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PREFACE

The present volume is as much a book co-authored by all the contributors
as it is an edited collection of their papers. Most of the contributors have
been involved in regular discussions over the past years, often inspiring the
questions, or some aspects of the proposals, in each other’s papers or actually
collaborating on co-authored papers.! For this reason, the contributions make
related assumptions and explore highly related issues. The organization of the
volume reflects this unity of aims and interests. It starts out with an overview
of some of the shared formal background, and the chapters are arranged in
a sequence that is intended to invite the reader to proceed from one directly
to the next. Nevertheless, there has been no attempt to eliminate individual
differences in either assumptions or choice of topic. All the chapters are entirely
self-contained, so the reader will find it equally possible to read any of them in
isolation.

Two members of the UCLA community do not appear in this volume but
have been an important source of inspiration for this project: Ed Keenan and
Feng-hsi Liu. Many of Keenan’s works have drawn attention to the empirically
diverse behavior of natural language determiners and developed theoretical
tools for studying them. Liu’s 1990 dissertation examined the abilities of a
representative sample of noun phrases to participate in scopal dependencies and
branching, coming up with provocative generalizations and pointing out their
significance for then-standard theories in powerful terms. Three other linguists
discussions with whom have been more important to several of us than routine
acknowledgments might indicate are Carmen Dobrovie-Sorin, Barry Schein,
and Frans Zwarts.

It was a privilege to have Sean Fulop as our copy-editor and type-setter, and
Edward Garrett as our proof-reader and advisor concerning the preparation of
the manuscript.

Significant parts of the research, as well as the preparation of a camera-
ready manuscript, were supported by NSF grant #SBR 9222501 and by grants
from the Academic Senate of UCLA, which we gratefully acknowledge.

!Names of co-authors are in all cases listed in alphabetical order.

xi



INTRODUCTION

Syntactic and semantic theories of quantificational phenomena traditionally
treat all noun phrases alike, thus predicting that noun phrases exhibit a uni-
form behavior. It is well-known that this is an idealization: in any given case,
some noun phrases will support the desired reading more readily than others.
Anyone who has lectured on quantifier scope ambiguities to a class of unbrain-
washed undergraduates will recall the amount of preparation time that goes
into coming up with two or three examples that the class will judge to be am-
biguous in exactly the ways the theory under discussion predicts. The same
experience with “good citizens” and “bad citizens” repeats itself in connection
with branching, anaphora, distributive versus collective readings, extraction,
event quantification, pair-list questions, and so on.

Is the assumption of uniformity a theoretically necessary idealization, then,
or is it an overgeneralization based on a small body of initial data? There is
no doubt that, to some extent, it is a necessary idealization. To what extent
it is, though, depends on how systematic the patterns of deviation turn out to
be, and how coherent and interesting theoretical accounts can be devised for
those patterns.

The unique contribution of this volume consists in scrutinizing large bodies
of data, both well-known and novel, from a theoretical perspective and arguing
that the patterns emerging are systematic and significant enough to prompt
rather fundamental revisions of the standard accounts.

In proposing alternatives, many of the papers follow a heuristic that may be
summarized as follows: The range of quantifiers that participate in a given pro-
cess is suggestive of exactly what that process consists in. Instead of devising
omnivorous rules that apply to all quantifiers and then need to be constrained
in various, sometimes ad hoc, ways, it is proposed that the grammar of quantifi-
cation involves a variety of distinct, often semantically conditioned, processes.
Each type of expression participates in those processes that suit its particular
properties. The main specific claims are to be reviewed shortly.

There are important results in recent semantic and syntactic literature that
point in a similar direction. On the semantics side, the empirical theories of
discourse representation and plurals have pointed out significant respects in
which different noun phrase types contribute differently to interpretation, and
the mathematical theories of generalized quantifiers and partially ordered sets

xiii
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offer tools for making various distinctions that prove relevant. On the syntax
side, the minimalist program postulates that movement is not input-blind and
optional, but it is driven strictly by the specific properties of lexical items, as
in a number of other lexicalist approaches.

The work reported here pulls many of these results together and applies
their insights in a unified manner.

The issues addressed in the volume fall into two major categories, (i) THE
SYNTAX/SEMANTICS INTERFACE and (ii) more or less pure SEMANTICS. Syntax
is relevant also in the second category: in some cases a semantic account is
offered for a phenomenon usually held to be syntactic, or vice versa.

Many papers in the volume make use of some simple tools of formal seman-
tics. Often, their empirical predictions derive directly from formal semantic
considerations. To make these arguments more accessible and, hopefully, plea-
surable to the reader, the first chapter offers a fairly informal introduction to
the pertinent background notions in lattice theory and generalized quantifiers.

