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Abstract Anderson-like ontological proofs, studied in this paper, employ contingent
identity, free principles of quantification of the 1st order variables and classical prin-
ciples of quantification of the 2nd order variables. All these theories are strongly
complete wrt. classes of modal structures containing families of world-varying objec-
tual domains of the 1st order and constant conceptual domains of the 2nd order. In
such structures, terms of the 1st order receive only rigid extensions, which are ele-
ments of the union of all 1st order domains. Terms of the 2nd order receive extensions
and intensions. Given a family of preselected world-varying objectual domains of the
2nd order, non-rigid extensions of the 2nd order terms belong always to a preselected
domain connected with a given world. Rigid intensions of the 2nd order terms are
chosen from among members of a conceptual domain of the 2nd order, which is the
set of all functions from the set of worlds to the union of all 2nd order preselected
domains such that values of these functions at a given world belong to a preselected
domain connected with this world.

Keywords Ontological proof · God · Essence · Necessary existence ·
Positive properties · 2nd order free modal logic · Absolute and relative identity ·
Strong completeness

1 Introduction

In general, the term: ontological proof—used often interchangeably with the term:
ontological argument—means a proof, for the conclusion that God (necessarily)
exists, from premisses which are independent of an observation of the world.
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476 M. Szatkowski

Anderson-like ontological proofs are understood in this paper as theories formulated
in the 2nd order modal language with unary predicate of positiveness over 2nd order
terms. The following have been adopted from Anderson’s theory (see Anderson 1990):
the definitions of a god-like being (God is any being that has necessarily all and only
positive properties), essence (A property A is an essence of an object x if and only if A
entails all and only the properties that x has necessarily) and necessary existence (An
object x has the property of necessary existence if and only if its essence is necessarily
exemplified), and the three axioms: (i) if a property is positive, then its complement is
not positive; (ii) the property of a god-like being is positive; (iii) any property entailed
by a positive property is positive.1

However, these three Anderson’s axioms are not sufficient to prove the statement:
God necessarily exists or God exists. They must still be supplemented with some
non-modal and modal principles of the zero-, first- and second-order. But, in regard
to the systems of axioms for Anderson-like ontological proofs, the aim should not
only be to prove the statement: Necessarily there exists a god-like being. It should
be possible to assert also other ontological statements. And it is certainly acceptable
that some axioms and inference rules are forced by semantics with respect to them
the strong completeness of particular Anderson-like ontological proofs is required to
proving.

An interesting quality of Anderson-like ontological proofs considered in this work
is that they employ free principles of quantification of the 1st order variables, in contrast
to the classical treatment adopted by the present author in Szatkowski (2005, 2007),
and classical principles of quantification of the 2nd order variables. The theories incor-
porate relative (in particular, contingent) identity, similar to them in Szatkowski (2007)
but different from Anderson-like ontological proofs considered in Szatkowski (2005)
incorporating absolute identity.

The rejection of the 1st or 2nd order universal specification: ∀xφ(x) → φ(x/t) or
∀αφ(α) → φ(α/τ) is the key criterion differentiating 2nd order free logic from the
2nd order classical logic (cf. Fitting 2002; Fitting and Mendelson 1998; Garson 1984,
1991; Lambert 1997, 2003). Because there exists no commitment to impose/reject
one of these principles in the presence/absence of the other, it is clear that one may
distinguish 2nd order logic in which exactly one of the two universal specifications
is rejected. What is important is that the choices between classical or free quantifica-
tions in the modal setting interact also with decisions about the presence/absence of
Barcan formulas: ∀ξLφ → L∀ξφ and converse Barcan formulas: L∀ξφ → ∀ξLφ,
where ξ is a variable of both sorts. In particular, Barcan formulas of the 1st and/or
2nd order are provable in all systems containing all instances of the axiom schemas
L(φ → ψ) → (Lφ → Lψ) and MLφ → φ, the necessitation rule: If φ is a
thesis, Lφ is a thesis, and the classical principles of quantification of the 1st
and/or 2nd order. Converse Barcan formulas of the 1st and/or 2nd order are already
provable in all systems which are obtained from these above by omitting the axiom
schema MLφ → φ. It is possible to consider classically quantified modal systems of
the 1st and 2nd order with converse Barcan formulas and without Barcan formulas

1 The authorship of the axioms (i) and (iii) belongs to K. Gödel, and the authorship of the axiom (ii) belongs
to Dana Scott (see Adams 1995; Gödel 1995).
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Partly Free Semantics 477

of corresponding orders.2 Seen from a syntactical point of view, it is also possible to
consider free logic of the 1st and 2nd order with Barcan formulas of corresponding
orders, but the main problem still lies in the question of how to treat such systems
semantically. Complications as well as motivations for free quantification of the 1st
and/or 2nd order variables in the modal setting may just be revealed by using semantic
instruments.

There is not, and there could not be, any general catch grasp of the notions: abso-
lute identity or relative identity of the 1st order variables in a modal context; they are
doctrine- or option-orientated (see, for example, Griffin 1977; Noonan 1980). In our

case, given the symbol
1≈ introduced by the definition: (x

1≈ y)
df= ∀α(α(x) ↔ α(y)),

where α is a 2nd order variable, the absolute identity is additionally determined by the

axiom schema (I1). L(x
1≈ y) → (φ(z/x) ↔ φ(z/y)), where x and y are free for z

in φ(z), and the axioms: (I2). (x
1≈ y) → L(x

1≈ y) and (I3). (x
1�≈ y) → L(x

1�≈ y);

or, according to another option, (I1) together with (I2�). L
(
(x

1≈ y) → L(x
1≈ y)

)

and (I3�). L
(
(x

1�≈ y) → L(x
1�≈ y)

)
. In order to have at least a general idea of

what relative identity is, we reserve this denomination for every weakness of the abso-
lute identity theory in which (I2)- or, (I2�)-cannot be derived. Weaknesses of the
absolute identity theories in which (I2) and (I3)- or, (I2�)- and (I3�)-cannot be the-
ses, are called contingent identity theories (for example, see Hughes and Cresswell
(1968)). But all our Anderson-like ontological proofs with contingent identity make

one important exception, namely, (CI2). G(x) → (
(x

1≈ y) → L(x
1≈ y)

)
and (CI3).

G(x) → (
(x

1�≈ y) → L(x
1�≈ y)

)
are their axioms; or, according to anther option,

(CI2�). L
(
G(x) → (

(x
1≈ y) → L(x

1≈ y)
))

and (CI3�). L
(
G(x) → (

(x
1�≈ y) →

L(x
1�≈ y)

))
are their axioms. For reading G(x): x is a god-like being or simply x is

God, the axiom (CI2) ((CI3)) says that an individual which is identical to (different
from) God is such necessarily. The axioms (CI2�) and (CI3�) take the commitments
of the axioms (CI2) and (CI3) to be necessary.

The optional definitions of the 2nd order equality
2≈: A

2≈ B
df= ∀x

(
A(x) ↔ B(x)

)

or A
2≈ B

df= L∀x(A(x) ↔ B(x)), affect different axioms legitimating the treatment of
the properties of a god-like being and (in some systems) necessary existence as terms
of the 2nd sort. Juxtapositions of these optional definitions of the 2nd order equality
with the relative identity of the 1st order terms are also far from arbitrary. Provided
the modal operator free definition of the 2nd order equality is companionable with
accompanied the �-less axioms (CI2), (CI3), then the marked with modal operator
definition of the 2nd order equality is companionable with accompanied the �-marked
axioms (CI2�), (CI3�). Note, in this context, the treatments of so called singletons Ix ,

where Ix (y)
df= (x

1≈ y), as terms of the 2nd sort are also option-oriented.

2 See, for example, Hughes and Cresswell (1968) and Cresswell (1995), where 1st order modal logic
adopting all converse Barcan formulas and refusing Barcan formulas are presented.
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478 M. Szatkowski

Admittedly, the first step in the systematic study of any logic should be to establish
its completeness or incompleteness with respect to some good class of model struc-
tures. And it should be said here that Kripke frames are strongly insufficient to char-
acterize all modal propositional logic, and consequently—all their 1st and 2nd order
extensions. Moreover, many well-known complete propositional modal systems have
incomplete 1st order predicate extensions. It is an open question whether something
similar holds between complete 1st order modal systems and their 2nd order exten-
sions; in particular—it is valid for us—what consequences adding ontological axioms
has. Some technical problems concerning the choices of a method to prove complete-
ness of quantified modal logic additionally arise; cf. Garson (1991, 1984), where J.
W. Garson describes the difficulties in finding one general method of providing such
a proof.

Model structures contain families of world-varying objectual domains of the 1st
order—for comparison, any model structures as introduced in Szatkowski (2005) con-
tain constant objectual domains of the 1st order— and constant conceptual domains
of the 2nd order. Terms of the 1st order receive only rigid (i.e. world-independent)
extensions, which are elements of the union of all 1st order domains. Members of
these 1st order domains are called existing objects of the world in question. Terms of
the 2nd order receive non-rigid (i.e. world-dependent) extensions and rigid intensions.
It is necessary to introduce families of preselected world-varying objectual domains
of the 2nd order; the preselected world-varying objectual domains of the 2nd order
are simply subsets of the power sets of corresponding 1st order domains. Members
of such world-indexed subfamilies are called existing properties of the world in ques-
tion. Extensions of the 2nd order terms are allowed to vary from one possible world to
another but they are always required to belong to a preselected domain connected with
a given world. Intensions of the 2nd order terms are chosen from among members of
a conceptual domain of the 2nd order, which is the set of all functions from the set
of worlds to the union of all 2nd order preselected domains such that values of these
functions at a given world belong to a preselected domain connected with this world.
Members of this conceptual domain are called conceptual properties.

The question is: How to treat “satisfiability of formulas” in such model structures?
More precisely, what to do with the satisfiability of formulas in the worlds in which
the extensions of their free variables of the 1st and 2nd order don’t exist? There are
two differing ways of dealing with this problem. One is to allow undefined values—a
formula φ is neither satisfied nor unsatisfied at a world w under an assignment a, if
there exists a 1st order free variable x in φ such that a(x) does not belong to the 1st
order domain indexed by the world w or if there exists a 2nd order free variable α in
φ such that (a(α))(w) does not belong to the 2nd order preselected domain indexed
by the world w. The difficulty with this proposal is that the inference rules of gen-
eralization of both orders do not preserve their validity. For example, the formulas
L(∀αα(x) → β(x)) and L(∀xα(x) → α(y)) are valid, but ∀xL(∀αα(x) → β(x))

and ∀αL(∀xα(x) → α(y)) are not.3 The other alternative, which we follow, says

3 Hughes and Cresswell (1968) have given completeness results for some classical modal logics of the 1st
order without classical or relative identity and without Barcan formulas wrt. classes of modal structures
containing families of nested world-varying objectual domains of the 1st order, i.e. domains of accessible
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Partly Free Semantics 479

that even though there exists a 1st order free variable x in φ such that a(x) does not
belong to the 1st order domain indexed by the world w or there exists a 2nd order
free variable α in φ such that (a(α))(w) does not belong to the 2nd order preselected
domain indexed by the world w, then they are members of other domains and therefore
meaningful—consequently, the formula φ is required to be in the world w as either
satisfied or unsatisfied.

The philosophical motivation for world-varying objectual domains of the 1st order
and preselected world-varying objectual domains of the 2nd order lies in the idea that
the objects and the properties in one world may fail to exist in another.4 As a result,
the universal specification of the 1st order, Barcan formulas and converse Barcan for-
mulas of the 1st order are invalid in such structures. Similarly, if 2nd order terms were
treated only as rigid extensions in the union of all 2nd order preselected domains, then
the universal specification of the 2nd order, Barcan formulas and converse Barcan
formulas of the 2nd order wouldn’t be valid. The question is whether the universal
specifications of the 1st and 2nd order are sufficient on the conditions of the constancy
of 1st and 2nd order domains, respectively. It is extremely hard, if not impossible, to
construct Kripke-type semantics with constant objectual 1st and/or 2nd order domains
in which the universal specification of the 1st and/or 2nd order is invalid. On the other
hand, it is not difficult to verify semantically that for every model with world-varying
objectual domains of the 1st and/or 2nd order, Barcan formulas of the 1st and/or 2nd
order are valid in this model if and only if it satisfies the anti-monotonicity condition:
if world v is accessible from world w then the 1st and/or 2nd order domain of v is
a subset of the 1st and/or 2nd order domain of w. And also, for every model with
world-varying objectual domains of the 1st and/or 2nd order, converse Barcan for-
mulas of the 1st and/or 2nd order are valid in this model if and only if it satisfies the
monotonicity condition: if world v is accessible from world w then the 1st and/or 2nd
order domain of w is a subset of the 1st and/or 2nd domain of v. Both equivalences
together say that any formula is valid in all world-varying objectual domain model
structures for Barcan formulas of the 1st and/or 2nd order and their converses if and
only if it is valid in all model structures with constant objectual domains of the 1st
and/or 2nd order.

So, the more natural model structures for modal theories of the 2nd order without
the universal specification, Barcan and converse Barcan formulas of the 1st order—
on the one hand, and with the universal specification, Barcan and Barcan formulas
of the 2nd order—on the other hand, should be model structures with world-vary-
ing objectual domains of the 1st order and one constant objectual domain of the 2nd
order, in which terms of the 1st and 2nd order obtain rigid extensions, respectively.
However, there are reasons for rejecting such a choice. Firstly, we don’t know how to
characterize a constant objectual domain of the 2nd order, which should have some

Footnote 3 continued
worlds from a given one are supersets of the domain of the world in question. The requirement of nested
domains guarantees that the inference rule of generalization of the 1st order already preserves the validity,
whole undefined values of formulas in worlds are allowed.
4 In Szatkowski (2005) we proved strong completeness theorems for different Anderson-like variants of
Gödel’s theory with respect to classes of model structures containing constant objectual 1st order domains.
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coherence to world-varying objectual domains of the 1st order. Secondly, if the sum
of all 2nd order world-varying preselected objectual domains (without introducing the
conceptual domain of the 2nd order) was treated as a constant objectual domain of the
2nd order in which terms of the 2nd order would obtain rigid extensions, then formulas
of the form Lφ ↔ φ would be verified for all formulas φ not containing quantifiers of
the 1st order. In order to avoid these difficulties we introduce preselected world-relative
objectual 2nd order domains and a constant conceptual 2nd order domain.5

The aim of this paper is to prove strong completeness theorems for all distinguished
theories with respect to corresponding classes of modal structures, which is certainly of
philosophical and theoretical import. The strategy of establishing strong completeness
is borrowed from Thomason (1970), which is essentially different from the method
used by us in Szatkowski (2005, 2007). Of course, the statement: God necessarily
exists is valid in all corresponding classes of modal structures.

