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Abstract

On the basis of a coherently applied physicalist ontology, I will argue
that there is nothing conceptual in logic and mathematics. What we usu-
ally call “mathematical concepts”—from the most exotic ones to the most
“evident” ones—are just names tagged to various elements of mathemati-
cal formalism. In fact they have nothing to do with concepts, as they have
nothing to do with the actual things; they can be completely ignored by
both philosophy and physics.

There remains one simple way of getting our teaching across, namely
to introduce men to actual particulars and their sequences and orders,
and for men in their turn to pledge to abstain for a while from notions,
and begin to get used to actual things.

Francis Bacon1

I. Introduction

1. I will argue that there is nothing conceptual in logic and mathematics.
What we usually call “mathematical concepts”—from the most exotic ones to
the most “evident” ones—are just names tagged to various elements of math-
ematical formalism. In fact they have nothing to do with concepts, as they

1The New Organon, Aphorisms – On the Interpretation of Nature and the Kingdom of Man [Book
I], XXXVI. (Bacon, 2000, 40).
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have nothing to do with the actual things; they are idols, which philosophy
can completely deny and physics can completely ignore.

In order to demonstrate this, I have to start from the ground up and sketch
a wider framework, which will be based on a coherently applied physicalist
ontology.

First, in section II, I will recall Gödel’s construal of what it means that well
formed formulas of a formal system carry meaning pointing to a realm outside
the formal system. On the basis of the Gödelian interpretation of semantics,
we will make a few observations which will play crucial roles in the further
considerations. An immediate consequence of those observations will be dis-
cussed in section III. Namely, that there is no semantics for free; that is, to state
that a formal system is equipped with semantics involves ontological commit-
ment with respect to the realm referred by the semantics. Combining this with
the physicalist presupposition, we shall conclude that there are two possibili-
ties: the formulas are not endowed with meanings at all, or, if they are, then
they refer to something physical—trough the semantics of a physical theory.

In section IV we discuss the first case, in which, I will argue, the logical and
mathematical statements are, just as the formalist philosophy of mathemat-
ics claims, statements about meaningless formal systems. This doesn’t mean,
however, that we can avoid ontological commitment: the formalist claim that
mathematics is the science of formal systems involves ontological commitment
with respect to the realm of formal systems.

In section V, under the title Physico-formalism, I will discuss how formal
systems can be accounted for in a physicalist ontology. My main thesis will be
that a formal system is a concrete physical object and the logical and mathe-
matical facts are physical facts; facts of the physically existing formal system.
Therefore, mathematical statements have exactly the same epistemological sta-
tus as any other statements about the physical world. I will also argue that
the meta-theories about formal systems do not involve different ontology than
the formal systems themselves; there is nothing in the ontology of logic and
mathematics beyond the physically existing formal systems.

Section VI discusses the situation when the formulas of a formal system do
carry meaning indeed; within a physical theory. Our analysis will lead to the
conclusion that meaning-carrying cannot be established without a certain kind
of underlying causal process in the physical world, which can be identified
as the process of learning from experience. On the other hand, it will be also
shown that the formal systems play constitutive role in our empirical knowl-
edge of the physical reality. But, it will be argued, this constitutive role does
not mean that there exists an a priori conceptual scheme in terms of which we
grasp the experienced physical reality.

II. Gödelian view on semantics

2. As an initial point of our considerations, I suggest to accept Gödel’s sem-
inal idea about “What does it mean that a well formed formula of a formal
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system represents/means/says about/refers to something outside the formal
system?” Although Gödel does not formulate this question in this general
form, he gives an implicit answer to the question in the preparation of the first
incompleteness theorem (e.g. Crossley 1990, 52–54; Hamilton 1988, 145-146).
Namely, he shows how to construct a representation of certain meta-arithmetic
statements in the Peano arithmetic itself. For the present purposes, I recall only
the final result of his construction.

Let Pr(x, y) symbolize the meta-arithmetic fact that ‘the formula–sequence
of Gödel number x constitutes a proof of the formula of Gödel number y’; and
let {Pr(x, y)}x,y denote the family of similar meta-arithmetic facts, where x
and y are arbitrary Gödel numbers. For a given pair of Gödel numbers x and
y, Pr(x, y) is either the case, that is the formula–sequence of Gödel number x is
indeed a proof of the formula of Gödel number y, or not. In Gödel’s construc-
tion, the facts belonging to the family {Pr(x, y)}x,y are represented by a suitable
family of Peano arithmetic formulas, {R(x, y)}x,y.2 Representation means that
the following condition is met: for all Gödel numbers x and y, that is, for all
paired Pr(x, y) and R(x, y) from the two families,

if
Pr(x, y) denotes a

meta-arithmetic fact
which is the case

then
the corresponding
R(x, y) is such that

ΣPA ` R(x, y)

if
Pr(x, y) denotes a

meta-arithmetic fact
which is not the case

then
the corresponding
R(x, y) is such that

ΣPA ` ¬R(x, y)

(1)

where ΣPA denotes the axioms of Peano arithmetic.
Notice that the regularity consisting in the fact that the above condition

holds for a whole family {Pr(x, y)}x,y of meta-arithmetic facts of a certain type
is an essential ingredient of Gödel’s conception of representation. This fact also
plays an important role in the proof of the incompleteness theorem (e.g. Cross-
ley 1990, 55–56). For, for example, nothing would follow from assigning, sim-
ply by convention, one single true meta-arithmetic fact to one single theorem of
PA. As a matter of fact, our meta-language expression ‘if . . . then’ in (1) would
be completely meaningless if {Pr(x, y)}x,y and {R(x, y)}x,y had only one ele-
ment.

