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Abstract 
 

In this paper, we argue for the centrality of prediction in the use of computational models in science.  We 
focus on the consequences of the irreversibility of computational models and on the conditional or ceteris 
paribus, nature of the kinds of their predictions.  By irreversibility, we mean the fact that computational 
models can generally arrive at the same state via many possible sequences of previous states.   Thus, 
while in the natural world, it is generally assumed that physical states have a unique history, 
representations of those states in a computational model will usually be compatible with more than one 
possible history in the model.   We describe some of the challenges involved in prediction and 
retrodiction in computational models while arguing that prediction is an essential feature of non-arbitrary 
decision making.  Furthermore, we contend that the non-predictive virtues of computational models are 
dependent to a significant degree on the predictive success of the models in question 

 
Introduction 
 
Computational models are of interest to philosophers insofar as they promise new ways to explore 
scientific hypotheses and provide access to the inner workings of complex phenomena or to target 
phenomena that are difficult to examine by other means.  Computational models are currently allowing 
research into topics where cognitive, ethical, political, or practical barriers would otherwise loom large.  
Whether in nuclear weapons testing, climate science, studies of the behavior of epidemics, or studies of 
the internal dynamics of stars, to take just a handful of cases, computational models are often the only 
viable research tool for scientists.  

To date, computational models have generated two related kinds of questions for philosophers of 
science.  First, what additional epistemic resources, if any, do such models provide us? (Humphreys 
1994) Second, in what ways, if any, do the kinds of explanations derived from computational models 
differ from those provided by other kinds of scientific models? (Guala 2002; 2005; Morgan 2005; Parker, 
2008; Winsberg 2010, Frigg et al 2008)  

In this paper, we consider a third set of questions concerning the features of the predictions 
derived from computational models.  We believe that careful consideration of prediction in computational 
modeling can shed light on more general concerns in the philosophical literature about the scientific status 
of these models.  We focus on the consequences of the irreversibility of computational models and on the 
conditional nature of their predictions.  The conditional, or ceteris paribus, nature of the kinds of 
predictions provided by computational models will be discussed in detail below.  By irreversibility, we 
mean the fact that computational models can generally arrive at the same state via many possible 
sequences of previous states.   Thus, while in the natural world, it is generally assumed that physical 
states have a unique history, representations of those states in a computational model will usually be 
compatible with more than one possible history in the model.   This is an important feature of 



computational models which is directly relevant to philosophical questions concerning the status of these 
models and which has generally been overlooked in the philosophical literature.  We believe that 
addressing some of the larger philosophical questions about computational models depends on specifying 
as precisely as possible, the manner in which computational models generate predictions.   

Our analysis of prediction in computational models contributes to the existing philosophical 
literature on the epistemic status of models.  However, our motivation in this paper is practical as well as 
philosophical.  On our view, the primary purpose of computational modeling is to allow us to intervene 
in, or respond to, complex natural or social processes in a non-arbitrary manner.  In addition to their 
increasingly significant role in scientific investigation, computational models figure centrally in policy 
deliberations concerning climate change and economic policy making (Meadows, 1972; Holling, 1978; 
Walters, 1986; de la Mare, 1996; Brunner, 1999; Pielke, 2003; Adams, 2004; Walters and Martell, 2004; 
Allan and Stankey, 2009a; Rockström et al., 2009; Likens, 2010). (Butterworth and Punt, 1999; Lee, 
1999; Morgan and Morrison, 1999; Doak et al., 2008; Allan and Stankey, 2009b; Allan and Stankey, 
2009a; Ivanović and Freer, 2009; Chapman, 2011). Thus, the problem of understanding the epistemic 
status of the evidence provided by computational models has direct practical significance.   

