Skip to main content
Log in

Relativizing Relativity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Special relativity theory is generalized to two or more “maximal” signalling speeds. This framework is discussed in three contexts: (i) as a scenario for superluminal signalling and motion, (ii) as the possibility of two or more “light” cones due to the a “birefringent” vacuum, and (iii) as a further extension of conventionality beyond synchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. D. Alexandrov, “On Lorentz transformations,” Uspehi Mat. Nauk. 5(3), 187 (1950).

    Google Scholar 

  2. A. D. Alexandrov, “A contribution to chronogeometry,” Canadian J. Math. 19, 1119–1128 (1967).

    Google Scholar 

  3. A. D. Alexandrov, “Mappings of spaces with families of cones and space-time transforma-tions,” Annali die Matematica Pura ed Applicata 103, 229–257 (1967).

    Google Scholar 

  4. A. D. Alexandrov, “On the principles of relativity theory,” in Classics of Soviet Mathematics, Vol. 4, A. D. Alexandrov, Selected Works, pp. 289–318 (1996).

    Google Scholar 

  5. A. R. Anderson, “St. Paul's epistle to Titus,” in The Paradox of the Liar, R. L. Martin, ed. (Yale University Press, New Haven, 1970). The Bible contains a passage which refers to Epimenides, a Crete living in the capital city of Cnossus: “One of themselves, a prophet of their own, said, `Cretans are always liars, evil beasts, lazy gluttons.' “- - St. Paul, Epistle to Titus I (12- 13).

    Google Scholar 

  6. Philip W. Anderson, “More is different,” Science 177(4047), 393–396 (August 1972).

    Google Scholar 

  7. Houshang Ardavan, “A speed-of-light barrier in classical electrodynamics,” Phys. Rev. D 29(2), 207–215 (1984).

    Google Scholar 

  8. John S. Bell, “How to teach special relativity,” Progr. Sci. Culture 1(2) (1976). Reprinted in Ref. 9, pp. 67- 80.

  9. John S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  10. John S. Bell, “George Francis FitzGerald,” Physics World 5(9), 31–35 (September 1992), abridged version by Denis Weaire.

    Google Scholar 

  11. G. A. Benford, D. L. Book, and W. A. Newcomb, “The tachyonic antitelephone,” Phys. Rev. D 2(2), 263–265 (1979).

    Google Scholar 

  12. Walter Benz, Geometrische Transformationen (BI Wissenschaftsverlag, Mannheim, 1992).

    Google Scholar 

  13. B. M. Bolotovskii and V. L. Ginzburg, “The Vavilov- Cerenkov effect and the Doppler effect in the motion of sources with superluminal velocity in vacuum,” Sov. Phys. Uspekhi 15(2), 184–192 (1972). [Usp. Fiz. Nauk 106, 577 (1972)].

    Google Scholar 

  14. H. J. Borchers and G. C. Hegerfeldt, “The structure of space-time transformations,” Comm. Math. Phys. 28, 259–266 (1972).

    Google Scholar 

  15. R. J. Boskovich, “De spacio et tempore, ut a nobis cognoscuntur” (Vienna, 1755); English translation in Ref. 16.

  16. R. J. Boskovich, “De spacio et tempore, ut a nobis cognoscuntur,” in A Theory of Natural Philosophy, J. M. Child, ed. (Open Court, 1922; MIT Press, Cambridge, MA, 1966), pp. 203–205.

    Google Scholar 

  17. Georg Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre. I,” Math. Annalen 46, 481–512 (1895). Reprinted in Ref. 19.

    Google Scholar 

  18. Georg Cantor, “Beiträge zur Begruündung der transfiniten Mengenlehre. II,” Math. Annalen 49, 207–246 (1897).

    Google Scholar 

  19. Georg Cantor, Gesammelte Abhandlungen (Springer, Berlin, 1932).

    Google Scholar 

  20. John L. Casti, private communication, May 1996.

  21. Albert Einstein, “Zur Elektrodynamik bewegter Körper,” Ann. Physik 17, 891–921 (1905).

    Google Scholar 

  22. Albert Einstein, Grundzüge der Relativitätstheorie, 1st edn. (Vieweg, Braunschweig, 1956).

    Google Scholar 

  23. Herman Erlichson, “The rod contraction-clock retardation ether theory and the special theory of relativity,” Am. J. Phys. 41, 1068–1077 (1973).