Finally, a few words about related works. We limit ourselves only to works, in
which ontological proofs considered were understand by the authors as modifications
of Anderson’s ontological proof, and additionally—they were based on free modal
logic of the 2nd order. According to our knowledge of the literature, only Hájek’s
paper Hájek (2002a,b) satisfies such a criterion. Starting with the 2nd order modal
logic, which is obtained by marrying the 2nd order classical logic—enlarged by abso-
lute identity of the 1st order—with the propositional modal logic S5 (see, for example,
the notation in Hughes and Cresswell (1968)), Hájek firstly extends the language and
the basis of this logic by adding an unary predicate E applied to 1st order variables
and the axiom L∃xE(x), respectively; secondly, following Fitting (see, Fitting (2004)
and Fitting and Mendelson (1998)), he introduces the relativized quantifiers of the 1st
order ∀E and ∃E as follows: ∀Exφ for ∀x(E(x) → φ) and ∃Exφ for ∃x(E(x) ∧ φ);
and thirdly, he modifies Anderson’s theory by replacing all 1st order unrelativized
quantifiers by relativized quantifiers and then adds such a modified Anderson’s theory
to the whole, or he adds some versions of such a modified Anderson’s theory which is
obtained by applying at least one of the following three alterations: reducing the sys-
tem of axioms, replacing some axioms by new axioms, or introducing a new definition
of God-being. One can, of course, think of all these theories as having the free modal
logic of the 2nd order as a basis, if relativized quantifiers of the 1st order are considered.

2 Anderson-Like Theories, Viewed Syntactically

The formal language L of Anderson-like theories is equipped with a 2nd order unary
predicate P (P(A) is read: A is a positive property (or simply, A is positive), an
existence determinator E, a necessity symbol L, two sorts of variables: x, y, z, . . .
1st order), α, β, γ, . . . (2nd order), Boolean operator: − (complementation), logical
symbols: ∧,¬ (conjunction, negation) and ∀ (universal quantifier) for both sorts of
variables. The only terms of 1st sort are variables of 1st sort and terms of 2nd sort are
formed from variables of 2nd sort by applying complementation of any finite (possibly

5 We recommend Fitting (2002), Fitting and Mendelson (1998) and Garson (1984, 1991) for a detailed
discussion of the complications that arise in proving semantics for 1st order modal logics.
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Partly Free Semantics 481

zero) numbers of times. Thus, the set of terms of the 2nd sort and the set of formulas
are given by the grammars, respectively:

A
df= α

∣∣ − A

φ
df= A(x)

∣
∣ E(x)

∣
∣ P(A)

∣
∣φ ∧ ψ ∣

∣¬φ ∣
∣ Lφ

∣
∣ ∀xφ

∣
∣ ∀αφ.

The remaining propositional connectives: ∨,→,↔ as well as the strict implica-

tion ≺, the existential quantifier ∃, the possibility operator M, the identity
1≈ and the

inequality
1�≈ for terms of 1st sort are introduced as follows:

φ ∨ ψ df= ¬(¬φ ∧ ¬ψ), φ → ψ
df= ¬φ ∨ ψ, φ ↔ ψ

df= (φ → ψ) ∧ (ψ → φ),

φ ≺ ψ
df= L(φ → ψ), ∃ξφ

df= ¬∀ξ¬φ where ξ is a variable of any sort,

Mφ df= ¬L¬φ, (x
1≈ y)

df= ∀α(α(x) ↔ α(y)) and (x
1�≈ y)

df= ¬(x
1≈ y).

Some comments on the symbol E seem to be useful here. Why do we commit to E
the status of the existence determinator and not of the existence predicate? This last
terminology is already standard in literature. In the first place, if predicates of the 1st
order are understood to be properties of individuals and predicates of the 2nd order—to
be properties of properties, then E isn’t a property of individuals, or of properties, or
anything. For this reason, P(E) is not a formula of our language. In the second place,
even those who give to E the name: existence predicate, don’t always handle it as a
predicate (cf. Lambert (1981), pp. 159–160). At this point it may be instructive to see
how the formulas of the kinds: E(x) and A(x) are usually valued in model structures.
And so, informally, a formula E(x) is satisfied under an assignment a at a world w

iff the referent a(x) of x is a member of the 1st order domain of w. This means, the
symbol E determines (what justifies our name: existence determinator) referents of
1st order variables to be members of appropriate domains. Now a formula A(x) is
satisfied under an assignment a (or, under an interpretation I, if 1st order logic is in
work) at a world w iff a(x) belongs to the referent of A with respect to the assignment
a (or, with respect to the interpretation I) at the world w. Clearly the semantic statuses
of both kinds of formulas are different.

Further definitions of G(x), α Ess x and NE(x) adopted in Anderson-like theories
are borrowed from Anderson (1990):

G(x)
df= ∀α(P(α) ↔ Lα(x)) (2.1)

G(x) is read: x is a god-like being or simply x is God

A Ess x
df= ∀β

(
Lβ(x) ↔ L∀y(A(y) → β(y))

)
(2.2)

A Ess x is read: a property A is an essence of entity x, where A is a term of the 2nd sort

NE(x)
df= ∀α(α Ess x → L∃yα(y)) (2.3)

NE(x) is read: x necessarily exists.
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482 M. Szatkowski

Any Anderson-like theory will be determined by two groups of axioms and axiom
schemas: obligatory axioms and axiom schemas and optional axioms and axiom
schemas.

(I) Obligatory axioms and axiom schemas of Anderson-like theories are following
(we assume that φ,ψ are formulas and ξ is a variable of any sort):

All what is needed for classical propositional logic, (2.4)

∀ξ(φ → ψ) → (∀ξφ → ∀ξψ), (2.5)

∀αφ → φ(α/A) where A is a term of the 2nd sort, (2.6)

φ ↔ ∀ξφ if ξ is not free in φ, (2.7)

∀xφ ∧ E(y) → φ(x/y), (2.8)

∀xE(x), (2.9)

A(x) → E(x), (2.10)

L(φ → ψ) → (Lφ → Lψ), (2.11)

Lφ → Mφ, (2.12)

∀αLφ → L∀αφ (Barcan formula of 2nd sort), (2.13)

L∃αφ → ∃αLφ (principle of exportation of 2nd sort), (2.14)

(x
1≈ y) → (φ(z/x) → φ(z/y)) where z does not occur within the (2.15)

scope of a modal operator, and x, y are free for z inφ,

∀x
(

A(x) ↔ B(x)
) → (

φ(α/A) → φ(α/B)
)

where A and B are (2.16)

free for α inφ and α does not occur within the scope of a modal

operator,

G(x) → (
L(x

1≈ y) → (φ(z/x) ↔ φ(z/y))
)

where x and y are free (2.17)

for z inφ,

G(x) → (∃α(α(x) ∧ ¬α(y)) → L∃α(α(x) ∧ ¬α(y))
)
, (2.18)

P(α) → ¬P(−α), (2.19)

P(α) ∧ L∀x(α(x) → β(x)) → P(β), (2.20)

LG(x) → G(x), (2.21)

L∃xG(x) → ∃xLG(x) (2.22)

Every Anderson-like theory must be equipped also with an axiom saying that the
property of a god-like being is positive and therefore it must be legitimate to treat this
property as a term of the 2nd sort. Thus, the following two axioms are obligatory for
all Anderson-like theories:

∃α(α
2≈ G), (2.23)

∃β
(
P(β) ∧ (β

2≈ G)
)

or shortly: P(G). (2.24)
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Partly Free Semantics 483

where, of course, the symbol
2≈ stands for the relation of identity of objects of the 2nd

sort i.e. properties.

However, the relation
2≈ can be introduced in Anderson-like theories in two different

ways by the following optional definitions:

A
2≈ B

df= ∀x(A(x) ↔ B(x)), (2.25)

A
2≈ B

df= L∀x(A(x) ↔ B(x)) (2.26)

and it is clear that the translation of (2.23) and (2.24) to the original language depends

on which optional definition of
2≈ has been applied.

Moreover, the choice of definition of
2≈ affects other obligatory axioms of Ander-

son-like theories. Those axioms take the form:

(−α)(x) → ¬α(x), (2.27)

∀x(¬α(x) → (−α)(x)) and (2.28)

G(x) → (
(x

1≈ y) → L(x
1≈ y)

)
(2.29)

or

L((−α)(x) → ¬α(x)), (2.30)

L∀x(¬α(x) ↔ (−α)(x)) and (2.31)

G(x) → L
(
(x

1≈ y) → L(x
1≈ y)

)
(2.32)

depending on which one of (2.25), (2.26) has been adopted.

What is important to note is that neither of two optional definitions of
2≈ pro-

vides what one might have expected of an identity relation. Indeed, the formula:

(α
2≈ β) ∧ E(x) → (α(x) → β(x)) is unprovable on the basis of the definition

(2.26), however, it can be proved if (2.25) is applied. On the other hand, the formula:

(α
2≈ β) → (P(α) → P(β)) is unprovable on the basis of (2.25) but it can be proved

if (2.26) is applied.
Some comments about particular axioms or axiom schemas are also desirable here.

And so, the axiom (2.10)—called the thesis of serious actualism—can be seen surpris-
ing. Anticipating semantical considerations, this axiom says that if an atomic formula
A(x) is true at a world w then any extension of x is an element of the 1st order
domain of w. What is important, atomic formulas A(x) in the axiom (2.10) can not
be replaced by arbitrary formulas φ(x); for example, substituting ¬A(x) for A(x)

in (2.10) yields a non-valid formula ¬A(x) → E(x) in our semantics. In view of
the thesishood in Anderson-like theories the usefulness of the axiom A(x) → E(x)

lies in them that it interferes in our proofs of the ontologically meaningful theorems
∃xG(x) → L∃xG(x) (If there is a god-like being, then necessarily there is a god-
like being), ∀xNE(x) (NE(x) holds for every object x) and P(NE) (The property of
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necessary existence is a positive property); see, T6, T10 and T16 in “Appendix”.
As a result of possesing the axiom (2.10) we are able to prove in any Anderson-like
theory the formula: M∃xG(x) → L∃xG(x) (Possible existence of a god-like being
implies necessary existence of a god-like being)—what is in the sprit of the ancient
Anselm’s principle. The formulas ∃xG(x) → L∃xG(x) and M∃xG(x) → L∃xG(x)

were already proved by Anderson (1990) as an important part of his ontological proof.
Further, as a result of possesing the axioms (2.21) and (2.22) we are able to prove in any
Anderson-like theory the formula: L∃xG(x) ↔ ∃xG(x) (If necessarily there is a god-
like being, then indeed there is a god-like being); see, T9 in “Appendix”. For clarity, if
our Anderson-like theories would be based on the propositional modal logic S5, then
the axioms (2.21) and (2.22) would be superfluous. Finally, it may be also instructive to
make a small comment on the axiom (2.18). Perhaps, in the reader’s opinion, the natural

tendency would be use the axiom G(x) → (
(x

1�≈ y) → L(x
1�≈ y)

)
instead of G(x) →(∃α(α(x) ∧ ¬α(y)) → L∃α(α(x) ∧ ¬α(y))

)
. For the justification of our choice, we

answer that the formula G(x) → (∃α(α(x) ∧ ¬α(y)) → L∃α(α(x) ∧ ¬α(y))
)

is

deductively stronger than the formula G(x) → (
(x

1�≈ y) → L(x
1�≈ y)

)
, i.e. the first

formula is deducible from the second one in the context of other axioms of Anderson-
like theories, and the converse deduction does not hold.

Throughout this paper, we will consider different Anderson-like theories, which
will be denoted by appropriate acronyms. The first symbol of each acronym will
be VA. Any Anderson-like theory employing the definition (2.26) will be given an
acronym ending with the symbol � and thus, theories employing (2.25) can be easily
recognized by their �-less acronyms.

(II) Optional axioms of Anderson-like theories are chosen according to the follow-
ing criteria:

(i) treatment of the property of necessary existence,
(ii) treatment of so called permanence,

(iii) treatment of properties abstracted from expressions of the form Ix (y) defined by:

Ix (y)
df= (x

1≈ y) , (2.33)

(iv) characterization of modal operators.

As to (i), if we intend to treat the property of necessary existence as a term of the
2nd sort we should adopt an optional axiom:

∃α(α
2≈ NE) (2.34)

and augment the acronym of theory with the symbol n.
As to (ii), we simply add the axiom schema

∀xLE(x) (2.35)

and augment the acronym of theory with the symbol p.
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As to (iii), if we intend to treat expressions of the form Ix (y) as terms of 2nd sort
we should adopt an optional axiom:

∃α(α
2≈ Ix ) (2.36)

and augment the acronym of theory with the symbol s.
Once again we wish to emphasize that the form of optional axioms (2.34) and (2.36)

depends on which definition (2.25 or 2.26) of the relation
2≈ has been chosen.

As to (iv), we choose one of the following:

(5) MLφ → Lφ
(b) MLφ → φ

(c) MLφ → Lφ, MLφ → φ and P(α) → LP(α)

(d) MLφ → Lφ, Lφ → LLφ and P(α) → LP(α)

and augment the acronym of theory by symbol 5, b, c or d indicating the choice that
has been made.6

Each Anderson-like theory has the inference rule: modus ponens, necessitation and
generalization, respectively:

R1:
φ,φ → ψ

ψ
R2:

φ

Lφ
R3:

φ

∀ξφ

and the following borrowed from Thomason (1970):

R40:
φ → Lχ

φ → L∀xχ

where x is not free in φ,

R4n :
φ → ...ψ1 ≺ ... · · · ≺ ...ψn ≺ Lχ

φ → ...ψ1 ≺ ... · · · ≺ ...ψn ≺ L∀xχ

where x is not free in φ, ψ1, . . . , or ψn, n > 0.

R50:
φ → (x

1�≈ y)

¬φ
where x is not free in φ,

R5n :
φ → ...ψ1 ≺ ... · · · ≺ ...ψn ≺ (x

1�≈ y)

φ → ...ψ1 ≺ ... · · · ≺ ...ψn−1 ≺ L¬ψn

where x is not free in φ, ψ1, . . ., or ψn, n > 0.

6 Anderson’s ontological proof is based on the propositional modal logic S5. But, its variants proposed by
Hájek (1996, 2002a,b) and us in Szatkowski (2005) were already grounded on weaker than S5 propositional
modal logics.
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By �Th we denote the inference relation determined by axioms and rules of the
Anderson-like theory Th. Thus, for a set of formulas X and a formula φ we write:
X �Th φ to mean that there exists a Th-derivation of φ from X . Such a derivation
is a finite sequence of formulas (derivation steps) each of which has to be justified in
an appropriate manner. Each step of derivation is therefore required to be an axiom
of Th or an element of X or a result of applying an inference rule to preceding step
(or steps). Moreover, applying inference rules is subject to the following important
restriction:

rules other than R1 are applicable only to steps which are obtained
without using elements of X .

The following remark is relevant here. We have defined a Th-derivation of φ from
X in a different way from this in Szatkowski (2005), where we have rejected the
inference rules of necessitation and generalizations and we have worked with modus
ponens as the only inference rule and with so called clothed axioms. If necessitation
and generalizations had been introduced, then their use must be restricted to theorems
of a Th theory. But then the axiomatic basis obtained could easily be proved to be
equivalent to the one we have used. However, we have chosen the more “modern and
elegant” treatment. It still seems to be technically difficult, if it is really possible, to
apply this treatment to theories considered here. These theories are determined except
necessitation and generalizations yet by other complex inference rules, which makes
such a mutual translation difficult.

An easy proof of the following elementary properties of the inference relation �Th
is left to the reader.

