
CHRIS SWOYER 

STRUCTURAL REPRESENTATION AND 

SURROGATIVE REASONING 

ABSTRACT. It is argued that a number of important, and seemingly disparate, types 
of representation are species of a single relation, here called structural representation, 
that can be described in detail and studied in a way that is of considerable philosophical 
interest. A structural representation depends on the existence of a common structure 

between a representation and that which it represents, and it is important because it 

allows us to reason directly about the representation in order to draw conclusions about 

the phenomenon that it depicts. The present goal is to give a general and precise account 

of structural representation, then to use that account to illuminate several problems of 

current philosophical interest - 
including some that do not initially seem to involve 

representation at all. In particular, it is argued that ontological reductions (like that of 

the natural numbers to sets), compositional accounts of semantics, several important 
sorts of mental representation, and (perhaps) possible worlds semantics for intensional 

logics are all species of structural representation and are fruitfully studied in the frame 

work developed here. 

We use representations in nearly all our reasoning about the world. 

There are so many types of representation that a single account proba 

bly cannot do justice to them all. Still, I shall argue, a number of 

important and seemingly disparate types of representation are species 
of a single relation that can be described in detail and studied in a way 
that is of considerable philosophical interest. I shall call this relation 

structural representation. My aim here is to explain what structural 

representation is and to show why it is philosophically interesting. 
Structural representation enables us to reason directly about a repre 

sentation in order to draw conclusions about the things that it repre 
sents. By examining the behavior of a scale model of an aircraft in a 

wind tunnel, we can draw conclusions about a newly designed wing's 
response to wind shear, rather than trying it out on a Boeing 747 over 

Denver. By using numbers to represent the lengths of physical objects, 
we can represent facts about the objects numerically, perform calcu 

lations of various sorts, then translate the results back into a conclusion 

about the original objects. In such cases we use one sort of thing as a 

surrogate in our thinking about another, and so I shall call this surro 

gative reasoning. 
I shall begin with an informal account of structural representation 
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450 CHRIS SWOYER 

and surrogative reasoning, explain why they are important, and then 
move on to a more detailed and precise account of the former. The 

account uses intensional relational structures, so in Sections 2 and 3 I 

explain what these are, and show how they are useful in the study of 

representation. In Section 4 I work through an example to show more 

clearly what structural representation involves, and in Section 5 I exam 

ine the nature of representational artifacts and their relationship to 

various theses about conventionalism and underdetermination. In Sec 

tion 6 I present a general account of structural representation. The 

applications of the account are discussed in the last, and most impor 
tant, section. There I argue that several philosophically interesting 

phenomena 
- 

ontological reductions (like that of numbers to sets), 

compositional accounts of semantics, mental models, and (perhaps) 

possible worlds semantics for intensional logics 
- are examples of struc 

tural representation and are fruitfully studied in the framework de 

veloped here. 

1. STRUCTURAL REPRESENTATION 

We represent things using scale models, road maps, computer simula 

tions, musical notation, G?del numbers, English sentences, smoke sig 
nals, and Braille. The diversity of examples suggests that anything can, 
with sufficient ingenuity and determination, be employed to represent 
almost anything else, and the uses we make of representations are 

nearly as varied. Nevertheless, I think that a central point of much 

representation 
- one reason why it plays so vital a role in our lives - 

is that it allows us to reason directly about a representation in order to 

draw conclusions about some phenomenon that it represents. 
This can be important for a variety of reasons: the original phenome 

non may be difficult to observe, understand, or manipulate 
- it might 

not even exist.1 Such reasoning may be quite self-conscious, as when a 

geometer studying the projective properties of geometrical objects be 

gins with a figure (like an ellipse), transforms it to some other figure 

(like a circle) that shares those features of the original figure with which 

he's concerned, reasons about the second figure, and then transfers the 

result back to a conclusion about the first. Other times the medium of 

representation becomes so familiar that we scarcely realize it's there, 
as with the detailed shapes of the numerals we write as we struggle to 

balance our checkbooks. In the measurement of length or voltage, we 
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STRUCTURAL REPRESENTATION 451 

transform information about the physical magnitudes into numerical 

information, which facilitates reasoning because of the rich set of 

mathematical concepts, techniques, and theories our culture provides. 
In an analog computer we move in the opposite direction, representing 
numbers by physical magnitudes like voltage or length. But the point 
in each case is the same: to represent something in a medium that 

facilitates inference about it. 

Not all representations allow detailed reasoning about the things they 

represent; no amount of pondering the embroidery of Hester's 'A' will 

reveal the details of her exploits. Still, the point of much representation 
is to mediate inferences about things in the world, and this raises what 

might be called the applications problem. The question how an abstract 

body of theory like mathematics can apply to concrete reality is a 

venerable one in philosophy, but if the following account is right, it is 

just a special case of a more general puzzle: How can any representa 
tional system 

- from rudimentary arithmetic to a complex natural lan 

guage 
- be successfully applied to the world? How is such representation 

possible? I believe that the best explanation why a mathematical theory 

applies to the concrete phenomena it does is that it has many of the 

same structural features as those phenomena. It is a central thesis of 

this paper that shared structure of precisely this sort explains the 

applicability of a wide range of representational systems 
- 

including 
many non-mathematical ones - to the things they represent.2 

In many cases the notion of shared structure is familiar enough. A 

scale model of a DNA molecule has much of the structure of the 

molecule itself, because various relationships among the model's parts 

correspond to important relationships among the molecule's parts. But 

shared structure is also important in cases where it is less obvious just 
what is involved; in order to see how, it will be useful to consider the 

measurement of length. 
When we measure the lengths of physical objects in meters, we pair 

the objects with numbers in such a way that the two exhibit a common 

pattern. We can view our measurement scale as correlating each physical 

object with a unique numerical surrogate or representative in the set 

of positive real numbers. For example, a meter bar is paired with 1 

and a twelve-inch ruler with 0.3048. Furthermore, properties and re 

lations of the physical objects are paired with numerical properties and 

relations. For example, the relation that two objects stand in whenever 
one is longer than the other is represented by the greater-than relation 
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452 CHRIS SWOYER 

on the real numbers, so that one object is longer than a second just in 

case the number representing it is larger than the number representing 
the second. 

Such similarity of structure explains why the mathematics of the 

positive real numbers applies to physical objects and their lengths as 

follows. We begin with empirical facts involving physical objects and 

use our measurement scale as a bridge to their numerical surrogates or 

proxies. We then mobilize logic and the mathematical theory of the 

positive real numbers to infer that further numerical facts obtain. Fi 

nally, once our calculations are complete, we make the return trip to 

a conclusion about the original physical objects and their lengths.3 
This example suggests a general model for structural representation: 

the pattern of relations among the constituents of the represented phe 
nomenon is mirrored by the pattern of relations among the constituents 

of the representation itself. And because the arrangements of things in 

the representation are like shadows cast by the things they portray, we 

can encode information about the original situation as information 

about the representation. Much of this information is preserved in 

inferences about the constituents of the representation, so it can be 

transformed back into information about the original situation. And 

this justifies surrogative reasoning, since if we begin with true premises 
about the object of representation, our detour through the represen 
tation itself will eventually wind its way back to a true conclusion about 

the original object.4 
My aim here is to develop and refine this intuitive picture, but before 

turning to this I want to emphasize two things. First, the interest of the 

notion of structural representation is not that it fully captures our 

ordinary sense of representation 
- it doesn't, and it's not intended to. 

Structural representation is not a necessary condition for representation 
in the ordinary sense of the word, since with sufficient perseverance 

- 

or perversity 
- we can use anything to represent virtually anything else, 

and in many cases the two things won't have any interesting structural 

similarities at all. And it is not sufficient for ordinary representation, 
since if you can find one structural representation of something, you 
can usually find many. Still, if one thing is a structural representation 
of a second, it has the potential to be used in surrogative reasoning 
about it, and so an account of structural representation will help us 

understand how one very important kind of representation is possible. 
Furthermore, as we shall see in Section 7, a number of philosophically 
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STRUCTURAL REPRESENTATION 453 

interesting phenomena that are not usually regarded as representations 
at all turn out to be specimens of structural representation, and so our 

account will allow us to examine them in a novel framework that 

suggests fresh approaches to their study. 
Second, if we avail ourselves of relations that are easily come by, 

e.g., relations-in-extension or 
Goodmanesque relations, then we can 

view almost anything as a structural representation of almost anything 
else. The situation is analogous to that in group theory. If we are willing 
to allow just any binary relation with the right formal properties to 

serve as group addition, then virtually any collection of things can be 

regarded as a group. But the reason why group theory is so useful is 

that there are many cases where some relation of independent interest 

(like the rotation of a geometrical figure) turns out to have the structural 

features of group addition; indeed, this often explains why a collection 

behaves in ways of interest to us. Similarly, I shall argue, structural 

representation is important because there are various pairs of things 
- 

numbers and sets, syntax and semantics, Kripke model structures and 

the actual world - that behave in interesting ways precisely because 

relations of antecedent and independent significance in one member of 

the pair have the same structure as relations of antecedent and indepen 
dent significance in the other. 

Structural representation is a term of art, and so we cannot begin with 
a definitive picture of which examples of representation are structural 

and which are not. Instead, guided by an intuitive picture of shared 
structure and a handful of prototypes, like the measurement of length, 
I shall develop an account of structural representation, and we can then 

ask which phenomena fit the characterization and which do not. I 

shall reserve the notion of surrogative reasoning for reasoning about a 

structural representation in order to draw inferences about what it 

represents, and so the use of analogies and metaphors in reasoning 
needn't always be surrogative. 

Our discussion thus far suggests the following desiderata for an ac 

count of structural representation: 

(1) It should solve the applications problem, explaining the ap 

plicability of structural representations to the things they 

represent; 

(2) Since virtually any medium can be used to provide a struc 

tural representation of anything else, it should be medium 
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indifferent, insensitive to the idiosyncrasies of particular 
media (the medium is not the message); 

(3) It should clarify how we can represent merely possible situ 

ations; 

(4) It should be precise enough to allow a careful and detailed 

study of the formal aspects of structural representation; 

(5) It should be general enough to subsume a number of differ 

ent types of representation. 

In the next section I shall begin developing the informal account 

sketched above into a more general and precise characterization of 

structural representation that satisfies these conditions.5 

2. ABSTRACTION AND INTENSIONAL RELATIONAL 

STRUCTURES 

Any actual system or situation is likely to have a great many features, 
and systematic and detailed reasoning about it will require us to focus 
on some at the expense of others. Indeed, intellectual progress often 

goes hand in hand with such abstraction, the discernment of a few 

properties like force, energy, and information as behind-the-scenes 
causes of the phenomena around us. The logician's concept of a re 

lational system furnishes a useful device for dealing with many aspects 
of abstraction - 

including some of those important in representation 
- 

in a precise way. As traditionally conceived, a relational system is a 

set-theoretic object comprising a domain of individuals and one or more 

r?idL?ons-m-extension on that domain. Such relational systems have 

many important uses, but their treatment of properties and relations 
as extensional entities (sets and relations-in-extension, respectively) 
poses several difficulties for their use in a study of representation. 

One problem is that several important examples of representation, 

including the propositional attitudes and the semantics of natural lan 

guages, are suffused with intensionality, and so are not easily accommo 

dated by extensional machinery. Furthermore, representation itself is 

tinged by intensionality, since a representation can represent something 
as having one property without representing it as having every other 

property that happens to be co-extensive with it. Suppose that exactly 
the same objects are blue and have a density of 7gm/cm3. Readings 
on a machine built to detect colors are plausibly thought to represent 
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STRUCTURAL REPRESENTATION 455 

the color of such an object, rather than its density, and it seems clearer 

still that 'blue' represents only the color, and '7 gm/cm3' only the den 

sity. The use of traditional extensional relational systems would make 

it difficult to accommodate this fact; genuine properties and relations 

will make it much easier. 

The introduction of intensional entities like properties and relations 

has its costs and would be ill-advised unless we had independent reasons 

to suppose that such things existed. Elsewhere I have argued that we 

have a variety of reasons for thinking that they do, the most important 

being that they provide the best explanation of a number of phenomena, 

among them natural laws, causation, measurement, and the modalities 

(Swoyer [1982b], [1983], [1987], esp. pp. 240-43). I shall not defend 
such entities further here, except insofar as the present account adds 

one more item to the list of things that they help us explain, namely 

representation.6 
In order to work genuine properties and relations into the picture, I 

shall employ a slight modification of traditional, extensional, relational 

systems which I shall call intensional relational systems (IRSs, for short). 
These differ from their extensional kin in containing properties and 

relations that are not constructed out of sets of objects, possible worlds, 
or anything else at all. IRSs can be at least as rich as their extensional 

brethren, sporting a rich type structure or a supple non-typed one. 

But such complexities aren't needed to illustrate the essential points 
about structural representation, and so I shall employ simpler inten 

sional relational systems here. 

To this end, let us think of an 1RS as an ordered quadruple: 

A = 
(iA/mA,smA,v), 

where Ia, f$iA, and sdiA are non-overlapping sets. Intuitively, Ia is a 

domain of individuals, fdtA a domain of first-order relations (including 

one-place relations, or properties), and sdiA a domain of second-order 

relations. I shall call the set of all the relations in the system the full 
domain of relations, 9? for short, and the union of the domain of 

individuals and the full domain of relations the total domain of the 

system. For convenience I shall require that at least two "adjacent" 
domains be nonempty, i.e., that at most one of / and 59? be empty. 

And I shall drop superscripts and related paraphernalia when ambiguity 
won't result. 

In addition to its order or level, each relation in dt has a fixed rank 
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or number of argument places. I shall let both the order and the rank 
of individuals be 0. We can then say that the order o and rank r of an 

item in any domain in an 1RS determine its type (o,r)\ for example, 
loves is a first-order, two-place (type (1,2)) relation. Finally, the exten 
sion assignment, v, is a unary function on 9? that assigns extensions to 
all of the relations in this set (it is needed because genuine properties 
and relations, unlike relations-in-extension, don't come with built-in 

extensions). The extension of an n-place relation is a set of n-tuples of 
entities from level M (so that, for example, the extension of the relation 
loves is a set of ordered pairs of individuals). In short, the extension 
of an ?-place relation is just the familiar set-theoretic object that exten 

sionally-minded philosophers take to be that relation. The identity 
conditions of genuine properties and relations are not determined by 
the things that happen to exemplify them, and so distinct properties 
and relations may have precisely the same extension, a fact we accom 

modate by allowing the extension assignment function to be many-one. 
And we say that two IRSs have the same similarity type just in case 

there is a one-one, onto function from the full domain of relations of 
the first to that of the second which maps each relation of the first to 
a relation of the same type in the second.7 

We can now make the notion of shared structure precise. To simplify 
exposition I shall confine my attention to first-order relations, but pre 

cisely analogous points hold for higher-order relations as well. The 
intensional relational systems A and B have the same structure - 

they 
are isomorphic 

- 
just in case they are of the same similarity type and 

there is a one-one, onto function, c, from the total domain of A to the 
total domain of B that preserves both the type and the structure of all 
the relations in A. This means that A and B are isomorphic just in case 

there is a one-one, onto, type-preserving function c such that 

(PR) (h,. . . , in) EVR if and only if (c(h),. . . , c(in)) E"c(R), 

for each n-tuple of individuals (iu . . . , /?) in Ia and every first-order n~ 

place relation R in f$lA.8 The intuitive force of (PR) is that a group of 
individuals (taken in a given order) from the first relational system 
stand in the relation R exactly when their surrogates in the second 

system (taken in the same order) stand in the surrogate of R. When 
this occurs, I shall say that the function c respects the relation R. 

