonic 

oscillator, or Brownian motion in classical mechanics. Consider the simple harmonic 

oscillator in one-direction with its motion governed by Hooke’s law: 𝐹 = −𝑘𝑥, where k is 

a constant of the system. The equation may be solved for the displacement of a point-

particle on a line, and it instantiates a phase space structure where the two variables of 

motion are the position of the point (x) and its momentum (m), or, for a particle of unit 

mass, its velocity (v).  The dynamics of the motion on the phase space determines a 

structure of correlated points in time: 𝑆 =< 𝑃,𝑅! >, where each point is related to its 

successor by a succession rule that determines the particle’s trajectory. It is then possible to 

lay out a structural mapping between this structure in the model (the representational 

source) and the corresponding structure instantiated by the motion of an undamped 

oscillator or pendulum (the representational target).  They pendulum’s trajectory in 
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physical space is given by its one-dimensional coordinate in time, hence by the values of 

the two variables (x, t). This again provides a structure 𝑆! =< 𝑃!,𝑅!! >, where each point in 

space is related to its successor in time by the succession rule imposed by the t coordinate. 

It is then relatively trivial to check that both structures are isomorphic to a degree, namely 

the degree to which the trajectories of the pendulum in space and the point-particle in 

phase space accurately correlate.  

 

 Nor are such cases confined to mathematical physics. In marine ecological biology, 

the Lotka-Volterra model of predator-prey populations in a competitive environment, for 

example, has been amply discussed in the philosophical literature (Weisberg 2007; Boesch 

2017; Knuutila and Loettgers 2017). This is easy to understand in terms of isomorphisms 

operating between those relations holding amongst the quantities in the model source 

(which obey a couple of straightforward non-linear equations and thus can easily put in a 

structural format) and the empirically observed ratios in actual populations of fish in the 

Adriatic sea (as reported by D’Ancona, and which formed the empirical basis of the 

outcome-oriented model by Volterra, in particular – see Knuuttila and Loettgers 2017, 

1027ff.). 9 

																																																								
9	 	  Our analysis of the episode is in agreement with Knuuttila and Loettgers 

(2017). Like them, we find the modelling methodology of Volterra, in particular, does not 

fit in with the “indirect representation” approach of Godfrey-Smith (2006) and Weisberg 
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 A computer simulation of Brownian motion provides yet another, more complex 

example. A dot moving randomly on a computer screen is the model for the motion of a 

particle floating in some fluid or gas (e.g. a spot of dust floating in a stream of vapour). 

This is easily generated by the computer implementation of the Wiener equation for 

Brownian motion. A Wiener process is a continuous in time stochastic process Wt that 

obeys the normal distribution, as follows (Grimmett and Stirzaker 1982/2001, 370ff.): 

(1) W0= 0 almost surely. 

(2) Wt has independent increments: Wt+u-Wt is independent of u  (WS: s ≤ t) for u ≥ 0. 

(3) W has Gaussian increments (normally distributed): Wt+u=Wt  N(O,u) where O is the 

mean and u is the variance. 

(4) Wt is almost surely continuous in t.  

 

																																																																																																																																																																								
(2007). This is important to our thesis, since Weisberg and Godfrey-Smith’s basic claim 

entails that not all theorizing is modelling, while the representational version of the 

semantic view (RSC) that we defend in this paper of course assumes that the products of 

theorising (theories) are essentially all sets of models (at different levels of abstraction, 

involving different degrees of idealization, arrived at with diverse methodologies, etc).		
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 The point is that such a process defines a motion of a dot on the state space, which 

accurately represents the motion of a dust particle floating in a fluid. The trajectory of a 

random Brownian walk may look like that in figure 1: 

 

 

Figure 1: Brownian motion in 3-d space (open source at English Wikipedia).	
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This motion in mathematical space can then be taken in turn to model the motion of a real 

physical dust particle in a fluid. But it must be stressed that since the mathematical motion 

is randomly generated, there is no guarantee that it will model the motion of any one 

particle perfectly. Rather it models one ‘typical’ kind of motion of one such particle. At 

any rate the representational relation, if it obtains, takes a structural form. The motion in 

mathematical space is to some degree isomorphic to that of the physical particle. In set-

theoretic terms, there is a structure S induced by the former motion that is reproduced as S’ 

in the motion of the latter particle, just as in the pendulum case (where the relations are 

once again due to the contiguity in time of the positions occupied by the dot / particle).  