3. Now let us turn to the general situation where the formulas of a formal
system become meaning-carrier. A theory describing a certain realm can be
considered as a partially interpreted formal system. Symbolically I shall de-
note such a theory by (L, S, U), where L is the formal system in question, U is
the realm to be described, and S stands for the semantics of the theory, which

2In accordance with the rest of the paper, I do not make distinction between “numbers” and
“numerals”. In fact, everywhere I mean what the standard terminology calls “numerals”; but I do
not see any reason to call them anything other than numbers.

3



we are going to define now. The formal system L is meant to include the lan-
guage of the theory, the derivation patterns, and the axiom system which will
be denoted below by ΣL. Adopting the essence of Gödel’s conception of repre-
sentation, we define the following notion of semantics of a theory.

To equip a formal system L with a (partial) semantics, denoted by S, point-
ing to a certain realm U means to give

(A) a family {Aλ}λ of formulas in L and a family {aλ}λ of states of affairs in
U, such that

(B) for all λ, that is for all paired aλ and Aλ,

if
aλ denotes a state

of affairs in U
which is the case

then
the corresponding

Aλ is such that
ΣL ` Aλ

if
aλ denotes a state

of affairs in U
which is not the case

then
the corresponding

Aλ is such that
ΣL ` ¬Aλ

(2)

We usually say that the formulas belonging to {Aλ}λ are interpreted, are en-
dowed with meaning: namely, Aλ means or refers to aλ according to the se-
mantics in question. This phraseology, however, does not express the complete
truth, as we will see in point 4/(e) below.

4. On the basis of the above construal of semantics, some immediate obser-
vations are in order here.

(a) Meaning of a formula of a formal system is relative to the whole seman-
tic construction; namely, it is relative to the whole formal system L and
to the choice of the two families, the family of formulas {Aλ}λ in L and
the family of state of affairs {aλ}λ in U, and the paring between the ele-
ments of the two families. For instance, imagine two different semantics
for the same formal system L, one with some families {Aλ}λ and {aλ}λ,
the other with some

{
Āλ̄

}
λ̄

and {āλ̄}λ̄, then it is entirely possible that a
formula of L, contained in both families of formulas {Aλ}λ and

{
Āλ̄

}
λ̄

,
carries completely different meanings according to the two different se-
mantics.

(b) Thus, meaning is not determined by the facts of the formal system L. In
other words, the knowledge of all the facts of the formal system L is not
enough to “understand” the meaning either of the separate formulas of
L or the meaning of the entire formal system L as a structure.

(c) Meaning is not simply a matter of arbitrary assignment between state of
affairs in U and the formulas of the formal system, as the “assignment”
has to satisfy condition (B) too. But, the satisfaction of condition (B) is a
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joint result of L and U; the formal system L must be such and the object
of the theory, U, must be such that condition (B) is satisfied.

(d) Notice that condition (B) is exactly the same as the necessary and suffi-
cient condition for the theory (L, S, U) to be true. For, what condition (B)
actually says is that the statements of the theory are correct, that is, the
interpreted theorems of L are in accurate correspondence with the sate
of affairs in U to be described by the theory. Since condition (B) is a part
and parcel of the very construal of semantics, that means that the two
conceptions meaning and truth are inextricably intertwined.

(e) But, this interrelation is obviously not as simple as assumed in the tra-
ditional verifiability or truth-conditional theory of meaning—which was
famously criticized by Quine in the Two Dogmas or in the Epistemology
Naturalized (1951; 1969). For, as it follows from the very construction,
both meaning and truth are essentially holistic conceptions. It makes no
sense to talk about the meaning and truth of a single isolated formula.
Not only because a whole family of formulas, “as a corporate body”, are
endowed with meaning—and, simultaneously, with truth or falsity—but
also because the facts ΣL ` Aλ and ΣL ` ¬Aλ in condition (B) can in-
volve an arbitrarily large part of the formal system L. This practically
means that while the meaning carriers, in some literary sense, are the el-
ements of {Aλ}λ, the actual meaning carrying is coming about by the
formal system L as a whole.

5. Notice that the G-sentences3 of the formal system L—if there are any—
cannot participate in a semantic construction; in the sense that they cannot
belong to a suitable family {Aλ}λ. For, requirement (B) can be satisfied only if
for all Aλ in {Aλ}λ either ΣL ` Aλ or ΣL ` ¬Aλ is the case.4 Taking this into
account, condition (B) implies that

(B∗) for all λ, that is for all paired aλ and Aλ,

aλ denotes a state
of affairs in U

which is the case
if and only if

the corresponding
Aλ is such that

ΣL ` Aλ

III. There is no semantics for free

6. Thus, there is much more to the meaning assigned to a formula of a for-
mal system than, for example, a simple convention, or being accepted as un-
derstandable by an authentic community. For, there is no meaning (and truth)

3A sentence X is called G-sentence if neither ΣL ` X nor ΣL ` ¬X holds.
4That is why the famous Gödel sentence cannot carry meaning whatsoever; in particular, con-

trary to the widespread interpretation, it does not carry the meta-arithmetic meaning that ‘I am not
provable in Peano Aritmetic´—as it was already pointed out by Wittgenstein (see Rodych 1999).
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without the existence of the realm U, the facts of which correlate with the facts of the
formal system in the way of the regularity required in condition (B)—or, more clearly
in (B∗). And these facts of U cannot be “substituted” by—and should not be
confused with—the facts of the formal system; simply because the meanings
of the formulas (and, therefore, their truth or falsity) are not determined by the
formal system in itself.5 Again, the satisfaction of condition (B) is a joint result
of L and U.