    Google Scholar 

  24. John Friedman, Michael S. Morris, Igor D. Novikov, Fernando Echeverria, Gunnar Klinkhammer, Kip S. Thorne, and Ulvi Yurtsever, “Cauchy problem in spacetimes with closed timelike curves,” Phys. Rev. D 42(6), 1915–1930 (1990).

    Google Scholar 

  25. Kurt Gödel, “An example of a new type of cosmological solutions of Einstein's field equations of gravitation,” Rev. Mod. Phys. 21, 447–450 (1949). Reprinted in Ref. 28, pp. 190- 198.

    Google Scholar 

  26. Kurt Gödel, “A remark about the relationship between relativity theory and idealistic philosophy,” in Philosopher-Scientist, Albert Einstein (Tudor, New York, 1949; reprinted in Ref. 28, pp. 202- 207), pp. 555–561.

    Google Scholar 

  27. Kurt Gödel, in Collected Works. Unpublished Essays and Lectures, S. Feferman, J. W. Dawson, Jr., W. Goldfarb, C. Parsons, and R. M. Solovay, eds. (Oxford University Press, Oxford, 1990), Vol. III.

    Google Scholar 

  28. Kurt Gödel, in Collected Works. Publications 1938- 1974, S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort, eds. (Oxford University Press, Oxford, 1990), Vol. II.

    Google Scholar 

  29. Robert Goldblatt, Orthogonality and Spacetime Geometry (Springer, New York, 1987).

    Google Scholar 

  30. A. Grünbaum. Philosophical Problems of Space of Time (Boston Studies in the Philosophy of Science, Vol. 12), 2nd ed. (Reidel, Dordrecht, 1974).

    Google Scholar 

  31. A. Grünbaum, W. Salmon, B. van Fraassen, and A. Janis, “A panel discussion of simultaneity by slow clock transport in the special and general theories of relativity,” Phil. Sci. 36, 1–81 (1969).

    Google Scholar 

  32. Helmut Günther, Grenzgeschwindigkeiten und ihre Paradoxa (Teubner, Stuttgart, Leipzig, 1996).

    Google Scholar 

  33. G. C. Hegerfeldt, “The Lorentz transformations: Derivation of linearity and scale factor,” Nuovo Cimento A 10, 257–267 (1972).

    Google Scholar 

  34. Allen I. Janis, “Conventionality of simultaneity,” in Stanford Encyclopedia of Philosophy. Winter 1998 Edition (The Metaphysics Research Lab Center for the Study of Language and Information. Ventura Hall Stanford University Stanford, CA 94305-4115, 1998. Internet address: http://plato.stanford.edu/entries/spacetime-convensimul/).

    Google Scholar 

  35. L. Jánossy, Theory of Relativity Based on Physical Reality (Akadë miai Kiadö, Budapest, 1971).

    Google Scholar 

  36. June A. Lester, “Distance preserving transformations,” in Handbook of Incidence Geometry, Francis Buekenhout, ed. (Elsevier, Amsterdam, 1995).

    Google Scholar 

  37. D. Malament, “Causal theories of time and the conventionality of simultaniety,” Noû s 11, 293–300 (1977).

    Google Scholar 

  38. Reza Mansouri and Roman U. Sexl, “A test of special relativity: I. Simultaneity and clock synchronization,” Gen. Relativ. Gravit. 8(7), 497–513 (1977).

    Google Scholar 

  39. Reza Mansouri and Roman U. Sexl, “A test of special relativity: II. First order tests,” Gen. Relativ. Gravit. 8(7), 513–524 (1977).

    Google Scholar 

  40. Reza Mansouri and Roman U. Sexl, “A test of special relativity: III. Second-order tests,” Gen. Relativ. Gravit. 8, 809–814 (1977).

    Google Scholar 

  41. Paul J. Nahin, Time Travel, 2nd ed. (AIP Press and Springer, New York, 1998).

    Google Scholar 

  42. Piergiorgio Odifreddi, Classical Recursion Theory (North-Holland, Amsterdam, 1989).

    Google Scholar 

  43. Henri Poincarë , La valeur de la science (Flammarion, Paris, 1905); English translation: The Value of Science, 1907; German translation: Der Wert der Wissenschaft, 1906.