Proposition 2.1 For any Anderson-like theory Th:

(i) X ∪ {φ} �Th ψ iff X �Th φ → ψ ,
(ii) if X �Th φ then {Lψ : ψ ∈ X} �Th Lφ,

(iii) if X ∪{φ(ξ/ζ )} �Th ψ and ζ is a variable not occurring inψ or in any member
of X, then X ∪ {∃ξφ} �Th ψ .

3 Anderson-Like Theories, Viewed Semantically

By a model structure we mean a quintuple of the form W = 〈W, R,D1,D2, G〉 where
W �= ∅ is the set of possible worlds, R ⊆ W 2 is the relation of accessibility, D1 is
the family (Dw)w∈W of 1st sort domains—members of

⋃
w∈W Dw are called existing

objects, D2 is the family (Dw)w∈W of 2nd sort domains Dw ⊆ 2Dw , w ∈ W —mem-
bers of

⋃
w∈W Dw are called existing properties. Apart from existing properties we

also consider so called conceptual properties of the structure, by which we mean
functions f ∈ W �→ ⋃

w∈W Dw such that f (w) ∈ Dw for every w ∈ W . The set of
all conceptual properties of the structure W will be denoted by CW. The additional
conditions necessary for modal structures are:
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∅ �= G ⊆
⋂

w∈W

Dw and G ∈
⋂

w∈W

Dw, (3.1)

∀∀∀w ∈ W ∀∀∀a, b ∈ G∀∀∀X ∈ Dw

(
a ∈ X iff b ∈ X

)
, (3.2)

∀∀∀w ∈ W
(
X ∈ Dw �⇒ Dw − X ∈ Dw

)
, (3.3)

R is serial, i.e. ∀∀∀ ∈ W ∃∃∃v ∈ W wRv. (3.4)

By an assignment in a model structure W we mean a function a which maps
variables of the 1st sort to members of

⋃
w∈W Dw and variables of the 2nd sort to con-

ceptual properties of the structure (i.e. members of CW). An assignment a is extended

to all terms A by putting: (a(−A))(w)
df= Dw − (a(A))(w), for every w ∈ W and

every term A of the 2nd sort. If a is an assignment, then the symbol ao
ξ denotes the

assignment defined by:

ao
ξ (ζ )

df=
{

o if ζ = ξ ,

a(ζ ) if ζ �= ξ .

Of course, o is tacitly assumed to be an entity suitable for the variable ξ depending
on its sort and both a and ao

ξ are assumed to be assignments in the same structure.

We say that assignments a, b agree apart from ξ (symbolically: a ≡?
ξ b) if for some

o, ao
ξ = b. Note that ≡?

ξ is an equivalence relation on the set of all assignments of a

model structure. The equivalence class of a with respect to ≡?
ξ will be further denoted

by {a?
ξ }. And for every w ∈ W, {a?

ξ,w} will be the subclass of {a?
ξ } defined as follows:

(i) for every 1st sort variable x, {a?
x,w} = {

b | b ∈ {a?
x } and b(x) ∈ Dw

}
,

(ii) for every 2nd sort variable α, {a?
α,w} = {a?

α}.
It is worth nothing that {a?

ξ,w} is an equivalence subclass of {a?
ξ } iff a ∈ {a?

ξ,w}.
A pair of the form 〈W, a〉 will be called model and the symbol |� will be used

for the satisfiability relation—the expression W, a, w |� φ, where w ∈ W reads: the
formula φ is satisfied in the world w of model 〈W, a〉. If no misunderstanding is likely
as to the particular structure W in which an assignment a has been chosen, we simplify
the notation by writing: a, w |� φ instead of W, a, w |� φ. Given a model 〈W, a〉,
the satisfiability relation |� is defined as usual, for any possible world w ∈ W by the
following conditions, where x is a variable of the 1st sort, A is a term of the 2nd sort,
ξ is a variable of arbitrary sort and φ,ψ are a formulas:

(i) a, w |� E(x) iff a(x) ∈ Dw,
(ii) a, w |� A(x) iff a(x) ∈ (a(A))(w),

(iii) a, w |� φ ∧ ψ iff a, w |� φ and a, w |� ψ ,
(iv) a, w |� ¬φ iff not a, w |� φ (symbolically: a, w � φ),
(v) a, w |� ∀ξφ iff b, w |� φ for every b ∈ {a?

ξ,w},
(vi) a, w |� Lφ iff a, v |� φ for every v ∈ W such that wRv,

(vii) a, w |� P(A) iff G ⊆ (a(A))(v) for every v ∈ W such that wRv.

The set of all formulas satisfied in a world w of a model 〈W, a〉 will be denoted
by Sat(W, a, w) or simply by Sat(a, w) , if the model structure in question is clear
from the context.
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As customary, we say that a formula φ is true in a model structure W (sym-
bolically: W |� φ) iff a, w |� φ, for every assignment a in W and every world

w ∈ W . The set of all true formulas will be denoted by Th(W). We also put Th(K)
df=⋂ {Th(W) : W ∈ K}, for an arbitrary class of structures K. If X is a set of formulas,

then we write W |� X, K |� X if X ⊆ Th(W), X ⊆ Th(K) respectively. We write
X |�K φ to express that for every assignment a in a structure W ∈ K and for every
w ∈ W , if X ⊆ Sat(W, a, w) then φ ∈ Sat(W, a, w).

The following fact is sometimes called substitution lemma. Its proof—a routine
induction on the degree of complexity of φ—will be omitted.

Proposition 3.1 If A is a term of the same sort as a variable ξ then a, w |� φ(ξ/A)

iff a
a(A)
ξ , w |� φ.

We will need a certain subset W acc ⊆ W . Members of W acc are called accessi-
ble worlds and W acc is defined as the R-image of W . We also define inaccessible

worlds putting W inacc df= W − W acc. We will define a class of so called special
structures in which inaccessible worlds will be treated in a special way—they will
be provided with a separate family E2 of the 2nd sort domains. Thus, by a special
structure we shall mean a sextuple of the form W = 〈W, R,D1,D2,E2, G〉 where
W = 〈W, R,D1,D2, G〉 is an ordinary model structure and E2 = (Ew)w∈W , where
∅ �= Ew ⊆ Dw for every w ∈ W inacc. By conceptual properties of a special struc-
ture we shall mean those functions f ∈ W �→ ⋃

w∈W (Dw ∪ Ew) such that for
every w ∈ W : f (w) ∈ Dw if w ∈ W acc, and f (w) ∈ Ew if w ∈ W inacc. The
above restriction on the set of conceptual properties of a special model structure
forces a revision of treatment of terms of the 2nd sort. Indeed, if a is an assign-
ment in a special model structure W and w ∈ W inacc then we can no longer put:

(a(−A))(w)
df= Dw − (a(A))(w) because the value (a(−A))(w) has to belong to

Ew which has not been assumed to be closed under complementation. Thus, for
w ∈ W inacc, we allow (a(−A))(w) to be an arbitrary element of Ew and in effect,
in inaccessible worlds of special model structures, the complementation—operator is
deprived of its usual sense.

Now, we will define certain classes of model structures which will play the role of
semantical counterparts of Anderson-like theories. To each class will be affixed the
same acronym as to its corresponding Anderson-like theory, however, the symbols:
VA, 5, b, c, d, n, p, s and � will be interpreted in a different manner according to
the following simple rules:

(V) The first symbol of an acronym i.e. VA stands for the class of all model struc-
tures which subsequently undergo restrictions forced by successive symbols of
acronym ;

(5) The symbol 5 in an acronym indicates that structures in the class are Euclidean i.e.
they obey the condition: if wRv and wRv1 then vRv1, for every w, v, v1 ∈ W ;

(b) The symbol b indicates that structures in the class are symmetric i.e. if wRv then
vRw, for every w, v ∈ W ;

(c) The symbol c indicates that structures in the class are Euclidean and symmetric;
(d) The symbol d indicates that structures in the class are Euclidean and transitive

i.e. if wRv and vRv1 then wRv1, for every w, v, v1 ∈ W ;
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(n) The symbol n indicates that structures in the class obey the following condition:
∀∀∀w ∈ W

(
Dw ∈ Dw

)
;

(p) The symbol p indicates that structures in the class obey the monotonicity
condition : ∀∀∀w, v ∈ W

(
wRv �⇒ Dw ⊆ Dv

)
;

(s) The symbol s indicates that structures in the class obey the condition: ∀∀∀w ∈
W∀∀∀a ∈ ⋃

w∈W Dw (
⋂{X | X ∈ Dw and a ∈ X} ∈ Dw);

(�) If an acronym ends with � then all structures in the class are required to be
special.

Now, it can be showed that the statement: God (necessarily) exists is true in all
model structures of any kind.

Lemma 3.2 For every assignment a in a model structure of any kind (ordinary or spe-
cial) and for every world w ∈ W (no matter whether accessible or not) the following
holds: a, w |� L∃xG(x).

Proof We start with a computation:

a, w |� G(x) iff a, w |� ∀α(P(α) ↔ Lα(x))

iff ∀∀∀b ∈ {a?
α,w}(b, w |� P(α) ↔ Lα(x)

)

iff ∀∀∀b ∈ {a?
α,w}(b, w |� P(α) ⇐⇒ b, w |� Lα(x)

)

iff ∀∀∀b ∈ {a?
α,w}(b, w |� P(α) ⇐⇒ ∀∀∀v ∈ R(w)(b, v |� α(x))

)

iff ∀∀∀b ∈ {a?
α,w}(∀∀∀v ∈ R(w)(G ⊆ (b(α))(v)) ⇐⇒ ∀∀∀v ∈ R(w)(b(x) ∈ (b(α))(v))

)

iff ∀∀∀b ∈ {a?
α,w}(∀∀∀v ∈ R(w)(G ⊆ (b(α))(v)) ⇐⇒ ∀∀∀v ∈ R(w)(a(x) ∈ (b(α))(v))

)
.

Now, since R is serial (see 3.4) then R(w) �= ∅ and therefore, (3.1) yields the impli-
cation: a, w |� G(x) �⇒ a(x) ∈ G. The converse implication is obvious. Thus,
a, w |� G(x) iff a(x) ∈ G. And since, a, w |� L∃xG(x) iff ∀∀∀v ∈ R(w)

(
a, v |�

∃xG(x)
)

iff ∀∀∀v ∈ R(w)∃∃∃b ∈ {a?
x,v}

(
b, v |� G(x)

)
iff ∀∀∀v ∈ R(w)∃∃∃b ∈ {a?

x,v}
(
b(x) ∈

G
)
. Then, taking b ∈ {a?

x,v} such that b(x) ∈ G we immediately obtain a, w |�
L∃xG(x). ��

4 A Preliminary Machinery to Strong Completeness

Before we begin proofs of strong completeness theorems in the strict sense, we must
present some preparatory technical results. Everything presented here is borrowed
from Thomason (1970). We will simply adopt this semantic machinery proving the
completeness theorem for the 1st order free modal logic S4 to our Anderson-like
theories.

We shall assume that all formulas have been arranged in some denumerable
sequence: φ1, φ2, . . . ,φi , . . .. We shall also suppose that some particular enumer-
ations are fixed so that we may speak of the 1st, 2nd, . . . , i th, . . . variable of the 1st
or 2nd sort, respectively.

Given a set X of formulas of L, we say that X is Th-consistent if there exists no
formula φ of L such that both X �Th φ and X �Th ¬φ; Th-inconsistent, otherwise.
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X is maximally Th-consistent if it is Th-consistent and for any formula φ of L that
does not belong to X, X ∪ {φ} is Th-inconsistent.

Lemma 4.1 Let X be a Th-consistent set of formulas of L and M(φ1 ∧ · · · ∧ φn) ∈
X, n ≥ 1. Then, {φ1, . . . ,φn} is also Th-consistent.

Proof By an easy verification. ��
Lemma 4.2 Let X be a maximally Th-consistent set of formulas of L. Then: X �Th
φ iff φ belongs to X.

Proof By an easy verification. ��
Lemma 4.3 Let X be a maximal Th-consistent set of formulas of L and M(φ1 ∧· · ·∧
φn) ∈ X, n ≥ 1. Then, for any formula ψ of L : M(φ1 ∧ · · · ∧ φn ∧ ψ) ∈ X or
M(φ1 ∧ · · · ∧ φn ∧ ¬ψ) ∈ X.

Proof Let the assumptions of the lemma be satisfied and let M(φ1 ∧· · ·∧φn ∧ψ) /∈ X
and M(φ1 ∧ · · · ∧ φn ∧ ¬ψ) /∈ X . Then, by the maximality of X, ¬M(φ1 ∧ · · · ∧
φn ∧ψ) ∈ X and ¬M(φ1 ∧ · · ·∧φn ∧¬ψ) ∈ X . And hence, φ1 ∧ · · ·∧φn ≺ ψ ∈ X
and φ1 ∧ · · · ∧ φn ≺ ¬ψ ∈ X . Consequently, ψ ∨ ¬ψ ≺ ¬(φ1 ∧ · · · ∧ φn) ∈ X , and
further, L¬(φ1 ∧ · · · ∧ φn) ∈ X , i.e. ¬M(φ1 ∧ · · · ∧ φn) ∈ X—a contradiction. ��

Two sequences of functions: f0, f1, . . . and h0, h1, . . . are defined as follows:

(i) f0(∃ξφ, ζ ) =
{

M∃ξφ → M(E(ζ ) ∧ φ(ξ/ζ )) if ξ is a 1st order variable,

M∃ξφ → Mφ(ξ/ζ ) if ξ is a 2nd order variable;
(ii) f1(ψ1, ∃ξφ, ζ ) = Mψ1 → M

(
ψ1 ∧ f0(∃ξφ, ζ )

)
;

(iii) fi+1(ψ1, . . . ,ψ i+1, ∃ξφ, ζ )=Mψ i+1 → M
(
ψ i+1 ∧ fi (ψ1, . . . ,ψ i , ∃ξφ, ζ )

)

and

(iv) h1(ψ1, x, y) = Mψ1 → M
(
ψ1 ∧ (x

1≈ y)
)
;

(v) hi+1(ψ1, . . . ,ψ i+1, x, y) = Mψ i+1 → M
(
ψ i+1 ∧ hi (ψ1, . . . ,ψ i , x, y)

)
.

Lemma 4.4 For all i > 0, if X �Th ¬ fi (ψ1, . . . ,ψ i , ∃χφ, ζ ) where ζ does not
occur free in ψ1, . . . ,ψ i , ∃ξφ, or any member of X, then X is Th-inconsistent.

Proof By induction on i, i > 0.