Consequently, to state that a formal system is equipped with semantics in-
volves ontological commitment with respect to the realm U, no matter what
kind of realm U is. There is no semantics for free, such as, for example, in
Carnap’s ‘Empiricism, Semantics, and Ontology’ (1950), or in the contempo-
rary fictionalism.6 And, of course, the ontological commitment with respect to
the realm U is only enough to coherently claim that the formal system carries
meaning. For this claim to be true, the realm U must exist.

Combining this with the physicalist ontological thesis that there is nothing
beyond the particular physical objects, there are two possibilities:

1. the formulas of the formal system are not endowed with meanings at all,
or,

2. if they are, then they refer to something physical, within the framework
of a physical theory.

We will return to the discussion of physical theory in section VI. In the next
section, we focus on the first case when the formulas of the formal system L
have no meanings. At least, we focus on the nature of “pure” mathematics,
independently of whether the formal system in question is used in a physical
theory or not.

IV. Logical and mathematical facts

7. What is the subject matter of pure mathematics then? What kind of facts
are investigated by mathematics? Due to what was said above, there remains

5There is no meaning and truth “through proof”, for example. (Cf. Weir 2010, Ch. 3)
6“To take seriously the mathematical fictionalist’s insistence on a standard semantics, then, it is

perhaps better to view mathematical fictionalists as implicitly or explicitly preceding their math-
ematical utterances with a disavowing preface which excuses them from the business of making
assertions when they utter sentences whose literal truth would require the existence of mathemat-
ical objects. But this, of course, raises the question of what they think they are doing when they
engage, as fictionalists, in mathematical theorizing (both in the context of pure mathematics and
in the context of empirical science). Pure mathematics does not present a major difficulty here –
fictionalists may, for example, view the purpose of speaking as if the assumptions of our mathe-
matical theories as true to be to enable us easily to consider what follows from those assumptions.
Pure mathematical inquiry can then be considered as speculative inquiry into what would be true
if our mathematical assumptions were true, without concern about the question of whether those
assumptions are in fact true, and it is perfectly reasonable to carry out such inquiry as one would
a conditional proof, taking mathematical axioms as undischarged assumptions.” (Leng 2020) Ac-
cordingly, fictionalism in best case is a counterfactual version of “if-thenism”, to which we will
return in point 8.
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only one possible answer to this question; the one given by the most hard-
headed formalist: the statements of mathematics are statements about the for-
mal system L itself. For example, the most typical such statement is of the
following form: formula A entails from the axioms of the formal system ΣL,
that is, ΣL ` A, where ` is the single turnstile. It must be emphasized that
neither A nor the elements of ΣL are statements, which could be true or false.
They are just meaningless strings of marks; the logical signs, the connectives,
¬ and →, and the quantifiers, ∃, ∀, included. The entailment relation `, too,
has nothing to do with “rational” or “proper” or “truth preserving” reason-
ing; it simply stands for the fact that there is a (if it makes sense to say, finite)
sequence of meaningless strings of symbols, such that each element of the se-
quence is either an axiom or fits into one of the derivation patterns with some
earlier formulas.

8. Notice that formalism in the above sense essentially differs from all ver-
sions of if-thenism. The main difference is that logic is not in a distinguished
position in the formalist approach. The logical signs, the logical axioms, and
the derivation patterns are on a par with the rest of the formal system. In con-
trast:

To articulate [if-thenism] rigorously, one would distinguish the log-
ical terms like ‘and’, ‘if. . .then’, ‘there exists’, and ‘for all’ from
the non-logical, or specifically mathematical, terminology such as
‘number’, ‘point, ‘set’, and ‘line’. The logical terminology is un-
derstood with its normal meaning, while the non-logical terminol-
ogy is left uninterpreted, or is treated as if it were uninterpreted.
(Shapiro 2000, 149–150)

The other differences may vary with the different versions of if-thenism. One
thing is for sure: in the formalist philosophy of mathematics, neither the logical
nor the non-logical objects in the formal system have meanings whatsoever;
and a mathematical assertion like ‘ΣL ` A’ is not a (counterfactual) conditional
statement (with some meaningful antecedent and consequent) but a simple
unconditional statement of a fact about the formal system L.