If a mapping has all of the features of an isomorphism except being 
onto, it is an isomorphic embedding; such mappings yield an isomorphic 
copy of one 1RS in another. Various other relaxations in the require 
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STRUCTURAL REPRESENTATION 457 

ments imposed on the correlating function c will be discussed below, 
but in order to have a tentative working account, I shall provisionally 

identify the structural representation of one 1RS by a second as the 

isomorphic embedding of the first in the second. This gives us an 

account that will be easy to generalize in various ways as we proceed. 
But it must be stressed that it is often anything but easy to show that 

such an account applies in a particular case, since the embeddability of 
one 1RS in another is by no means an automatic consequence of their 

having the same similarity type. In addition to this, the corresponding 
relations of the two systems must have the same structural or formal 

features. To ensure that they do, we must introduce axioms to constrain 

the behavior of the relations in each system, then demonstrate that the 

axioms really do impose the same structure on the two IRSs by using 
them to prove the existence of an isomorphic embedding of one in the 

other. In many cases this can be quite difficult, and in some it is an 

open question whether it is even possible. 
The use of IRSs in dealing with actual cases of representation also 

involves an element of idealization, for most of the things that we 

represent, and most of our representations of them, are not literally 
intensional relational systems. Moreover, there is a risk of confusion 

here, since an 1RS may itself be regarded as a sort of model or represen 
tation of the real-life situation we use it to study. To keep the dis 

tinctions straight, I shall say that an intensional relational system is an 

IRS-model of a real-life situation or thing when it satisfies two con 

ditions. First, the relational system contains at least some of the same 

individuals and relations as that situation, and, second, an n-tuple of 

objects is in the extension of a relation in the relational system just in 
case those objects, taken in that order, stand in that relation in the 

real-life situation. Strictly speaking, the relationship of structural repre 
sentation holds only between an IRS-model of a real-life situation and 
an 7/?S-model of a representation of that situation. But although a real 

life situation and its 7/vS-models are distinct, an ZRS-model can portray 
the situation much more directly than any extensional relational system 
can. This is so because the former will include at least some of the very 
same properties and relations present in the situation itself, rather than 

extensional stand-ins for them. Indeed, it comes about as close to the 

original situation as a mathematically tractable creature can. Hence, it 

is often quite natural to treat real-life systems as though they were 

IRSs, and to speak of one system as a structural representation of 

another.9 
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It is also true that real-life surrogative reasoning about a phenomenon 
is unlikely to make explicit use of the axioms for an 1RS used to 

model it. Such axioms are better viewed as representing the competence 

underlying surrogative reasoning, helping to explain what it is that 

people do in a given bit of surrogative reasoning (e.g., what function 

they compute), but leaving open how they do it (e.g., what algorithm 

they use to compute a given function). 
I have treated properties and relations as primitive entities having 

no internal complexity, but it is possible to add operations to an 1RS 

that build more complex relations out of simpler ones, and in dealing 
with some kinds of representation it is useful to do so. For example, it 

might be thought that if a domain of first-order relations contains the 

two properties F and G, then it should also contain the conjunctive 

property, being (both) Fand G. And if it contains the two-place relation 

L, perhaps it should also contain the property, bearing L to something. 
To accommodate such views, we can expand an 1RS to include a 

set, Op, of operations corresponding to connectives (e.g., conjunction, 

negation, infinitary disjunction), quantifiers (e.g., existential quantifi 

cation), or operations from the algebra of relations (e.g., conversion, 

reflection). Each new relation-building operation we add would require 
additional axioms specifying its domain and range, as well as its mode of 

interaction with the extension assignment. For example, our conjunctive 

operation would naturally be thought of as mapping pairs of relations 

of a given type to a relation of the same type, and something would 

be in the extension of the property being (both) F and G just in case 

it was in the extension of F and in the extension of G. All this can be 

done quite precisely, and if we add operations that close off open 

argument places 
- as those corresponding to quantifiers do - it is even 

possible to obtain 0-place relations, that is, propositions, and to take 

their extensions to be truth values. Such operations generate additional 

ontological commitments, however, and so I shall include them in IRSs 

only when there is a particular need to do so.10 

3. REPRESENTATION REVISITED 

In everyday life our ability to represent sequences of events and alterna 

tive possibilities is crucial to planning and deliberation. In science we 

are frequently interested in the possible states and histories of various 

systems, which are often represented by points in, and trajectories 
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through, a state space. Hence, it is not surprising that a key feature of 

many representational systems is their ability to depict a range of times 

and possibilities. The IRSs described thus far are synchronie, providing 
static snapshots of things frozen in time, but they can be enriched to 

form what I shall call multi-track IRSs by adding an ordered set of 

times, a set of tracks (to represent various options or alternatives), and 
an extension assignment that assigns an extension to each relation at 

every track at every time. Of course in some cases, e.g., sample spaces 
in probability, we need only one time in our system, and in others, 

e.g., those involving just the actual history of something, only one 

track. 

These modifications require additional axioms to ensure that the set 

of times and tracks have the right sort of structure. For example, the 

ordering relation on times should be endowed with at least some 

features like irreflexivity and transitivity that we normally attribute to 

the earlier-than relation. It needn't have all such features, though, 
since many representations depict only a few moments, for example, 
ones before and after some experimental manipulation or the adoption 
of a new diet. The axioms governing the relations in a multi-track 

system must also do more than their counterparts in a synchronie 1RS, 
since they govern the structural configuration of properties and relations 

through time and in alternative situations. In what follows I shall focus 
on synchronie IRSs, but most of the discussion is straightforwardly 

generalized to multi-track IRSs by adding the appropriate times and 

tracks, making the corresponding changes in the extension assignment, 
and redefining notions like isomorphism in the obvious way (as same 

ness of structure at all times and tracks).11 
The provisional account of structural representation as the iso 

morphic embedding of one intensional relational system in another 

satisfies all of the desiderata listed in Section 1, except for generality. 
It explains the applicability of representational systems to what they 

represent in terms of structure-preserving mappings from one 1RS to 

another. It is indifferent to the nature of the representing medium. It 

helps us see how representational systems can model possible variations 
on actual situations, since we can employ extension assignments that 

assign extensions to relations different from those which they actually 
have, but which mirror the facts as they might have been. And it is 

precise. The account is still not general enough to cover as many cases 

as it should, however, and in Section 6,1 shall introduce a more general 
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sort of mapping to remedy this defect. But before turning to this, it 

will be useful to illustrate the points discussed thus far with a brief 

sketch of a paradigm case of structural representation, the measurement 

of length. 

4. EXTENSIVE MEASUREMENT AS A PARADIGM OF 

STRUCTURAL REPRESENTATION 

In order to illustrate several additional points about structural represen 

tation, I shall treat length measurement as the assignment of numbers 

to first-order properties 
- 

lengths 
- rather than to individual objects (as 

it was treated in earlier sections). This will help us to see that the first 

order structure of an ensemble of individuals is often less important 
than the higher-order structure of the properties and relations which 

those individuals exemplify. It will also provide an example of the 

important phenomenon of trans-type representation, in which constitu 

ents of a representation are of a different type from the things that 

they represent. 
We shall begin by introducing the notion of an Extensive Property 

System (EPS). An EPS has nothing in its domain of individuals and 

only two items in its domain of second-order relations, so for readability 
I shall omit the former and list the members of the latter. This done, an 

extensive property system has the form: E = 
(E, >, O, v). In intended 

interpretations, E is a set of one-place properties, of the sort W. S. 

Johnson called determinates, specific lengths like the property which 

(once a numerical scale has been established) is naturally identified as 

being five meters long. Next, > is a second-order, two-place relation 

that holds between a pair of lengths just in case any object exemplifying 
the first is longer than any object exemplifying the second, and O is a 

second-order, three-place relation that holds between a triple of lengths 

just in case the combined length of any pair of objects exemplifying the 

first two is equal to that of any object exemplifying the third. We can 

then think of a measurement scale as a function, s, that pairs determi 

nate lengths in E with their numerical surrogates in the positive, additive 

real numbers. And we model the latter by the 1RS R+ = 
(R+, >, + , 

v), where R+ is the set of positive real numbers and > and + are the 

greater-than relation and addition.12 

This sort of approach to measurement has been developed in detail 

in the representational theory of measurement (cf. fn. 3), and the 
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present account is heavily indebted to work in that tradition. However, 
it diverges from much of this work in its rejection of nominalism, 

extensionalism, and an austerely empiricist epistemology, and these 

differences will be important in allowing us to generalize this approach 
to measurement to an account of structural representation. The third 

difference deserves emphasis, since many traditional accounts of mea 

surement employ primitive terms that are amenable to a reasonably 

simple empirical, even operationalistic, interpretation. For example, 
the relation > might literally be defined in terms of the behavior of a 

given type of ruler. In real life, however, the measurement of such 

magnitudes may be quite indirect and subtle, as it is for the diameter 

of a hydrogen atom or the distance across the galaxy, and such epis 

temological considerations play no special role in the present account. 

In order to show that the positive, additive real numbers really do 

provide a structural representation of lengths, we must show that any 
EPS can be isomorphically embedded in R+. The formal features of 

R+ are well enough understood for present purposes, so the task is to 

devise axioms governing > and O that do justice to our knowledge 
about length. Furthermore, the axioms should be qualitative (non 

numerical), since on the present account there is nothing intrinsically 
numerical about the properties and relations in E, and the goal is to 

prove 
- rather than presuppose 

- that the mathematics of the positive, 
additive reals is applicable to them. 

The system E can be isomorphically embedded in R+ just in case 

there is a one-one function s from the domain of determinate lengths 
to the domain of real numbers that respects structure. This means that 

for any two determinate lengths, Pi and P2, in E: (A) Pi > P2 just in 
case s(Pi) > s(P2), and (B) s(Px O P2) 

= 
s(Pt) O s(P2).13 The proof that 

such a function exists yields what is called a representation theorem. 

This theorem shows that any EPS can be isomorphically embedded in 

R+, i.e., that it can be represented in the positive, additive reals. This 

ensures that the set of isomorphic embeddings of any EPS in JR+ is not 

empty, but it leaves open whether the mappings in this set have anything 

interesting in common. To show that they are related in some specifiable 
way is to prove a uniqueness theorem. In the case of extensive measure 

ment, the uniqueness theorem tells us that such embeddings are unique 

up to a similarity transformation, that is, up to multiplication by a 

positive real number (a conversion factor that simply changes the units). 
This expresses the fact that nature does not determine a correct unit 
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for length, but that once we select a unit, all of the remaining scale 

values fall into place.14 
Axioms allowing the proof of the representation and uniqueness 

theorems may be found in a number of places (e.g., Krantz, et al. 

[1971], p. 73), but it is worth mentioning them briefly here in order 

to illustrate the sorts of axioms that are often relevant to structural 

representation. The following axioms can be formalized in an artificial 

language (as in Swoyer [1987]), but it is more perspicuous to give them 

in mathematical English. Moreover, many of the notions that figure 

prominently in structural representations 
- 

e.g., being infinite, being 
continuous, having the Archimedean property 

- elude the expressive 

capacities of elementary logic, so that standard benefits of formali 

zation, like the availability of a complete logic, aren't in the cards 

anyway. 

A system E ? 
(E, >, O, v) is an EPS just in case it satisfies the 

following six axioms: first, > is a linear order; second, O is a function 

(so that any two properties have a unique sum); third, O is associative; 

fourth, the sum of any two properties is greater than either property 
alone (this is a positivity axiom); fifth, > and O interlock in such a 

way that summation preserves order (this is a monotonicity axiom); 
and sixth, the system has the Archimedean property.15 The requirement 
that O be a function is added primarily for convenience, but the remain 

ing five are axioms are necessary for a representation in the positive, 
additive reals. The simplest way to show that an axiom is necessary for 

such a representation is to assume that the representation exists, then 

to demonstrate that the axiom follows from this assumption.16 Showing 
that a set of axioms is sufficient for the proof of a representation and 

uniqueness theorem is more arduous, since it involves demonstrating 
that a mapping of the required sort exists, but Holder's work at the 

turn of the century establishes that axioms like those mentioned above 

do the trick. This means that if a particular family of properties (like 

lengths or masses) satisfies these axioms - and it is always an empirical 

question whether a given family does - we are justified in measuring 
them on a ratio scale and applying the mathematical theory of the 

positive, additive real numbers to them. This is so because the axioms 

guarantee that the family of properties shares much (though not all) of 

the structure of the positive, additive reals. 

A great part of the philosophical significance of the representation 
theorem is that it explains the applicability of mathematics to reality; 
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more specifically, it explains 
- and justifies 

- the applicability of the 

mathematical theory of the positive, additive real numbers to lengths. 
And part of the philosophical significance of the uniqueness theorem 

is that it explains why scales for measuring length that are obtained 

from each other by multiplication of a positive constant are equally 

good (and hence why laws involving them are invariant under such 

transformations). Furthermore, as we shall see in the next section, it 

also helps us to separate the conventional aspects of a representation 
from the nonconventional. 

Many species of representation are more complicated than extensive 

measurement and have been studied much less, and so it would be 

unrealistic to expect such precise results for them to be forthcoming 

immediately. However, our example of extensive measurement under 

scores the importance of representation and uniqueness theorems, and 

thus provides a useful ideal against which to evaluate treatments of 
more complicated varieties of structural representation. 

5. ARTIFACTS AND CONVENTIONS 

A map that reproduced every feature of Jamaica at a scale of a mile 

to a mile would be worse than useless. Distillation and abridgment are 

essential to representation, but representations typically add as well as 

subtract, having surplus features that do not correspond to anything in 

the phenomena they depict. Sometimes it is even tempting to mistake 

adventitious features of a representation for genuine features of the 

phenomena it portrays. It is only natural for children to suppose that 

Greenland is larger than Algeria, since the picture of it on their maps 
at school is so much bigger. They do not yet realize that the relative 

sizes of the pictures of land masses on conformai maps don't correspond 
to their actual sizes, that sizes, unlike shapes, are artifacts of such 

representations. We are all susceptible to such misapprehensions, and 

they can even be exploited to deceive, enticing us to focus on things 
like the widths of the bars in a graph, rather than on relevant aspects, 
like their heights. Despite the ubiquity of representational artifacts, 
there have been few attempts to provide a general account of them, 
but measurement theorists have made a systematic effort to deal with 

one species of artifact in their discussions of a technical concept of 

This content downloaded from 169.234.240.2 on Fri, 17 May 2013 12:37:13 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


464 CHRIS SWOYER 

meaningfulness, and we can learn something about artifacts in general 
from their efforts. 

Suppose that we have two metal rods, a, which is 100 meters long, 
and b, which is 50. As the uniqueness theorem for extensive measure 

ment shows, we can set up a ratio scale for lengths by picking a unit 

(like a meter), whereupon all of the other scale values fall into place. 
Hence, the claim that a is twice as long as b would remain true even 

if we switched to some other system of units, and so it reflects an 

objective, scale-independent feature of the two rods. The situation is 

quite different for temperatures measured on interval scales like the 

Fahrenheit scale. Suppose that the temperature of rod a is 100?F and 

that of b 50?F. The uniqueness theorem for such measurement tells us 

that our scale is only unique up to a choice of unit and a zero point. Had 

we instead used the Celsius scale, which encodes the same objective 
information about temperatures as the Fahrenheit (in the precise sense 

that the same sort of representation and uniqueness theorems can be 

proved for each), we would have found the temperature of a to be 

37.78?C and that of b to be 10?C, which is nowhere near a ratio of two 

to one. Hence, although the claim that a is twice as long as b reflects 
an objective fact about lengths, the claim that a is twice as warm as b 

reflects an artifact or idiosyncrasy of a particular temperature scale, and 
so ratios of scale values for temperatures have no direct representational 

significance. 
The more nearly unique a scale, the more information about the 

world it conveys, and so the uniqueness properties of scales provide 
some indication of the degree to which they are underdetermined by 
the phenomena they represent. But how are we to make this precise? 