 

 But there are in mathematical physics other examples of representational means 

that are not structural. One example is provided by the Quantum State Diffusion (QSD) 

stochastic differential equation for the state of a free particle: 10  

𝑑𝜓⟩ = − !
ℏ
𝐻 𝜓⟩dt+ 𝐿!∗ 𝐿! −

!
!
𝐿!∗𝐿! −

!
!
𝐿!∗ 𝐿! ∨ 𝜓⟩dt+ 𝐿! − 𝐿!  𝜓⟩!! 𝑑𝜉!. 

 

This equation describes the evolution of the quantum vector state of a particle subject to a 

diffusion process. It is important to understand the nested nature of the representations that 

play a role in this model. There is first of all the equation itself, which represents in a 

																																																								
10   See Percival (1998, 50). 	
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symbolic (non-structural) form the motion of a vector in a vector space. It is of course 

possible to solve the equation to figure out what it entails for the motion of the state vector 

– in fact the equation has to be solved in order to determine uniquely the state vector 

motion – but it does not follow that the equation is structurally isomorphic to the motion. 

Now, this vector in turn represents the state of a physical quantum particle subject to 

diffusion. This last relationship is structural, but it is not a simple isomorphism. The graph 

(e.g., figure 4.1. in Percival 1998, 51) depicting the trajectory of the state on the Bloch 

sphere as prescribed by the equation is not itself a depiction of the movement of the 

particle in 3-d physical space nor is it isomorphic to it. One has to apply Born’s probability 

postulate in order to derive any meaningful information regarding the actual particle 

position. There is no geometrical isomorphism even if both source and target have a 

mathematical form. 

 

 In other words, in physics and other mathematical sciences there are cases where 

the representational source and target are both mathematical entities, which can be 

understood structurally, and indeed the means of the representation is some structural 

morphism between them. But there are other cases where both source and target have a 

structural (or at least mathematical) form, and yet the representation of the one by the other 

is not structural – and certainly not a matter of structural morphism. The shape of the 

(source, target) pair is not an infallible guide to the type of representational means that are 
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operative in the context at hand. On the contrary, one needs to inspect the context in detail 

to figure out just what guides the inference-drawing from source to target.  

 

 

 

5. The Structural Semantic Conception Revisited 

 

 We have established that when both source and target in a scientific representation 

can be given structural descriptions, it becomes possible – although not necessary – for a 

kind of morphism to be the means of the representation. The relation between source and 

target that is employed in surrogative inference about the target is appropriately structural. 

This addresses the problem of means or application within RSC, which is thus shown to 

have the resources to handle such cases without any difficulty. 

 

  It may seem that a ‘structural semantic conception’ would achieve the same result 

automatically – for on such version of the semantic view all means are necessarily 

structural. But this is not so. There is no single kind of morphism that is either the 

constituents of representation, or even the universal means of structural representation. The 

reason why the constituents of representation cannot be structural is related to the inherent 
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diversity of scientific modelling, which is ubiquitously idealization-ridden. Scientific 

representations may idealize in at least three different ways (Pero and Suárez 2016): by 

abstracting, by pretending, or by simulating – where the third is a combination of the 

former two. No morphism can account for all these forms of idealization. The weakest 

proposal is Swoyer’s ‘Δ/Ψ-morphism’, but it imposes no genuine structural constraints: 

Any structure holds the requisite relation with any other structure. In other words, there is 

no informative morphism that all representational means reduce to, even when the source 

and the target are structures or may be mapped uniquely onto structures.  