9. According to a widespread opinion, it is precisely the merit of the formalist
account that it implies no ontological commitment whatsoever. At first sight
this seems to be correct, since, according to the formalist claims, the formulas
of the formal system carry no meanings at all, they do not refer to anything.
This doesn’t mean however that the formalist mathematics can avoid ontolog-
ical commitment. For, it is agreed that “mathematics is the science of formal
systems” (Curry 1951, 56). The assertions of mathematics are meaningful asser-
tions; namely, a statement like ‘ΣL ` A’ refers to a fact of the formal system
L. So to speak, all mathematics is meta-mathematics. Euclidean geometry is a
theory about a formal system called Euclidean Geometry. Peano arithmetic is a
theory about a formal system called Peano Arithmetic, and so on. Accordingly,
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in the formalist account, a mathematical theory is a normal scientific theory
of the form (M, S, L), where M is some formal system (the “language” of the
meta-theory), S is a semantics in the sense of point 3, and the formal system L
is the realm whose facts constitute the subject matter of the mathematical the-
ory. Now, as was said in point 6, there is no semantics for free; the formalist
claim that a mathematical theory is about a formal system L involves ontologi-
cal commitment with respect to the realm of L; and, this claim can be true only
if L exists.

What kind of ontological entity is a formal system? One thing is for certain:
if, as we assumed, the doctrine of physicalism is true, then formal systems must
be physical objects, constituting particular parts of the physical reality.

V. Physico-formalism

10. How can a formal system be accounted for in a physicalist ontology? In
earlier papers (Szabó 2003; 2012; 2017) I sketched the outlines of such an ac-
count, which I call physico-formalist philosophy of mathematics. The basic
idea is that the logical and mathematical facts, that is, the formal facts, are
physical facts. A formal system is nothing but a physical system; the marks
and derivations are concrete physical objects, concrete physical configurations, and
concrete physical processes; such as, for example, ink-configurations on a paper,
neural configurations and processes of a brain, electronic configurations and
processes in a computer, etc., or their various combinations. A formal fact, like
‘ΣL ` A’, is a fact of such a physically existing formal system.

Formalism, in the sense I use the term, is often called “game formalism”.
Adopting this phraseology, my claim is that the “game” itself is a part of the
physical reality. A chess game—to stick to the standard analogy—is a part of
the physical reality. The chess pieces are physical objects. Their moves are
physical changes. The rules, constraining these moves, are real physical con-
straints; the fulfillment of which is not a “metaphysical necessity” but a causal
consequence of certain physical conditions. The way in which the knight can
jump is determined by the physical state of the surface of the CD7 from which
the chess game is installed and other similar conditions, and the contingent
laws of physics governing the computer’s behavior. So, by formal system I
mean something similar to what Haugeland (1985, 76) calls (particular mate-
rial embodiment of) “automatic” formal system, “a formal system that ‘works’
(or ‘plays’) by itself”.8 An iconic example is a computer that, in a certain order,

7That is, “Computer Science Without Programs” is entirely possible (cf. Boolos 1998, 129).
8It is interesting to observe how computerization has changed our natural intuitions. In 1903,

Frege writes in the Grundgesetze der Arithmetik, Vol. II:

“[T]o speak of the behaviour of the signs with respect to the rules seems to me un-
fortunate. I do not behave with respect to the civil laws simply by being subject to
them, but only in obeying or disobeying them. Since neither the chess pieces nor
the numerical figures have a will of their own, it is the player or the calculator—and
not the pieces or figures—who, by obeying or disobeying the rules, behaves with
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prints out the theorems derivable from a given system of axioms, according to
some derivation patterns. Though, a physically existing formal system, in my
understanding, does not necessarily mean a temporal progression; or at least
temporality is inessential. There is nothing temporal in the fact, for example,
that a formula sequence on the paper constitutes a proof.

Highlighting the fact that the marks are physical objects and that the whole
game is in the physical realm—in a “finite”, empirically available part of the
physical realm—has been quite common in philosophy of mathematics since
the first occurrence of formalism. As common as the belief that there must
be something more to mathematics than such a finite game with physically
existing marks. Interestingly enough, this belief, in some form, is still present
in the various branches of formalism, too. In contrast, the physico-formalist
approach implies the complete denial of the existence of anything in logic and
mathematics over and above the particular physically existing formal systems.
This is not some additional nominalism, but, as we will see, a straightforward
consequence of the physicalist ontology.

11. In my view, the belief that mathematics must be something more than the
investigation of the particular, physically existing, formal systems is rooted in
the misinterpretation of the fact that mathematics is a collection of claims about
formal systems. It is assumed that “the theory of the game” involves different
ontology than “the game itself” (Frege 1960, 203). As Alan Weir puts it:

The metatheory is itself a substantial piece of mathematics, osten-
sibly committed to an infinite realm of objects which are not, on
the face of it, concrete. Tokens of the expressions of the object lan-
guage game calculus may be finite—ink marks and the like; but
since there are infinitely many expressions, theorems and proofs,
these themselves must be taken to be abstract types. (Weir 2015)

Of course, a metatheory—that is, in our terminology, a mathematical theory—
(M, S, L) describing the facts of a physically existing formal system L must be
distinguished from L itself; for, a theory, as such, is certainly not identical with
its subject matter. But, this difference does not mean that (M, S, L) represents
some a priori knowledge of the facts of L, prior to or independent of the physi-
cally existing L. As it is clear from the physico-formalist approach, (M, S, L) is
an ordinary physical theory about L, and has the same epistemological status

respect to them.” (Frege 1960, 190)

In 1985, Haugeland writes:

[A]n automatic formal system is like a set of chess pieces that hop around the board,
abiding by the rules, all by themselves, or like a magical pencil that writes out for-
mally correct mathematical derivations without the guidance of any mathematician.
These bizarre, fanciful images are worth a moment’s reflection, lest we forget the
marvel that such systems (or equivalent ones) can now be constructed. (Hauge-
land 1985, 76)
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as any other physical theory about any other part of the physical world (see
point 16).9

The existence of (M, S, L) does not imply commitment to abstract entities
whatsoever. It involves ontological commitment only with respect to the phys-
ically existing formal system L, and another physically existing formal system M,
and the physical correlation10 between them required in S; and these all are in
the physical realm.