Case 1: i = 1.
Suppose that X �Th ¬ f1(ψ1, ∃ξφ, ζ ) and ζ does not occur free inψ1, ∃ξφ,
or any member of X . Hence, it follows that: (i) X �Th Mψ1 and X �Th
ψ1 ≺ (

M∃ξφ ∧ L(E(ζ ) → ¬φ(ξ/ζ ))
)
, if ξ and ζ are 1st sort variables;

or (ii) X �Th Mψ1 and X �Th ψ1 ≺ (
M∃ξφ ∧ L¬φ(ξ/ζ )

)
, if ξ and ζ

are 2nd sort variables. In the case (i), we obtain X �Th ψ1 ≺ M∃ξφ and
X �Th ψ1 ≺ L(E(ζ ) → ¬φ(ξ/ζ )). Which, by R41, yields X �Th ψ1 ≺
L∀ζ (E(ζ ) → ¬φ(ξ/ζ )). Applying now (2.5), (2.11), (2.9), R2 and R1 to the
last, we get X �Th ψ1 ≺ L∀ξ¬φ, and consequently, X �Th M∃ξφ ≺ ¬ψ1.
Therefore, X �Th M∃ξφ ∨ ¬M∃ξφ ≺ ¬ψ1, which implies X �Th L¬ψ1,
i.e. X �Th ¬Mψ1. And we conclude that X is Th-inconsistent. In the case
(ii), the argument is similar.
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Case 2: i > 1.
Suppose that Lemma holds for i = l. Additionally, assume that X �Th
¬ fl+1(ψ1, . . . ,ψ l ,ψ l+1∃ξφ, ζ ) and ζ does not occur free inψ1, . . . ,ψ l+1,

∃ξφ, or any member of X . Thus, X �Th ¬(
Mψ l+1 →M

(
ψ l+1 ∧ f j (ψ1, . . . ,

ψ l , ∃ξφ, ζ )
) )

. It follows that X �Th Mψ l+1 and X �Th Mψ l+1 ≺
¬ fl(ψ1, . . . ,ψ l , ∃ξφ, ζ ). Consequently, X �Th ¬ fl(ψ1, . . . ,ψ l , ∃ξφ, ζ ).
And from the latter result, on the strength of the induction hypothesis, we
obtain that X is Th-inconsistent.

In this way we have finished the proof of the lemma. ��
Lemma 4.5 For all i > 0, if X �Th ¬hi (ψ1, . . . ,ψ i , x, y) where y is different from
x and y does not occur free in ψ1, . . . ,ψ i or any member of X, then X is Th-incon-
sistent.

Proof Like that of Lemma 4.4. ��
Let X be a set of formulas of L and Th be of one of Anderson-like theories in L.

We shall say that X is Th-saturated in L if it meets the following conditions:

(i) X is maximally Th-consistent;
(ii) For every formula φ and variable ξ of L, ∀ξφ ∈ X if φ(ξ/ζ ) ∈ X for all

variables ζ of L;

(iii) For every 1st sort variable y there is a 1st sort variable x such that (x
1≈ y) ∈ X ;

(iv) For every formula φ and variable ξ of L there is a variable ζ of L such that
f0(∃ξφ, ζ ) ∈ X ;

(v) For all n > 0, for all sets {ψ1, . . . ,ψn, ∃ξφ} of formulas of L there is a variable
ζ of L such that fn(ψ1, . . . ,ψn, ∃ξφ, ζ ) ∈ X ;

(vi) For all n > 0, for every 1st sort variable y and all sets {ψ1, . . . ,ψn} of formulas

of L there is a 1st sort variable x such that hn(ψ1, . . . ,ψn, (x
1≈ y)) ∈ X .

Let X be a Th-consistent set of formulas of L. Let L′ be a language obtained from
L by adding an infinite number of new 1st order variables X ′ = {x ′

1, x ′
2, . . .} and an

infinite number of new 2nd order variables Y ′ = {α′
1, α

′
2, . . .}. Moreover, suppose

that the set of nonnegative integers was partitioned into denumerably many denumer-
able sets S0, S1, S2, . . .. We define the infinite sequence of Thomason’s sets (in short,
t-sets) X0, X1, X2, . . . of formulas of L′ in this way that X0 = X and if Xi was already
introduced, then according to the following cases:

(0) i ∈ S0. Let ∃ξφ be the alphabetically first formula of L′ of the kind ∃ζ δ such
that: (i) for all x ′ ∈ X ′,

(
(∃ξφ → φ(ξ/x ′)) ∧ E(x ′)

)
/∈ Xi , if ξ is a 1st sort var-

iable, or (ii) for all α′ ∈ Y ′,
(∃ξφ → φ(ξ/α′)

)
/∈ Xi , if ξ is a 2nd sort variable.

Then, in the case (i) we put Xi+1 = Xi ∪ {(∃ξφ → φ(ξ/x ′)) ∧ E(x ′)} where x ′
is the first member of X ′ not occurring in any member of Xi or ∃ξφ, in the case
(ii) we put Xi+1 = Xi ∪ {

(∃ξφ → φ(ξ/α′)
}

where α′ is the first member of Y ′
not occurring in any member of Xi or ∃ξφ;

(1) i ∈ S1. Let ∃ξφ be the alphabetically first formula of L′ of the kind ∃ζ δ such that
for all ς of X ′ (or, Y ′), f0(∃ξφ, ς) /∈ Xi . Then, we put Xi+1 = Xi ∪{ f0(∃ξφ, τ )}
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where τ is the first member of X ′ (or, Y ′) not occurring in any member of Xi or
∃ξφ;

(2) i ∈ S2. Let y be the alphabetically first 1st sort variable of L′ such that for all

x ′ ∈ X ′, (x ′ 1≈ y) /∈ Xi . Then, we put Xi+1 = Xi ∪{z′ 1≈ y} where z′ is the first
member of X ′ not occurring in any member of Xi and z′ is different from y;

(3) i ∈ S2n+1, where n > 0. Let ψ1 ∨ · · · ∨ ψn ∨ ∃ξφ be the alphabeti-
cally first formula of L′ of the kind δ1 ∨ · · · ∨ δn ∨ ∃ζ δ such that for all ς

of X ′ (or, Y ′), fi (ψ1, . . . ,ψn, ∃ξφ, ς) /∈ Xi . Then, we put Xi+1 = Xi ∪
{ fn(ψ1, . . . ,ψ i , ∃ξφ, τ )} where τ is the first member of X ′ (or, Y ′) not occurring
in any member of Xi or in ψ1 ∨ · · ·ψn ∨ ∃ξφ;

(4) i ∈ S2n+2, where n > 0. Let ψ1 ∨ · · · ∨ ψn ∨ (x
1≈ y) be the alpha-

betically first formula of L′ of the kind δ1 ∨ · · · ∨ δn ∨ (a
1≈ b) such that

for all x ′ ∈ X ′, hi (ψ1, . . . ,ψn, x ′, y) /∈ Xi . Then, we put Xi+1 = Xi ∪
{hn(ψ1, . . . ,ψn, z′, y)} where z′ is the first member of X ′ not occurring in any
member of Xi or ψ1 ∨ . . .ψn , and z′ is different from y.

Lemma 4.6 Let X0, X1, X2, . . . be a sequence of t-sets of formulas of L′. Then, the
union X∞ = ⋃

i≥0 Xi is Th-consistent set of formulas of L′.

Proof We show by induction that for all i ≥ 0, Xi is a Th-consistent set of formulas
of L′.

Case (0) If Xi+1 were Th-inconsistent, then we would have: (i) Xi ∪ {(∃ξφ →
φ(ξ/x ′)) ∧ E(x ′)} �Th χ ∧ ¬χ where x ′ is a 1st sort variable not occurring
in any member of Xi , ∃ξφ or χ , or (ii) Xi ∪{∃ξφ → φ(ξ/α′)} �Th χ ∧¬χ

where α′ is a 2nd sort variable not occurring in any member of Xi , ∃ξφ or
χ . Hence, using Proposition 2.1(iii), we would obtain Xi ∪ {∃x ′((∃ξφ →
φ) ∧ E(x ′)

)} �Th χ ∧ ¬χ or Xi ∪ {∃α′(∃ξφ → φ)} �Th χ ∧ ¬χ . From
this, by T2 (“Appendix”), we would get Xi �Th χ ∧ ¬χ , i.e, that Xi is
Th-inconsistent—a contradiction.

Case (1) If Xi+1 were Th-inconsistent, then we would have Xi ∪ { f0(∃ξφ, τ )} �Th
χ ∧¬χ where τ is the member of X ′ (or, Y ′) not occurring in any member of
Xi or ∃ξφ. From this it follows that Xi �Th ¬ f0(∃ξφ, τ ). If τ were a mem-
ber of X ′, we would have Xi �Th M∃ξφ and Xi �Th E(τ ) ≺ ¬φ(ξ/τ).
From the latter, by virtue of R41, we would obtain Xi �Th L∀ξ(E(ξ) →
¬φ), and further, by (2.5), (2.11), (2.9), R2 and R1, Xi �Th L∀ξ¬φ, i.e.
Xi �Th ¬M∃ξφ—a contradiction. If τ were a member of Y ′, we would
have Xi �Th M∃ξφ and Xi �Th ¬Mφ(ξ/τ). Hence, we would get Xi �Th
∀τL¬φ, and therefore, by (2.13), Xi �Th L∀τ¬φ. Finally, we would obtain
Xi �Th ¬M∃ξφ—a contradiction.

Case (2) If Xi+1 were Th-inconsistent, then we would have Xi ∪{z′ 1≈ y} �Th χ∧¬χ

where z′ is a 1st sort variable not occurring in any member of Xi and z′ is

different from y. Hence, we would obtain Xi �Th ¬(z′ 1≈ y). But then, after
applying R50, Xi would be Th-inconsistent—a contradiction.
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Case (3) If Xi+1 were Th-inconsistent, then we would have Xi ∪ { fn(ψ1, . . . ,ψ i ,

∃ξφ, τ )} �Th χ ∧ ¬χ where τ is the member of X ′ (or, Y ′) not occurring
in any member of Xi or in ψ1 ∨ · · ·ψn ∨ ∃ξφ. From this it follows that
Xi �Th ¬ fi (ψ1, . . . ,ψ i , ∃ξφ, τ ) holds. But then, in view of Lemma 4.4,
we would obtain that Xi is Th-inconsistent—a contradiction.

Case (4) If Xi+1 were Th-inconsistent, then we would have Xi ∪{hn(ψ1, . . . ,ψn, z′,
y)} �Th χ ∧ ¬χ where z′ is a 1st sort variable not occurring in any mem-
ber of Xi or ψ1 ∨ · · ·ψn , and z′ is different from y. From this, we would
get Xi �Th ¬hn(ψ1, . . . ,ψn, z′, y), and by Lemma 4.5, Xi would be Th-
inconsistent—a contradiction. ��

Let X be a Th-consistent set of formulas of L. Let X0, X1, X2, . . . be a sequence
of t-sets of formulas of L′. By the normal Thomason’s Th-extension (in short, normal
t-Th-extension) of X in L′ we shall understand the extension of X∞ = ⋃

i≥0 Xi to a
maximal Th-consistent set of formulas of L′.

Lemma 4.7 Let X be a Th-consistent set of formulas of L. Then, the normal
t-Th-extension of X in L′ is a Th-saturated set in L′.

Proof Let 
 be a normal t-Th-extension of X in L′. Then, Lemma 4.6 and the defi-
nition of the sequence of t-sets guarantee that 
 fulfills the clause (i) of the definition
of Th-saturated sets. To prove that 
 fulfills the condition (ii) of this latter definition,
let us assume that for every variable ζ of L′, φ(ξ/ζ ) ∈ 
, and ∀ξφ /∈ 
. Hence,
∃ξ¬φ ∈ 
. Thus, by the clause (0) of the definition of the sequence of t-sets: (i)
there exists a 1st sort variable x of L′ such that

(
(∃ξ¬φ → ¬φ(ξ/x) ∧ E(x)

) ∈ 
,
if ξ is a 1st sort variable, or (ii) there exists a 2nd sort variable α of L′ such that
∃ξ¬φ → ¬φ(ξ/α) ∈ 
, if ξ is a 2nd sort variable. In both cases, there exists a
variable ζ of L′ such that ∃ξ¬φ → ¬φ(ξ/ζ ) ∈ 
. Consequently, ¬φ(ξ/ζ ) ∈ 
 for
some variable ζ of L′—a contradiction. Evidently, the clauses (1)–(4) of the definition
of the sequence of t-sets guarantee that 
 fulfills the clauses (iii)–(vi) of the definition
of Th-saturated sets, respectively. ��

Let X be a Th-saturated set in L and Mψ ∈ X . Moreover, suppose that the set
of nonnegative integers was partitioned into denumerably many denumerable sets
S0, S1, S2, . . .. By the special Thomason’s Th-extension (in short, special t-Th-exten-
sion) of ψ in L we shall understand the union X∞ = ⋃

i≥0 Xi , where X0 = {ψ0} =
{ψ} and if Xi = {ψ0,ψ1, . . . ,ψ i } then Xi+1 is given according to the following
cases:

(0) i ∈ S0. Let χ be the alphabetically first formula of L such that χ /∈ Xi and
¬χ /∈ Xi . Then, we put Xi+1 = Xi ∪ {ψ j+1}, where ψ i+1 is χ if M

(
ψ0 ∧ · · · ∧

ψ i ∧ χ
) ∈ X , and ψ i+1 is ¬χ otherwise.(

According to Lemma 4.3, ψ i+1 is defined and M
(
ψ0 ∧ψ1 ∧ · · · ∧ψ i ,ψ i+1

) ∈
X

)
;

(1) i ∈ S1. If there is no formula of the kind ∃ςδ such that ∃ςδ ∈ Xi , we put ψ i+1
to beψ i , i.e. Xi+1 = Xi . If there is a formula of the kind ∃ςδ such that ∃ςδ ∈ Xi ,
then we choose the alphabetically first formula ∃τχ ∈ Xi and according to the
sort of τ : (i) if τ a 1st sort variable, we choose the first 1st sort variable u of L such
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that M
(
ψ0 ∧ψ1 ∧ · · · ∧ψ i

) → M
(
ψ0 ∧ψ1 ∧ · · · ∧ψ i ∧ E(u) ∧ χ(τ/u)

) ∈ X
holds, and put Xi+1 = Xi ∪ {ψ i+1}, where ψ i+1 is E(u) ∧ χ(τ/u); (ii) if
τ a 2nd sort variable, we choose the first 2nd sort variable γ of L such that
M

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i

) → M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i ∧ χ(τ/γ )

) ∈ X holds, and
put Xi+1 = Xi ∪ {ψ i+1}, where ψ i+1 is χ(τ/γ ).(
Suppose that for some k ≤ i, ψk is ∃τχ . Let u be the alphabetically first 1st

sort variable u of L such that not occurring in any formula of {ψ0,ψ1, . . . ,ψ i }.
Because�Th M

(
ψ0∧ψ1∧· · ·∧ψk−1∧∃τχ∧ψk+1∧· · ·∧ψ i

) → M∃u
(
ψ0∧ψ1∧

· · ·∧ψk−1∧χ(τ/u)∧ψk+1∧· · ·∧ψ i

)
and M

(
ψ0∧ψ1∧· · ·∧ψk−1∧∃τχ∧ψk+1∧

· · ·∧ψ i

) ∈ X , then M∃u
(
ψ0∧ψ1∧· · ·∧ψk−1∧χ(τ/u)∧ψk+1∧· · ·∧ψ i

) ∈ X .
Hence, by the Th-saturation of X in L, M∃u

(
ψ0 ∧ψ1 ∧ · · · ∧ψk−1 ∧χ(τ/u)∧

ψk+1 ∧ · · · ∧ψ i

) → M
(
ψ0 ∧ψ1 ∧ · · · ∧ψk−1 ∧ E(z)∧χ(τ/z)∧ψk+1 ∧ · · · ∧

ψ i

) ∈ X for some 1st sort variable z of L. Finally, in view of T3 (“Appendix”),
M

(
ψ0 ∧ψ1 ∧· · ·∧ψ i ∧E(z)∧χ(τ/z)

) ∈ X , i.e. M
(
ψ0 ∧ψ1 ∧· · ·∧ψ i+1

) ∈ X .
The reasoning is similar, if τ is a first 2nd sort variable.