Given the central place of the predictive power of computational modeling in policy decisions, 
and given the high stakes involved in many of these policy decisions, we are concerned that the existing 
literature on modeling demonstrates some misunderstanding of prediction in computational models. For 
example, many authors have argued that the use of computer modeling in these contexts is unwarranted 
because such models simply cannot provide reliable predictions of complex dynamics in the systems of 
interest. (Ascher, 1989; 1993; Brunner, 1999; Oreskes, 2000; 2001; Beven, 2002; Aligica, 2003; Beven, 
2006) Such criticisms fall into roughly four principal types:   
 

a) computational models have a poor track record of prediction  
b) model predictions are not testable because of their conditional nature; 
c) models reflect the subjective beliefs and assumptions of their creators; 
d) the principal purpose of computational models  is not to predict. 

 
 
Critics of the predictive power of computational models generally continue to advocate for the use of such 
models while arguing that the benefits of computational modeling are limited to one or more of the 
following (Brugnach, 2010, D'Aquino et al., 2003) : 
   

a) explanation of past events; 
b) increased understanding of natural processes;  
c) learning; 
d) providing an avenue for communications.  

 
These roles are presented as alternatives to what is sometimes regarded as a naïve attachment to the 
predictive power of models.  In our view, this line of criticism risks detaching these models from their 
most important role in decision making.  Critics seem to assume that prediction is an ideal or 
discretionary input, rather than a requirement for decision making.   

Our paper describes some of the challenges involved in prediction and retrodiction in 
computational models while arguing that prediction is an essential feature of non-arbitrary decision 
making.  Furthermore, we contend that the non-predictive virtues of computational models, such as the 
four listed above, are dependent to a significant degree on the predictive success of the models in 
question.   

Computational models have some undeniable limitations with respect to prediction and 
retrodiction.  However, these restrictions are not unique to computational models.  We argue that all so-
called special sciences are subject to the same ceteris paribus conditions.  Ceteris paribus conditions, or 
provisos, are a ubiquitous feature of explanation and prediction in the special sciences.  The predictive 



power of computational models, like the predictive power of the special sciences more generally, will 
always be conditional in nature. We will explain the role of conditional prediction in computational 
models in more detail here.   
 One counterintuitive result of our investigation is our observation that prediction in computational 
models is more reliable than retrodiction.  On reflection, this is a straightforward result of the nature of 
computational models.  However, recognizing this fact should cause us to think carefully about the 
explanatory value of the kinds of retrodictive accounts of complex systems which we derive from 
computational models.  We will explore some of the implications of this feature of computational models 
below. 
 

1. Deciding and Predicting 

 
As discussed above, we believe that the modeling community bears an unusually high level of social 
responsibility.  In recent years, public attention has focused primarily on the use of modeling for climate 
change initiatives, but perhaps even more commonly, results from modeling in economics have direct 
bearing on decisions in governmental and corporate institutions.  Many authors (Ascher, 1989; 1993; 
Brunner, 1999; Oreskes, 2000; 2001; Beven, 2002; Aligica, 2003; Beven, 2006) regard this influence as 
unwarranted.  It is useful from the outset to understand how we ought to evaluate skeptical attitudes 
toward model predictions.  To begin with, we should examine the distinct kinds of skepticism which we 
might encounter:  First, let’s deal with the most extreme kind of skepticism with regard to prediction 
before tackling the more difficult practical questions concerning the evidential status of computational 
models. 

Given complex problems, policy makers and others are forced to decide how to evaluate and 
interpret evidence with respect to alternate courses of action. Clearly, there are reasons to be cautious with 
respect to the predictive power of scientific models. However, notice that our reasons for skepticism are 
relative to our criteria for judging the predictive success of a model.  Once we adopt higher standards, 
fewer models will pass our test.  Perfect predictive success is clearly an unreasonable criterion to apply 
when judging a model.  Few scientists would demand this level of predictive power.  In the context of 
practical decision making, skepticism is an unreasonably expensive luxury.   