For example, it can be an entirely valid claim that a certain object in the
physically existing formal system L is a token of a certain type introduced in
the mathematical theory (M, S, L). But, it doesn’t mean that the token and the
type belong to different ontological realms. The type, from ontological point
of view, is just the same kind of object in the physically existing formal system
M as its token in L, or any other objects in L or in M. The fact that they consti-
tute a type–token pair consists in a special relationship through the regularity
described in point 3/(B).

Similarly, it can be entirely possible that two or more concrete formal sys-
tems have similarities, just as any contingently existing physical objects may
have similarities in some features. There is a strong temptation to interpret
the similar physically existing formal systems as particular physical “represen-
tations” of one and the same “formal system”, something that is obtained by
“abstraction”. Haskell Curry writes:

[A]lthough a formal system may be represented in various ways,
yet the theorems derived according to the specifications of the
primitive frame remain true without regard to changes in repre-
sentation. There is, therefore, a sense in which the primitive frame
defines a formal system as a unique object of thought. This does
not mean that there is a hypostatized entity called a formal system
which exists independently of any representation. On the contrary,
in order to think of a formal system at all we must think of it as rep-
resented somehow. But when we think of it as formal system we
abstract from all properties peculiar to the representation. (Curry
1951, 30)

In line with what was said about the type–token relationship, it must be clear
that abstraction does not produce an abstract formal system over and above
the physically existing ones. To abstract from some peculiar properties of, say,
two physically existing formal systems, L1 and L2, and to isolate the common

9This challenges the widespread view that

“the formal languages and deductive systems were formulated with sufficient clar-
ity and rigour for them to be studied as mathematical objects in their own right. That
is, the mathematician can prove things about formal systems.” (Shapiro 2000, 153)

For, such a “proof” would mean the possibility of synthetic a priori proposition about a part of
the physical world. We only can make (hypothetical) predictions about a (physically existing) for-
mal system, by means of a mathematical theory (or meta-mathematical theory, depending on the
terminology) which is as much fallible as any other physical theory.

10For more about this see point 16.
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essential features of them, first of all requires knowledge of the properties of
the physical objects in question. That is, we must have a mathematical the-
ory (M, S, {L1, L2}) jointly describing L1 and L2. Only in such a theory it is
possible to formulate the steps of abstraction, to isolate the common essen-
tial features of L1 and L2, to talk about similarity or isomorphism between the
objects representing them, and, for example, to introduce some equivalence
classes, which could be regarded as the end product of the abstraction pro-
cedure. But, the formal system M in the mathematical theory (M, S, {L1, L2})
itself is a physically existing formal system. The whole abstraction procedure is
just an object in the physically existing formal system M, including the result of
the abstraction. Thus, abstraction does not lead out of the realm of the physically ex-
isting formal systems. In other words, the physically existing formal systems can
be represented in each other, through the semantics of a suitable mathematical
theory; that’s all. (Accordingly, taking into account that a mathematical theory
is a physical theory—of one or more physically existing formal systems—, the
faithfulness of the representation is limited, uncertain, approximate, and based
on a posteriori means.)

Notice that, from the point of view of the above considerations, it is irrel-
evant whether the formal systems in question, L, L1, L2 and M, are finite or
infinite physical objects—though, assumably, they are finite.

Thus, our conclusion is that “the theory of the game” does not involve dif-
ferent ontology than “the game itself”; there is nothing in the ontology of logic
and mathematics over and above the physically existing formal systems.

12. This means that the logical and mathematical statements are statements of
physical facts; therefore, they have exactly the same epistemological status as
any other statements about the physical world. Consequently, taking into ac-
count what will be said about physical theory in the next section, especially in
point 16, the logical and mathematical truths—truths of reason par excellence—
are synthetic, a posteriori, and fallible; therefore they do not deliver us absolute
certainty. On the other hand, however, they do have factual content; accord-
ingly, they “can be true and useful and surprising” (Ayer 1952, 72). They ex-
press objective, mind independent, facts; which can be “discovered” (cf. Hardy
1929)—just like we can discover an objective feature of a plastic molecule or the
characteristics of a transistor. From metaphysical point of view, the logical and
mathematical facts are contingent fats. Not only because a formal system is an
artifact, but also because the laws of nature predetermining its features, them-
selves, are contingent.

The above conclusions obviously contradict to the traditional beliefs about
logic and mathematics. The universal illusion that logical and mathematical
truths are necessary, certain and a priori can be explained by two practical facts:

1. The illusion of necessity is rooted in the fact that formal systems are
simple physical systems of relatively stable, predictable behavior, like a
clockwork.
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2. The illusion of aprioricity is rooted in the fact that knowledge of logical
and mathematical facts does not need experience of the “external” physi-
cal world—external relative to the physically embodied formal system in
question.