Measurement theorists say that objective properties and relations like 

ratios between lengths are meaningful or objective, whereas things like 

ratios of temperatures are not, and their basic idea is this. Claims like 

'Rod a is twice as hot as rod b\ which change truth value with a change 
in scale, reflect artifacts or idiosyncrasies of particular scales. This 

suggests that by focusing on those claims whose truth value remains 

unchanged, regardless of the scale employed, we might hope to filter 

out those cases which depend on idiosyncrasies of particular scales, 

leaving us with claims that are about scale-independent or meaningful 
features of the world. 

A common implementation of this strategy focuses on a special set 

of mappings from the representing system back to itself. This set forms 
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a group (in the algebraic sense) of what are called the permissible 

transformations of the system, and its distinctive feature is that map 

pings in it carry the numerical values assigned by one scale to a set of 

numbers that provide equally good scale values. Hence, if the scale c 

provides a legitimate representation of some magnitude like tempera 
ture or length, then the scale c' will be legitimate just in case there is 
a permissible transformation g of the representing system B such that 

c'(x) 
= 

g?c(x) (where 
? is function composition). We shall say that an 

?-place relation R in the representing system B is invariant under such 
a transformation just in case, whenever an ?-tuple of original scale 

values (c(ai),. . . , c(an)) is in the extension of R, the ?-tuple of new 

scale values (cr(?i),. . ,c'(an)) is also in the extension of R (and 

conversely). And since the relations that are invariant under the permis 
sible transformations of the representing system are precisely those that 
are not sensitive to the idiosyncrasies of particular scales, it is natural 

to conclude that these, and these alone, are surrogates of objective or 

meaningful relations back in the system that is being represented. 
All this will be clearer if we return to our example of length. The 

permissible transformations of the ratio scale for measuring length in 

meters simply multiply scale values by a positive real number. Multipli 
cation of our original scale values, 100 and 50, by a number like 1.0936 

(which converts meters to yards) will produce a pair of numbers that 

still stand in a ratio of two to one. Hence numerical ratios are invariant 

under permissible transformations of the representing system, and 

ratios of length are objective, scale-independent features of physical 
objects. By contrast, the permissible transformations of interval scales 

allow the addition of a real number (as well as multiplication by a 

positive constant), and as the example with our rods attests, such 

transformations need not preserve numerical ratios. 

Examining the group of permissible transformations of a representing 
system in order to draw conclusions about the objectivity of properties 
and relations in the phenomena it portrays will only work in cases 

where we know which transformations are permissible, and why. In a 

handful of cases it was clear early on which transformations of the 

representing medium were permissible, and some types of representa 
tions were even classified in terms of them. For example, Stevens 

classified the more common scale types (ordinal, interval, and ratio 

scales) in terms of their permissible (scale) transformation (fn. 14). 

Something similar occurred earlier in Klein's Erlanger program, in 
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which a number of well-known geometries (e.g., projective, equiform, 
and Euclidean geometry) were classified in terms of their permissible 

(coordinate) transformations. Unfortunately, disagreement remains 

about the proper characterization of permissibility in general, but by 
way of illustration we may consider one of the more widely accepted 
accounts, according to which the set of permissible transformations of 

the representing system is simply its group of automorphisms, i.e., its 

isomorphisms back onto itself. 

Being an automorphism is sufficient for being a permissible transfor 

mation, since by definition each automorphism respects all the structure 

of the representing system. If c is an isomorphic embedding of the 

relational system A in B and g is an automorphism of the latter, then 

g?c will also be an isomorphic embedding of A in B, and so it too will 

provide a structural representation of A in B. In the case of the more 

well-known scales and geometrical systems, like those studied by 
Stevens and Klein, being an automorphism is also necessary for permis 

sibility, but the claim that this is so in general is somewhat controversial. 

Fortunately, the exact characterization of the group of permissible 
transformations is not critical here. What does matter is the idea that 
a group of permissible transformations, the general nature of which is 

usefully illustrated by the automorphism group, is likely to provide the 

best general way of separating those features of a structural representa 
tion with representational significance from those that are merely arti 

facts.17 

These points bear on structural representation in the following way. 
Once we learn that some phenomenon is a species of structural repre 
sentation, we often discover that various problems involving it are really 

problems about artifacts and meaningfulness, and this can prompt us 

to look to current work on meaningfulness for guidance in dealing with 

them. Doing so can be particularly useful when the phenomenon in 

question is not typically recognized as a species of representation, since 

it can suggest questions about it that would otherwise have escaped our 

attention. Examples of just this sort are discussed in Section 7. 

Representational artifacts arise from conventional choices of some 

particular representation over others, and much of the philosophical 

significance of a uniqueness theorem is that it helps separate those 

aspects of a representation that are conventional from those that are 

not. Thus far, we have concentrated on conventions that arise after we 

have settled on some particular representing system like the positive, 
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additive reals. These conventions involve our choice of one from among 
various legitimate alternatives for representing a phenomenon in that 

fixed system. But an equally important choice must be made about 

which system to use as a representation in the first place, and a second 

type of convention enters here. We commonly represent lengths in the 

positive, additive reals, but several other numerical systems would work 

just as well. For example, if we have a ratio scale c that embeds some 

particular extensive property system in the positive, additive reals, we 

can use it to concoct a second scale, c*, that isomorphically embeds 

that very same EPS in the positive, multiplicative reals (let c* = 
exp c, 

and represent O by multiplication). The two scales will encode exactly 
the same information. Each thus provides an equally accurate and 

complete representation of the same objective facts, and differences 

between them will simply be representational artifacts. In short, we 

must distinguish what I shall call systemic conventions, which derive 

from the conventional choice of a representing relational system, from 

mapping conventions, which derive from the conventional choice of a 

mapping or representing function once a particular representing system 
has been selected. The former gives rise to systemic artifacts, the second 
to mapping artifacts. 

Many artifacts, like the ratios of scale values in the measurement of 

temperature on a non-absolute scale, involve relations in the repre 

senting system that fail to portray relations in the domain of representa 
tion, but artifacts can also involve individuals. Often there will be 
individuals in the representing system that are not surrogates of any 

thing in the phenomenon being represented. For example, we some 

times use the real numbers to represent countable collections of things, 
and in such cases, many of the numbers won't stand for anything at all. 

As with artifacts involving relations, it is possible to mistake individual 
artifacts for representationally significant features of the representation. 
Thus, we commonly represent facts about physical space in R3. And, 

partisans of relational theories of space might well conjecture that 

realists about substantival space have been led astray by a systemic 
artifact, mistakenly supposing that each number is a surrogate of some 

thing 
- a point of physical space 

- when in fact it is not. This suggests the 

possibility that various forms of realism arise from mistaking artifacts of 
a representation for features with genuine representational significance. 
From this perspective, for example, Quine's claim that we are com 

mitted to the existence of sets, because quantification over them is 
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required in the formalization of science, appears to confound a systemic 
artifact of one way of representing physics (namely, in mathematics 

reconstructed in some set theory or another) with the things physics 
itself is about.18 

A brief example will illustrate the generality of these distinctions and 

suggest connections to recent discussions of conventionalism. In Sec 

tion 7b we shall see how to treat the syntax of a language as a relational 

system whose domain of individuals includes words and whose domain 

of relations contains syntactic operations (e.g., sentential connectives) 
for combining words into sentences (cf. Montague [1974]). Such ma 

chinery allows us to view Quine's thought experiment about the radical 

translation of an alien language, A, into a home language, H, as a 

mapping of A to if that respects all (and only) the objective facts about 

meaning in A. These involve the stimulus meanings of A's observation 

sentences, stimulus analyticity and contradictoriness, the meanings of 

any truth-functional connectives A might contain, and a bit more that 

needn't concern us here (Quine, [1960], Section 15). Thus, from the 

current perspective a translation manual /? is a structural repr?sentation 
of A in H. It preserves the stimulus meaning of observation sentences, 
for example, as well as truth functions (e.g., for each binary truth 

function t of A and its surrogate $ in H, fi(xi t Xi) 
= 

P<(Xi) # M/te)) 
A claim about the alien language A reflects an artifact of a particular 

mapping just in case it would have had a different truth value had we 

used a different translation manual, /a*. For example, according to one 

legitimate translation manual 'gavagaV means 'rabbit', but according to 
an equally correct manual - one which respects all the same facts about 

meanings in A - it means 'undetached rabbit part'. If we take G to be 

the group of permissible transformations of the representing system 

(here English, construed as an 1RS), this means that our claim about 
an alien sentence x would shift truth value if we first mapped x to 

English using ?x and mapped the resulting English sentence to another 

English sentence using some transformation g in G (i.e., if we used the 

mapping gofi to translate v), in a manner analogous to the shifts 

encountered with transformation of scales in Section 4. Although Quine 
doesn't present his account in this way, doing so helps explain his 

otherwise cryptic remark that the totality of a speaker's sentences could 

be mapped onto itself in such a way that all of his dispositions to assent 

to, and dissent from, sentences remained invariant, yet the mapping 
was 'no mere correlation' of more-or-less equivalent sentences ([I960], 
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p. 27). In fact, such mappings are just the permissible transformations 
of the representing language.19 

Radical translation involves both mapping conventions and systemic 
conventions; in Quine's words, specifying the ontology of a theory is 

'doubly relative', first, to choice of background language and, second, 
to the choice of a translation manual from the target language to that 

background language ([1969], 54ff.). Just as our claims about ratios of 

temperatures reflect mapping artifacts arising from a conventional 

choice of a particular scale, the translation of some foreign term as 

'rabbit' is a mapping artifact arising from a conventional choice of some 

particular translation manual. And just as our use of the positive, 
additive reals to represent length is a systemic convention, so is our 

choice of English as background language. 
In the framework of structural representation, Quine's semantical 

conventionalism emerges as a claim that phenomena which previous 
thinkers took to be objective are really just artifacts of particular repre 
sentations. It is an interesting question whether other prominent ver 

sions of conventionalism, like Grunbaum's doctrine of the convention 

ality of the metric (1973), also boil down to a similar sort of claim, 

e.g., that the metrical features of a manifold are just artifacts stemming 
from a conventional choice of one particular representation of spatio 

temporal phenomena over others that are equally correct.20 
However this may be, as long as we don't mistake artifacts for the 

real McCoy, they should not be a source of dismay. We are stuck with 

them, and they can often be turned to our advantage. A good example 
of the exploitation of a mapping artifact is von Neumann's identification 

of the less-than relation on numbers with the membership relation on 

sets, a maneuver that greatly facilitates many constructions and proofs 
in set theory (cf. Section 7a). It is also possible to exploit systemic 
artifacts; indeed, we frequently select representing systems because 

they give rise to exploitable artifacts. In order to have access to various 

mathematical concepts and techniques, for example, we often represent 

phenomena in numerical systems that have a much richer structure than 

the phenomena they are used to represent. Many assumptions about 

differentiability, the continuous distribution of random variables, and 

the like are plausibly viewed in this way. In Section 7 we will apply 
these points about representational artifacts and conventions to some 

concrete cases of structural representation, but first we need to develop 
a more general account of that notion itself. 
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6. GENERAL CHARACTERIZATION OF STRUCTURAL 

REPRESENTATION 

The provisional account of structural representation in terms of iso 

morphic embeddings allows us to examine a number of issues in a 

reasonably simple way, but it is not sufficiently general. Given the 

intuitive motivations discussed in Section 1, the following sorts of situ 

ations should count as structural representations, even though they 
aren't so reckoned by the provisional account. As before, A is the 1RS 

that is to be represented, B the representing system, and c a mapping 
from the former to the latter. 

(i) In some cases of representation, the requirement that the 

two relational systems be of the same similarity type is too 

restrictive. For example, we might want primitive relations 

of A to be represented by defined relations of B, or defined 

relations of A to be represented by primitive relations of B. 

(ii) In some cases things of one type are represented by things 
of another. In our treatment of lengths in Section 4, first 

order properties (determinate lengths) are represented by 
individuals (positive real numbers). We finessed this by 

treating both as members of the lowest-order domains of 

their respective systems, but this isn't always feasible. For 

example, we sometimes need to include a domain of individ 

uals in a relational system containing lengths, and in such 
cases we need a more general provision for trans-type repre 

sentation. 

(iii) In some cases of representation, c does not respect all of 

the relations in the original system, but only some. For 

example, it is a basic geometrical fact that a two-dimensional 

projection of a sphere cannot depict all of its features without 

distortion, so when we use flat maps to represent the Earth, 

something has to give. For sixteenth-century mariners, con 

cerned to convert lines of constant compass bearing (rhumb 

lines) into straight lines on their maps, Mercator's projec 
tion, which misrepresents scale, offered the best compro 

mise; for other purposes equal areas maps, which accurately 

represent scale but distort shape, are preferable. 

(iv) In some cases of representation, relations are respected only 
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under certain conditions (e.g., boundary conditions). For 

example, a mercury thermometer may reliably represent the 

temperature if it is neither too hot nor too cold, but it would 

fare poorly in liquid helium or near the surface of the sun. 

(v) In some cases of representation, c doesn't respect the rele 

vant relations, but only preserves them in one direction or 

the other. For example, whenever a certain blood test indi 

cates the presence of steroids, it is correct, but if the amount 

of steroids is small, the test may fail to detect them. 

(vi) In some cases representation cannot involve a function from 
the original system to the representing system, since the 

relevant relation from A to B is many-one. For example, in 

linguistic representation one person may have two names. 

(vii) In some cases there may be reasons to include individuals 

(or relations) in A that are not paired with anything in B, so 

the requirement that the representing function be total is 

too restrictive. For example, A's domain of individuals might 
be the set of students in a university and ZTs a set of numbers 

representing their grades in Philosophy 101. Some students 

aren't enrolled in the course, and so receive no grade. 

There is some overlap among these points, but they are worth sepa 

rating because each suggests a different modification in our provisional 
account of structural representation.21 I shall accommodate the first 

five points by identifying the structural representation of one 1RS in 

another with a special sort of mapping from the first to the second. 

Once this is done, the account will be extended to subsume the sixth 

point as well. To accommodate the seventh point, we would need to 

weaken the requirement that c be total; this is certainly possible, but 

here I shall concentrate on the less obvious sorts of changes required 
to deal with the first six considerations. 

In deference to the first consideration, we shall no longer require 
that A and B be of the same similarity type, or that c be one-one or 

onto (even with respect to the two systems' domains of relations). 
Second, in order to allow trans-type representation, we shall no longer 

require that c respect the level of relations; this allows properties and 

relations to be represented by individuals (e.g., lengths by numbers), 
and individuals to be represented by properties or relations (e.g., floors 

of a building by colors).22 Third, to accommodate the fact that a repre 
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sentation need not respect all of the relations in the phenomenon that 

it represents, we shall let @ be a subset of the relations in A, and will 

say that c is a ?-morphism just in case it respects all of the relations 

in ?. The intuitive idea is that those relations in A that are members 

of ? are accurately represented in B. Fourth, in some cases properties 
and relations are accurately represented only under certain conditions; 

suppose, for example, that a given pan balance can only measure masses 

less than P. If c is a mapping from masses to reals, it would then be 

natural to be interested in such conditionals as: If P> Pi and P > Pj, 
then Pi > Pj just in case c(Pi) > c(Pj). Operations that build more com 

plex relations out of simpler ones (cf. p. 458) make it possible to give 
intensional definitions of new properties and relations right in an 1RS 

itself, and in the present case, we can define a two-place relation that 

holds between two objects just in case both are less than P (as ordered 

by >) and the former bears > to the second. In this way, we can build 

the relevant conditions under which a relation is respected into a more 

complex relation that is respected across the board. 