)

(2) i ∈ S2. Let y be the alphabetically first 1st sort variable of L such that for all

1st sort variables u of L, (u
1≈ y) /∈ Xi . Let z be the alphabetically first 1st sort

variable of L such that M
(
ψ0 ∧ψ1 ∧· · ·∧ψ i

) → M
(
ψ0 ∧ψ1 ∧· · ·∧ψ i ∧ (z

1≈
y)

) ∈ X . Then, we put Xi+1 = Xi ∪ {ψ i+1}, where ψ i+1 is (z
1≈ y).(

Because X is Th-saturated in L, therefore there exists a 1st sort variable z

of L such that M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i

) → M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i ∧ (z

1≈
y)

) ∈ X . But, by induction hypothesis, M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i

) ∈ X . Thus,

M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i ∧ (z

1≈ y)
) ∈ X , i.e. M

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i+1

) ∈ X .
)

(3) i ∈ S3. If there is no formula of the kind M∃ςδ such that M∃ςδ ∈ Xi , we
put ψ i+1 to be ψ i , i.e. Xi+1 = Xi . If there is a formula of the kind M∃ςδ

such that M∃ςδ ∈ Xi , then then we choose the alphabetically first formula
M∃τχ ∈ Xi and the first variable τ ′ of L such that M

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i

) →
M

(
ψ0 ∧ψ1 ∧ · · · ∧ψ i ∧ f0(∃τχ, τ ′)

) ∈ X holds, and put Xi+1 = Xi ∪ {ψ i+1},
where ψ i+1 is f0(∃τχ, τ ′).(
Suppose that for some k ≤ i, ψk is M∃τχ . Let u be the alphabetically first 1st

sort variable of L not occurring in any formula of {ψ0,ψ1, . . . ,ψ i }. Because(
ψ0 ∧ ψ1 ∧ · · · ∧ ψk−1 ∧ M∃τχ ∧ ψk+1 ∧ · · · ∧ ψ i

) ∈ X and M∃xχ →
M(E(u) ∧ φ(τ/u)) ∈ X , then

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψk−1 ∧ M(E(u) ∧ φ(τ/u)) ∧

ψk+1 ∧ · · · ∧ ψ i

) ∈ X . Therefore, in view of T3 (“Appendix”), M
(
ψ0 ∧ ψ1 ∧

· · · ∧ ψ i ∧ M(E(u) ∧ φ(τ/u))
) ∈ X , and consequently, M

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i

∧ f0(∃τχ, u)
) ∈ X i.e. M

(
ψ0 ∧ψ1 ∧· · ·∧ψ i+1

) ∈ X . The reasoning is similar,
if τ is a first 2nd sort variable.

)

(4) i ∈ S2n+2, where n > 0. Let χ1 ∨· · ·∨χn ∨ (x
1≈ y) be the alphabetically first

formula of L of the kind δ1∨· · ·∨δn ∨(a
1≈ b) such that for all 1st sort variables u

of L, hn(χ1, . . . , χn, u, y) /∈ Xi . Let z be the first 1st sort variable of L such that
M

(
ψ0 ∧ψ1 ∧ · · ·∧ψ i

) → M
(
ψ0 ∧ψ1 ∧ · · ·∧ψ i ∧ hn(χ1, . . . , χn, z, y)

) ∈ X .
Then, we put Xi+1 = Xi ∪ {ψ i+1} where ψ i+1 is hn(χ1, . . . , χn, z, y).
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(
Because X is Th-saturated in L, therefore there exists a 1st sort variable

z of L such that M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i

) → M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i ∧

hn(χ1, . . . , χn, z, y)
) ∈ X . But, by induction hypothesis, M

(
ψ0 ∧ ψ1 ∧ · · · ∧

ψ i

) ∈ X . Thus, M
(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i ∧ hn(χ1, . . . , χn, z, y)

) ∈ X , i.e.
M

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i+1

) ∈ X .
)

(5) i ∈ S2n+3, where n > 0. Let χ1 ∨ · · · ∨ χi ∨ ∃ξχ be the alphabetically
first formula of L of the kind δ1 ∨ · · · ∨ δi ∨ ∃ζ δ such that for all variables ς

of L fn(χ1, . . . , χn, ∃ξχ, ς) /∈ Xi . Then, we put Xi+1 = Xi ∪ {ψ i+1} where
ψ i+1 is fn(χ1, . . . , χn, ∃ξχ, τ )} and τ is the alphabetically first variable such that
M

(
ψ0∧ψ1∧· · ·∧ψ i

) → M
(
ψ0∧ψ1∧· · ·∧ψ i ∧ fn(χ1, . . . , χn, ∃ξχ, τ )

) ∈ X .
(
Because X is Th-saturated in L, therefore there exists variable τ of L such that

M
(
ψ0∧ψ1∧· · ·∧ψ i

) → M
(
ψ0∧ψ1∧· · ·∧ψ i ∧ fn(χ1, . . . , χn, ∃ξχ, τ )

) ∈ X .
But, by induction hypothesis, M

(
ψ0 ∧ψ1 ∧ · · · ∧ψ i

) ∈ X . Thus, M
(
ψ0 ∧ψ1 ∧

· · · ∧ ψ i ∧ fn(χ1, . . . , χn, ∃ξχ, τ )
) ∈ X , i.e. M

(
ψ0 ∧ ψ1 ∧ · · · ∧ ψ i+1

) ∈ X .
)

Lemma 4.8 Let X be a Th-saturated set in L and Mψ ∈ X. Then, the special t-Th-
extension X∞ of {ψ} in L is Th-saturated in L. Moreover, {φ | Lφ ∈ X} ⊆ X∞.

Proof Let the assumptions of the lemma be satisfied. To prove that X∞ is a Th-con-
sistent set of formulas of L, it suffices to see that M(χ1 ∧ · · · ∧ χn) ∈ X for every
finite subset {χ1, . . . , χn} of X∞. Hence, on the strength of Lemma 4.1, all finite
subsets {χ1, . . . , χn} of X∞ are Th-consistent, which yields the Th-consistency of
X∞. The clause (0) of the definition of special t-Th-extensions of formulas guaran-
tees that X∞ is maximally Th-consistent. On the other hand, clauses (1)–(5) of this
definition guarantee that X∞ fulfills clauses (ii)–(vi) of the definition of Th-saturated
sets. Consequently, X∞ is Th-saturated in L. To conclude the proof of this lemma,
it must be still established that {φ | Lφ ∈ X} ⊆ X∞. For otherwise, suppose that
there exists a formula φ of L such that Lφ ∈ X and φ /∈ X∞. But then, owing
to the maximal Th-consistency of X∞, ¬φ ∈ X∞. Thus, by construction of sets
Xi , i ≥ 0, there exists a set Xi such that Xi = {ψ0,ψ1, . . . ,ψ i }, ψ i is ¬φ and
M(ψ0 ∧ψ1 ∧· · ·∧ψ i ) ∈ X . Consequently, M(ψ0 ∧ψ1 ∧· · ·∧ψ i−1) → M¬φ ∈ X ,
and because M(ψ0∧ψ1∧· · ·∧ψ i−1) ∈ X , it follows that M¬φ ∈ X , i.e. ¬Lφ ∈ X—a
contradiction. ��

5 Strong Completeness

Utilizing the above machinery, it is now possible to prove that for every set of formulas
X and every formula φ: if φ is true in the class of all model structures corresponding
to a given Anderson-like theory in which X is true, then φ is provable from X on
the basis of that theory. We leave to the reader proofs of the converse implications,
because we have no space for them here.

Theorem 5.1 (Strong completeness) Let X be a set of formulas. Then:

(i) X |�VA5 φ implies X �VA5 φ,

(ii) X |�VAb φ implies X �VAb φ,
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(iii) X |�VAc φ implies X �VAc φ,

(iv) X |�VA5s φ implies X �VA5s φ,

(v) X |�VAbs φ implies X �VAbs φ,

(vi) X |�VAcs φ implies X �VAcs φ,

(vii) X |�VA5n φ implies X �VA5n φ,

(viii) X |�VAbn φ implies X �VAbn φ,

(ix) X |�VAcn φ implies X �VAcn φ,

(x) X |�VA5ns φ implies X �VA5ns φ,

(xi) X |�VAbns φ implies X �VAbns φ,

(xii) X |�VAcns φ implies X �VAcns φ.

Proof

Proof of (i):
We consider only the non-trivial case, when X �VA5 φ. Hence, X ∪ {¬φ} is VA5-
consistent. Our aim is to find a model 〈W, a〉 , where W ∈ VA5, such that for every
ψ ∈ X ∪ {¬φ} and for each w ∈ W, W, a, w |� ψ . The proof is organized in three
parts:

A. Construction of the frame 〈WWW , RRR〉 ,

B. Introduction of the 1st and 2nd sort domains,
C. Proof of the Truth Lemma.

Step A:

We define WWW to be the family consisting of the normal t-VA5-extension w1w1w1 in
L′ of the set X ∪ {¬φ} , the special t-VA5-extensions in L′ of formulas ψ such that
Mψ ∈ w1w1w1, the special t-VA5-extensions in L′ of formulasψ such that Mψ is a member
of a special t-VA5-extension in L′ of formulas ψ such that Mψ ∈ w1w1w1, etc.

The members of WWW will be ordered in four following steps:7

Step 1 We assign a rank to each www ∈ WWW (rank (www), for short). And so, we declare
rank (w1w1w1) = 1; and rank (vvv) = rank (www)+ 1 if vvv is a special t-VA5-extension
in L′ of a formula ψ such that Mψ ∈ www and vvv has not yet got a rank (vvv) ≤
rank (www).

Step 2 For every www ∈ WWW , we order the various special t-VA5-extensions in L′ of
formulas φ and ψ such that {Mφ, Mψ} ⊆ www. So, suppose w′w′w′ and w′′w′′w′′ are
distinct special t-VA5-extensions in L′ of formulas φ and ψ , respectively,
such that {Mφ, Mψ} ⊆ www. Then w′w′w′ is to precede or follow w′′w′′w′′ according to
whether φ precedes or follows ψ .

Step 3 We partition WWW into cells W 1W 1W 1, W 2W 2W 2, . . . ,W rW rW r , . . ., consisting for each r, r ≥ 1,

of the members of WWW of rank r, and next we order the members of each cell. If
W rW rW r has exactly one member, we declare it the first member of W rW rW r . Otherwise,
we employ the following inductive procedure:

7 We order the members of WWW in the same way as in Szatkowski (2005). For the reader’s convenience we
make this paper self-contained however.
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Case 1 r = 2. Then the members of W 2W 2W 2 = {www |www is a special
t-VA5-extension in L′ of a f ormula ψ such that Mψ ∈ w1w1w1} alr-
eady come in an order of their own (see, Step 2);

Case 2 r > 2. Given any two members of W rW rW r , one—call it w′w′w′, is sure to be
for some j ′ and k′, the k′th special t-VA5-extension in L′ of some
formulaψ ′ such that Mψ ′ belongs to the j ′th member of W r−1W r−1W r−1, and
the other—call it w′′w′′w′′—is sure to be for some j ′′ and k′′, the k′′th
special t-VA5-extension in L′ of some formula ψ ′′ such that Mψ ′′
belongs to the j ′′th member of W r−1W r−1W r−1. Then w′w′w′ will precede w′′w′′w′′ in
W rW rW r if j ′ + k′ < j ′′ + k′′ or , when j ′ + k′ = j ′′ + k′′ and j ′ < j ′′;
otherwise, w′w′w′ will follow w′′w′′w′′ in W rW rW r .

Step 4 We now order the members of WWW in a single run:
(i) w1w1w1, the one member of W 1W 1W 1, is to precede all other members of WWW ;

(ii) w′w′w′ being the j ′th member of W r ′
W r ′
W r ′

(r ′ > 1) , and w′′w′′w′′ the j ′′th member
of W r ′′

W r ′′
W r ′′

(r ′′ > 1) , w′w′w′ is to precede w′′w′′w′′ if j ′ + r ′ < j ′′ + r ′′ or, when
j ′ + r ′ = j ′′ + r ′′ and r ′ < r ′′; otherwise, w′w′w′ follows w′′w′′w′′.

Now, let us suppose for induction that the set wnwnwn, n > 1, is already defined. Thus,
there exist parameters j ≥ 1 and r ≥ 2 such that wnwnwn is the j th member of the W rW rW r . For
each i, 2 ≤ i < r + j, we next put

V iV iV i = W iW iW i − {vvv |vvv ∈ W iW iW i and vvv precedes or equals wnwnwn}, and

VVV = {vvv |vvv is the first member of some V iV iV i , 2 ≤ i < r + j}.

In the case of VVV = ∅, wnwnwn is the last member of WWW . Supposing then that VVV �= ∅, we
define wn+1wn+1wn+1 to be the first member of VVV . It is easily shown, when wnwnwn is not the last
member of WWW , that there not exist a member of WWW which follows wnwnwn and precedes
wn+1wn+1wn+1.

We define now the accessibility relation RRR on WWW :

For every www,vvv ∈ WWW , wwwRRRvvv if and only {φ | Lφ ∈ www} ⊆ vvv. (R)

And we can then prove that

For every formula φ and all www ∈ WWW , Lφ ∈ www if and only if φ ∈ vvv for each

vvv ∈ WWW such that wwwRRRvvv. (•)

Let φ be any formula and www any member of WWW . We leave it to the reader to verify
that for every axiom φ of VA5, �VA5 Mφ. Hence, trivially, www has members of the sort
Mψ . And therefore, if Lφ ∈ www, then by Lemma 4.8 and (R), φ ∈ vvv for each vvv ∈ WWW
such that wwwRRRvvv. Suppose, on the other hand, that φ ∈ vvv for each vvv ∈ WWW such that
wwwRRRvvv, and let Lφ /∈ www. Because www is VA5-saturated, then with respect to Lemma 4.2,
M¬φ ∈ www. Hence, by the construction of members of WWW , there exists vvv ∈ WWW such
that ¬φ ∈ vvv, which contradicts the assumption that φ ∈ vvv and vvv is VA5-consistent.
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To prove that the relation RRR is serial, let us again note that eachwww ∈ WWW has members
of the sort Mψ . Consequently, by our construction of members of WWW , for each www ∈ WWW
there exists vvv ∈ WWW such that wwwRRRvvv.

Finally, we must also require that RRR is Euclidean. Let us assume to the contrary
that for some members www,vvv,v1v1v1 ∈ WWW : wwwRRRvvv, wwwRRRv1v1v1 and not vvvRRRv1v1v1. Hence, by the
definition (R), {φ | Lφ ∈ www} ⊆ vvv, {φ | Lφ ∈ www} ⊆ v1v1v1, and there exists a formula φ
such that Lφ ∈ vvv and φ /∈ v1v1v1. Hence, Lφ /∈ www and, by the maximality of www, ¬Lφ ∈ www.
Thus M¬φ ∈ www, and since M¬φ → LM¬φ ∈ www, then in view of Proposition 2.1
and Lemma 4.2, LM¬φ ∈ www. The last implies M¬φ ∈ vvv, which is equivalent to
¬Lφ ∈ vvv—a contradiction. So, RRR is Euclidean.