Given the need to act in a non-arbitrary manner, the core problem is to determine what tool 
currently provides the most reliable predictions concerning the phenomena of interest.  In this spirit, the 
question would shift from ‘can model predictions be trusted?’ to ‘how do we compare models to one 
another and to other approaches to prediction?’  Clearly this new question can be understood in 
information theoretic terms where predictability can be contrasted with randomness. For example, while 
we cannot trust weather forecasts in detail beyond a window of about 5-6 days, we can be confident that 
there is not an equal probability that the temperature in El Paso on an August day could be 40○C or -40○C.  
(Boschetti et al., 2010) While El Paso weather is difficult to predict with any precision during the short 
August rainy season, we can be highly confident that our pipes won’t freeze in August.  

While perfect precision with respect to complex natural and social processes may not be available 
for finite beings, we contend that the epistemic function of computational models derives from their 
capacity to limit the space of possible futures that we need to consider in deciding on a course of action. 
On our view, computational models should stand the test of experience and should be discarded or 
modified if they fail to improve our capacity to act in relation to the relevant complex systems under 
consideration.   

At this point we are ready to explain the connection between decision making and the acquisition 
of new evidence.  New evidence can allow an epistemic agent to eliminate irrelevant alternatives for 
action.  Jaakko Hintikka noted this basic connection between knowledge and alternative possibilities in 
his early articulation of epistemic logic.  He put the connection in modal terms which we can paraphrase 
straightforwardly as follows: To know p means to be in the position to rule out possibilities in which it is 



not the case that p.   (1962) Once we begin to think about inquiry and decision making in terms of ruling 
out possibilities, the modal character of epistemic terms is relatively obvious.  Just as a necessary truth is 
one which is true in all possible worlds, an agent’s knowledge can be understood as the set of truths 
which obtain in all of the agent’s epistemically possible worlds.  In other words, for an agent to know p 
means that in all worlds compatible with the agent’s knowledge, it is the case that p.  While this is an 
admittedly idealized conception of knowledge the general view applies equally well to practical decision 
making.  So, for example, in contexts where probabilistic measures are unavoidable, we can understand 
Hintikka’s approach as a way of thinking about the level of significance we give to alternative 
possibilities. More practically still, we can understand the elimination of irrelevant alternatives in terms of 
the level of resources we devote to alternative possibilities.  As we can see in the following passage, the 
core of Hintikka’s view derives from some very ordinary considerations:   

 
To take a simple example, let us suppose that I am getting ready to face a new day in the 
morning.  How does it affect my actions if I know that it will not rain today?  You will not be 
surprised if I say that what it means is that I am entitled to behave as if it will not rain – for 
instance to leave my umbrella home.  However, you may be surprised if I claim that most of the 
important features of the logical behavior of knowledge can be teased out of such simple 
examples. (Hintikka 2007, 11-2) 
 

For cases where uncertainty is unavoidable, examples like this can be recast in probabilistic terms 
such that the threshold for the decision to take the umbrella will be crossed given our confidence that the 
weather forecast or some other factors rules rainy futures out or in.  Modern work in epistemic logic has 
built upon this view of the relationship between knowledge and possibility.  So, for example, the 
connection between epistemic and pragmatic considerations continues into the 1980s and 1990s.  Many 
researchers in Artificial Intelligence define belief, for instance, as the set of propositions which an agent 
would be willing to act upon.  In this paper, we identify the predictive power of computational models as 
their capacity to help us to exclude some range of possible future scenarios.  Their epistemic power is 
simply their capacity to help us reduce the range of possibilities which we need to consider when we 
make our decisions.   

We assert that (in spite of many complicating factors) computational models stand or fall by reference 
to their predictive power. We understand predictive power in terms of the power to permit decision 
makers to eliminate irrelevant future states.  