What about point (v)? To say that a mapping from the total domain 

of A to that of B respects the ?-place relation R is just to say that ? 

things from A (taken in a given order) stand in R if and only if their ? 

surrogates (taken in the corresponding order) stand in the relation in 
B that represents R. However, this biconditional can be split into 
two conditionals that are of independent interest. When we have the 
conditional running from left to right, viz., if (xt, . . . ,xn) E^R, then 

(c(xi), . . . , c(xn)) Ewc(R), I shall say that c preserves R. And when we 

have the conditional running the opposite direction, viz., if 

(c(xx), . . . , c(xn)) Es/c(R), then (xl9 . . . , xn) EWR, I shall say that c coun 

ter-preserves R. 

When a property or relation is both preserved and counter-preserved, 
the resulting representation is an optimal indicator, telling us the whole 

truth and nothing but the truth about atomic facts involving that prop 

erty or relation. When a mapping merely counter-preserves a property 
or relation, say property P, the representation's claims about atomic 

facts involving P will still be true, but since P is no longer preserved, 
an object might be P without the representation saying that it is. For 

example, if a representation says that a is P (i.e., if c(a) E s/c(P)), then 
a is P, but a might be P without the representation saying so. Hence, 
the representation delivers only, but not all, true verdicts about P. The 

situation is reversed when P is preserved but not counter-preserved; 
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here, if an object is P, the representation will say that it is, but it might 
also claim that something is P that really is not. And much as a set of 

unsound inference rules vitiates a logic in a way that an incomplete set 

does not, failure of counter-preservation vitiates a representation in a 

way that failure of preservation does not. When counter-preservation 
fails, the representation's verdicts about the represented domain will 

sometimes be wrong, and surrogative reasoning based on it can lead to 

false conclusions, thereby thwarting its very purpose (cf. Mundy 

[1987a]). This suggests identifying structural representations with map 

pings that are like ?-morphisms in all respects, except that they are 

only required to counter-preserve relations in ?. However, I think that 

there are at least three reasons why an account of structural representa 
tion should find a place for preservation as well. 

First, in some types of representation, particularly linguistic represen 
tation, the representing relation runs in the opposite direction from 

that in the cases encountered thus far, going from the representation 

(language) to what it represents (the world). In such cases a representa 
tion is truthful just in case relations are preserved. 

Second, as contraposition shows, a relation is preserved just in case 

its negation is counter-preserved, so a mapping that preserves P will 

provide a good representation of the property being not P. For exam 

ple, when a pan balance tells us that one object is more massive than 

another, it is probably right, and so inequality is counter-preserved. 
But if it fails to tell us that two objects differ in mass, this may simply 
be because it isn't sufficiently discriminating to detect small discrepan 
cies, and so equality is not counter-preserved. However, the counter 

preservation of inequality is equivalent to the preservation of equality 

(cf. Adams [1965]). Moreover, it is often somewhat arbitrary which 

relations we take as primitive and whether a particular relation is 

regarded as a negation or not, and so it is useful to leave a place in 
our account for preservation. 

Third, surrogative reasoning often depends on the delicate interplay 
of a number of properties and relations, and in such cases preservation 
can be important. Imagine that the relational systems A and B each 

contain a (nonempty) domain of individuals and just two first-order 

properties, P^ and ?A in A, and PB and QB in B. Let c be a mapping 
from the total domain of A to that of B that pairs PA with PB and QA 

with QB. Now suppose that c preserves (but doesn't counter-preserve) 
P*, and that it counter-preserves (but doesn't preserve) QA. Finally, 
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imagine that the lone axiom for B asserts that all things in the extension 

of PB are also in the extension of QB. Under these conditions, we can 

begin in A with an individual x that exemplifies P^, and the fact that 

this property is preserved affords a bridge to the representing system 
B, so that we can infer that x's surrogate, c(x), exemplifies PB. Reason 

ing with c(x), we then deduce that it also exemplifies QB. Finally, the 

counter-preservation of QA allows us to make the return trip to system 
A, and the conclusion that x exemplifies QA. Such reasoning would not 

be possible if both relations were merely counter-preserved, and similar 

points hold in more complicated cases as well. In short, even where the 

preservation of a relation is not of direct representational significance, it 
can be important in surrogative reasoning. 

These considerations suggest the following (penultimate) definition 

of structural representation. When A and Mf are subsets (at least one 

of which is nonempty) of A's full domain of relations and c is a function 

of the sort described in the four modifications proposed at the beginning 
of this section, c is a A/W-morphism just in case it preserves all of the 

relations in A and counter-preserves all the relations in \P. We then 

identify the structural representations of A in B with those A/^P-mor 

phisms from A to B in which ^P is nonempty, i.e., in which at least one 

relation of A is counter-preserved. In such a case the image of the set 

^ under c contains the (primitive) relations in B that are of direct 

representational significance.23 
Thus far we have required that the representing relation be a function 

from the things represented to the medium of representation. But in 

linguistic representation, something can have more than one name, so 

that the relevant relation from the object of representation to the 

representation itself is one-many and, hence, not a function. However, 
in those languages where each term has only one meaning, there is 

often an important mapping running in the opposite direction, from 

language to the world (in formal semantics, this is the interpretation 
function that assigns denotations to terms). This mapping is a function, 
and it will underwrite surrogative reasoning of a sort. True, we cannot 

begin with some fact in the world and move to the sentence representing 
it (since several different sentences might do so). But we can frequently 

move to some sentence or other that does the job, and often it doesn't 

greatly matter which we pick. As long as we get to one of the sentences 

that represents the original fact, we can reason in language and, once 

we are finished, make the return trip to a conclusion about the world. 
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As we shall see, the details of linguistic representation are complex, 
but my concern here is just to motivate an extension of our present 
account of structural representation, so that one 1RS can structurally 

represent a second when there is a A/^-morphism from either to the 

other. More precisely, I shall say that one 1RS represents a second just 
in case there is a A/^-morphism from one to the other in which V is 

nonempty (if the representing function runs from the object of represen 
tation to the representation) and A is nonempty (if it runs the other 

way). 

Allowing mappings besides isomorphic embeddings to count as struc 

tural representations is necessary if our account is to be sufficiently 

general, but it does complicate our earlier picture of surrogative reason 

ing, according to which we begin with facts in the domain of representa 
tion, pass over to a representation to reason about their surrogates, 
and then return with a conclusion about the original system. As our 

recent example with P^ and QA shows, neither the route from A to B, 
nor the route back, need exist in all cases, and when either doesn't, 

uncritical, wholesale surrogative reasoning is illegitimate. Just which 

bits of surrogative reasoning are possible in a given situation will depend 
on which relations (primitive and defined) are preserved and counter 

preserved, and this, in turn, will depend on the features of the particular 

mapping. Still, some general morals can be drawn. For example, if a 

set of relations is preserved, relations defined in terms of them and 

analogues of conjunction and existential quantification will be preserved 

(so we can move from claims about these to their surrogates), and 

relations defined in terms of the analogues of negation and universal 

quantification will be counter-preserved (so we can move from claims 

about these back to the original system). 
Additional requirements might be imposed on A/^-morphisms in 

order to obtain various species of structural representation. As we'll 
see in Section 7a, in some cases a mapping will provide a useful repre 
sentation only if it is general recursive. In other cases it is important 
that a representational system display counterfactual sensitivity, so that 

had the structure of the represented domain been different, the struc 

ture of the representational system would have differed to follow suit. 

For a thermometer to genuinely represent the temperature, it is not 

enough that it always happens to give the right reading, as it would if 

it were stuck on 50?C and spent its life in water carefully maintained 

at that temperature. It must also be the case that if the temperature 
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had been different, the thermometer would still have given the correct 

reading.24 There is little doubt that so-called externalist relations, like 

counterfactual sensitivity and causation, play an important role in many 

types of structural representation that we find useful. Still, our frequent 
use of numbers and sets as media of representation shows that structural 

representation can occur in their absence, and so we should not build 

them into our account. 

I should not wish to claim that the present account is the last word 
on structural representation, but I hope I have said enough to support 
the claim that the story in terms of A/^-morphisms is on the right 
track. It provides a definite working characterization of structural repre 
sentation that satisfies all five of the desiderata at the end of Section 

1, and it displays a variety of types of representation as sharing a 

common nature in virtue of which they are representations. The real 

test, however, comes in seeing whether the account helps clarify and 

explain specific examples of philosophical interest. In the next section 

I shall argue that it does. 

7. ILLUSTRATIONS AND APPLICATIONS 

Ideally, the aim in exhibiting a phenomenon as a structural representa 
tion is to develop such a precise account of it that we can prove 

representation and uniqueness theorems. But an examination of a 

phenomenon in the present framework can be fruitful even when we 

don't achieve this goal, since it is still likely to suggest fresh questions 
about the phenomenon and to furnish new concepts and techniques 
for its study. In order to illustrate the range of the notion, I shall 

consider four examples of structural representation here, beginning 
with one that is reasonably straightforward and working my way up to 

one that is rather more speculative. 

la. Ontological Reduction 

A variety of things go by the name of ontological reduction. Some, like 

phenomenalism, behaviorism, and methodological individualism, were 

never developed very satisfactorily. Others, notably reductions of vari 
ous number systems to set theory and of geometry to arithmetic, were 
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carried out in impressive detail. I shall consider the more successful 

sort of reduction here, focusing for definiteness on reductions of the 

natural numbers to sets. We shall find that sets provide structural 

representations of the natural numbers in a quite straightforward way, 
but my chief claim is that the philosophical significance of ontological 
reductions of numbers to sets lies wholly in this fact. 

A reduction of the natural numbers to sets should include a (recur 

sive) pairing of numbers with sets that allows us to use the axioms of 

the reducing set theory to prove that the relevant sets have the right 

(numerical) properties. Such reductions by Frege, Zermelo, and von 

Neumann are well known, but they can be interpreted in various ways. 
Some philosophers, including Frege himself, regard them as discoveries, 

telling us what the numbers really are (in much the way that the 

identification of water with H20 tells us what water really is). On such 
a construal, there can be only one correct reduction. If the natural 

numbers literally are the sets that von Neumann took them to be, they 
cannot also be the sets that Zermelo thought they were, since (with 
two exceptions) these thinkers disagreed about which set each particular 
number was. Thus, Zermelo identified 2 with the set {{0}}, whereas von 

Neumann identified it with {{0}, 0}, and it's about as simple a theorem 

of set theory as one could hope to find that these two sets are distinct. 

Hence, by the transitivity of identity, 2 cannot be identical with each, 
and so multiple reductions, construed as identifications, come to grief 
over the logic of identity.25 

We might attempt to avoid this conclusion by simply declaring that 
some particular correlation of numbers with sets is uniquely correct. 

However, alternative reductions clash at points having little to do with 
our original beliefs about numbers. Worse yet, no one has ever iden 

tified features of any particular reduction that provide much support 
for the claim that it is the one true story about what numbers really are. 

Indeed, many of the competing accounts have comparable explanatory 
value, unifying power, comprehensiveness, simplicity, and all the other 

virtues routinely cited as canons for theory choice. To be sure, some 

reductions have features that make them easier to work with than 

others; for example, von Neumann's identification of the less-than re 

lation on numbers with the membership relation on sets can be ex 

tremely useful for many purposes. But it is difficult to see why useful 
ness should count for much in determining what the numbers really 

This content downloaded from 169.234.240.2 on Fri, 17 May 2013 12:37:13 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


478 CHRIS SWOYER 

are. More importantly, even if it did, it wouldn't settle the present 
issue, since different reductions can be useful for different purposes. 

When an ontological reduction is construed as telling us what num 

bers actually are, the problem of multiple reductions seems insuperable. 
But if we regard accounts like Zermelo's and von Neumann's as provid 

ing alternative representations of the natural numbers by sets, the diffi 

culty vanishes. Multiple representations simply depict the same thing 
in different (and often complementary) ways, and differences among 
them can quite legitimately be regarded as artifacts, as Quine's "don't 

cares". Furthermore, if ontological reductions are structural representa 
tions, we can explain why they are so fruitful even if numbers are 

distinct from sets. 

In order to exhibit reductions of the natural numbers to sets as 

structural representations, I shall treat the numbers as the Natural 

Number relational system N = 
(N, s, <, 

v 
), where TV is the set of natural 

numbers, s and < are the successor function and less-than relation, 
v 

is one-one (for convenience let it be the identity mapping), and the 

system behaves in accordance with Peano's postulates. For purposes of 

illustration, I shall represent the system N in von Neumann's sets, 

though the following points would hold if we used some alternative, 
like Zermelo's. Let us say that a von Neumann relational system is an 

ordered quadruple V ? 
(V, a, E, v), where V is a nonempty set (the 

von Neumann classes), a is a function from V to V such that for all x 

in V, a(x) 
= x U {x}, E is the relation of set membership, and 

v 
the 

identity mapping. We can axiomatize V in set theory, using the axiom 

of infinity to guarantee that there is at least one inductive set (one 

containing 0 and closed under a), then singling V out as the smallest 

set of this kind (i.e., as a subset of every inductive set). Thus, V 

contains all and only the von Neumann classes, 0, {0}, {0, {0}}, 

{0, {0}, {0, {0}}}, and so on up, and they are ordered by E. 

We can now provide a structural representation of N in V via a 

function c that pairs the relation < with E, the (functional) relation s 

with a, and the individuals 0 with 0, 1 with {0}, and so on (more 

generally, c(0) 
= 0 and c(s(n)) 

= 
a(c(n))). It is then possible to prove 

a representation theorem showing that c is a A/^-morphism in which 

all of the relations in N are preserved and counter-preserved; that is, 
for every natural number m and ? in N, (A) m<n just in case 

c(m) E c(n), and (B) c(s(n)) 
= 

cr(c(n)). And this similarity of structure 
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justifies our acting as if the natural numbers were sets when reasoning 
about numbers. 

What about artifacts and uniqueness? The relational system V has 
no non-trivial automorphisms, and the only way for a mapping from 

its domain of individuals back to itself to preserve both or and E is for 

it to shift everything up the line some fixed number of steps (e.g., a 

shift of one step maps to 0 to {0}, {0} to {0, {0}}, etc.). We can then 

define a set-theoretic operation ? in V that mimics addition (it's just that 

operation that reductionists take to be addition), and any permissible 
transformation c' of the mapping c will have the form c' = 

g?c, where 

g(x) =x(Bk (for some set k in V). This provides a picture of the 

permissible transformations of V relative to the "standard" mapping c. 

More generally, we can take the set of these transformations along with 

their inverses (which will not be total functions on V, since if g shifts 

everything up ? places, g_1 will be undefined for the first ? von Neu 
mann sets), and any two isomorphic embeddings of N in V will be 

related by one of them. 

Features of the standard mapping c that are absent from other legit 
imate mappings from N to V are mapping artifacts. For example, if 

each natural number is identified with the set to which c maps it, then 

the number ? will have exactly ? members. This is often cited as an 

anomaly of von Neumann's account, but on the present construal it is 

simply a mapping artifact of his particular representation. This feature 

is often convenient, but it has no representational significance, and it 

will be absent from other, equally good, representations of N in V (it 
is missing, for example, from the mapping that pairs 0 with {0}, 1 with 

{0, {0}}, etc.). By contrast, once we decide to use V as the representing 
system, it will turn out that on every acceptable representation m < n 

just in case c(m) E c(n) just in case c(m) C c(n). These relationships 
will be invariant across all representations of N in V, but since they will 

be absent from other, equally legitimate, representations of numbers 

by sets (like Zermelo's), they are systemic artifacts of the use of V as 

the medium of representation. 