13. All this applies to all mathematical facts, involving all kinds of mathe-
matical concepts, simple or sophisticated, finite or infinite. To be more precise,
the usage of the word “concept” is inadequate; after all, a meaningless mark
is not a concept. And from this point of view it does not matter whether the
mark in question is termed “infinite cardinality”, or “two“, or “triangle”, or
“probability”; it is not a concept which expresses anything of the world. It is
precisely this what, for example, Carnap criticized in the formalist construction
of mathematics:

The formalist view is right in holding that the construction of the
system can be effected purely formally, that is to say, without refer-
ence to the meaning of the symbols; that it is sufficient to lay down
rules of transformation, from which the validity of certain sentences
and the consequence relations between sentences follow; and that
it is not necessary either to ask or to answer any questions of a ma-
terial nature which go beyond the formal structure. But the task
which is thus outlined is certainly not fulfilled by the construction
of a logico-mathematical calculus alone. For this calculus does not
contain all the sentences which contain mathematical symbols and
which are relevant for science, namely those sentences which are
concerned with the application of mathematics, i.e. synthetic de-
scriptive sentences with mathematical symbols. For instance, the
sentence “In this room there are now two people present” cannot
be derived from the sentence “Charles and Peter are in this room
now and no one else” with the help of the logico-mathematical cal-
culus alone, as it is usually constructed by the formalists[.] (Carnap
1937, 326)

However, in order to better elucidate the physico-formalist approach I am
proposing here, let me point out three things. First, again, in the physico-
formalist approach, the formulas of a formal system are just meaningless phys-
ical marks, which in themselves do not have to express anything of the world.
Second, Carnap’s example sentences are interpreted formulas; that is, they be-
long to a physical theory (L, S, U) capable of describing the part of the world
in question. Moreover, the language of the theory, formal system L, is certainly
a wider language than pure mathematics. It includes such terms as “Charles”,
“Peter”, “room”, “in the room”, etc., and the axiom system of L, beyond the
logico-mathematical axioms, contains some physical (non-mathematical) ax-
ioms too. Taking into account the physical axioms, it is entirely possible that
Carnap’s two sentences are in the required entailment relation in L. But, third,
even if that is the case within L, the two sentences in question—as well as
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the physical axioms themselves—remain meaningless formulas which in them-
selves do not express anything of the world, even though they contain physical
terms (as I shall argue more fully in point 15).

Thus, no matter how the objects of a formal system are termed, they are just
meaningless bricks in a physically existing formal system. They have noth-
ing to do with concepts, as they do not express anything of the world; conse-
quently, the do not generate and do not solve conceptual problems. For ex-
ample, just as a formal construction called “two” has nothing to do with the
state of affairs in the room when only Charles and Peter are present, a formal
construction called “infinity” has nothing to do with the metaphysical debate
about the actual vs. potential infinity, as it has nothing to do with neither the
state of affairs along a timeslice of the physical world nor a long/endless phys-
ical process (nor, of course, some “mental” or “abstract” procedure).

VI. Physicalist account for physical theory

14. Let us turn to the situation where the formulas of a formal system are
meaning-carriers indeed. This is the second case in point 6, when the formu-
las of a formal system L are endowed with meaning within a physical theory
(L, S, U)—a theory in the sense of point 3, where U is a certain part of the
physical reality. The system of axioms of L are usually divided into the logical
axioms, the axioms of some mathematical theories, and some physical axioms.
Beyond the traditions and some practical purposes (Szabó 2017), this kind of
classification is however inessential—as it will be obvious from the discussions
below.

Of course, this view on physical theory goes back to Carnap’s Theories as
Partially Interpreted Formal Systems (1939):

Any physical theory, and likewise the whole physics, can in this
way be presented in the form of an interpreted system, consist-
ing of a specific calculus (axiom system) and a system of semantic
rules for its interpretation; the axiom system is, tacitly or explicitly,
based upon a logico-mathematical calculus with customary inter-
pretation. (Carnap 1939, Section 23)

It must be mentioned that there are debates about the details of Carnap’s views
concerning both the interpretation of the calculus and the final nature of the se-
mantic rules (e.g. Frost-Arnold 2013; Lavers 2015; Friedman 1988; Murzi 2019).
Nevertheless, it is worth clarifying that the account I am proposing in this pa-
per has two significant features in which it may differ from the original Car-
napian views. First, according to the physico-formalist approach, the “logico-
mathematical calculus” is just a formal system, a physical object without “cus-
tomary interpretation” whatsoever. Second, according to the Gödelian con-
ception of semantics we adopted, the link between the elements of the formal
system and the described physical world is not a matter of language; it cannot
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be established by laying down a “system of semantic rules” formulated in de-
scriptive expressions. As we pointed out in point 4/(c), semantics is something
external, or, at least, partly external to the language of the theory; it is a joint re-
sult of L and U. In fact, semantics is a phenomenon jointly produced by two
parts of the physical world, the formal system L and the part of the external
reality U to be described.

15. Semantics is a part and parcel of physical theory. (No reason to talk sep-
arately about a “physical theory” and its “interpretation”. Without seman-
tics, L is just a meaningless physical object.) In case of failure of the theory
(L, S, U), any component can be the object of revision; from the language and
the derivation patterns, through the logical, mathematical, and physical ax-
ioms, up to the semantics. In other words, all these components—including
the logical/mathematical parts and the semantics—are as much hypothetical
as the physical parts.