*

The first set of papers pertains to the SYNTAX/SEMANTICS INTERFACE.
They focus on data where the missing readings are, in and of themselves, as
coherent as the available ones; the problem is that the grammar of English does
not associate them with the given strings of words. The central issue in these
papers is how different noun phrase types acquire their scope and, consequently,
how they interact with each other and with negation.

Traditionally, syntactic and semantic theories have assumed that all noun
phrases are assigned scope by the same rule, that the scope assignment rule
is optional, that it can “prefix” the quantifier to practically any syntactic do-
main, and that wide scope equals distributive wide scope. In a series of papers,
Beghelli and Stowell have challenged these assumptions and developed a novel
approach to Logical Form. The motivation for the proposed changes is empir-
ical. As is shown by Kroch’s, Ioup’s, and Liu’s work, as well as more recent
research including Beghelli and Stowell’s own, quantifier types differ in impor-
tant respects. Consider a small sample of the contrasts. More than three men
and every man differ in their readiness to take inverse scope: More than three
men read every book easily admits the interpretation ‘For every book, there
are more than three men who read it,” but Every man read more than three
books does not admit “There are more than three books which every man read.’
On the other hand, numerical indefinites and universals can both take inverse
scope as far as existential import is concerned, but differ in supporting inverse
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distributive readings: compare More than three men read every book above,
which allows the men to vary with the books, with More than three men read
two of the books, which does not, although the two books can be picked inde-
pendently of the men. Finally, more than two men and every man differ with
respect to their interaction with negation: More than two men didn’t laugh is
a fine sentence, but Every man didn’t laugh, with a non-contrastive intonation,
is not; I didn’t read more than two books is ambiguous, but I didn’t read every
book admits only a ‘not every’ interpretation.

The contents of the volume offer an account of these and similar contrasts
in terms of a minimalist theory of Logical Form, whose distinctions can be
correlated with those of Discourse Representation Theory and to some extent
motivated by generalized quantifier theoretic considerations.

Working within the minimalist program of syntax, Beghelli and Stowell
make the following basic assumptions. (a) Noun phrases acquire their scope as a
by-product of moving into syntactic positions where they can check some scope-
independent morphological and/or semantic feature, and (b) Distributivity is
effected by a syntactically separate operator. These assumptions are useful in
the following way.

Since noun phrases differ in morphological and semantic properties, (a)
yields an account of the diversity of their behavior. To be more specific, Beghelli
and Stowell claim that noun phrases fall into two larger categories. Members
of the first have specific target landing sites distinct from the case positions;
members of the second do not. The target landing sites include, along with the
specifier positions of well-known categories like CP and NegP, those of a novel
set of functional projections, RefP, DistP, and ShareP. Plurals like (the) two
men move to the specifier of RefP or ShareP, and distributive universals like
every man to DistP. Modified numerals like more/less than three men do not
move beyond their case positions and thus scope in situ.

As regards (b), Beghelli and Stowell argue that both plurals and universals
are associated with a set-denoting part and a phonetically null distributive
operator. The distributive operator associated with plurals is the silent each
known from the semantics literature; syntactically, it is shown to have the
properties of floated each, an adverbial element that attaches to some heads,
but not to others. On the other hand, the distributive operator associated with
universals (and other noun phrases that pattern with them) is syntactically the
head of DistP.
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DistP
Spec Dist’
every man /\
‘the set contain- Dist
ing every man’ ‘!v’
‘the distributive
operator’

The fact that distributivity is factored out and represented in these particular
syntactic ways allows the theory to account for a variety of subtle phenomena,
including the separability of the existential import and the distributivity of
noun phrases, the clause-boundedness of distributivity, the differential ability
of noun phrases to induce referential variation when taking inverse scope, and
the deviations from the basic patterns in interaction with negation and wh-
phrases.

The outlines of the general theory and the interaction of universals with
other quantifiers and negation are laid out in Beghelli and Stowell’s Distribu-
tivity and negation in this volume. Beghelli’s The syntax of distribu-
tivity and pair-list readings introduces the two types of distributivity in
detail and applies the results to uncover and explain new data, along with the
notorious syntactic asymmetries, in connection with wh/QP interactions. More
on this paper below.

The one feature of Beghelli and Stowell’s scope syntax that may appear
strikingly baroque is the postulation of a multitude of new LF landing sites.
Strategies for scope taking by Szabolcsi offers independent motivation for
this feature. It is shown that the surface syntactic scope positions that have for
long been postulated for noun phrases in Hungarian correspond to the positions
Beghelli and Stowell posit for Logical Form in English.