Of course, models can also be used in exploratory fashion (Humphreys 1994, Boschetti, 2010), 
highlighting dynamical behaviors of which we may not be aware.  Failing to recognize these behaviors 
means the inability to plan for them. A full analysis of this topic is beyond the scope of this work, but 
within the current discussion we notice that, even in the case of the exploration of novel system behavior, 
the final outcome is an enriched predictive power: we are now able to envisage behaviors which 
previously we did not expect. In other words, computational models enhance our predictive power by 
improving our ability to estimate the occurrence both of events we were previously aware of and events 
we became aware via the very use of models.  Clearly, computational modeling allows us understand the 
implications of our assumptions in ways that would be difficult with unaided human intelligence.  So, not 
only does prediction involve eliminating irrelevant alternatives, it also involves the discovery of 
unanticipated implications of the alternatives which remain on the table after the elimination of irrelevant 
alternatives. 

In the absence of any predictive power all events we are aware of would be treated as though they had 
the the same probability of occurring and all events we are not aware would be treated as having 
probability 0. Modeling allows us to make this distribution more realistic.      

From a commonsense perspective, this might seem obvious.  However, for many modelers, there is 
legitimate resistance to the idea that models predict properties of the systems under consideration in any 
straightforward way.  We will endeavor to show that while modelers are correct to approach the problem 
of prediction cautiously, they would be wrong to give up on predictive power as a criterion for evaluating 



and comparing models.  Our view is that prediction is an essential component to any non-arbitrary 
planning and decision making.   

There are a number of important complications with respect to prediction.  Clearly, for example, the 
effectiveness of a prediction is scale-dependent (Israeli and Goldenfeld, 2004). For example, while the 
geophysicists do not claim to provide accurate predictions concerning the timing of large earthquakes, 
they are nevertheless able to predict the broad geographical areas in which such earthquakes can be 
expected. This kind of predictability offers little help to short-term planning (Pielke, 2003), but has 
considerable practical impact in deciding, for example, where expensive anti-seismic construction 
methods are necessary.  Similarly, while we accept that we cannot predict the outcome of an individual 
roulette round, the gambling industry is built on predictability of its long term global behaviour. Indeed it 
is so predictable that a mismatch between outcomes and prediction serves to alert casinos to potential 
cheats.  

Prediction is an integral part of any non-arbitrary decision making process. At an organisational level, 
prediction has a role, implicitly or explicitly, in the formulation of plans and the assessment of which 
avenues should be followed. Formulating a plan implies choosing among potential alternatives and 
predicting which one is more likely to deliver desired outcomes. The same applies to the implementation 
of a plan.  The need to carry out a prediction of the future behaviour of our environment and the likely 
outcome of our interaction with it is so pervasive that it has been proposed as the defining distinction 
between living and non-living systems and is implied in much work on information theory and 
computational dynamics (Rosen, 1885; Crutchfield, 1994; Ellison et al., 2009; Poli, 2010).  

2. A model of a complex problem: prediction and retrodiction 
 
Because of the scope of the issues under consideration, in this paper, we will begin by limiting our 
discussion to an idealized case where we help ourselves to a number of assumptions.  Let’s assume, for 
the sake of understanding predictions in computational models that: 

1) Our model represents our understanding of a complex natural process P 
2) We already have a computational model M of P 
3) The model is ‘structural’ in the sense that it is not a purely statistical model. Rather than modeling 

simple data correlation, the model represents our understanding of salient mechanisms in a 
computationally tractable manner (extension of the discussion to non structural models can be 
addressed by following the line of argument in (Suchting, 1967)). 

In short, we are assuming that the model is a success and that it looks like the kinds of computational 
models that feature prominently in contemporary scientific investigation.  Obviously, such an assumption 
will appear question begging from the perspective of thinkers who are skeptical of the very possibility of 
successful computational models.  It will not be possible to answer such total skepticism in this context.  
Moreover, we do not concern ourselves here with how the model represents P, we simply assume that it 
does an good job doing so.  