This also means that the distinction between “pure” and “applied” mathe-
matics is a misconception—except of course the sociological usage of the terms
(cf. Pincock 2009). For, there is no such a thing as “applied mathematics”.
Mathematics is “pure” mathematics: the discipline investigating the facts of
a formal system. On the one hand, mathematical facts do not imply how to
“apply” mathematics for the description of the physical world; on the other
hand, within a physical theory, the facts like ΣL ` Aλ and ΣL ` ¬Aλ in condi-
tion 3/(B) are “pure” mathematical facts, which are independent of the seman-
tic construction they are involved in—even if L contains so called “physical
terms”, or contains only “physical terms” like in Hartry Field’s (1980) nominal-
ization project.11

16. aλ is a symbol in our meta-language standing for a state of affairs in the
physical world, specifically in U. According to the physico-formalist approach,
ΣL ` Aλ and ΣL ` ¬Aλ also stand for physical facts, namely, for facts of
the physically existing formal system L. That means that condition 3/(B)—
or, more obviously, in the form of 5/(B∗)—requires the existence of a regular-
ity between two parts of the physical world; a correlation between the state of
affairs in L and the state of affairs in U. According to Reichenbach’s (1956)
principle of common cause, there cannot exists correlation in the physical world
without causal explanation; more precisely, without the existence of a causal
physical process producing the correlation in question. This means that there must

11After all, a nominalized version of a physical theory (L, S, U), say (L′, S′, U), is a normal phys-
ical theory in which L′ is an ordinary formal system. The facts of L′ are ordinary logical and
mathematical facts. So, Field’s nominalization does not eliminate mathematics from physical the-
ories. This doesn’t mean, however, that the Quine–Putnam indispensability argument is a valid
argument in favor of Platonism. For, what is indispensable in a physical theory (L, S, U) are the
facts of L—physical facts of a physically existing formal system. (L, S, U) involves ontological
commitment only with respect to the physical world U, the physically existing formal system L,
and the physical process (see point 16) producing the correlation between them, which is required
in S. And, again, these all are in the physical realm.
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exist a physical process in the common causal past of the state of affairs in L
and the state of affairs in U, which brings about the correlation required in
condition 3/(B). Thus, we must conclude, the semantics as well as the truth
of a physical theory, that is knowledge of the physical world, can be obtained
only as a result of a certain causal process in the physical world. After some
reflection, it is clear that this physical process is nothing else but what we nor-
mally call learning from experience. All this means that no genuine knowledge
of the physical world—hence knowledge simpliciter—is possible without ex-
perience. Due to the fact that meaning and truth are intertwined, no meaning-
ful talk (or thought) about the physical world is possible without experience.
There is no a priori meaning and there is no a priori truth.12

17. Learning from experience, that is the physical process in the common
causal pasts of L and U, bringing about the correlation in S, embraces ev-
erything in the past history that causally explains the formation of (L, S, U);
including the continuous creation, investigation, and selection of formal sys-
tems, and the continuous tuning of them—first of all the so called physical
axioms—together with the continuous tuning of the semantics. There is there-
fore nothing “miraculous” about the “applicability of mathematics” in physics.

Notice that the formation of a given theory (L, S, U) can be influenced by
various causal factors outside the past and present of part U of the physical
reality. That is to say, it can be the case that the theory is not completely deter-
mined by that part of the world which is described by the theory. It is therefore
entirely possible that there exist different physical processes leading to forma-
tion of different physical theories, (L, S, U), (L′, S′, U), (L′′, S′′, U), . . ., such that
all describe the same part U of the physical reality. This kind of underdeter-
mination13 of theory also confirms that there is no “pre-established harmony”
between the facts of the realm of U and the facts of the realm of the formal
system L. The “harmony”, consisting in the relationship 3/(B), is established
by the contingent causal process leading to the formation of (L, S, U).

18. It is a widespread view that the failure of a theory (L, S, U) means the
following situation:

(1) A refers to a according to the semantics of the theory.

12Due to the EPR–Bell problem in quantum mechanics, many question whether the common
cause principle deserves to be regarded as universally valid principle. My own view is that it
does. In fact, none of the counter-examples provides a compelling reason to deny it. (Cf. Arntze-
nius 2010; Hofer-Szabó et al. 2013) In any event, in the present argument, learning from experience,
as an existing and known macroscopic physical process, produces the correlation in question with-
out any problem.

13I intentionally don’t call it ‘empirical underdetermination’ or ‘underdetermination by evi-
dences’. For it is not the case that the theory is underdetermined by experience but that the experi-
ence itself is underdetermined by (the past and present of) the part U of the physical reality—where
experience means the causal process in the physical world that produces the correlation described
in condition 3/(B). Also, there are no such things as empirical facts or evidences independent of
the whole theory, as it will be pointed out in point 20.
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(2) A is a prediction of the theory, that is ΣL ` A.

(3) But, a is not the case in U.

One can easily see however that the three claims cannot hold true at the same
time, given that L is consistent. For (1) and (3), according to condition 3/(B),
would imply ΣL ` ¬A, in contradiction with (2).