Szabolcsi’s paper further addresses the relation between this theory of scope
and Discourse Representation Theory. On the basis of their commonalities as
well as the syntactic advantages of Beghelli and Stowell’s proposal, it is pro-
posed that Beghelli and Stowell’s way of constructing Logical Forms should,
essentially, replace Kamp and Reyle’s DRS construction algorithm. Concretely,
movement into RefP or DistP corresponds to introducing discourse referents,
while noun phrases that scope in their case positions are interpreted as per-
forming a counting operation on predicates. Hungarian data play a crucial
role in substantiating some of these claims. The upshot is that the indepen-
dent structure that Beghelli and Stowell argue scope lives off of is, in semantic
terms, a kind of discourse representation structure.
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Some formal semantic groundwork for the above papers is laid by Beghelli,
Ben-Shalom and Szabolcsi in Variation, distributivity, and the illusion
of branching. They motivate breaking scope down into referential variation,
distributivity and, in the case of non-upward entailing QPs, maximality. Then
the same conceptual apparatus is applied in the study of branching readings,
whose descriptive constraints have been observed by Liu. It is argued that
(in the set of data considered) no specific branching quantifier needs to be, or
indeed, should be, postulated in English. All the empirically attested branching
readings are logically equivalent to some other reading that needs to be derived
anyway: a scopally asymmetrical or a cumulative one.

In Computing quantifier scope, Stabler offers a different perspective on
the issue of how semantic properties of noun phrases may affect their scopal
syntactic abilities. Noting that the same properties manifest themselves in the
inferential behavior of noun phrases, which can be represented syntactically,
he proposes to reverse the order of explanation. He does not assume that
the speaker has some grasp of the semantic value of the expression first and
then decides where to put it in syntactic structure. Instead, the speaker uses
the expression in a certain way, in the syntax according to the requirements
specified in its features, and in inference. The proposal is implemented within
a novel formalization of minimalist syntax, applied to Beghelli and Stowell’s
theory.

Whatever their take on the role of semantics, all the papers above assume
that scope is a structural notion. Farkas, whose 1981 CLS paper contains some
of the classical observations concerning the scope and distributivity of indefi-
nites, proposes a non-structural approach. In Evaluation indices and scope,
the relative scope of two expressions is a matter of possible dependencies of in-
dices, seen as Kaplan-style coordinates of evaluation. In this way, Farkas’s
approach may be closer in spirit to Groenendijk and Stokhof’s Dynamic Se-
mantics than to Kamp and Reyle’s DRT. This paper goes beyond the others
in empirical coverage: it examines, in addition to noun phrases, the discourse
scope of conditionals, modal and intensional expressions.

*

The above considerations pertain to the syntax/semantics interface. The
second set of papers argues that scope assignment can go wrong in a DIRECTLY
SEMANTIC way as well, namely, the intended meaning may be incoherent and,
therefore, “unthinkable.”

Such incoherence is the source of the ungrammaticality of How much milk
didn’t you drink?, in distinction to the well-formedness of Which books didn’t
you read?, argue Szabolcsi and Zwarts in Weak islands and an algebraic
semantics for scope taking. The impossibility of how-extraction out of a
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negative island is assimilated to that of the combination of a numeral with a
mass noun, as in siz airs. In both cases, the explanation is that the inter-
pretation of the construction requires us to perform an operation (complement
formation in the first case, counting in the second) on a semantic structure that
does not lend itself to that operation.

The paper explicates a denotational semantic limitation on scope interaction
using some simple notions of lattice theory. The nature of the argument can be
best illustrated by way of an example. Overt wh-extraction creates a syntactic
configuration with an extraction domain D containing a gap a. Let D contain
another scopal element 3, which the filler of the gap is supposed to scope over.

[how much milk; [p did [g n’t] you drink [4 —]]]
[which books; [p did [ n’t] you read [ —]]]

To calculate the denotation of the whole sentence, the denotation of D needs
to be calculated. The question is whether this is possible, in view of what «
and 3 are.

The kind of denotation D has is, to a large extent, determined by what
kind of gap it contains. For instance, did you read [gap of which books] denotes
a set of individuals. But did you drink [gap of how much milk] arguably does
not; Szabolcsi and Zwarts argue it denotes an amount. Now, the general claim
is that the narrow scope element ( is interpreted by cashing out its contri-
bution in terms of some operation(s) over the denotation of D minus . For
instance, n’t in the examples above requires us to take the complement of that
denotation. Sets of individuals form Boolean algebras, in which complement
formation is defined, thus didn’t you read [gap of which books] is perfectly co-
herent. Amounts, on the other hand, form join semi-lattices at best, in which
complement formation is not defined. Hence, the denotation of didn’t you drink
[gap of how much milk] cannot be calculated. In general, this kind of conflict
arises whenever the interpretation of 3 involves at least one Boolean operation
not available in the structure that the denotation of D minus 3 belongs to.