Figure 1 (below) shows the natural process P and our model M of P.  At time t0 we collect some 
data  about P. Depending on the nature of the problem we need to address, we may use M for two 
purposes. We may want to assess what may happen in the future at time tn.  Since M respects our 
perception of the ‘arrow of time’ (causes lead to effects), using M in this fashion is usually called a 
‘forward’ model and leads to a prediction of . Alternatively, we may wish to assess what may have 
happened in the past at time t-n. Since it attempts to reverse the arrow of time, this use of modeling is 
often referred to as ‘inverse’ modeling (Parker, 1977; Tarantola, 1987) and leads to a retrodiction of . 



 

Figure 1 

In an ideal case, the retrodiction would be carried out with an inverse model M-1 such that M-1(out)=in, 
where in refers to the input and out=M(in) to the output of M, respectively. Unfortunately, inverse models 
such as M-1 can be written explicitly for only a very small set of forward models M. This is true not only 
for closed-form models but also for purely numerical models. As a result, most inverse engineering and 
scientific problems need to be solved by iterative methods in which M is run with sets of inputs in until a 
reasonable match between M(in) and the expected output,  in our case, is found. The procedure which 
allows us to recover  from M and  is called inversion, optimisation, or regression, depending on 
the discipline (Parker, 1977; Tarantola, 1987). Here we will call it inverse modeling and will call this 
procedure MInv.  

Assessing the effectiveness of a computer model in predicting or retrodicting can thus be cast in 
terms of the reliability of the two processes M (prediction) and MInv (retrodiction).  By ‘reliable’, we mean 
the following: given the model output of the forward process (prediction, ) and of the inverse process 
(retrodiction, ), we ask which one is likely to be closer to the states of the ‘real’ process  and 

, respectively. In other words we ask whether | , |> | , |, where |x,y| is some kind of 
metric of common use and practical usefulness. For example, |x,y| could be a norm (often L1 or L2 are 
used), a measure of correlation or mutual information, or even a subjective evaluation (Takagi, 2001). 

Let’s begin by considering deterministic models with the help of Figure 2. This figure shows an 
idealized representation of the state space of the model M at 3 different times ,  and  (empty 
boxes). At time t0 we make a set of observations  and we use this information to parameterize our 
model M. The ‘real’ process P proceeds and at time tn we make a new set of observations . Because the 
model M is not exact, the prediction of M at time tn  ≠  and we call the prediction error Ep= 
| , |. Figure 2 also shows other runs of M, starting with different initial conditions in  ( ′ ≠ ) 
and generating different predictions in  (notice that the mapping of  into  generated by M does 
not need to be smooth). 
 

Observation 

“Real” process

t‐n  t0  tn 

Past  Now  Future 

time 

“Modelled” process 



 

Figure 2 

In Figure 3, we use the same representation to describe the inverse process MInv which allows us to 
retrodict from  in order to recover . As explained above, this is an inverse process carried out by 
iteratively mapping  into  via M, until a satisfactory match | , | is found. Ideally, M should 
map into  so that E’p =| , |=0. Of course we cannot expect this match to be exact. The same 
approximations (or errors) which prevent M from modeling P exactly, and which are responsible for  Ep= 
| , |≠0 in Figure 2, are likely to imply E’p= | , |≠0. As a consequence, it is likely that a point 
′  in  ( ′  ≠ ) may generate a prediction at time t0 for which |M( ′ ), |<|M( ), |. 

The point ′  for which |M( ′ ), | is minimum will be chosen as retrodiction. The error in the 
retrodiction will then be Er =|M( ′ ), |≠0. If M is non linear and ‘complex’, the magnitude of Er and 

Ep may vary considerably as a function of the location of the parameterization in  and , but we 
have no a-priori reason to expect Er < Ep. This is the crucial message of this work and we will address it 
again below.  At this point, it is important to emphasize that Er arises from the same process which 
generates Ep and that the relative magnitude of Er  and Ep cannot be deduced a-priori.   