Step B:
We first prove the following two facts:

If G(x) ∈ vvv for some vvv ∈ WWW , then G(x) ∈ www for each www ∈ WWW . (••)

Suppose that G(x) ∈ vvv for some vvv ∈ WWW . And, for the non-trivial case, suppose that
the family WWW is at least two-element.
Notice first that �VA5 ∃yG(y); see, the step 4 in the proof of T9 (“Appendix”). Hence,
with respect to Lemma 4.2, ∃yG(y) ∈ www for all www ∈ WWW . And because each www ∈ WWW is
VA5-saturated, therefore for every www ∈ WWW there exists 1st sort variable xw such that
G(xw) ∈ www.

In order to show that G(xw1) ∈ www for any www ∈ WWW , www �= w1w1w1, let www be the any choice
element of WWW . We may suppose that www is member of W rW rW r . So, by the Step 3 of the
definition of the order on WWW , there exists a finite sequencew1w1w1,w2w2w2, . . . ,wrwrwr , r ≥ 2 such
that wrwrwr = www and for each i, 1 < i ≤ r, wiwiwi is a special t-VA5-extension of some for-
mulaψ i−1 such that Mψ i−1 ∈ wi−1wi−1wi−1. For (i): r = 2. Since �VA5 G(xw1) → LG(xw1),
therefore by Lemma 4.2 and Proposition 2.1(ii), LG(xw1) ∈ w1w1w1. And, by applying
to the latter the definition (R), we obtain that G(xw1) ∈ www. For (ii): r > 2. Sup-
pose now that G(xw1) ∈ wpwpwp, p < r . Similar to (i), it can be shown that G(xwp ) ∈
wp+1wp+1wp+1. Since �VA5 G(xw1) ∧ G(xwp ) → (xw1

1≈ xwp ), therefore by Lemma 4.2, the

axiom 2.15 and Proposition 2.1(ii), (xw1

1≈ xwp ) ∈ wp+1wp+1wp+1. It can be also proved that

(xwp

1≈ xwp+1) ∈ wp+1wp+1wp+1. And hence, it follows that (xw1

1≈ xwp+1) ∈ wp+1wp+1wp+1. And

since, �VA5 G(wp+1) ∧ (xw1

1≈ xwp+1) → G(xw1), then after applying Lemma 4.2,
G(xw1) ∈ wp+1wp+1wp+1. Therefore, G(xw1) ∈ www.

Furthermore, by the same argument, we obtain (xw1

1≈ x) ∈ www, and consequently,
G(x) ∈ www, which finishes the proof of (••).

If G(x) ∈ vvv for some vvv ∈ WWW , then E(x) ∈ www for each www ∈ WWW . (• • •)

Suppose that G(x) ∈ vvv for some vvv ∈ WWW . Therefore, by (••), G(x) ∈ www for
every www ∈ WWW . Next, on the strength of T9 (“Appendix”) and Lemma 4.2 we obtain
that ∃x(G(x) ∧ E(x)) ∈ www for each www ∈ WWW . Hence, for every www ∈ WWW there exists
1st sort variable xw such that (G(xw) ∧ E(xw)) ∈ www. Consequently, G(xw) ∈ www
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and E(xw) ∈ www for each www ∈ WWW . And in the same way as before we obtain that,

for every www ∈ WWW , (x
1≈ xw) ∈ www, which, by (2.29) and Lemma 4.2, implies that

L(x
1≈ xw) ∈ www for every www ∈ WWW . But hence, by applying (2.17) and Lemma 4.2, we

obtain that E(x) ∈ www for each www ∈ WWW , which finishes the proof of (• • •).
Given some (any chosen) member www of WWW , we define

GGG = {x | G(x) ∈ www},

By (••), it can easy be seen that this definition is correct.
Now with each www ∈ WWW we associate the 1st order domain

DwDwDw = {x | x is a 1st order variable of L′ and E(x) ∈ www},

and we put

D1D1D1 = (DwDwDw)www∈WWW .

Clearly, by (• • •), GGG ⊆ ⋂
w∈W DwDwDw.

Next, with each 2nd order term A and www ∈ WWW we associate the set

F(A,www) = {a | A(a) ∈ www}

(According to 2.10, Proposition 2.1(i) and Lemma 4.2, E(a) ∈ www if A(a) ∈ www. Hence,
F(A,www) ∈ 2DwDwDw for every www ∈ WWW ),
and we put

for everywww ∈ WWW , DwDwDw to be the family of all sets F(A,www) ∈ 2DwDwDw ,

D2D2D2 = (DwDwDw)www∈WWW

CWCWCW = { fff ∈ WWW �→
⋃

w∈W

DwDwDw | fff (www) ∈ DwDwDw for everywww ∈ WWW }.

To prove that GGG ∈ ⋂
w∈W DwDwDw let us notice that, by (••), F(G,www) = F(G,w1w1w1) for

every www,w1w1w1 ∈ WWW . Hence, trivially, GGG = F(G,www) ∈ ⋂
w∈W DwDwDw.

To prove that for eachwww ∈ WWW , every x, y ∈ GGG and each X ∈ DwDwDw : x ∈ X iff y ∈ X ,
let us suppose that x, y ∈ GGG and X = F(A,www) ∈ DwDwDw for some 2nd order term A and

www ∈ WWW . It follows from (2.17) and (2.29) that �VA5 G(x) ∧ G(y) → (
(x

1≈ y) →
(A(x) ↔ A(y))

)
. And because �VA5 G(x) ∧ G(y) → (x

1≈ y), then �VA5 G(x) ∧
G(y) → (A(x) ↔ A(y)). Hence, by (••) and Lemma 4.2, (A(x) ↔ A(y)) ∈ www, i.e.,
x ∈ F(A,www) iff y ∈ F(A,www).

To prove that for everywww ∈ WWW , −X ∈ DwDwDw if X ∈ DwDwDw, let us assume that F(A,www) ∈
DwDwDw. Then, for every a ∈ F(A,www), ¬A(a) /∈ www. It follows that for every x ∈ DwDwDw −
F(A,www), −A(x) ∈ www. Thus, F(−A,www) ∈ DwDwDw. But, F(−A,www) = −F(A,www), there-
fore −F(A,www) ∈ DwDwDw.
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Step C:
The assignment aaa in the canonical VA5-model structure such that for any 1st order

variable x, aaa(x) = x , and for any 2nd sort term A and each www ∈ WWW , aaa(A)(www) =
F(A,www), will be called a canonical assignment.

One can show that

(TL) Given the canonical VA5-model structure W = 〈
WWW , RRR,D1D1D1,D2D2D2,GGG

〉
and the

canonical assignment aaa in it; for any formula φ and each www ∈ WWW , aaa,www |� φ if
and only if φ ∈ www.

The proof of (TL) proceeds by simultaneous induction on the complexity of φ.
φ is of the form E(x):

Then, aaa,www |� E(x) iff aaa(x) ∈ DDDw iff x ∈ DDDw, by the definition of DDDw, this last iff
E(x) ∈ www.
φ is of the form A(x):

Then, aaa,www |� A(x) iff aaa(x) ∈ aaa(A)(www) iff x ∈ F(A,www), by the definition of
F(A,www)), this last iff A(x) ∈ www.
φ is of the form ψ ∧ χ :

Then, aaa,www |� ψ ∧ χ iff aaa,www |� ψ and aaa,www |� χ, by the inductive hypothesis, this
last iff ψ ∈ www and χ ∈ www, so on the strength of Lemma 4.2 and (2.4), this last iff
ψ ∧ χ ∈ www.
φ is of the form ¬ψ :

Then, aaa,www |� ¬ψ iff aaa,www � ψ, and by the inductive hypothesis, this last iff ψ /∈ www,

and owing to the maximality of www, this last iff ¬ψ ∈ www.
φ is of the form ∀ξψ :

Then, aaa,www |� ∀ξφ iff bbb,www |� φ for every bbb ∈ {aaa?
ξ,www}, and further on the strength

of Proposition 3.1, this last iff bbb,www |� φ(ξ/bbb(ξ)) for every bbb ∈ {aaa?
ξ,www}, and by the

inductive hypothesis, iff φ(ξ/bbb(ξ)) ∈ www for every assignment bbb ∈ {aaa?
ξ,www}. This last,

because www is VA5-saturated, implies that ∀ξψ ∈ www. Suppose now that ∀ξψ ∈ www and
that ξ is a 1st order variable. Then, by applying (2.8) and Lemma 4.2, it follows that
(E(ζ ) → ψ(ξ/ζ )) ∈ www for every 1st order variable ζ . This means that, for every
assignment bbb ∈ {aaa?

ξ,www}, φ(ξ/bbb(ξ)) ∈ www. In exactly the same way, using (2.6) instead

of (2.8), we obtain that for every assignment bbb ∈ {aaa?
ξ,www}, φ(ξ/bbb(ξ)) ∈ www if ∀ξψ ∈ www

and ξ is a 2nd order variable.
φ is of the form Lψ :

Then, aaa,www |� Lψ iff aaa,vvv |� ψ for every vvv ∈ WWW such that wwwRRRvvv, therefore by the
inductive hypothesis, this last iff ψ ∈ vvv for every vvv ∈ WWW such that wwwRRRvvv, and further
on the strength of the condition (•), this last iff Lψ ∈ www.
φ is of the form P(A):

Then, aaa,www |� P(A) iff GGG ⊆ aaa(A)(vvv) for every vvv ∈ WWW such that wwwRRRvvv iff GGG ⊆ F(A,vvv)

for every vvv ∈ WWW such that wwwRRRvvv iff x ∈ F(A,vvv) for every x ∈ GGG and every vvv ∈ WWW
such that wwwRRRvvv iff A(x) ∈ vvv for every x ∈ GGG and every vvv ∈ WWW such that wwwRRRvvv

iff, on the strength of the condition (•), LA(x) ∈ www for every x ∈ GGG. We have
already demonstrated that G(x) ∈ www for every x ∈ GGG. Hence, by definition (2.1),
∀α(P(α) ↔ Lα(x)) ∈ www for every x ∈ GGG. But then, by (2.6) and Lemma 4.2,
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P(A) ↔ LA(ggg) ∈ www for every x ∈ GGG. Therefore, LA(x) ∈ www for every x ∈ GGG iff
P(A) ∈ www.

This concludes our proof of (TL).
Reminding ourselves of the assumption X �VA5 φ we apply now the semantic

instrument, which we have here introduced. So, let W = 〈
WWW , RRR,D1D1D1,D2D2D2,GGG

〉
be the

canonical model structure andaaa be the canonical assignment in it. Because X ∪{¬φ} ⊆
www1, then, for all ψ ∈ X ∪ {¬φ}, W,aaa,w1w1w1 |� ψ . Therefore, X �VA5 φ, which com-
pletes the proof of (i).

Proof of (ii):
By the proof of (ii), we must only show that the relation RRR is symmetric. Let us
assume to the contrary that for some members www,vvv ∈ WWW : wwwRRRvvv and not vvvRRRwww. So, by
definition (R), {φ | Lφ ∈ www} ⊆ vvv and there exists a formula φ such that Lφ ∈ vvv and
φ /∈ www. Since, (MLφ → φ) ∈ www, then Proposition 2.1(ii) and Lemma 4.2, would still
guarantee that MLφ /∈ www, and hence, LM¬φ ∈ www. But it is not possible, because then
we would obtain M¬φ ∈ vvv, and thus ¬Lφ ∈ vvv—a contradiction. So, RRR is symmetric.

Proof of (iii):
By dint of (i) and (ii).

Proofs of (iv)–(vi):
Relying on these results (i)–(iii), it suffices only to show that

⋂{X | X ∈ DwDwDw and x ∈
X} ∈ DwDwDw for every x ∈ ⋃

w∈W DwDwDw and every www ∈ WWW . And so, according to (2.36)
with the definition (2.25), for each 1st sort variable x, Ix is a term of the 2nd order.
Thus, F(Ix ,www) ∈ DwDwDw for every x ∈ ⋃

w∈W DwDwDw. It remains to show that F(Ix ,www) =⋂{X | X ∈ DwDwDw and x ∈ X} for every x ∈ ⋃
w∈W DwDwDw. First, we prove that⋂{X | X ∈ DwDwDw and x ∈ X} ⊆ F(Ix ,www) for every x ∈ ⋃

w∈W DwDwDw and everywww ∈ WWW .
Clearly,

⋂{X | X ∈ DwDwDw and x ∈ X} = ∅ if x /∈ DwDwDw, and consequently, the required
inclusion holds. If x ∈ DwDwDw, then x ∈ F(Ix ,www), and of course the required inclusion
also holds. Now, we prove that F(Ix ,www) ⊆ ⋂{X | X ∈ DwDwDw and x ∈ X} for every
x ∈ ⋃

w∈W DwDwDw and everywww ∈ WWW . It should be clear that the required inclusion holds if
x /∈ DwDwDw. Finally, suppose that for some www ∈ WWW and for some x ∈ DwDwDw : a ∈ F(Ix ,www)

and a /∈ ⋂{X | X ∈ DwDwDw and x ∈ X}. Since the following equivalences hold: a ∈
F(Ix ,www) iff a ∈ {y ∈ DwDwDw | Ix (y) ∈ www} iff a ∈ DwDwDw and ∀α(α(x) ↔ α(a)) ∈ www,
in the former case, we consequently have: a ∈ DwDwDw and ∀α(α(x) ↔ α(a)) ∈ www. In
the latter one, the assumption: a /∈ ⋂{X | X ∈ DwDwDw and x ∈ X} means that there
exists X ∈ DwDwDw such that a /∈ X, x ∈ X and X = F(A,www) for some 2nd sort term
A. Therefore, a /∈ {y ∈ DwDwDw | A(y) ∈ www}, i.e., a /∈ DwDwDw or A(a) /∈ www, whence a /∈ DwDwDw

or ∀α(α(x) ↔ α(a)) /∈ www—a contradiction, which means that the required inclusion
holds.

Proofs of (vii)–(ix):
Banking on these results (i)–(iii), it suffices only to prove that DwDwDw ∈ DwDwDw for every
www ∈ WWW . And so, by T10 (“Appendix”), for every theory Th ∈ {VA5n, VAbn,

VAcn}, �Th ∀xNE(x). Hence, with respect to Lemma 4.2, ∀xNE(x) ∈ www for all
www ∈ WWW . And finally, DwDwDw = F(NE,www) ∈ DwDwDw for every www ∈ WWW .
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Proofs of (x)–(xii):
By dint of (iv)–(vi) and (vii)–(ix), respectively.

In this way we have finished the proof of Theorem 5.1. ��
Theorem 5.2 (Strong completeness) Let X be a set of formulas. Then:

(i) X |�VA5p φ implies X �VA5p φ,

(ii) X |�VAbp φ implies X �VAbp φ,

(iii) X |�VAcp φ implies X �VAcp φ,

(iv) X |�VA5ps φ implies X �VA5ps φ,

(v) X |�VAbps φ implies X �VAbps φ,

(vi) X |�VAcps φ implies X �VAcps φ,

(vii) X |�VA5np φ implies X �VA5np φ,

(viii) X |�VAbnp φ implies X �VAbnp φ,

(ix) X |�VAcnp φ implies X �VAcnp φ,

(x) X |�VA5nps φ implies X �VA5nps φ,

(xi) X |�VAbnps φ implies X �VAbnps φ,

(xii) X |�VAcnps φ implies X �VAcnps φ.