The unacceptable extraction of amount and manner expressions out of neg-
ative islands, wh-islands, and factive islands is called a “weak island violation.”
Weak islands were traditionally thought to belong to the realm of pure syn-
tax. More recently, it has been argued that they are due to the inability of the
given wh-phrase to take scope over some other scopal element in the extraction
domain. Szabolcsi and Zwarts concur with this view; the novel feature of the
paper is the above reviewed algebraic semantic characterization of scope inter-
action, which explains why some expressions are unable to scope over certain
others. .

Naturally, the same considerations apply to covert scope assignment, in
addition to the considerations discussed in the first set of papers.
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The same semantic explanation extends, according to Honcoop and Doet-
jes, to the fact that event-related readings are sensitive to weak islands. The
semantics of event-related readings: a case for pair-quantification
proposes to treat the numeral in Krifka’s famous Four thousand ships passed
through the lock as quantifying over (event, object) pairs. Events are stan-
dardly thought to have a join semi-lattice structure without a bottom element,
and (event, object) pairs inherit this from their event component. Thus Four
thousand ships didn’t pass through the lock has no event-related reading.

The pair-quantificational approach is argued to explain empirical constraints
on event-related readings that go well beyond sensitivity to weak islands. Both
the restriction and the scope of the pair-quantifier need to contain both an
event and an object variable. Symmetric (weak) determiners (like four thou-
sand) support event-related readings without further ado, because symmetry
allows the copying of the verbal predicate that supplies the event variable into
the determiner’s restriction, by plain inference. Non-symmetric (strong) deter-
miners support an event-related reading only when an event variable occurs in
the restriction either due to “rebracketing” induced by focus (Most ships passed
through the lock YESTERDAY') or because the noun is modified by an eventive
relative clause (Most ships that passed through the lock transported radio-active
waste). The specific treatment of the event variable is cast in terms of dynamic
semantics, and parallelisms with donkey anaphora are explored.

Two papers in the volume are concerned with the phenomenon of pair-list
readings. In addition to their interest as a further type of scope interaction,
pair-list readings are directly relevant in connection with the scopal account
of weak islands. There are two ways in which a scopal intervener § may turn
out to be harmless. One, the interpretation of 8 may only involve operations
that the relevant structure is closed under. Two, 8 may support an alternative
wide scope reading, and thus “get out of the way.” Such is the case with the
intervening universal in How much milk did every kid drink?. This question is
bad when every kid takes narrow scope, but good when it supports a pair-list
reading.

Both papers on wh/QP interactions begin by showing that the actual distri-
bution of pair-list readings is so different from what is assumed in the literature
that it causes the standard syntactic and semantic accounts to lose much of their
force.

Based on what QPs support a pair-list reading in what context, in Quanti-
fiers in pair-list readings Szabolcsi shows that two quite different types need
to be distinguished. Pair-list readings in matrix questions and in complements
of wonder-type verbs are induced only by universals and can be assimilated to
multiple interrogation. On the other hand, almost any QP induces a pair-list
reading in complements of find out-type verbs; crucially, even non-increasing
ones do. Compare Where do fewer than five suspects live? with We only found



XX WAYS OF SCOPE TAKING

out where fewer than five suspects live. The standard analyses, according to
which the quantifier in a pair-list reading contributes a set to restrict the do-
main of the question would work for all and only upward monotonic quantifiers
in both contexts (too many for the first, too few for the second). It is argued
that pair-list readings in find out-complements must be treated as quantifica-
tional. In the context of the present volume, this means that each QP supports
a pair-list reading in the same fashion in which it takes scope in other, non-wh
contexts. These observations in turn have some interesting consequences for
weak islands.

The syntax of distributivity and pair-list readings by Beghelli is an
integral part of the theory of Logical Form that was reviewed in the first part
of this introduction. As was mentioned, the theory distinguishes two types of
distributivity: that induced by the Dist head associated with universals (called
strong distributivity), and that induced by the covert counterpart of floated
each associated with plurals (pseudo-distributivity). Among other things, the
two types differ in what interactions they make possible between a subject and
a complement on the one hand, and between two complements on the other.
E.g. Five of these students read every/two book(s) ‘for every book / *for each
member of a set of two books, there is a possibly different set of five of these
students who read it’ and John showed every book / five of these books to a
student ‘for every book / ?for each of these five books, John showed it to a
possibly different student.’