 

Figure 3 
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Two further problems, which affect any real world modeling exercise, complicate the inverse modeling 
MInv:   
 
a) MInv does not necessarily have a unique answer  
and  
b) MInv can be computationally very expensive.  
 
‘Non uniqueness’ or ‘equifinality’ is the property of a system wherein, under certain conditions, families 
of input parameters can produce the same model output.  In systems which exhibit non- uniqueness, there 
are a variety of ways that a system can tend towards a specific state.  Many studies in applied 
mathematics focus on measuring the level of non uniqueness or on determining the extent to which non-
uniqueness is a mathematical artifact (due to over-parametrization, inappropriate parameterization or lack 
of information) or a genuine feature of the real process (Parker, 1977; Tarantola, 1987).   

Non-uniqueness is a feature of inverse modeling but not of forward modeling, the outcome of 
which under ordinary circumstances is deterministic. When needed, non-deterministic elements in the 
solution of the forward problem can be obtained only by imposing random variations to some input 
parameter. This approach is commonly used to mimic non-deterministic processes (for example by using 
random choices to model agents’ behavior under uncertainty) as well as chaotic ones, whose behavior is 
determined by small variations in initial conditions.  
 
Figure 4 shows how non-uniqueness can affect retrodiction. In this case, even if an exact match | , | 
=0 can be achieved (that is even if the model allows to match the current observations perfectly), we are 
unable to differentiate among the (potentially infinite) number of solutions ′  which provide the match 
(gray shadow in Figure 4). 

 

Figure 4 

The previous argument can easily be extended to non-deterministic models, as summarized in Figure 5. 
Non-determinism in M implies that the output , obtained by running M initialized with , is not 
unique, as represented by Up in  in Figure 5. As discussed above, this non-deterministic outcome is 
obtained by using random perturbation in the input parameters, thereby generating artificial non-
uniqueness in the forward modeling. Notice that, as before, there is no reason to assume that Up is 
smooth. The same reasoning applies to the output  obtained by running M initialized with , which 
is necessary to carry out the iterative inverse process MInv. As a result, the set of input ′  in 
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leading to acceptable measures of | , | adds to the uncertainty resulting from non-uniqueness in 
Figure 4. This is represented as Ur in Figure 5. 
Finally, as we mentioned above, M can be computationally very expensive.  In many real world 
applications, this implies that M cannot be run as many times as the iterative process MInv would require. 
This, in turns, adds further errors to | , | and, as a result, potential further errors in Er.  

 
Figure 5 

If we accept that Ep represents the error in prediction and Er the error in retrodiction, the previous analysis 
suggests that a) Er is inextricably related to Ep, b) there is no reason to assume that in general Ep> Er and 
c) in practice, it is more likely that Er> Ep as a result of non-uniqueness and the computational effort 
which may prevent the inverse process MInv to run to completion. This leads to the unintuitive conclusion 
according to which, in the absence of additional information, we should trust a model prediction more 
than a model retrodiction.   

So, how does this apply to the explanation of past events? Some initial observations can be drawn 
from the previous discussion. Above, we assumed that M represents our understanding of a complex 
natural process P and is provided to us.   In other works M is the basis for any explanation of the process 
which aims at recovering the salient history of the system. So, arguably, explanation then can be equated 
to deciding what model, among many, best describes the process P.  

If we then assume that such explanation is not yet agreed upon, we can imagine that a family of 
models Mi=[M1, M2, .. Mn] is available and we need to choose the most suitable model.  The previous 
reasoning can then be applied by noticing that the mapping between state spaces at different times t-n, t0, 
and tn becomes also a function of Mi.  

The role of additional information in the choice of model is crucial for the development and 
maturation of a modeling project. Additional information may for example tell us which path among the 
many available, the system has taken at a time t-n<t-m<t0. This can constrain the inversion process MInv by 
making it both more reliable. Similarly, that information may be used to better initialize the forward 
model M.  Whether the prediction or the retrodiction will benefit more from the introduction of additional 
information is difficult to establish a priori.  