An immediate consequence of this simple meta-theoretical fact is that the
state of affairs in U when a is not the case—let us denote this state of affairs
by a∗—cannot be expressed as “¬A”. Simply because condition 3/(B) fails,
therefore not only ¬A does not carry meaning, but there is no semantics at all.
Consequently, we are not able to attribute a feature, whatsoever, to the physical
reality in the situation a∗

Of course, one can imagine that the theory formation process leads to a
modified (or completely new) theory, (L′, S′, U′), which is constructed with
some new family of state of affairs

{
a′λ′

}
λ′ and new family of formulas

{
A′λ′

}
λ′ ,

such that a∗ = a′
λ′∗

and condition 3/(B) is satisfied. Then the corresponding A′
λ′∗

will be attributed to a∗, as a true feature of reality in state a∗—at least, according
to the new theory (L′, S′, U′).

19. The above example not only illustrates the thesis of falsification holism
mentioned in point 4/(e), but also reveals that semantics plays constitutive role
in furnishing the world with entities and their attributes. ‘Constitutive’ in the
sense of Reichenbach’s conception of constitutive principles of coordination,
that is, the way in which physical things are coordinated to mathematical ob-
jects (Reichenbach 1965). In fact, due to the holistic nature of semantics and the
intertwining of semantics with the truth of the theory as a whole, the constitu-
tive role goes not to some separate operational definitions of isolated notions
or quantities—as in traditional operationalism—but to the theory (L, S, U) as
a whole; that is, to the whole formal system L and to the whole, empirically
established, semantic construction.

This constitutive role of the theory, combined with the fact, for example,
that L is a contingently existing physical object, can lead to serious metaphys-
ical consequences—for instance, concerning the traditional intrinsic–extrinsic
dichotomy (Szabó 2020).

However, not even the constitutive role of the formal system L implies that
there exists an a priori conceptual scheme in terms of which we grasp the expe-
rienced physical reality. There is no “conceptual side of the coordination” (cf.
Reichenbach 1965, p. 53) as a system of analytic truths. For, as it was pointed
out in point 13, what does exist is anything but conceptual: we have the phys-
ically existing formal system L without any meaning. Once the formulas of L
are endowed with meaning, in the sense of point 3, they become true or false
in a posteriori sense, where experience means the causal process in the physical
world that produces the correlation described in condition 3/(B) between the
state of affairs in the physically existing L and the physically existing U. The
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“epistemic agency” is just a part of that physical process going on in the com-
mon causal past of L and U. There is no need to hypostatize either intuitive or
transcendental concepts whatsoever.

20. One might be inclined to think that this is true only for the “interpreted”
part of the language of the theory, that is, only for those formulas of the for-
mal system L that are involved in the family {Aλ}λ on which the semantic
construction is based; while the rest, so called “purely theoretical” part of the
formal system possesses some “pure conceptuality” free from the shackles of
any reference to the physical world—and, that the various “mathematical con-
cepts” belong to that “purely conceptual” realm.

Beyond the obvious ontological problem that this kind of “pure conceptual-
ity” would smuggle back some sort of mental or abstract entities incompatible
with physicalism, notice that the whole idea is rooted in an essential distinc-
tion between interpreted and non-interpreted parts of physical theory. Such
a distinction is, however, untenable. For, the dichotomy is based on the as-
sumption that the family {Aλ}λ is a special group of formulas of the formal
system which have some distinguished relationship to the physical reality, by
being capable of referring to the physical world by themselves, independently
of the rest of the theory. This is, however, not the case. In bringing about the
meaning-carrying, the “non-interpreted” elements of the formal system are on
a par with the ones belonging to {Aλ}λ. The correlation in condition 3/(B) is
not between the formulas {Aλ}λ and the sates of affairs {aλ}λ but between the
facts {ΣL ` Aλ/ΣL ` ¬Aλ}λ and {aλ}λ. And, as it was already mentioned in
point 4/(e), the facts ΣL ` Aλ and ΣL ` ¬Aλ can involve a large part of the
formal system L; practically, they are facts of the formal system as a whole.

However, let me emphasize again, the elements of the formal system, re-
gardless of being involved in the family {Aλ}λ or not, by themselves, with-
out such meaning-carrying, which is jointly produced by the formal system L,
as a whole, and the external physical reality U to be described, are meaning-
less marks; no matter if they are called “infinity” or “two”, or “straight line”,
or “probability”, “information”, “disjunction”, “conjunction”, “for all”, “there
exists”, “set”, “set of”, “mapping”, “category”, etc.; or even “charge”, “electric
field strength”, “temperature”, or “spin up”.

VII. Conclusion

21. Thus, there is nothing conceptual in mathematical objects. They have
nothing to do with concepts, as they do not express anything of the world.
They are just meaningless elements of a physically existing formal system.
Mathematical facts are, therefore, physical facts; facts of the physically existing
formal systems. They do not raise and do not solve metaphysical problems.

Mathematical objects can become meaning-carriers when they are involved
in the semantics of a physical theory. In such roles, however, they refer—
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holistically, as parts of the whole theory—to elements of physical reality, in
an ordinary way. The meaning carried by a mathematical object in a physical
theory is not a priori given; it is not even determined by the formal system in
question. It is relative to and determined by the empirically established physi-
cal theory.

The task of mathematics is to explore the facts of the physically existing
formal systems; but we have to abstain from “mathematical concepts”, which are
just idols, that philosophy can completely deny and physics can completely
ignore.
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