Philosophers like Russell, Goodman, and Quine have taken a more 

restrained view than Frege, holding that ontological reductions are not 

identifications, but merely explications, demonstrations that sets can do 

the work for which numbers were originally thought to be required. 
The most commonly cited motivations for explications are to achieve 
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ontological parsimony, to obtain epistemological security, and to re 

place murky or defective notions by clearer ones. These considerations 
are not irresistible, however, and I think there are good reasons to 

construe reductions as representations rather than as identifications or 

as 
replacements. 

Although ontological parsimony is always welcome, it is difficult to 

see why economy for its own sake should be of overriding importance 
in the present case. It would certainly be of interest to learn that there 

were no abstract objects at all. But ontological reductions of the natural 

numbers to sets already take set theory at face value and, hence, are 

committed to an enormous number of abstract objects 
- far more than 

the natural numbers - that pose at least as serious metaphysical and 

semantical difficulties as the numbers themselves. How about episte 

mological security? Years ago it was hoped that reductions would show 

that mathematical truth was simply a species of the less mysterious 

genus of logical truth. But as G?del's theorem shows, we can at best 

get a "reduction" of number theory to second-order logic, and logical 
truth here is really no clearer than arithmetical or, indeed, set-theoretic 

truth (indeed, questions about such perplexing things as the truth of 

the continuum hypothesis can be expressed as questions about the 

logical truth of certain second-order formulas). And what of the Qui 
nean quest for clarity (e.g., [1960], 257ff.)? In light of Peano's postu 
lates, the notion of a natural number can't be said to be objectionably 

imprecise. In fact, it's a good deal clearer than the notion of a set, 

which, as recent proposals for axioms to settle the continuum hypothesis 
or debates about the axiom of foundation show, is far from being clear 
or intuitive (or epistemologically secure). 

So-called 'reductions' and 'explications' are often quite valuable, but 

rarely, I think, for the three reasons just discussed. In general, the best 

motivations for them are just those that we have found for structural 

representations in general. The representation theorem for length mea 

surement justifies, and explains the success of, the use of numbers in 

surrogative reasoning about lengths. Just so, the representation theo 
rem for numbers and sets justifies, and explains the success of, the use 

of set theory in surrogative reasoning about the natural numbers. Sets 

provide an extremely effective medium of representation. This is not 
so because the notion of a set is particularly clear, however, but because 

set theory is a powerful and well-developed theory rich in concepts, 
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theorems, and techniques for proofs that greatly facilitate surrogative 
reasoning. Thus, set theory provides a unifying framework, a mathema 
tical lingua franca, in which an otherwise bewildering variety of theories 
can be represented and compared. 

Construing ontological reductions as structural representations rather 

than as exercises in ontology does leave us with the important question 
of what the natural numbers really are. I have adopted a naive realism 

about numbers here. However, the conclusion that judiciously selected 

sets can be used to represent numbers because they have all of the 

structure of the numbers suggests a further step, according to which it 

is this structure, rather than any individual objects, that forms the 

proper subject matter of arithmetic.26 But however this may be, there 
are many instances of powerful theories that were developed in detail 

and widely applied in the absence of any satisfactory account of their 

ontological underpinnings. Familiar examples include differential and 

integral calculus, probability theory, set theory, and number theory 
itself. In each case we knew - and arguably still do know - far more 

about the structure of the things and relations these theories deal with 

than we know about the things and relations themselves. Thus we know 
a good deal about the structure of numerical relations like greater-than 
and addition, but little about what (if anything) the numbers themselves 

really are. Similar situations arise outside pure mathematics; we quite 

successfully represent quantum mechanical systems in Hilbert spaces, 
but it is notoriously difficult to understand the nature of the real-life 

systems that these represent. 
The moral is that for many purposes a good representation of some 

thing is more useful than the metaphysical truth about it. But this is 
not to disparage metaphysics; indeed, it is common to work backward, 
from a representation, to a more direct account of the phenomenon 
that it represents. For example, qualitative accounts of various sorts of 

measurement, probability, and scientific theories have typically come 

long after the development of their associated mathematical representa 
tions. Thus a good representation of the structure of something is often 
an important first step toward a satisfactory metaphysical account of it. 

The fact that quantum mechanical systems can be painted onto Hilbert 

spaces tells us something about what such systems are like, and thus 

provides a clear and definite starting point for an account of the intrinsic 
nature of such systems. 
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lb. Linguistic Representation and Compositional Semantics 

Talk of 'linguistic representation' is ubiquitous, but can it be made 

precise and, if so, will it turn out to be a species of structural representa 
tion? The answer to both questions is yes, at least for languages that 
can be given a compositional semantics. In itself, this is scarcely note 

worthy, since on the most influential account of the matter, namely 

Montague's (1974b), a compositional semantics simply is one that is 

based on a structure-preserving mapping (a homomorphism, to be pre 

cise) from the syntax to the semantics. Interesting points emerge, how 

ever, when this fact is examined in the broader framework of structural 

representation.27 
The distinctive feature of a compositional semantic theory for a 

language is that the meaning of each complex expression of that lan 

guage is completely determined by the meanings of its component 

expressions and their syntactic arrangement. Corresponding to each 

syntactic mode of combination, a compositional theory provides a sem 

antic operation that determines the meanings of expressions combined 

in that way. For example, formulations of sentential logic often include 
a syntactic rule telling us that if cp and i)j are sentences, then r<p & \?P 
is a sentence too, and corresponding to this we have a semantic oper 
ation (here a truth function) according to which r<p & if/1 is true just in 
case both ? and ijj are true. 

In compositional theories, there is an obvious sense in which the 

syntax mirrors the semantics, but in order to exhibit this similarity as 

a full-fledged case of structural representation, we must treat it as a 

mapping from one 1RS to another. This can be done using Montague's 

elegant theory of meaning, in which we treat both the syntax and the 

semantics as relational systems, with the former including syntactic 

operations like connectives and quantifiers, and the latter containing 
semantic operations corresponding to these ([1974], Section 3). A map 

ping from the syntactic relational system to the semantic system is 

provided by an interpretation function that assigns a meaning or seman 

tic value to every simple expression of the language and which then 

systematically assigns meanings to complex expressions in the usual 

way. The key here is that the mapping preserve the structure of relations 

(all of which are operations, i.e., functions), in the syntactic relational 

system. For example, in the case of each binary syntactic operation F 

and its associated semantic operation G, this means that the interpreta 
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tion function / should conform to the schema (PF) I(x Fy) 
= 

I(x)GI(y).2s 
By way of illustration, consider a formulation of sentential logic with 

the stroke as the only primitive connective (since this logic is exten 

sional, I shall suppress the extension assignment in this example). On 

the syntactic side we begin with the relational system Syn* 
= 

(Sent, At, |F), where Sent is the set of all sentences of a language for 

sentential logic, At is the set of atomic sentences, and |F is the syntactic 

operation that carries each pair of sentences cp and if/ to their combi 

nation r(p |F \?P. From this we extract the relational system Syn 
= 

(Sent, 

|F). On the semantic side we introduce the relational system Sem = 

({*>/}> Ig), where {t,f} is a set of appropriate semantic values for the 

sentences in Syn (here truth values), and |G is the truth function that 

yields the value t exactly when either of its arguments is /. Finally our 

representation theorem shows that an interpretation is a homomor 

phism from Syn to Sem. This just means that it is a mapping that assigns 
each atomic sentence a truth value and preserves the structure of |F, 
i.e., for every pair of sentences <p and ip in Sent, I(<p |F \?i) 

= 
I(?>) |G 7(0). 

Matters become more complicated when we add quantifiers, but thanks 

to Tarski's inventive use of operations on infinite sequences of objects, 
this can be done in conformity with schema like (PF), and the approach 

works for a number of more complicated languages as well.29 
What about artifacts and uniqueness? In purely formal logic, the fact 

that two expressions have the same semantic value on some particular 
interpretation is of little interest, but the fact that two expressions have 

the same semantic value on every interpretation is. This suggests that 

the semantic value assigned to an expression on some particular inter 

pretations is simply a mapping artifact of that interpretation. No inter 

pretation is privileged, and idiosyncrasies of particular interpretations 

(like the assignment of the truth value T to the sentence letter '/?') are 

of no logical significance. What does matter, what is logically meaning 
ful, are features common to all interpretations (like the assignment of 

T to '/? v q' on each interpretation in which T is assigned to '/?'). For 

it is these that figure in the definitions of basic semantic notions like 

consistency and entailment. In the case of extensive measurement, we 

have one degree of freedom; once a unit is selected, all the remaining 
scale values fall into place. In familiar logical systems, we have a 

countably infinite number of degrees of freedom, since the assignment 
of a semantic value to each primitive expression of the language is 
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independent of the semantic value assigned every other expression. But 

it can be shown that there is exactly one homomorphism from the 

syntax to the semantics that extends an assignment of semantic values 

to the primitive expressions to an assignment to all expressions. Conse 

quently, once semantic values are assigned to the primitive expressions, 
all of the other semantic values fall into place. So an interpretation is 

unique up to an assignment of values to syntactic primitives. 
What are the prospects for extending the picture of linguistic repre 

sentation as structural representation from formal languages, like first 

order logic, to natural languages, like English? An obvious obstacle is 

that the surface structures of English sentences do not line up neatly 
with systematic semantic accounts. However, this mismatch between 

actual syntax and formal semantics motivated the introduction of the 

theoretical notion of logical form, and it may well turn out that when 

English is redescribed at a more theoretical level of logical form, it's so 

called deep structure will provide a structural representation of various 

aspects of reality. 
The prospects for this would be clearer if the prospects for developing 

a compositional semantic theory for a natural language (thus rede 

scribed) were clearer. Such theories have been devised for substantial 

fragments of various natural languages, and this provides some reason 

to think that compositional accounts are viable. It is true that various 

objections have been raised against such accounts, but many of these 

merely show that it is impossible to devise a compositional semantics 

that has certain additional features. And in at least many cases, it's not 

obvious that our linguistic theories should have the additional features 

the objector deems important. Hence, it seems an open, and largely 

empirical, question whether compositional theories will work for natu 

ral languages. All that can be said now is that if a satisfactory composi 
tional semantics can be developed for a natural language, or even for 
an interesting fragment of one, that language or fragment would provide 
a structural representation of reality and could be studied in the frame 

work developed here. 

Thus far we have thought of language as a representation of the 

world, but it is possible to reverse this picture aad think of an interpreta 
tion of a language as a representation of it. As before, the representing 
function runs from syntax to semantics, but on the earlier picture 
the syntax represents the semantics, while according to the current 

This content downloaded from 169.234.240.2 on Fri, 17 May 2013 12:37:13 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STRUCTURAL REPRESENTATION 485 

suggestion the semantics represents the syntax. Something rather like 
the second picture is at work in Davidson's account of interpretation 
(e.g., [1984]), and it is very similar to the examples of structural repre 
sentation in earlier sections, in which the representing function ran 

from the thing represented to the representation. I shall call the function 

from expressions of a language to their semantic values a scheme of 

reference. And for simplicity, I shall imagine that we are concerned 

with a simple, first-order fragment of English that contains just names 

and one-place predicates which schemes of reference map to objects 
and to sets of objects, respectively. We could then begin with a scheme 
c that assigns the intuitively correct objects to names (e.g., George 
Bush to 'George Bush') and sets of objects to predicates (e.g., the set 

of gentle things to 'gentle'). In concert with the standard, Tarskian 

recursive apparatus, c would then assign truth conditions to all the 
sentences of the language, telling us, for example, that 'George Bush 

is gentle' is true just in case c(George Bush) G c(gentle). Indeed, we can 

even prove a sort of representation theorem, showing that a sentence is 
true just in case its truth conditions obtain.30 

This approach yields a picture of interpretation as a sort of measure 

ment. And just as there can be different, but equally good, scales for 

measuring temperature, an example in Wallace (1977) suggests that 

there can be different, but equally good, schemes of reference. The set 

of semantic values for names of our language contains a number of 

objects like George Bush, and Wallace invites us to consider a one-one 

mapping, ip, of this set back onto itself. We can then extend if/ to a 

mapping that also carries the power set of the universe of objects back 
to itself in a way that it systematically undoes the changes wrought by 
if/ with respect to individuals (for example, a one-place relation S is a 

subset of the universe, and if/S 
= 

{x'.if/'1 E S}). The mapping if/ is not 
an automorphism (it doesn't preserve sets like S), but it does respect 
structure in the sense that any individual x is in S just in case ifj(x) is 
in if/(S). Mappings like i?j carry schemes of reference to equally good 
schemes of reference, in the sense that each assigns the same truth 

conditions to every sentence of the language (speaking loosely, both 

will pair any given sentence with the same state of affairs). For example, 
since c is a scheme of reference, c* = 

if/oc will be one as well, and 'Fa' 

is true just in case c(a)Ec(F), which in turn holds just in case c* 

(a) E c*(F). Hence, if we think of our universe of objects and the sets 
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and relations-in-extension on them as a representing relational system, 
it is natural to think of the group of mappings defined in this way as 

its permissible transformations. 

In the case of the measurement of temperature on an interval scale, 
the objective facts involve things like ratios of differences of tempera 
tures, and these can be represented in equally good ways by scales 

with different units and zero points. Similarly, on the current picture 
of interpretation, sentences are the objective units of meaning, and 

their truth conditions can be represented in equally good ways by 
schemes of reference which tell different stories about reference and 

satisfaction. Moreover, just as legitimate scales are related by a group 
of transformations, so too are legitimate schemes of reference. And 

since different schemes of reference may be equally correct, claims like 

those about the referents of proper names, whose truth value depends 
on the use of one scheme rather than another, will reflect mapping 

artifacts 
Whatever the plausibility of such claims, they are interesting here 

as treatments (perhaps unwitting ones) of the uniqueness problem in 

semantics and interpretation. More generally, the treatment of linguistic 

representation as structural representation enables us to examine it 

from a perspective in which questions about the existence and unique 
ness of representations become questions about topics like indetermi 

nacy that are of interest from a semantic point of view. It also locates 

semantics in a more general context, which allows us to compare it 

with other forms of structural representation, including some species 
of mental representation. 

7c. Mental Representations 

Numerous writers have suggested that many of our thoughts are repre 
sentations or models of reality. Nearly a hundred years ago, the physi 
cist Heinrich Hertz wrote that when we think, "we form for ourselves 

images or symbols of external objects; and the form which we give 
them is such that the necessary consequences of the images in thought 
are always the images of the necessary consequences in nature of the 

things pictured. In order that this requirement may be satisfied, there 

must be a certain conformity between nature and our thought" ([1956], 
p. 1). Fifty years later the psychologist Kenneth Craik transformed this 

claim into a scientific hypothesis, urging that thought involves mental 
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representations or models that have the 'same relation-structure' as the 

things they represent. Craik isolated three steps in the mind's modeling 
of reality: we 'translate' facts into corresponding mental representatives 
or surrogates, manipulate these in thought, then make the return trip 
to a conclusion about the world in the form of a prediction or action 

([1943], esp. Ch. 5). These three steps correspond exactly to the steps 
in our earlier examples of surrogative reasoning, for instance, to our 

'translating' facts involving lengths into their numerical surrogates, en 

gaging in mathematical reasoning, then making the return trip to a 

conclusion about our original objects. 
On Craik's view, the action of psychological operations on mental 

tokens (presumably neural states of some sort) is as much a case of 

surrogative reasoning as our explicit numerical reasoning about lengths. 
In the case of measurement, an isomorphic embedding explains the 

applicability of mathematics to physical objects and their lengths. In the 
case of mental representation, a hypothesis about the representation's 
structural similarities to selected aspects of the world aims to explain 
the applicability of thought to reality. Because relational systems were 

traditionally taken to be extensional, they were ill-suited for developing 
such ideas about thought (whose very hallmark is intentionality), but 

with the introduction of intensional relational systems, this is no longer 
the case. 