3. Common uses of complex models 
 
In the previous section we have shown how, in most real world applications, inverse modeling is in fact 
iterated forward modeling.  However, in practice, forward modeling, often involves inverse modeling.  
There are two basic reasons for this interplay.  First, even the best structural model used in predictive 
work requires some tuning of parameters.  By tuning, we mean finding combinations of parameters which 
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match past observations, theoretical constraints or mere expectations. In practice any principled process 
of adjusting parameters will involve an inverse process of the kind described in the previous section. 

Many engineering and scientific problems appear to ask forward or predictive questions 
concerning the system of interest.   So, for example, we might be interested in whether a flood will occur 
under some set of conditions or whether some intervention can stop the next flu pandemic.   In these cases 
we are asking what effects some intervention will generate. However, ideally one important goal of these 
kinds of simulations is to provide a more general kind of understanding, such that we can answer 
questions like:  

 
“what will prevent the next flood?”  
or  
“what can stop the next pandemic?”  

 
Any progress towards answering questions like these using computational models must involve inverse 
methods.  Clearly, the kind of mastery we seek with respect to complex phenomena lies not so much in 
being able to answer a long list of forward questions.   Instead, it consists in being able to generalize from 
lists of answers to forward questions in tackling unspecified future problems.  Expert modelers achieve 
understanding of this kind by reflecting on mapping relations between input parameters and outputs and 
by carrying out a sensitivity analysis of their model based on their experience and presumably via 
something like an unconscious inverse exercise.  While experience and expertise are important, the 
accuracy of a researcher’s deliberations, as we have seen above, depends crucially on the reliability of the 
forward model.  

Not all learning that results from using computer models needs be so formal. Let’s take an 
analogy often employed to explain the role of numerical models in complex processes: the flight 
simulator. Complex socio-ecological models, for example, offer decision makers the same opportunity 
offered by flight-simulators to trainee pilots: they provide the opportunity to test policy initiatives in the 
safe world of virtual simulations. However, it is reasonable to expect that flight-simulators will provide 
effective training only in so far as the flight-simulator simulates well, that is, only in so far the flight-
simulator effectively predicts how the real plane will behave under similar circumstances. We have no 
reason to believe that a pilot trained on an inaccurate flight simulation should learn how to handle a real 
plane in the real world. Similarly, there is no reason to believe that a decision maker should improve 
his/her ability to address a real world using a model which provides poor prediction on how the real world 
functions.    

Some researchers have emphasized other roles for computational models most common is some 
relatively poorly defined notion of “understanding”.  However, we as we have argued here, that the use of 
computational models for the development of understanding, still depends on their reliability as 
predictors. 
   

4. The Conditional Nature of Predictions is a General Feature of Explanation in the Special 
Sciences 

 
There is clearly some relationship between the predictive and explanatory roles of computational models 
and the improvement in our capacity to exert control either over a natural process or relative to the natural 
processes in question.  It might be the case that while some specific natural process is beyond our control, 
understanding the process permits us to adjust our behavior in advantageous ways in light of our 
understanding.    Admittedly, this notion of understanding is not very well-defined.  As a way of getting 
clearer on what we mean by understanding, it is useful to consider its relationship to explanation.  How do 
we ordinarily explain events and regularities?   

As a way of beginning to answer, consider how we might begin to explain some specific 
observation in ordinary life.  One way of explaining an event is to reconcile it with a broader system of 
laws or regularities. So for example, if I notice that my neighbor is earnestly moving a live chicken 



around his head three times, I am likely to be puzzled by his actions.  The mysterious quality of his action 
could be (partly) removed when we learn that he is a member of the Heredi community and that he is 
performing Kapparot, a traditional ritual where the believer attempts to transfer his sins to a chicken. 
 This explanation takes the form of a generalization about the behavior of members of the community, 
adds some additional information about the beliefs and desires of the person performing the action, and 
thereby serves to reconcile this event with a broader unified picture of people and their behavior.  The 
strangeness of the isolated event is eliminated (to some extent) by being told of how it fits with all of our 
other beliefs about people, their religious practices and their community affiliations.   