Proof

Proof of (i):
According to the proof of Theorem 5.1(i), we need only to show that for every www,vvv ∈
WWW , DwDwDw ⊆ DvDvDv if wwwRRRvvv. So, using (2.35), (2.8) and Lemma 4.2, we obtain that for every
www ∈ WWW and every 1st sort variable x of L′, (E(x) → LE(x)) ∈ www. And supposing
that x ∈ DwDwDw, by the definition of DwDwDw we have that x is a 1st sort variable of L′ and
E(x) ∈ www, and hence, LE(x) ∈ www. Consequently, E(x) ∈ vvv, i.e., x ∈ DvDvDv , for every
vvv ∈ WWW such that wwwRRRvvv. This means, DwDwDw ⊆ DvDvDv for every vvv ∈ WWW such that wwwRRRvvv.

Proofs of (ii)–(xii)
Putting together the proofs of Theorem 5.1(ii)–(xii), respectively, and of Theorem 5.2
(i). ��
Theorem 5.3 (Strong completeness) Let X be a set of formulas. Then:

(i) X |�VA5� φ implies X �VA5� φ,

(ii) X |�VA5s� φ implies X �VA5s� φ,

(iii) X |�VAd� φ implies X �VAd� φ,

(iv) X |�VA5n� φ implies X �VA5n� φ,

(v) X |�VAds� φ implies X �VAds� φ,

(vi) X |�VA5ns� φ implies X �VA5ns� φ,

(vii) X |�VAdn� φ implies X �VAdn� φ,

(viii) X |�VAdns� φ implies X �VAdns� φ.

Proof

Proof of (i):
Like that of Theorem 5.1(i), but by using of several distinct or new points in Step B.

In particular, the proof of the condition (••) is now a bit mysterious.

G(x) ∈ vvv for some vvv ∈ WWW , then G(x) ∈ www for each www ∈ WWW . (••)
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We first prove that if G(x) ∈ vvv for some vvv ∈ W accW accW acc, then G(x) ∈ www for each
www ∈ W accW accW acc.

Suppose, for the non-trivial case, that the family WWW is at least two-element. We
shall first prove that for any www,vvv ∈ W accW accW acc, wwwRRRvvv. So, let www,vvv ∈ W accW accW acc. Employing
Step 3 of the definition of the order on WWW , we may suppose that www ∈ W rW rW r and vvv ∈ W r ′

W r ′
W r ′

for some r, r ′ ≥ 2. Therefore there exists a finite sequences w1w1w1, w2w2w2, . . . ,wrwrwr and
w1w1w1, w′

2w′
2w′
2, . . . ,w

′
r ′w′
r ′w′
r ′ such that wrwrwr = www, w′

r ′w′
r ′w′
r ′ = vvv and for each i, 1 < i ≤ r, wiwiwi is a

special t-VA5�-extension of some formula ψ i−1 such that Mψ i−1 ∈ wi−1wi−1wi−1, and for
each j, 1 < j ≤ r ′, w′

jw′
jw′
j is a special t-VA5�-extension of some formula ψ ′

j−1 such that
Mψ j−1 ∈ w′

j−1w′
j−1w′
j−1. The fact that aRRRb, where a, b ∈ {w2w2w2,w

′
2w′
2w′
2}, follows directly from the

Euclideanness of RRR. Assuming next thatw2w2w2RRRwpwpwp andwpwpwpRRRw2w2w2, where r > 2 and r > p,
we obtain that w2w2w2RRRwp+1wp+1wp+1 and wp+1wp+1wp+1RRRw2w2w2. Consequently, w2w2w2RRRwww and wwwRRRw2w2w2. Similarly,
we can prove that w′

2w′
2w′
2RRRvvv and vvvRRRw′

2w′
2w′
2. Finally, from w2w2w2RRRwww and w2w2w2RRRw′

2w′
2w′
2 follows w′

2w′
2w′
2RRRwww,

and from w′
2w′
2w′
2RRRwww and w′

2w′
2w′
2RRRvvv follows wwwRRRvvv.

Suppose that G(x) ∈ vvv for some vvv ∈ W accW accW acc. Since �VA5� G(x) → LG(x), then
after applying Lemma 4.2, we obtain that

(
G(x) → LG(x)

) ∈ vvv. Hence, it follows
that LG(x) ∈ vvv, and consequently, G(x) ∈ www for every www ∈ W accW accW acc.

Suppose now that G(x) ∈ w1w1w1. Then, as a direct consequence of the axiom (2.21)
and Lemma 4.2 we obtain that LG(x) ∈ w1w1w1. Therefore, G(x) ∈ vvv for all vvv ∈ WWW such
that w1w1w1RRRvvv, and consequently, G(x) ∈ www for all www ∈ WWW . On the other hand, observe
that if G(x) /∈ w1w1w1, then by the maximal VA5�-consistency of w1w1w1, ¬G(x) ∈ w1w1w1.
Hence, with the help of the axiom (2.21) and Lemma 4.2, M¬G(x) ∈ w1w1w1. But then,
¬G(x) ∈ vvv for some vvv ∈ WWW such that w1w1w1RRRvvv, and consequently, G(x) /∈ www for all
www ∈ WWW , which completes the proof of (••).

If G(x) ∈ vvv for some vvv ∈ WWW , then E(x) ∈ www for each www ∈ WWW . (• • •)

Suppose that G(x) ∈ vvv for some vvv ∈ WWW . Therefore, by (••), G(x) ∈ www for every
www ∈ WWW . Next, on the strength of T9 (“Appendix”) and Lemma 4.2 we obtain that
∃x(G(x) ∧ E(x)) ∈ www for each www ∈ WWW . Hence, for every www ∈ WWW there exists 1st
sort variable xw such that (G(xw) ∧ E(xw)) ∈ www. Consequently, G(xw) ∈ www and

E(xw) ∈ www for each www ∈ WWW . And since �VA5� G(x) ∧ G(xw) → L(x
1≈ xw), then

by Lemma 4.2, L(x
1≈ xw) ∈ www for every www ∈ WWW . But hence, by applying (2.17) and

Lemma 4.2, we obtain that E(x) ∈ www for each www ∈ WWW , which finishes the proof of
(• • •).

The definitions of the distinguished set GGG and the family D1D1D1 = (DwDwDw)www∈WWW of
1st order domains are the same as in the proof of Theorem 5.1(i). Naturally, GGG ⊆⋂

w∈W DwDwDw.
Again, with each 2nd term A and www ∈ WWW we associate the set

F(A,www) = {a | A(a) ∈ www},

and we put

Ew1Ew1Ew1 to be the family of all sets F(A,w1w1w1) ∈ 2Dw1Dw1Dw1 ,
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Dw1Dw1Dw1 = 2Dw1Dw1Dw1 ,

for everywww ∈ W accW accW acc, DwDwDw to be the family of all sets F(A,www) ∈ 2DwDwDw ,

D2D2D2 = (DwDwDw)www∈WWW

CWCWCW =
{

fff ∈ WWW �→
⋃

w∈W

DwDwDw | fff (w1w1w1) ∈ Ew1Ew1Ew1 and fff (www) ∈ DwDwDw for everywww ∈ W accW accW acc

}

.

Proof of (ii):
By the proof of (i), we must here only show that

⋂{X | X ∈ DwDwDw and x ∈ X} ∈ DwDwDw

for every x ∈ ⋃
w∈W DwDwDw and every www ∈ W accW accW acc. It follows by the same argument as

in the proof of Theorem 5.1(iv), but using (2.36) with the definition (2.25) in lieu of
(2.36) with the definition (2.26).

Proof of (iii):
Relying on (i), it suffices here to show that RRR is transitive. So, suppose that wwwRRRvvv and
vvvRRRv1v1v1. Therefore, by definition (R), {φ | Lφ ∈ www} ⊆ vvv and {φ | Lφ ∈ vvv} ⊆ v1v1v1. In order
to show that {φ | Lφ ∈ www} ⊆ v1v1v1 let us assume that Lφ ∈ www. Because Lφ → LLφ ∈ www,

then by Lemma 4.2(i) and Proposition 2.1(ii), LLφ ∈ www. Hence, Lφ ∈ vvv and φ ∈ v1v1v1.
Thus wwwRRRv1v1v1, i.e. RRR is transitive.

Proof of (iv):
By the proof of (i), we must here only show that DwDwDw ∈ DwDwDw for every www ∈ W accW accW acc. It
follows by the same argument as in the proof of Theorem 5.1(vii), but using �VA5n�

L∀xNE(x) in lieu of �VA5n ∀xNE(x).

Proof of (v)–(viii):
Adapting the arguments of (i)–(iv) to suit the proofs of (v)–(viii) are a bit more work.

��
Theorem 5.4 (Strong completeness) Let X be a set of formulas. Then:

(i) X |�VA5p� φ implies X �VA5p� φ,

(ii) X |�VA5ps� φ implies X �VA5ps� φ,

(iii) X |�VAdp� φ implies X �VAdp� φ,

(iv) X |�VA5np� φ implies X �VA5np� φ,

(v) X |�VAdps� φ implies X �VAdps� φ,

(vi) X |�VA5nps� φ implies X �VA5nps� φ,

(vii) X |�VAdnp� φ implies X �VAdnp� φ,

(viii) X |�VAdnps� φ implies X �VAdnps� φ.

Proof Putting together the proofs of Theorem 5.3(i)–(viii), respectively, and of
Theorem 5.2 (i). ��

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Appendix

We shall prove here a number of interesting theorems.

T1: For every Th ∈ {VA5, VAb, VA5�}, �Th ∃xE(x)

Proof

1. ∀x¬E(x) → (E(y) → ¬E(y)) (2.4), (2.8), R1
2. E(y) → (∀x¬E(x) → ¬E(y)) (2.4), 1, R1
3. E(y) → (E(y) → ∃xE(x)) (2.4), 2, R1
4. E(y) → ∃xE(x) (2.4), 3, R1
5. ∀y(E(y) → ∃xE(x)) 4, R3
6. ∀yE(y) → ∃xE(x) (2.4), (2.5), (2.7), 5, R1
7. ∃xE(x) 6, (2.9), R1

��
T2: For every Th ∈ {VA5, VAb, VA5�}, �Th ∃x((∃xφ → φ) ∧ E(x))

Proof

1. ∀x(E(x) → (∃xφ ∧ ¬φ)) → ∀x(∃xφ ∧¬φ) (2.5), (2.9), R1
2. ∀x(∃xφ∧¬φ) → ∃xφ (2.4), R3, (2.5), (2.7), R1
3. ¬∃xφ → ∃x(∃xφ → φ) (2.4), 2, R1
4. ∀x(∃xφ∧¬φ) → ∀x¬φ (2.4), R3, (2.5), (2.7), R1
5. ∃xφ → ∃x(∃xφ → φ) (2.4), 4, R1
6. ¬∃xφ∨∃xφ → ∃x(∃xφ → φ) (2.4), 3, 5, R1
7. ∃x(∃xφ → φ) (2.4), 6, R1
8. ∃x(∃xφ → φ) → ∃x(E(x) ∧ ¬(∃xφ ∧ ¬φ)) (2.4), 1, R1
9. ∃x(∃xφ → φ) → ∃x((∃xφ → φ) ∧ E(x)) (2.4), 8, R1

10. ∃x((∃xφ → φ) ∧ E(x)) 7, 9, R1

��
T3: For every Th ∈ {VA5, VAb, VA5�}, �Th E(y) ∧ φ(x/y) → ∃xφ

Proof Trivially, by (2.8). ��
T4: For every Th ∈ {VA5, VAb, VA5�}, �Th ∃α(∃αφ → φ)

Proof

1. ∀α(∃αφ ∧¬φ) → ∃αφ (2.4), R3, (2.5), (2.7), R1
2. ¬∃αφ → ∃α(∃αφ → φ) (2.4), 1, R1
3. ∀α(∃αφ∧¬φ) → ∀α¬φ (2.4), R3, (2.5), (2.7), R1
4. ∃αφ → ∃α(∃αφ → φ) (2.4), 3, R1
5. ¬∃αφ∨∃αφ → ∃α(∃αφ → φ) (2.4), 2, 4, R1
6. ∃α(∃αφ → φ) (2.4), 5, R1

��
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T5: For every Th ∈ {VA5, VAb, VA5�}, �Th M∃yG(y)

Proof

1. ¬G(x) → (G(x) → ¬G(x)) (2.4)
2. ∀x¬G(x) → ∀x(G(x) → ¬G(x)) 1, R3, (2.5), R1
3. ∀x(G(x) → ¬G(x)) → ∀x(G(x) → −G(x)) (2.4), R3, (2.5), (2.28), R1
4. ∀x¬G(x) → ∀x(G(x) → −G(x)) (2.4), R3, (2.5), 2, 3, R1
5. L∀x¬G(x) → L∀x(G(x) → −G(x)) 4, R2, (2.11), R1
6. L∀x¬G(x) → P(G)∧L∀x(G(x) → −G(x)) (2.4), 5, (2.24), R1
7. L∀x¬G(x) → P(−G) (2.4), (2.20), 6, R1
8. ¬P(−G) → M∃xG(x) (2.4), 7, the definition ofMand of∃, R1
9. M∃xG(x) (2.4), 8, (2.19), (2.24), R1

��
T6: For every Th ∈ {VA5, VAb, VA5�}, �Th ∃xG(x) → L∃xG(x)

Proof

1. G(x) → LG(x) (2.4), (2.1), (2.6), (2.24), R1
2. ∃xG(x) → ∃xLG(x) 1,(2.4), R3, (2.5), the definition of ∃, R1
3. E(x)∧G(x) → ∃xG(x) T3
4. G(x) → E(x)∧G(x) (2.4), (2.23), (2.10), R1
5. G(x) → ∃xG(x) (2.4), 3, 4, R3
6. LG(x) → L∃xG(x) 5, R2,(2.11), R1
7. ∃xLG(x) → L∃xG(x) 6, R3, (2.5), the definition of ∃, (2.7), R1
8. ∃xG(x) → L∃xG(x) (2.4), 2, 7, R1

��
T7: For every Th ∈ {VA5, VA5�}, �Th L∃xG(x)

Proof

1. M∃xG(x) → ML∃xG(x) (2.4),T6, R2, (2.11), the definition of M, R1
2. ML∃xG(x) 1,T5, R1
3. L∃xG(x) 2, (5), R1

��
T8: �VAb L∃xG(x)

Proof The steps 1–2 are the same as for T7

3. ∃xG(x) 2, (b), R1
4. L∃xG(x) 3, R2

��

123



Partly Free Semantics 507

T9: For every Th ∈ {VA5, VAb, VA5�}, �Th L∃xG(x) → ∃xG(x)

Proof

1. LG(x) → G(x) (2.21)
2. ∃xLG(x) → ∃xG(x) (2.4), 1, R3, (2.5), the definition of ∃, R1
3. L∃xG(x) → ∃xG(x) (2.4), (2.22), 2, R1