According to most recent accounts, mental representations are theo 

retical entities, often inaccessible to introspection, so questions about 
their nature, and even their existence, are empirical ones to be an 

swered by cognitive scientists. But questions about the structure that 

various sorts of representations have, if current hypotheses about them 
are right, can be studied independently of empirical investigation, and 

these will be our concern here. Caution is needed in treating psychologi 
cal operations on mental representations as a species of surrogative 

reasoning, however, since we don't reason with mental representations 
in the same way that we reason with diagrams or maps. When we reason 

with a diagram, we doubtless represent it in thought. But reasoning with 

(at least some) mental representations cannot require that we represent 
them in thought, on pain of a vitiating regress. Reasoning about a 

diagram may involve the manipulation of a mental representation of it, 
but reasoning with a mental representation just is the manipulation 

(conscious or not) of that representation. The activity of at least some 

mental operations is the end of the line, the place where the representa 
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tional buck stops, and it is this activity that is constitutive of surrogative 

reasoning with mental representations.31 
Some thinkers contend that at least many of our mental representa 

tions have the same structure as sentences of natural or formal lan 

guages (e.g., Fodor [1975]). If this is right, then we may reasonably 

hope to devise a compositional semantics for such representations, and 
so the issues here are not substantially different from those discussed 

in the previous subsection. Here I will consider two rather different 

types of mental representation, Philip Johnson-Laird's mental models 

and Roger Shepard's mental images. 
Johnson-Laird's account of mental models is striking in its detail, 

scope and empirical support (1983). Although his concerns are quite 
different from mine, his mental models involve just the sorts of struc 

tural relationships studied above. Indeed, he holds that the feature that 

distinguishes mental models from other types of mental representation 
(like semantic networks) is that their structure is "identical to the 

structure of the states of affairs . . . that the models represent" ([1983], 
p. 419). Johnson-Laird is concerned with the actual psychological pro 
cesses of human beings, and so he places additional constraints on 

mental models that do not hold for structural representations in general. 
For example, he maintains that the operations involved in the construc 

tion and employment of mental models are computable (because he 

believes thought is computational), and that mental models contain a 

finite number of elements (because the brain is finite). But such ad 

ditional requirements in no way conflict with my account, and mental 

models are an interesting and important species of structural representa 
tion. 

Johnson-Laird argues that his theory of mental models affords the 

best available explanation of a number of important psychological phe 
nomena, including our perception of the world, understanding of dis 

course, and control of bodily movement. But for our purposes, the role 

that mental models are hypothesized to play in deductive inference is 

of particular interest, since it is part of an explicit, empirical theory 
about surrogative reasoning with mental representations. On this ac 

count, everyday inference rarely involves the application of syntactic 
rules like modus ponens or resolution. Instead, we construct a mental 

model that embodies the information contained in a set of premises (as 
well as additional general information that seems relevant). We then 

examine this model and draw a conclusion from it that is not stated 
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explicitly in the premises (and that doesn't discard semantic infor 

mation). Finally we search for alternative models of the premises that 

would falsify the conclusion, and if none are found, the argument is 

judged to be valid. The process is quite fallible, but it should be, since 

the goal is to explain actual human reasoning, with all its infirmities. 

Much remains to be done in developing this account, but Johnson 

Laird argues that it does a better job of explaining various features of 

human inference than its competitors do. For example, it explains why 
someone confronted with several arguments of the same form fares 

better with those involving familiar subject matter (it's held to be easier 
to construct mental models of familiar things). It also predicts that the 

greater the number of models that have to be constructed to draw a 

valid inference, the more time it will take us to do so, and the more 

prone to error we will be, and there is some evidence to bear this out. 

Finally, a computer program based on this account produces patterns 
of success and failure with inferences that are quite similar to those of 

human subjects. 
Johnson-Laird's account provides evidence that structural representa 

tions play an important role in our mental life, and it suggests that the 

activities of many psychological operations are in fact instances of 

surrogative reasoning. On the other hand, our account of structural 

representation should provide a useful philosophical foundation for 

Johnson-Laird's theory by situating it in a more general account of 

representation. Viewing mental models as structural representations 
also suggests possible modifications in Johnson-Laird's account. For 

example, his requirement that the structure of mental models be identi 

cal with the structure of the states of affairs that the models represent 
not only risks endowing us with more acuity than we actually have, it 

would also make us inefficient. My conclusion that Jack is taller than 

Frank, because Jack is taller than Dan, who in turn is taller than Frank, 
makes no use of my knowledge that Dan is a plumber. In such cases 

it would be quite inefficient to employ mental models that included 

such irrelevant information; indeed, it is a plausible conjecture that 

mental models, like many other representations, incorporate a number 

of simplifications and even idealizations. 

Johnson-Laird's claims about the structural identity of mental models 

and the things they represent is based in part on his view that a represen 
tation should be economical, so that none of its elements (including 

relations) and none of its structure should lack representational signifi 
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canee. This suggests that he doesn't mean that every (known) aspect 
of something will be represented in a mental model of it, but merely 
that every aspect of the model will represent some aspect of the thing. 

This seems doubtful on his own grounds, however, since he holds that 
a general description of a situation is represented by a single, quite 

specific, mental model, which stands for all the instances of the general 
situation. And such specific models are bound to contain various fea 

tures which don't correspond to features of the more general situation. 

But a more important reason for suspecting that mental models have 

features of no representational significance is that virtually all represen 
tations contain surplus features or artifacts, and it would be surprising 
if mental representations turned out to be an exception. 

We can accommodate these points while retaining the spirit of John 

son-Laird's account by requiring simply that mental models be struc 

tural representations (rather than isomorphisms) that satisfy Johnson 

Laird's remaining constraints (e.g., his requirement that they contain 

only a finite number of elements).32 This friendly amendment also 

suggests various empirical questions about mental models. First, what 
sorts of A/^-morphisms (if any) do various types of mental models 

involve, and which sorts of relations do they preserve or counter 

preserve? Second, what sorts of simplifications and idealizations (if any) 
do mental models incorporate? Third, what sorts of artifacts (if any) 
do mental models contain, and do people sometimes err because arti 

facts are mistaken for actual features of the situation being modeled? 

Fourth, what are the uniqueness properties of mental models; how 

much convention do mental models involve, and are legitimate models 

related by an interesting group of transformations? 

Mental images are typically thought of as a special sort of mental 

representation, in many ways akin to pictures. In an elegant series of 

experiments over the last twenty years, Roger Shepard and his co 

workers have investigated the properties of mental images and their 
transformations. In a typical experiment, subjects are shown drawings 
of pairs of angular, three-dimensional objects with differing orien 
tations. Each drawing depicts either the same figure from two different 

perspectives, or else two different figures that are mirror images of 
each other. Subjects are then asked to judge whether each pair of 

pictures displays the same figure from different perspectives or not 

(e.g., Metzler and Shepard [1982]). Later many of them reported that 

they began with one figure and imagined it rotating smoothly until it 
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was congruent 
- or clearly failed to be congruent 

- with the other figure 
in the picture. Furthermore, the time they took to decide whether the 

figures were the same was proportional to the angle through which one 

of the figures would actually have to be rotated into congruence with 

the other. Metzler and Shepard concluded that their subjects employed 
some sort of mental analog of physical rotation in order to transform 
an image of one figure in a continuous way into an image of the other. 

If correct, this account suggests that some surrogative reasoning in 

volves a type of mental operation that is quite different from reasoning 
in language. Images are not spatial pictures in the head, however, and 
so they cannot literally undergo spatial rotation. In what sense, then, 
did subjects' psychological operations correspond to rotations? To 
answer such questions, Shepard and Chipman introduced a hypothesis 
about what they called second-order isomorphism, according to which 

there is an approximate parallelism "between the relations among dif 

ferent internal representations and the relations among their corre 

sponding external objects" ([1970], p.l). That is, they hypothesized 
that there is a structural similarity between an actual rotation of a 

physical figure, on the one hand, and the mental transformation of its 

image, on the other. 

Such talk is sometimes criticized as unduly metaphorical, but from 

the current perspective second-order isomorphism is just an instance of 

structural representation in which higher-order structure is preserved 

(and counter-preserved), and it could be explained in the following 
way. The fact that the medium for visual images is so good at encoding 
information about the geometrical properties of physical objects sug 

gests that it has a structure that derives from relations with at least 
some of the same formal features as ordinary spatial relations like 

incidence, betweenness, and congruence. If so, it should be possible to 

provide an 1RS model of this medium using what I shall call a Shepard 
1RS. 

Geometries are often treated as relational systems which include a 

set of points and relations like congruence. Geometers frequently step 
back and talk about various sorts of transformations (like collineations 

or rigid rotations) of these systems, but such transformations are simply 

mappings from the set of points back onto itself, and we could just as 

well expand a geometrical relational system to include them. Similarly, 
we might think of a Shepard 1RS as containing a set of individuals, 
relations among these, and a group of transformations of this set. It is 
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an empirical question just what these individuals would be and whether 

their structure would be Euclidean, hyperbolic, or the like. But to fix 

ideas, we might imagine the individuals along the lines of pixels in 

computer graphics, the relations as ones sharing at least some of the 

topological and metrical properties of ordinary spatial relations like 

betweenness and congruence, and the transformations as mappings with 
at least some of the same structural features as Euclidean transforma 
tions like rotations, translations, or reflections. 

Three steps would have to be completed to develop this idea. First, 
in order to secure a grip on the geometrical features of the physical 

objects that images represent, we would have to adopt some set of 

axioms for ordinary geometrical relational systems that included various 

transformations of their sets of points. Second, drawing on current data 

and theory, we would need to devise axioms for a Shepard 1RS which 

determine the structure of such relations as psychological coincidence 
or psychological rotation. Third, we would have to use these axioms to 

prove a representation theorem, showing that any ordinary geometrical 
relational system could be mapped to some Shepard 1RS system in a 

way that preserved and counter-preserved appropriate relations; in 

particular, it should preserve at least some structural features (e.g., 

continuity) of various transformations of the Euclidean plane. Such a 

representation theorem would justify our use of imagery in surrogative 
reasoning about spatial configurations, explaining why, for example, 

we can represent the current orientation of the piano and the door by 

images, manipulate these in thought, then translate the result back into 
a decision about how best to tilt the piano to fit it through the door. 

Finally, we could test the empirical adequacy of this account by invoking 
various background assumptions and hypotheses (e.g., that mental ro 

tation occurs at a constant rate), in order to derive predictions about 

subjects' behavior from the axioms for a Shepard 1RS. To the extent 

that these predictions were confirmed, we would have reason to accept 
the account. 

Experiments like Shepard's have inspired much debate over the dif 

ference between analog representations (like pictures and visual im 

ages), on the one hand, and propositional representations (like sen 

tences of English and LISP), on the other, and a number of criteria 

have been proposed for demarcating the two. According to one popular 
account, what distinguishes analog from propositional representations 
is that the structure of the former is similar to the structure of the 
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things they represent. As we saw in the previous section, however, 
once we consider sentences at a theoretical level of logical form, it may 
turn out that they have some of the same structure as the states of affairs 

that they represent. Shepard himself stresses that when a propositional 

representation like a matrix is used to provide representations of a 

figure's orientation before, and after, a rotation, the intervening calcu 

lations using matrix algebra do not represent any intervening orien 

tations of the figure at all. With mental rotations, by contrast, there is 
a structural similarity between the image and a rotating physical object 
at each of the intermediate stages of the mental transformation. This 

suggests the hypothesis that what is distinctive about analog representa 
tions is that each step in surrogative reasoning with them involves 
a structural representation of the phenomena that we are reasoning 
about. 

Visual images can also be used in reasoning about situations that are 

not spatial. In a typical experiment, participants might be told that 

Tom is richer than Edna, and that Edna is poorer than Dan. Asked to 

decide who is richest, subjects often represent the people by objects 

standing in spatial relations (like being to the right of) that involve an 

order-isomorphism with the richer-than relation (e.g., Huttenlocher, 

[1968]), a strategy that again involves surrogative reasoning under 

written by a structural representation. But there may be many kinds 

of mental representations that are not structural representations. For 

example, much recent attention has been devoted to the distributed 

representations of connectionist accounts of cognitive activities (e.g., 
Hinton, McClelland and Rumelhart, [1986]). In such representations, 

specific units of a cognitive system do not stand for specific elements 

of the thing being represented. Instead, each element is represented 
by a pattern of activity distributed over many units (and each computing 
unit is involved in representing many different things). Distributed 

representations are typically given structural representations in vector 

spaces, but the representations themselves are not easily viewed as 

structural representations, since it is difficult to isolate aspects of them 

to serve as surrogates for the specific, individual constituents of the 

phenomena they depict. Recently, however, attempts have been made 
to endow distributed representations with a constituent structure, so 

that (perhaps at some very abstract level of analysis) a representation 
of the cat in the vat will contain a representation of the cat that is also 

present in a representation of the cat's biting the bat. It is too early to 
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tell whether such accounts will succeed, but if they do, they may allow 
us to bring distributed representations into the fold of structural repre 
sentation.33 

7d. Possible-Worlds Semantics: Modal Logic as Measurement 

We can show that ontological reductions and compositional semantic 

theories provide structural representations, and although additional 

work would be needed to show this for the mental representations 
discussed in the previous subsection, we found good reason to be 

optimistic about the prospects for doing so. In this subsection I shall 

examine a much more programmatic example, that of standard, pos 
sible-worlds semantics for alethic modal logic. 

When doing metaphysics or the semantics of natural language, we 

often find possible-worlds semantics quite useful for reasoning about 
our modal thought and talk, and this raises an applications problem: 

Why does it work so well? Possible-worlds semantics is sometimes 

thought to provide a reduction of modality (to extensional logic and an 

ontology of merely possible entities), and our earlier conclusion that 

ontological reductions are often best construed as structural representa 
tions suggests that perhaps this semantics works as well as it does 

because it is a structural representation of some sort. 

There are two, much more common, construals of possible-worlds 
semantics. On the one hand, we have modal realists, who willingly 

accept commitment to the existence of the merely possible individuals 

and worlds that the semantics appears to invoke. On the other, we 

have modal formalists, who hold that possible-worlds semantics is just 
a formal apparatus and, hence, free of ontological commitments. Modal 

realism has a ready explanation for the applicability of possible-worlds 
semantics: it is literally true', the merely possible entities that it seems 

to require really do exist. But it achieves this explanation at the cost 

of a dubious and epistemologically shaky ontology. Modal formalism, 

by contrast, avoids the ontological commitments of modal realism, but 

in a way that renders it unable to solve the applications problem; it 

cannot justify our use of modal logic, or explain why it applies to 

anything of interest. 

The discussion so far suggests a synthesis of this thesis and antithesis 

that I shall call modal representationalism.34 If successful, it would allow 

us to avoid the ontological excesses of modal realism, while still apply 
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ing modal logic in good conscience. Modal representationalism should 

be particularly appealing to actualists, who hold that only actual things 
exist (or even could exist), so that what makes a claim like ra could 

have been P"1 true is not something in some merely possible world, but 

something in the actual world. Actualism doesn't require that modality 
be primitive and irreducible, but it fits nicely with the conclusion that 

it is (cf. Swoyer [1984], esp. fn. 11). I won't defend actualism or 

primitivism here, however, but shall simply try to show how modal 

representationalism would facilitate their development.35 
Modal facts have a structure. For example, if it is a fact that a is 

necessarily P, then a is actually P, and if a is actually P, then a is 

possibly P. My hypothesis is that possible-worlds semantics - 
or, more 

precisely, the Kripke model structures it employs 
- 

provides a structural 

representation of such facts, and that this is what justifies its use in 

surrogative reasoning about them. Of course we can't rest content with 
a blithe slogan that something is just a representation. It must be shown 

in detail that the appropriate structural parallels exist, and one virtue 

of the present framework is that it makes clear what this would require. 