Ordinarily, the purpose of explanation in everyday life is simply to reconcile some event or 
regularity within a broader framework of understanding.  So, for example, after hearing that my neighbor 
is performing Kapparot, I will have an improved understanding of his actions.  While we would probably 
still might admit to not really understanding what he is up to, for the practical purposes of our immediate 
neighborly relationship, we have a sufficient level of understanding.   

Thus, most ordinary explanations are dependent for their success on meeting the needs of the 
audience in question. So for example, as Hilary Putnam explained, when we are interested in an 
explanation of something like a forest fire, there are an infinite number of facts which are irrelevant to our 
interests in seeking an explanation. (1982) We could imagine, visitors from outer space, observing the 
forest fire, and explaining to their conspecifics that the planet Earth is subject to forest fires because its 
atmosphere is dangerously saturated with oxygen.  Human forest fire investigators on Earth would be 
unlikely to be applauded if their explanation of the fire was simply that the atmosphere at the time held 
sufficient levels of oxygen to sustain combustion. To at least some extent, our purposes, in providing 
explanation, shape the judgment as to whether some explanation is successful or not. We can call this the 
audience relativity factor of explanation. 

In ordinary explanations, we attempt to reconcile some event or regularity with some accepted set 
of generalizations.  Let’s contrast this audience-relative feature of ordinary explanation with an idealized 
conception of scientific law.  In simple terms, scientific laws serve as generalizations which take the form 
of conditionals:   
 
For all x if x is an F then x is a G.  
 
In ordinary social scientific explanation, such laws do not hold strictly.  Why does Mary eat fish on 
Fridays?  All Catholics eat fish on Friday, Mary is a Catholic, so Mary eats Fish on Fridays. The 
generalization that serves to explain Mary’s behavior in an analogous manner as the Kapparot case above, 
is not strictly true insofar as it is not exceptionless.  It is certainly nowhere near meeting the standards that 
one would use for measuring the success of a physical law.  Nevertheless, it is a satisfying explanation for 
certain purposes and for certain people.  Specifically, it would be satisfying to people with the right kinds 
of background knowledge about people, religions, food, days of the week, and the like.  By contrast, 
idealized, maximally general physical laws hold without exception.  Such laws can be said to answer 
“why” questions independently of agent interests and background knowledge.  So, in the case of physical 
laws, we can say that one of the goals of physics is for audience relativity to drop out as a relevant factor 
in determining the legitimacy of an explanation.  Some philosophers of science, notably Nancy 
Cartwright,  have denied that such laws really can be provided by physics and claim instead that all laws 
are subject to what are known as ceteris paribus or ‘all other things being equal’ clauses. (Cartwright, 
1983) 

In the case of computational modeling, there can be no presumption of maximal generality. 
Instead, as we have discussed elsewhere (Boschetti et al., 2010) computational models always involve 
conditional prediction.  As we can now see, this is not a unique feature of computational modeling.  All 
sciences which do not claim maximal generality face the need to cope with conditions or ceteris paribus 
clauses.   

The explanatory power of computational models will be judged relative to their capacity to assist 
us in the intervening in, or perhaps preparing for, the natural processes in question, under the conditions 



stipulated by the modeler. The explanatory power of these models is judged in relation to their capacity to 
satisfy our purposes.  

This is not an anti-realist account of explanation. In fact, we assume, that the most important 
criterion for deciding whether or not we actually have explanation provided by computational models is 
the capacity of those models to provide predictions. The predictive power of these models is the sole test 
of their adequacy and is the sole marker of their epistemic value.   
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