    Google Scholar 

  44. H. E. Puthoff, “Can the vacuum be engineered for spaceflight applications?” paper presented at the NASA Breakthrough Propulsion Physics Conference at Lewis Research Center, 1997.

  45. Erasmo Recami, “Classical tachyons and possible applications,” Nuovo Cimento 9(6), 1–178 (1986).

    Google Scholar 

  46. Erasmo Recami, “Tachyon kinematics and causality: A systematic thorough analysis of the tachyon causal paradoxes,” Found. Phys. 17(3), 239–296 (1987).

    Google Scholar 

  47. Michael Redhead, “The conventionality of simultaneity,” in Philosophical Problems of the Internal and External Worlds, J. Earman, A. Janis, G. Massey, and N. Rescher, eds. (University of Pittsburgh Press and Universitätsverlag Konstanz, Pittsburgh and Konstanz, 1993), pp. 103–128.

    Google Scholar 

  48. H. Reichenbach, The Philosophy of Space 6 Time (Dover, New York, 1958).

    Google Scholar 

  49. Alfred A. Robb, A Theory of Time and Space (Cambridge University Press, Cambridge, 1914).

    Google Scholar 

  50. Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability (MacGraw- Hill, New York, 1967).

    Google Scholar 

  51. Otto E. Rössler, “Endophysics,” in Real Brains, Artificial Minds, John L. Casti and A. Karlquist, eds. (North-Holland, New York, 1987), p. 25.

    Google Scholar 

  52. Otto E. Rössler, Endophysics. Die Welt des inneren Beobachters (with a foreword by Peter Weibel) (Merwe Verlag, Berlin, 1992).

    Google Scholar 

  53. Sahotra Sarkar and John Stachel, “Did Malament prove the non-conventionality of simultaneity in the special theory of relativity?” Phil. Sci. 66, 208–220 (1999).

    Google Scholar 

  54. Silvan Schweber, “Physics, community, and the crisis in physical theory,” Phys. Today, pp. 34–40, November 1993.

  55. R. U. Sexl and H. K. Urbantke, Relativität, Gruppen, Teilchen (Springer, Vienna, 1976).

    Google Scholar 

  56. Michael A. Shupe, “The Lorentz-invariant vacuum medium,” Am. J. Phys. 53(2), 122–132 (1985).

    Google Scholar 

  57. Roderik I. Sutherland and John R. Shepanski, “Superluminal reference frames and generalized Lorentz transformations,” Phys. Rev. D 33(8) (1986).

  58. Karl Svozil, “Connections between deviations from Lorentz transformation and relativistic energy-momentum relation,” Europhys. Lett. 2, 83–85 (1986).

    Google Scholar 

  59. Karl Svozil, “Operational perception of space-time coordinates in a quantum medium,” Nuovo Cimento B 96, 127–139 (1986).

    Google Scholar 

  60. Karl Svozil, Randomness 6 Undecidability in Physics (World Scientific, Singapore, 1993).

    Google Scholar 

  61. Karl Svozil, “Consistent use of paradoxes in deriving contraints on the dynamics of physical systems and of no-go-theorems,” Found. Phys. Lett. 8(6), 523–535 (1995).

    Google Scholar 

  62. T. Toffoli, “The role of the observer in uniform systems,” in Applied General Systems Research, G. Klir, ed. (Plenum, New York, 1978).

    Google Scholar 

  63. R. C. Tolman, The Theory of Relativity of Motion (University of California Press, Berkeley, 1917).

    Google Scholar 

  64. E. Whittaker, “George Francis Fitzgerald,” Sci. Am. 185(5), 93–98 (1953).

    Google Scholar 

  65. J. Winnie, “Special relativity without one-way velocity assumptions: Part I,” Phil. Sci. 37, 81–99 (1970).

    Google Scholar 

  66. J. Winnie, “Special relativity without one-way velocity assumptions: Part II,” Phil. Sci. 37, 223–238 (1970).

    Google Scholar 

  67. E. C. Zeeman, “Causality implies the Lorentz group,” J. Math. Phys. 5, 490–493 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svozil, K. Relativizing Relativity. Foundations of Physics 30, 1001–1016 (2000). https://doi.org/10.1023/A:1003600519752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003600519752

Keywords

Navigation