Showing that length measurement is structural representation re 

quires formal accounts of the medium of representation (the real num 

bers), of the phenomena that are represented (lengths), and a proof of 
a representation theorem. Analogous steps would be required to de 

velop the sort of modal representationalism envisaged here. First, we 

would need an axiomatic account of the medium of representation, 
namely Kripke model structures, that treated them as multi-track IRSs 

(Section 2), i.e., as IRSs containing genuine properties and relations 

that are assigned extensions at different worlds. This would allow us to 

represent things, like the fact that a specific individual exemplifies a 

given property in every world, directly in a Kripke system, without any 
detour through language (cf. fn. 11). Since we would want to be able 
to deal with de dicto necessity, we would also need to include operations 
(of the sort mentioned at the end of Section 2) allowing us to build 

properties, relations, and propositions from the properties, relations, 
and individuals in the system. This would enable us to treat the exten 

sions of propositions as truth values, so that truth could be defined 

directly in the relational system, again without a detour through lan 

guage (cf. Bealer [1981]). Thus reconstructed, a Kripke model structure 

would be a multi-track 1RS containing a set of tracks or 'worlds', one 

of which, G, would directly represent the actual world. But the things 
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in these 'worlds' could be numbers or pure sets or formulas (as in 

canonical models of modal systems) or most anything else. 

Second, we would need an axiomatic account of the modal structure 

of reality that does justice to the view that the world contains only 
individuals, properties, relations, and propositions, none of which are - 

or are parts of - 
merely possible worlds. As usual, we will need an 1RS 

model of the phenomenon being represented, but where are we to find 

such a model of the modal structure of reality? We cannot simply adapt 
the standard Kripkean apparatus, since the goal is to explain why 

- 

rather than presuppose that - this machinery can be used to represent 
modal features of the world. Still, facts about modality can be painted 
onto Kripke model structures, and this tells us something about them; 

indeed, as we saw in Section 7a, philosophers often work backward, 

using a representation as an instrument to gain a better understanding 
of the things that it represents, and this would be a useful strategy here. 

Thus, we might tentatively select a particular modal logic, transform its 

standard semantic characterization into axioms for Kripke-style IRSs 

and, finally, use the features of this representation as a guide in devising 
an account of the modal structure of the actual world, perhaps in the 

following way. 
I shall call the 77?5s used to model the modal structure of reality or the 

actual world modality systems. A modality system contains individuals, 

primitive relations, and operations for building (compound) relations 

and propositions from these, but it would not contain alternative 

'worlds' or alternative extension assignments. In addition to the sorts 

of relation-building operations mentioned in Section 2, it would be 

natural to add an operation, Nee, that maps relations (including proposi 

tions) to other relations (their necessitations); for example, it would 

map the property being human to the property being necessarily human. 

Finally, we would need axioms governing this new operation. On the 

current approach, the most interesting ones would be those specifying 
how Nee interacted with the extension assignment. Letting 

~~ be 

the operation that maps relations to their negations, plausible 
candidates would include vPoss(7>) 

= 
v~Nec~(7>), vNec(P) C V(P), 

V(P) C vPoss(P), and (perhaps) vNec C (P) vNecNec(P).36 
This treatment of Nee involves a slightly novel picture of relation 

building operations. As we saw in Section 2, the extension of the 

conjunctive property being P and Q is determined by the extensions of 

P and of Q, but on the account envisioned here, the extension of the 
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property being necessarily P - 
Nec(P) 

- is not completely determined 

by the extension of P, either in M, or anywhere else (there is nowhere 

else). This suggests that the axioms governing some relation-building 

operations should place structural constraints on their extensions, 
rather than completely determining them. For example, although 

vNec(P) C V(P) doesn't completely determine the extension of Nec(P), 
it does require that it be a subset of the extension of P. What, over 

and above this, pins down the extension of Nec(P)? As long as the 

constraints provided by the axioms for M didn't settle the matter (as 

they would have to, for example, if P has the form Q or not Q), 

nothing, at least nothing in the logic, would determine the extension of 

Nec(P). But this is just what it means to say that modality is primitive.37 
The final step in the development of modal representationalism would 

be the proof of a representation theorem, ensuring that each modality 

system M could be mapped to some Kripke system # in a way that 

preserved modal structure, that is, in such a way that a proposition 
would be true in M just in case its surrogate was true in the actual 

'world', G, o? K. We can think of this mapping proceeding in stages, 

beginning with just M and G. Since we can tailor G to fit M, it will 

always be possible to concoct a mapping c that carries the individuals 

and the primitive relations of M to surrogates in G in a way that respects 
these relations (so that, for example, an individual in M will exemplify 
the primitive property P just in case its surrogate in G exemplifies the 

surrogate of P). It is also possible to require that c be one-one and 

onto, which means that it will respect all of M's (non-modal) relations, 

including those with internal structure (so that, for example, an individ 

ual in M will exemplify the property bearing L to something just in case 

its surrogate in G exemplifies the surrogate of this compound property). 
The question is whether we can go on to construct a Kripke system 

of 'worlds' around G in such a way that a modal proposition (one 
constructed using Nee) will be true in M just in case its surrogate is true 

in G. One way to approach this would be to adapt standard rules for 

semantic tableaux in modal logic, so that, for example, if we have 
a E v~Nec(P) in A#, we would put c(a) E v~Nec(c(P)) in G, and then 

would add a new 'world', accessible to G, in which c(a) E v~~c(P). 

Although the basic ideas here are reasonably straightforward, it re 

quires some delicacy to give a plausible account of the detailed interac 

tions of Nee and such things as operations that inject quantificational 
structure into relations. At each stage, the key test would be whether 
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the axioms for modality systems constrained facts about modality in a 

way that ensured that such an 1RS could always be mapped to some 

Kripke system. A representation theorem showing that they do would 

then explain why things work as if the possible-worlds account were 

true, and so would justify the use of Kripke semantics in surrogative 

reasoning about modal matters, without requiring the existence of any 
non-actual things.38 

One virtue of modal representationalism is that it would allow us to 

apply lessons learned in our examination of structural representation 
to the metaphysics of modality. Consider, for example, the problem of 

representational artifacts. A Kripke 1RS could contain objects in some 

of its 'worlds' that were not surrogates of any actual individuals. As a 

simple illustration, imagine a modality system M that includes just John 

Kennedy, the two properties, being a senator and being an astronaut, 
and the two-place relation, being the father of. We might represent M 

by a Kripke system K containing the three 'worlds', G, 77l5 and 772, 
where G contains the individual x, and 77x and 772 each contain x and 
a second individual, y. We then introduce a mapping, c, that pairs 

Kennedy with his surrogate, x, and that pairs the properties and re 

lations in M with surrogates in K. In 77i, we let (c(Kennedy), y) be in 

the extension of the surrogate of the father of relation and y be in the 

extension of the surrogate of the property of being a senator, while in 

772 we let y be in the extension of the surrogate of the property of 

being an astronaut. These machinations will make the surrogate of M's 

proposition that Kennedy could have had a son who was a senator, but 

who might have been an astronaut instead, true in G. In this example, 
x is a surrogate for Kennedy, but y is not a surrogate for anything at 

all - it's just a (systemic) artifact of a structural representation. Like 

many other artifacts, y plays a computationally important role, greatly 

facilitating surrogative reasoning about modality, but it has no direct 

representational significance. In Section 5, I conjectured that certain 

types of realism were encouraged by mistaking artifacts of representa 
tions for features with representational significance, and it is natural to 

conjecture here that modal realism is similarly abetted by the misappre 
hension that objects like y are directly representational.39 

These remarks on modal representationalism are much more specula 
tive than the discussions of earlier examples of structural representa 
tion, but if such an approach worked for the alethic modalities, it would 

be natural to consider extending it to other intensional logics, like tense 
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logic or the logic of belief. After all, it is difficult to regard beliefs, or 

their objects, as literally involving sets of possible worlds, but it is 

plausible to suppose that some structural features of facts involving 
beliefs can be represented by such sets. None of this, of course, is meant 

to disparage possible-worlds semantics, any more than representational 
theories of measurement are meant to disparage the real numbers. The 

existence of qualitative axioms for lengths does not render numbers 

obsolete for reasoning about length, nor would the existence of axioms 

for modality systems render Kripke semantics obsolete for reasoning 
about modality. As with many other structural representations, these 
two representational systems are familiar, powerful, and compu 

tationally tractable, and so they would often be easier to work with 

than the reality that they represent. But they are still representations, 
rather than that reality. 

My goal here has been to explain what structural representation and 

surrogative reasoning are, to show why they are important, and to 

develop an account of them. If I have been on the right track, the 

account provides a framework in which a number of philosophically 

interesting phenomena can be fruitfully studied and, in some cases, in 

which familiar problems involving them can be solved.40 

NOTES 

1 
Representations of non-existent states of affairs sound more mysterious than they are. 

They will be discussed briefly below, but the basic idea is that many representations can 

represent the way things would have been, had things been slightly different from the 

way they actually are. Such representations are both common and important. Rather 

than embarking on a course of action and discovering its consequences the hard way, it 

is often prudent to do an everyday Gedankenexperiment (as in a chess game), a physical 
simulation (as in a wind tunnel), or a computer simulation (as with models of the 

greenhouse effect), in order to see what would happen under various possible conditions. 

These vicarious explorations of alternative possibilities play an essential role in planning 
and decision making. 2 

I shall sketch a defense of my claim about the applicability of mathematical theories 

to reality below; more detailed defenses may be found in Krantz, et al. (1971), Swoyer 

(1987), and various presentations of structuralism in the philosophy of mathematics (e.g., 
Resnik [1981], Shapiro [1983]). I shall talk about the structure of reality as though the 

notion were unproblematic. Some philosophers contend that our thought or language 

actually shape this structure, but even if there is some sense in which this is so, we can 

still talk about the structure of things given our concepts and interests. And we can retain 

fallibilism while talking about the structure that things seem to have in light of our best 

theories about the world. Although my account will apply to several types of mental 
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representation, these involve rather special problems, and so I shall set them aside until 

Section 7c. 
3 

A more precise account of this is given in Section 4. The picture of measurement at 

work here is the representational theory of measurement developed by Helmholtz, Holder, 

Campbell, Stevens and, more recently, Suppes and his collaborators (see e.g., Krantz, 
et al. [1971], which also contains numerous references to earlier work in the tradition, 

and Narens [1985]). 4 
If this knowledge involves generalizations analogous to scientific laws of coexistence, 

the conclusion will be one about additional features of the original situation that don't 

involve change (as in reasoning about distances on a map). If the knowledge involves 

something more like laws of succession, the conclusion will tell us something about the 

original phenomenon at some other time (as with calculations to discover the date of the 

next lunar eclipse). A number of examples of surrogative reasoning will be discussed 

below; two simple, but detailed, examples will be found in fn. 16. In some cases, e.g., 
the use of a scale model in a wind tunnel, it may be most natural to say that we 

reason directly about a representation, and thereby reason indirectly about that which it 

represents. In other cases, e.g., the use of numbers in measurement, it may be more 

natural to say that we use a representation to reason more-or-less directly about what it 

represents. Structural representations may also mediate inductive inferences, but here I 

shall concentrate on surrogative reasoning that is deductively valid. 
5 

Structural representation has a distinguished philosophical history. Leibniz called it 

expression, telling us that one thing "expresses something in which there are relations 

that correspond to the relations of the thing expressed", so that "we can pass from a 

consideration of the relations in the expression to knowledge of the corresponding proper 
ties of the thing expressed" ([1970], p. 207). Apart from his claim that each monad 

expresses the entire universe, many of Leibniz's examples are quite similar to the ex 

amples of structural representation discussed below: a map of a region expresses the 

region, a model of a machine expresses the machine, the perspectival projection of a 

figure on a plane expresses the original figure, speech expresses thought. The view that 

something very like structural representation underlies such diverse phenomena as the 

semantics of natural languages and the propositional attitudes forms the core of Wittgen 
stein's picture theory in the Tractatus (1921). If the examples in Section 7b and 7c are 

correct, Wittgenstein was much closer to the truth than is commonly supposed, and it is 

natural to conjecture that the glaring defects in his account derive mainly from its 

accompanying doctrines of extensionalism, logical atomism, the absolute simplicity of 

objects and (arguably) nominalism, none of which have any part in the present story. 
6 

I won't assume the existence of any more properties and relations than are needed to 

accommodate the cases of representation I discuss. I shall reserve the terms 'property' 
and 'relation' for genuine properties and relations, and shall call their extensional substi 

tutes 'sets' and 'relations-in-extension'. In more formal contexts, it is often convenient 

to treat properties as (one-place) relations, and I shall sometimes follow this practice. I 

shall also treat properties and relations as universals, rather then tropes or quality 
instances. 
7 

Of course an 1RS can be regarded as a kind of extensional relational system. One way 
to do so is to collapse its domain of individuals and its domains of relations into a single, 

over-arching domain, add a number of sets to the system (one for each type of entity in 

original 1RS), and treat 
v 

as a (partial) function on the single, new domain. But the 

philosophical uses we shall have for IRSs make a Gestalt switch fruitful, reversing this 
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point of view to exhibit extensional relational systems as a special case of intensional 

systems. This can be achieved by thinking of extensional systems as containing a tacit or 

suppressed extension function that is one-to-one (it could even be the identity function). 
This also facilitates comparisons between the two sorts of relational systems. But from 

now on, when I speak of a relational system, I shall mean an 1RS. 
8 

The general version of (PR) tells us that for every n-place, /-level relation R in A 

and H-tuple of items, (tx, . . . , rn) of level M in A, (rx, . . . , t?)EvR if and only if 

(c(T1),...9c(Tn))ey'cQ?). 9 
When we treat a real-life system as an 1RS, the axioms for it could be construed as 

definitions of the relations it contains, but it is often better to regard them as empirical 
claims about those relations (cf. Swoyer [1987], 260ff.). In some cases an 1RS model of 

a situation or phenomenon not only disregards some of its relations, but injects a hefty 
dose of idealization as well. We frequently treat actual things as point masses or ideal 

speaker-hearers or objects that have perfectly definite lengths, even though we know that 

there really aren't any such things. This often enables us to provide reasonably tractable 

structural representations of actual systems in well-understood mathematical systems. In 

such cases, we can still think of the 1RS model as a faithful depiction of something actual, 

though now it is the scientist's idealized version of a real-life system, rather than the 

system itself, that the representation depicts. 10 
These operations allow intensional definitions in which we define new relations directly 

in an 1RS, without any detour through language. At the turn of the century, Russell 

proposed a view of this sort, urging that the class of properties and relations is closed 

under negation, conjunction, and relative products ([1903], Ch. II, Sections 27-30). 
Axioms assuring the proper working of the various operations (and families thereof) are 

pretty much what one would expect; detailed accounts may be found in Bealer (1981), 
Zalta (1983) and Menzel (1986). 11 

Formally, a multi-track 1RS is an ordered set A = 
(I, 9i, Tm, <, Tr, v) where Tm is 

a nonempty set (whose members are, or stand for, times), < is a binary ordering relation 

on Tm, Tr is a nonempty set of tracks, and 
v 

is a three-place function that assigns an 

extension of the expected sort to each relation at every track at every time. A multi 

track 1RS can do much of the work of a phase space, with the space's possible states 

being correlated with the set of all atomic facts that obtain in any particular track at any 

particular moment. Multi-track IRSs are inspired by the model structures common in 

intensional logics, but differ from them in containing genuine properties and relations, 
rather than their extensional stand-ins. This difference matters; on the standard approach 
to tense logic, for example, the reliance on extensional stand-ins means that a model 

structure has no intrinsic features capable of representing change. There is no sense in 

which something can have a given feature at one time and lack it another, since within 

the structure itself we cannot identify the same feature or property at different times. 