 

 Pero and Suárez (2016, 77ff.) have shown that the two common types of 

idealizations in science pull in opposite directions when it comes to establishing a 

structural morphism between model and target. Roughly, ‘abstracting’ involves ignoring 

details in the target by suppressing any correlative features in the model; while 

‘pretending’ involves adding features in the model that lack any correlate in the target. 

Suppose that we are in the lucky situation to have uniquely specified a structure for both 

source and target, as 𝑆 = 𝐷!, 𝑅! , and 𝑇 = 𝐷! , 𝑅! , where DS, DT are the domains of 

individuals of each of the structures S, T; and RS, RT are the relations defined over the 

respective domains. We then say that a model S abstracts some property in the target if and 

only if there exists some n-tuple: 𝑎!,𝑎!,… ,𝑎! ∈ 𝐷!, such that there is a property or 

relation 𝑅!! 𝑎!,𝑎!,… ,𝑎!  obtaining in the target and lacking in the source: 

𝑅!! 𝑎!,𝑎!,… ,𝑎! ∧ 𝑅!! , where 𝑅!! 𝑓 𝑎! , 𝑓 𝑎! ,… , 𝑓 𝑎!  is the correlative property over 
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the corresponding elements of the domain in the target. And we say that the model 

pretends some property in the target if and only if there exists some n-

tuple: 𝑏!, 𝑏!,… , 𝑏! ∈ 𝐷!, such that there is a property or relation 𝑅!! 𝑏!, 𝑏!,… , 𝑏!  

obtaining in the source that is lacking in the target: 𝑅!! . The range of the morphism 

function in the source is whatever n-tuple maps over: 𝑓!! 𝑏! , 𝑓!!(𝑏!),… , 𝑓!! 𝑏! , since 

we do not insist that the function f must be one-to-one and onto (an isomorphism). 

 

 Most scientific models both abstract some properties in their target and pretend 

some other properties. The well-known example of the billiard ball model for a gas in the 

kinetic theory exemplifies both. A system of billiard balls models a system of gas 

molecules, with some provisos. First, billiard balls are shiny, opaque and hard – and these 

are properties that the model can at best pretend are in the target system of gas molecules. 

Second, there are properties of the gas molecules that are ignored or denied in the billiard 

ball model, such as viscosity and thermal conductivity. These properties are abstracted 

away. Viscosity, for example, is a physical consequence of density and temperature of the 

whole gas. Yet, a system of billiard balls lacks the connection between density and 

temperature, on the one hand, and viscosity, on the other. Even if temperature and density 

were well defined quantities in a system of billiard balls (which they are not), there would 

be no corresponding property of viscosity of billiard balls. It’s not merely that the property 

is ignored – it is expressly denied for billiard balls. Similarly, there are properties of the 

system of gas molecules as whole that the system of billiard balls as whole does not 
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possess, namely free expansion. These are not just abstracted away from the molecules, but 

from the system considered as a whole. 

 

 The question is what sort of morphism can accommodate such kinds of idealization. 

As it turns out, those morphisms that can accommodate abstraction cannot accommodate 

pretence, and vice-versa. Full or partial isomorphism accommodates neither. 

Homomorphism accommodates pretence, but not abstraction. And homomorphism without 

the condition known as faithfulness (not a properly defined morphism – see Pero and 

Suárez 2016, 80) accommodates abstraction but not pretence. Neither of these can 

accommodate the combination of pretence and abstraction. And the question then remains 

whether there is a further weakening of homomorphism that could do this. Pero and Suárez 

(2016) canvass the different options and answer negatively. 

 

 Indeed, the weakest proposal we are aware of is Chris Swoyer’s ‘Δ/Ψ-morphism’. 