��
T10: For every Th ∈ {VA5, VAb, VA5�}, �Th ∃x(G(x) ∧ E(x))

Proof

1. ∃xG(x) T9,T7(or,T8), R1
2. ∃xG(x) → ((∃xG(x) → G(x)) → G(x)) (2.4)
3. (∃xG(x) → G(x)) → G(x) 1, 2, R1
4. (∃xG(x) → G(x))∧E(x) → G(x)∧E(x) (2.4), 3, R1
5. ∃x((∃xG(x) → G(x)) ∧ E(x)) → ∃x(G(x)∧E(x)) (2.4), 4, R3, (2.5), R1
6. ∃x(G(x)∧E(x)) 5,T2, R1

��
T11: For every Th ∈ {VA5, VAb, VA5�}, �Th ∀xNE(x)

Proof

1. ∀α(α(x) → ∃yα(y)) (2.4), (2.10),T3, R1, R3
2. ∀xL∀α(α(x) → ∃yα(y)) 1, R2, R3
3. ∀x∀αL(α(x) → ∃yα(y)) (2.6), R2, (2.11), R3, (2.5), 2, R1
4. ∀x∀α(Lα(x) → L∃yα(y)) (2.11), R3, (2.5), 3, R1
5. ∀β(Lβ(x) ↔ L∀y(α(y) → β(y))) → (Lα(x) ↔ L∀y(α(y) → α(y))) (2.6)
6. ∀β(Lβ(x) ↔ L∀y(α(y) → β(y))) → Lα(x) (2.4), R3, R2, 5, R1
7. ∀x∀α(∀β(Lβ(x) ↔ L∀y(α(y) → β(y))) → L∃yα(y)) (2.4), R3, (2.5), 6, 4, R1
8. ∀x∀α(α Ess x → L∃yα(y)) 7, (2.2)
9. ∀xNE(x) 8, (2.3)

��

T12: For every Th ∈ {VA5, VAb, VA5�}, �Th G(x) ∧ G(y) → (x
1≈ y)

Proof

1. ∃α(α(x)∧¬α(y)) → (x
1�≈ y) (2.4), R3, (2.5), the definition of

1�≈, R1
2. G(x)→(∃α(α(x)∧¬α(y))→L∃α(α(x)∧¬α(y))) (2.18)
3. G(x) → (∃α(α(x)∧¬α(y)) → ∃αL(α(x)∧¬α(y))) (2.4), 2, (2.14), R1
4. G(x) → (∃α(α(x)∧¬α(y)) → ∃α(Lα(x)∧L¬α(y))) (2.4), (2.5), (2.11), 3,R1
5. G(x) → (¬∃α(Lα(x)∧L¬α(y)) → ¬∃α(α(x)∧¬α(y))) (2.4), 4, R1
6. G(x) → (∀α(Lα(x) → Mα(y)) → ∀α(α(x) → α(y))) (2.4), 5, R1

7. ∃α(α(y)∧¬α(x)) → (x
1�≈ y) (2.4), R3, (2.5), the definition of

1�≈, R1
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8. G(y) → (∃α(α(y)∧¬α(x)) → L∃α(α(y)∧¬α(x))) (2.18)
9. G(y) → (∃α(α(y)∧¬α(x)) → ∃αL(α(y)∧¬α(x))) (2.4), 8, (2.14), R1

10. G(y) → (∃α(α(y)∧¬α(x)) → ∃α(Lα(y)∧L¬α(x))) (2.4), (2.5), (2.11), 9, R1
11. G(y) → (¬∃α(Lα(y)∧L¬α(x)) → ¬∃α(α(y)∧¬α(x))) (2.4), 10, R1
12. G(y) → (∀α(Lα(y) → Mα(x)) → ∀α(α(y) → α(x))) (2.4), 11, R1
13. G(x) ∧ G(y) → (∀α(Lα(x) ↔ Lα(y)) → ∀α(Lα(x) →

Mα(y))∧∀α(Lα(y) → Mα(x))) (2.4), (2.12), R3, (2.5), R1
14. G(x) ∧ G(y) → (∀α(Lα(x) ↔ Lα(y))

→ ∀α(α(x) ↔ α(y))) (2.4), 13, 6, 12, R1
15. G(x)∧G(y) → ∀α(P(α) ↔ Lα(x))∧∀α(P(α) ↔ Lα(y)) (2.4), (2.1), R1
16. G(x)∧G(y) → ∀α(Lα(x) ↔ Lα(y)) (2.4), (2.5), 15, R1

17. G(x)∧G(y) → (x
1≈ y) (2.4), 16, 14, R1, the definition of

1�≈
��

T13: For every Th ∈ {VA5, VAb, VA5�}, �Th P(α) ↔ L∀x(G(y) → α(x))

Proof

1. (x
1≈ y) → (α(y) → α(x)) (2.15)

2. G(x)∧G(y) → (α(y) → α(x)) (2.4), T12, 1, R1
3. G(y)∧α(y) → (G(x) → α(x)) (2.4), 2, R1
4. G(y)∧α(y) → ∀x(G(x) → α(x)) 3, R3, (2.5), (2.7), R1
5. G(y) → (α(y) → ∀x(G(x) → α(x))) (2.4), 4, R1
6. LG(y) → (Lα(y) → L∀x(G(x) → α(x))) 5, R2, (2.11), R1
7. (LG(y) → Lα(y)) → (LG(y) → L∀x(G(x) → α(x))) (2.4), 6, R1
8. (G(y) → Lα(y)) → (LG(y) → L∀x(G(x) → α(x))) (2.4), 7, (2.21), R1
9. P(α) → (LG(y) → L∀x(G(x) → α(x))) (2.4), (2.1), (2.6), 8, R1

10. P(α) → (∃yLG(y) → L∀x(G(x) → α(x))) 9, R3, (2.5), (2.7), R1
11. P(α) → (L∃yG(y) → L∀x(G(x) → α(x))) (2.4), 10, (2.22), R1
12. P(α) → L∀x(G(x) → α(x)) (2.4) ,11 ,T7 (or, T8), R1
13. P(G)∧L∀x(G(x) → α(x)) → P(α) (2.20)
14. L∀x(G(x) → α(x)) → P(α) (2.4), 13, (2.24), R1
15. P(α) ↔ L∀x(G(x) → α(x)) (2.4), 12, 14, R1

��
T14: For every Th ∈ {VA5, VAb, VA5�}, �Th ∀xL(G(x) → α(x)) →

L∀x(G(x) → α(x))

Proof

1. G(x) → (Lα(x) → P(α)) (2.4), (2.1), (2.6), R1
2. (G(x) → Lα(x)) → (G(x) → P(α)) (2.4), 1, R1
3. (LG(x) → Lα(x)) → (G(x) → P(α)) (2.4), (2.1), (2.6), (2.24), 2, R1
4. L(G(x) → α(x)) → (G(x) → P(α)) (2.4), (2.11), 3, R1
5. ∀xL(G(x) → α(x)) → ∀x(G(x) → P(α)) 4, R3, (2.5), R1
6. ∀xL(G(x) → α(x)) → (∃xG(x) → P(α)) (2.4), (2.5), 5, R1
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7. ∀xL(G(x) → α(x)) → (∃xLG(x) → P(α)) (2.4), (2.21), R3, (2.5), 6, R1
8. ∀xL(G(x) → α(x)) → (L∃xG(x) → P(α)) (2.4), (2.22), 7, R1
9. ∀xL(G(x) → α(x)) → P(α) (2.4), 8, T7 (or, T8), R1

10. ∀xL(G(x) → α(x)) → L∀x(G(x) → α(x)) (2.4), 9, T13, R1

��
T15: For every Th ∈ {VA5, VAb}, �Th L∀x(G(x) → α(x)) → ∀xL(G(x) →

α(x))

Proof

1. G(x) → E(x) (2.10)
2. (E(x) → (G(x) → α(x))) → (G(x) → (G(x) → α(x))) (2.4), 1, R1
3. (E(x) → (G(x) → α(x))) → (G(x) → α(x)) (2.4), 2, R1
4. ∀x(G(x) → α(x)) → (G(x) → α(x)) (2.4), (2.8), 3, R1
5. L∀x(G(x) → α(x)) → L(G(x) → α(x)) 4, R2, (2.11), R1
6. L∀x(G(x) → α(x)) → ∀xL(G(x) → α(x)) 5, R3,(2.5), (2.7), R1

��
T16: For every Th ∈ {VA5, VAb}, �Th A Ess x ∧ B Ess x → L(A

2≈ B)

Proof

1. A Ess x → ∀β(Lβ(x) ↔ L∀y(A(y) → β(y))) (2.2)
2. ∀β(Lβ(x) ↔ L∀y(A(y) → β(y))) → (L∀y(A(y) → A(y))

→ LA(x)) (2.5), (2.4), R1
3. A Ess x → LA(x) (2.4), 1, 2, R1
4. B Ess x → ∀α(Lα(x) ↔ L∀y(B(y) → α(y))) (2.2)
5. ∀α(Lα(x) ↔ L∀y(B(y) → α(y))) → (L∀y(B(y) → B(y))

→ LB(x)) (2.5), (2.4), R1
6. B Ess x → LB(x) (2.4), 4, 5, R1
7. A Ess x ∧ B Ess x → (LB(x) ↔ L∀y(A(y) → B(y)))

∧ LB(x) (2.4), (2.2), (2.5), 6, R1
8. A Ess x ∧ B Ess x → L∀y(A(y) → B(y)) (2.4), 7, R1
9. A Ess x ∧ B Ess x → (LA(x) ↔ L∀y(B(y) → A(y)))

∧ LA(x) (2.4), (2.2), (2.5), 3, R1
10. A Ess x ∧ B Ess x → L∀y(B(y) → A(y)) (2.4), 9, R1
11. A Ess x∧B Ess x → L∀y(A(y) ↔ B(y)) (2.4), (2.11), 8, 10, R1

12. A Ess x ∧ B Ess x → L(A
2≈ B) 11, (2.25)

��
T17: �VA5� A Ess x ∧ B Ess x → (A

2≈ B)

Proof The steps 1–11 are the same as for T16

12. A Ess x∧B Ess x → (A
2≈ B) (2.4), (2.26), R1

��
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T18: �VAd� A Ess x ∧ B Ess x → L(A
2≈ B)

Proof The steps 1–11 are the same as for T16

12. A Ess x∧B Ess x → LL∀y(A(y) ↔ B(y)) (2.4), 11, d, R1

13. A Ess x∧B Ess x → L(A
2≈ B) 12, (2.26)

��
T19: For every Th ∈ {VA5n, VAbn, VA5n�}, �Th P(NE)

Proof

1. ∀αL(α(x) → ∃yα(y)) (2.4), (2.10),T3, R1, R2, R3
2. ∀α(Lα(x) → L∃yα(y)) (2.11), R3, (2.5), 1, R1
3. ∀α(∀β(Lβ(x) ↔ L∀y(α(y) → β(y)))

→ (Lα(x) ↔ L∀y(α(y) → α(y)))) (2.6), R3
4. ∀α(∀β(Lβ(x) ↔ L∀y(α(y) → β(y)))

→ Lα(x)) (2.4), R3, R2, (2.5), (2.11), 3, R1
5. ∀α(∀β(Lβ(x) ↔ L∀y(α(y) → β(y))) → L∃yα(y)) (2.4), R3, (2.5), 4, 2, R1
6. ∀α(L∃yα(y)→((P(α) ↔ Lα(x))→L∃yα(y))) (2.4), R3
7. ∀α(∀β(Lβ(x) ↔ L∀y(α(y) → β(y)))

→ ((P(α) ↔ Lα(x)) → L∃yα(y))) (2.4), R3, (2.5), 5, 6, R1
8. ∀α(α Ess x → ((P(α) ↔ Lα(x)) → L∃yα(y))) (2.4), R3, (2.5), (2.2), 7, R1
9. ∀α(P(α) ↔ Lα(x)) → ∀α(α Ess x → L∃yα(y)) (2.4), R3, (2.5), 8, R1

10. (G(x) → ∀α(P(α) ↔ Lα(x)))

→ (G(x) → ∀α(α Ess x → L∃yα(y))) (2.4), 9, R1
11. G(x) → ∀α(α Ess x → L∃yα(y)) 10, (2.1), R1
12. (∀α(α Ess x → L∃yα(y)) → NE(x)) → (G(x) → NE(x)) (2.4), 11, R1
13. L∀x(G(x) → NE(x)) 12, (2.3), R3, R2
14. P(G)∧L∀x(G(x) → NE(x)) → P(NE) (2.20), (2.34)
15. P(NE) 14, (2.24), 13, R1

��
T20: For any Th ∈ {VA5s, VAbs, VA5s�}, �Th α Ess x ∧α Ess y → L(E(x)∨

E(y) → (x
1≈ y))

Proof

1. ∀β(Lβ(x) ↔ L∀y(α(y) → β(y)))

→ (LIx (x) ↔ L∀y(α(y) → Ix (y))) (2.8), (2.36)
2. LIx (x) (2.33), R2

3. α Ess x → L∀y(α(y) → (x
1≈ y)) (2.4), (2.2), 1, 2, R1

4. α Ess x → L(E(y) → (α(y) → (x
1≈ y))) (2.8), R2, (2.11), (2.4), 3, R1

5. ∀β(Lβ(y) ↔ L∀x(α(x) → β(x)))

→ (Lα(y) ↔ L∀x(α(x) → α(x))) (2.8)
6. α Ess y → Lα(y) (2.4), R3, R2, 5, R1
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7. α Ess x ∧α Ess y → L(E(y) → (x
1≈ y)) (2.4), R2, (2.11), 4, 6, R1

8. ∀β(Lβ(y) ↔ L∀x(α(x) → β(x)))

→ (LIy(y) ↔ L∀x(α(x) → Iy(x))) (2.8), (2.36)
9. LIy(y) (2.33), R2

10. α Ess y → L∀x(α(x) → (y
1≈ x)) (2.4), (2.2), 8, 9, R1

11. α Ess y → L(E(x) → (α(x) → (y
1≈ x))) (2.8), R2, (2.11), (2.4), 10, R1

12. ∀β(Lβ(x) ↔ L∀y(α(y) → β(y)))

→ (Lα(x) ↔ L∀y(α(y) → α(y))) (2.8)
13. α Ess y → Lα(x) (2.4), R3, R2, 12, R1

14. α Ess x ∧α Ess y → L(E(x) → (y
1≈ x)) (2.4), R2, (2.11), 11, 13, R1

15. α Ess x ∧α Ess y → L(E(x)∨E(y) → (x
1≈ y)) (2.4), R2, (2.11), 7, 14, R1

��
T21: For any Th ∈ {VA5ps, VAbps, VA5ps�}, �Th ∀y(α Ess x ∧ α Ess y →

L(x
1≈ y))

Proof The steps 1–7 are the same as for T20

8. LE(y) → (α Ess x ∧α Ess y → L(x
1≈ y)) (2.4), (2.11), 7, R1

9. ∀yLE(y) → ∀y(α Ess x ∧α Ess y → L(x
1≈ y)) (2.4), R3, (2.5), R1

10. ∀y(α Ess x∧α Ess y → L(x
1≈ y)) 9, (2.35), R1
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