The structure relevant to change is only adventitiously injected into the model structure 

when we interpret a language over it. Yet many representations have enough intrinsic 

structure to represent change (or alternative possibilities) directly, without a side trip 

through language, and multi-track IRSs allow us to do justice to this. 
12 

The function s does not preserve type, since determinate lengths are properties and 

their numerical surrogates are individuals (this situation can also be reversed, with 

properties representing individuals, as in the color coding of floors in a building). The 

account in Section 6 will accommodate such trans-type representation in a general way. 
Here I shall finesse the problem by treating determinate lengths and real numbers as the 
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entities of the lowest orders in their respective IRSs. Although an EPS contains no 

domain of individuals, this is easily added, and the indirect ascription of scale values to 

objects in it can be explained in terms of the values assigned to the lengths they exemplify. 
The treatment of determinate magnitudes as properties goes back at least to Aristotle's 

discussion of the category of quantity in ch. 6 of the Categories (e.g., Ib26 and 6a19-20), 
where such things as being two cubits long are treated as properties. It is explicitly 
defended by Russell in (1903), chs. 19-21. In Swoyer (1987) I argued that there are good 

philosophical reasons to view measurement as the assignment of numbers to properties, 
rather than to individuals (cf. Mundy [1987b]), but my reason for treating it this way 
here is to illustrate various points about structural representation. 
13 

For readability I shall use infix notation, writing 'Pi>P2' for '(Pi, P2> ? v>\ and shall 

treat 'Px O P2' as a singular term denoting the unique property that is the 'sum' of Pi 

and P2 (its existence is guaranteed by the axioms for an EPS). When a relation R is a 

function, Section 2's schema (PR) for the preservation of relations, (iu . . . , /?) EVP iff 

(c(ix),. 
. . , c(in)) Evc(R), is often replaced by the schema for the preservation of func 

tions, c(F(ex,. 
. . , e?-i)) 

= 
c(F)(c(e1),. 

. . , c(en-i)), so I shall use (B) in place of the 

longer '(Pl5 P2, P3) Gv Oiff (c(Pi), c(P2), c(P)3 > G v+'. 
14 

This means that for any two isomorphic embeddings s and s', there is some positive 
real number a such that s' = as (in converting from meters to feet, a= 1.0936). In 

contrast to the ratio scales involved in extensive measurement, interval scales (like the 

Celsius and Fahrenheit scales for temperature) often involve a representation in the 

numerical relational system (R, R4), where R is the set of real numbers, and R4xyzw just 
in case x - 

y ss z 
- w. The uniqueness theorem here shows that interval scales are only 

unique up to a positive linear transformation (one of the form s' = as + ?, where a > 0; 

in converting from Celsius to Fahrenheit, a = 9/5 and ? 
= 

32). Ordinal scales (like the 

Mohs scale for hardness of minerals), which simply preserve order, are only unique up 
to strictly increasing monotonie transformations. I shall discuss the philosophical signifi 
cance of these matters in the next section. 
15 

The monotonicity axiom tells us that for all Pl9 P2, and P3 in E, Px > P2 just in case 

(Pi O P3) > (P2 O P3) just in case (P3 O Pi) > (P3 O P2). And the Archimedean axiom 

tells us that for all Plt P2, P3, and P4 in E, there is some natural number n such that 

Pi > P2 only if nPi O P3 > nP2 O P4. Part of the intuitive force of this is that for any 

property we pick in E, we can get a 'larger' property (one bearing the > relation to it) 

by combining any other property with itself a finite number of times (with the metaphor 
of combination being spelled out by the inductive definition of the property nP: IP = P 

and (n + l)P 
= nPOP (cf. Swoyer [1987], p. 271). 

16 
This procedure is an excellent source of simple, yet detailed, examples of surrogative 

reasoning. (A) assures us that a representation exists only if there is a one-one function 

s such that Px > P2 just in case s(Px) > s(P2), and this provides a bridge between facts in 

E and their surrogates in R+. Thus, assume that Px> P2. We can translate this into the 

numerical information that s(Pi)>5(P2), then employ the mathematical theory of the 

positive, additive reals to conclude that for any number P3 that is the surrogate of any 

property in E, s(Px) + s(P3)>s(P2) + s(P3). Finally (A) and (B) together allow us to 
transfer this information back to the original system E to conclude that Pi O P3 > P2 O P3. 

Again, suppose that Pj > P2 and P2 > P3. (A) tells us that s(Pi) > s(P2) and s(P2) > s(P3), 
which by simple mathematical reasoning yields s(Pi) > s(P3), and (A) again underwrites 

the return trip to E and the conclusion that Pi > P3. 
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17 
By way of example, the automorphism group of R+ is the set of similarity transforma 

tions; by contrast, the only automorphism of the positive, additive integers is the identity 

mapping. Other candidates for the permissibility group include the endomorphisms of a 

relational system and its isomorphic embeddings in itself. For brevity, my discussion of 

meaningfulness oversimplifies several points about a complex topic; e.g., although in 

many cases permissibility can be explained in terms of function composition, as we have 

done here, other cases require a more abstract characterization (Roberts and Franke 

[1976]). Matters will become even more complex in the next section, when we allow 

other sorts of mappings besides isomorphic embeddings to underwrite structural represen 

tations, but my goal here is just to provide enough feel for the issues so readers can 

follow the discussion of artifacts below. For an early treatment of the issues, see von 

Neumann and Morgenstern (1944), pp. 20-25. A good discussion of current accounts of 

meaningfulness and an attempt to justify the common (but rarely defended) practice of 

imposing uniqueness condition on representations is Mundy (1986). 
18 

In Section 7d I shall argue that modal realism is encouraged by this sort of mistake. 

Of course this strategy of arguing against specific versions of realism opens the door to 

more general arguments that all sorts of things various realists think exist are mere 

artifacts of some mode of representation. I am not endorsing such an approach here, but 

its possibility underscores the need for a philosophically principled way to distinguish the 

objects and relations that a theory is genuinely committed to from those it is not. The 

view that genuine properties and relations play a causal role in the world seems to me 

one promising place to begin (cf. Swoyer [1982b]). 19 
Quine originally spoke of all dispositions to verbal behavior, but (in 1969a) he accepted 

Harman's proposal (1969) to speak instead of dispositions to assent and dissent. All this 

is clearer when the home language and the target language are the same, so that any 

(non-homophonic) member of G will carry all of a speaker's own sentences to other 

sentences in a way that preserves patterns of assent and dissent. The point of Quine's 

remark about equivalent sentences is that constraints on translations are weak enough 
to allow counterintuitive pairings. 20 

From the present perspective, Quine's and Griinbaum's positions involve the sort of 

defense of antirealism - with respect to meanings and metrics, respectively 
- discussed 

in fn. 18 and the accompanying text. Of course, the fact that the various examples of 

conventionalism mentioned above have a common form does not mean that they are 

equally plausible. 21 
Points (i) and (vii) were noted in Mundy (1986) Section 2. 

22 
For manageability, I shall require that c map items of a given type in A to items of a 

single type in B, that items of different types in A be mapped to items of different types 
in B, that c pair items in adjacent domains with items in adjacent domains (thus preserving 

order of levels), and that c preserve rank in all cases except those in which it carries 

relations to (or from) a domain of individuals. 
23 

The sets A and ^ may contain defined relations. They will be closed under some 

operations but not others; for example, A is closed under analogues of conjunction and 

existential quantification, ^ under analogues of negation and universal quantification. 
To show that there is a A/^-morphism from any 1RS satisfying a given set of axioms to 

a given system B is to prove a sort of representation theorem. This approach counts a 

mapping as a structural representation even if it counter-preserves only a few of the 

relations in A, but it would be arbitrary to require that some particular percentage of 
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relations be counter-preserved. Besides, it is possible for just a few features of a represen 
tation to have representational significance, as in elaborate ciphers and codes, which may 
be peppered with false leads. 
24 

A similar picture lies at the heart of several recent accounts of knowledge, according 
to which a necessary condition for x's knowing that p is that if p hadn't been true, x 

wouldn't have believed that p (e.g., Dretske [1971], Nozick [1981]). This is really just a 

counterfactual version of the requirement that a structural representation counter-pre 
serve relations, so that if the object o hadn't been in extension of the property P, it 

wouldn't have been represented as being in the extension of P. The requirement that 

relations be preserved is reminiscent of Nozick's fourth condition for knowledge, namely, 
that if p had been the case (even if other things had been a bit different), x would still 

have believed that p. 
25 

Benacerraf (1965) made this problem prominent; analogous difficulties arise for many 
other sorts of reductions. One might attempt to avoid the problem by adopting a theory 
of relative identity, but I believe that Perry's criticisms of this approach (1970), while 

not definitive, are completely sound in spirit. In a more radical vein, Goodman (1978) 
has argued that even though alternative reductions are incompatible, both might still be 

true; I have argued against this sort of approach (in 1988). Philosophers often speak of 

the reduction of number theory to set theory, but I shall speak of the reduction of 

numbers to sets, since the putative ontological significance of such reductions is to tell 

us what numbers themselves are. 
26 

The present framework provides a natural one for developing such a structuralist 

account of mathematics (cf. Swoyer [1987], Section 4). According to structuralism, any 

countably infinite (recursive) set can be arranged to form an w-sequence that can play 
the role of the natural numbers. It is the structure common to all such sequences, rather 

than the particular objects which any happens to contain, that is important for arithmetic. 

Since relations in IRSs don't come with their extensions built into them, such relational 

systems allow us to separate relations from their extensions. Hence, we could focus on 

a particular sort of intensional relational system 
- what we might call a Natural-number 

1RS - that can be exhibited in various concrete realizations. This system would have an 

empty domain of individuals, but would contain properties and relations like being less 

than, being a successor of and being the first member. We could then employ operations 
like those discussed in Section 2 to define further number-theoretic properties and re 

lations. Finally, a concrete realization would be obtained by adding a domain of individ 

uals and assigning them as extensions to the properties and relations in the structure. 
27 

A mapping from the representational system (syntax) to what it represents (semantics) 
runs in the opposite direction from the structure-preserving mappings in our previous 

examples of structural representation. We saw in Section 6 that this is to be expected in 

linguistic representation, since different words can be used to represent the same thing, 
and this prompted us to extend our account of structural representation to accommodate 

mappings from the representation to what it represents. 
28 

Montague's relational systems are not IRSs, but they are easily transformed into them. 

In order to assure that his systems were algebras, i.e., that all of their relations were 

operations, he included the set of all syntactic strings in his syntactic system and assigned 

meanings to each, but we needn't worry about such subtleties here. 
29 

I have given very simple examples in order to illustrate the nature of compositionality; 
these can be handled by extensional relational systems, and I have done so here to 

minimize complexities. However, languages containing intensional idioms are not easily 
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handled in an extensional framework. For examples of treatments of some of the above 

points in terms of IRSs, see Mundy (1987b) and Swoyer (1987). The use of IRSs to deal 

with more complicated languages may be found in Bealer (1981), Zalta (1983), and 

Menzel (1986). 
30Of course there is more than one person named 'George Bush', which suggests that 

many schemes of reference will not be functions after all. Both the Davidsonian and the 

Montagovian must somehow come to terms with this fact. One solution in the case of 

proper names is developed in B?rge (1973). Davidson himself is primarily interested in 

the interpretation of the speakers of a language, but I think that most of the points made 

above apply to this as well; further discussion of this may be found in Swoyer (1987), 
Section 4. 
31 

Hence, surrogative reasoning may often involve multiple levels of surrogates. We might 
use a ruler as a surrogate for an object, numbers as surrogates for the marks on the ruler, 

and some sort of mental representations as surrogates for the numbers. 
32 

Like Johnson-Laird, I have assumed that mental models, and indeed structural repre 
sentations generally, are consistent. Actual representations and models are not always 

logically impeccable, however, and ways of injecting inconsistency into representations 
without contaminating them wholesale would be worth exploring (as would the study of 

the possibility that the extensions of some relations in a structural representation are 

fuzzy). 
33 

A final application of the current framework to mental representation is this. Just as 

claims about lengths of objects are sometimes analyzed as involving a relation between 

an object and a number, claims about belief are sometimes analyzed as involving a 

relation between a believer and a proposition (or some other proposition-like entity). 

Mundy (1987b) and Swoyer (1987) have argued that this conception of measurement is 

mistaken; the length of an object is a one-place, qualitative property, though the structure 

of the family of such properties allows us to use numbers to classify them. Recently, 
several philosophers have suggested that relational accounts of belief involve a similar 

mistake (e.g., Field [1981], who credits the idea to David Lewis). However such proposals 
have been left as suggestive analogies, rather than being developed to the point where 

we could usefully discuss such things as their representation and uniqueness problems. 
In Swoyer (1987), I argue that intensional relational systems provide a natural device for 

developing such views. Among other things, they allow us to treat beliefs as monadic 

properties with an internal structure that is quite similar to that of propositions, and this 

might be used to explain why we can so successfully use propositions to classify them. 
34 

An account of Kripke semantics as representational has been developed independently 

by Menzel (1990). Although our motivations are similar, our approaches have the repre 

senting relation running in opposite directions, and they differ in a number of other 

respects as well. 
35 

Some versions of actualism attempt to find respectable stand-ins (like individual es 

sences or maximally consistent states of affairs) for merely possible individuals and 

merely possible worlds. I think that many of the objections to their full-blooded realist 

counterparts also tell against such stand-ins, and so I shall adopt a more austere actualism 

that avoids them. 
36 

The first of these introduces the notion of possibility in terms of Nec's dual, Poss, the 

second and third capture the ideas that if something is necessarily P then it is actually 

P, and if actually P, then possibly P, and the fourth is a version of the characteristic 

axiom for S4. Additional operations, including analogues of the conditional and quantifi 
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ers, would be needed to state more complicated axioms. If we identify the truth values true 

and false with the set-theoretic surrogates, {0} and 0, these axioms work for propositions as 

well as relations. 
37 

The situation here is not as different from Kripke semantics as it might seem. Suppose 
that '//' is a primitive predicate and that 'D//&' is true in a traditional, Kripke model. 

This means that 'Hk' happens to be true in every world in the model, but this is just as 

much a primitive and inexplicable fact about this particular model as the fact that Kennedy 
is necessarily human is about M. Since modal representationalism is nonreductive, it 

would not offer non-modal truth conditions for modal propositions, although it would 

allow homophonic theories of truth which contained a necessity operator in the metalan 

guage. 
38 

A variant on this approach would attempt to show that for each modality system, an 

extensional Kripke model structure could be constructed in such a way that a sentence 

of a standard modal language would be true in M (when interpreted over it in the obvious 

way) just in case it was true in the Kripke structure (when interpreted over it in the usual 

way). 
39 

The Kennedy example is McMichael's (1983). Once we regard Kripke structures as 

representations, there is no reason why a given individual need exist in more than one 

'world'; an actual object could as well be represented by different surrogates in different 

worlds, all of whom were related by some 'world-line' relation. This would be of particular 
interest in cases where world lines split or merge from world to world, as in the logic of 

belief. It would also let us adapt features of Lewis's counterpart theory, without having 
to construe it in a realistic way. 

401 am indebted to David Armstrong, Neera Badhwar, Hugh Benson, John Biro, Monte 

Cook, Rick Kirkham, Adam Morton, Brent Mundy, Scott Shalkowski, the referees for 

Synthese, and to the philosophers at the University of Iowa and Texas A&M University, 
where I read earlier versions of this paper. I am also grateful to the University of 

Oklahoma Office of Research Administration for a summer grant for this project. 
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