This is weaker than homomorphism since it does not require an injection from the range 

into the image (in technical language this is not even a properly defined mapping). The 

idea here is to consider two subsets Λ and Ψ of the domain of the target (that is: Λ ⊆ DT; Ψ 

⊆ DT), such that f is a function such that f -1 takes every relation defined over Λ into 

relations defined over the corresponding elements in DS; and f takes every relation defined 

over the corresponding elements in DS to those in Ψ into relations defined over those 

elements in Ψ ⊆ DT (i.e.: f counter-preserves the relations defined over the elements in Ψ). 
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Since this is not a bijection, it accommodates pretence: there are elements in DS that have 

no correlate in DT. And since the subsets Λ and Ψ need not overlap, it also may 

accommodate abstraction, since there may be elements in DT that are in Ψ but not in Λ). 

However, a Δ/Ψ-morphism is not really a mapping, or any established morphism unless Λ 

= Ψ (in which case it boils down to a standard homomorphism). The selection of the 

subsets {Λ} and {Ψ} is arbitrary and specific to the case at hand; the only thing that the 

existence of such a mapping issues is in a structural rendition of the source and the target. 

Nothing informative follows from the proof of the existence of a Δ/Ψ-morphism other than 

the knowledge that both source and target can be minimally given a structural formulation. 

And that was precisely our initial assumption. 

 

  In conclusion, we suggest that an inferential account of the means of structural 

representation – where applicable – should adopt a minimal concept of structure. A 

structure is then the internal partition into elements and relations which is ascribed by a 

competent agent to a target system via some model (epistemic structure ascription, see 

Pero 2015). The internal structure of a model is in this sense a prerequisite for the 

inferential activity to take place and, once it is fixed, the 'inferential suitability' of a model 

(the possibility to employ the model's structure as an approximation of the target) with 

respect to its target is thus determined.  Once again, the fact that one of the concrete 

properties a source of representation should display can be cast in structural terms does not 

imply any form of structuralism about the constituents of representation. In fact, this 
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minimal concept of structure is deeply intertwined with the inferential practice that allows 

conclusions from model sources about their targets. Without any referral to agents' 

inferential practice and the context enacting it, the work to be done by this concept of 

structure in any philosophical analysis of scientific representation would just fade out. 

 

 According to the representational semantic conception (RSC) that we have 

defended here, this is indeed as it should be. Theorising is infused with the rich textures of 

practice, and the results of theorising (models) are similarly infused – to the point that no 

understanding of these models that reduce them to formal structures is at all viable. Instead 

RSC recommends accepting the practice upfront, by considering modelling as an 

inherently outcome-driven normative practice.  If scientific models and scientific theories 

reflect and embody their intended uses and aims essentially, this is only because the 

practice that gives rise to and generates them is essentially intentional (Boesch 2017). No 

account of theory in terms of modelling can succeed that denies such fundamental lesson.   

 

 

6. Conclusions 

 

  The semantic conception of theories has traditionally been understood in its 

structural version – as such it has been assumed that it carries a commitment to a specific 

structural rendition of the relation of representation. We argue that it is possible to free the 
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semantic conception from its structuralist trappings. Two different identity claims 

regarding the nature of theories seem to be conflated all too often, yet the identification of 

models and structures is an additional commitment which is not required by the main or 

core claim of the semantic conception. We have argued that no informative structural 

rendition of the constituents of representation can provide for all the different kinds of 

structural mappings that occur in mathematical physics, where two varieties of idealization 

(abstraction and pretence) are ubiquitous. An alternative version of the semantic view 

appeals to a non-structural conception of representation only. There is no need for any 

further identity commitment over and above its core claim to conceive of theories in terms 

of models and to link theorising to modelling practice. This ‘representational semantic 

conception’ (RSC) has nonetheless the necessary resources to explain the role of 

mathematical structures as the means of some remarkable instances of scientific modelling.   
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