The paper lays out the general properties of the two types of distributivity
and goes on to apply them in the study of pair-list readings. It is well-known
that some pair-list readings exhibit robust syntactic asymmetries: What did
everyone read? has a pair-list reading, but Who read everything? does not.
These have been accounted for in the literature in terms of the Empty Cate-
gory Principle and Weak Cross-over, for instance. Beghelli makes the surpris-
ing observation that a larger sample of data reveals that the patterns do not
match either the ECP or WCO. Instead, the behavior of universals in find out-
complements matches the pattern of strong distributivity; in matrix questions
and in wonder-complements, it matches the pattern of pseudo-distributivity.

On the basis of such observations, Beghelli develops syntactic analyses that
square well with the multiple interrogation versus quantification distinction
established in the previous paper.

Several papers in the volume make use of the tools of the theory of gener-
alized quantifiers in connection with standard noun phrases. In the literature,
wh-phrases or questions do not fall under the scope of that theory. In Ques-
tions and generalized quantifiers, Gutiérrez Rexach argues that it is both
possible and insightful to bring them into the fold. He interprets questions as
functions that assign the value true or false to answer sets. E.g., in a world
where John and Mary walk, Who walks? assigns true to a set if it is identical to
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the set of walkers, i.e. {j, m}. This yields the same interpretation of questions
as Groenendijk and Stokhof’s, but is formulated in a way that makes it possible
to extend the apparatus of generalized quantifier theory to questions: notice
that the wh-phrase relates two properties, the ones named by the question and
by the answer set, as determiners do. The paper shows that the well-known
properties of determiners carry over to wh-expressions. Finally, some cases
of multiple interrogation, cumulative, and pair-list readings are shown to be
irreducibly polyadic.

This concludes the summary of the main results in connection with scope
at the syntax/semantics interface and in semantics.



BACKGROUND NOTIONS IN
LATTICE THEORY AND
GENERALIZED QUANTIFIERS®

Anna Szabolcsi

Department of Linguistics

UCLA

Many papers in this volume build on certain elementary notions of lattice the-
ory and generalized quantifier theory; often, their empirical predictions derive
directly from them. The goal of this chapter is to enable readers who have
some background in formal semantics, but not in these particular areas, to
appreciate the pertinent papers. But readers who are familiar with lattices
and GQs may also find the discussion useful because, elementary as it is, it
highlights certain aspects that other literature may not. On the other hand,
precisely because this chapter is geared towards particular applications, it does
not attempt to cover issues that a standard introduction would, when they do
not seem directly relevant here.

The chapter consists of three parts. The first part familiarizes the reader
with the relevant notions and their significance. The second is a set of problems.
Some of them merely check the mastery of definitions, others touch on linguistic
issues that are of theoretical relevance to the contents of this volume. The third
part offers quite elaborate solutions. The gentle reader who is not in a problem
solving mood is encouraged to read the problems and their solutions as if they
were part of the main text.

*This chapter is based on my lecture notes for classes given at UCLA, the University of
Budapest, and the 1993 LSA Linguistic Institute. I thank the participants of these courses
for feedback. Work on the present version was partially supported by NSF grant #9222501.

A. Szabolcsi (ed.), Ways of Scope Taking, 1-27.
© 1997 Kluwer Academic Publishers.



2 CHAPTER 1

1 OPERATIONS IN PARTIALLY ORDERED SETS

1.1 Partially ordered sets: lattices, semi-lattices,
Boolean algebras

Recall the basic set theoretical operations and their counterparts in the
propositional calculus:

(1) union: AUB intersection: AN B complement: —A
disjunction: pV q conjunction: pAgq negation: —p

@

What other operations are these related to? On what kind of entities can
such operations be performed? What kind of structures do these entities form?
These are the main questions we are going to ask.

The basic distinction to build on is between ordered and unordered sets.
An unordered set is any set in the standard sense, e.g.,

(2) Unordered sets:

A = {joe, ed, pat, sue}
B {0, {joe}, {ed}, {pat}, {joe, ed}, {joe, pat},
{ed, pat}, {joe, ed, pat}}
C = {joe, ed, pat, joe-and-ed, joe-and-pat, ed-and-pat,

joe-and-ed-and-pat}

Sets become ordered if we explicitly assume some ordering relation on their
members (whether or not there is a “natural ordering” that suggests itself

anyway), e.g.,
(3) Ordered sets:!

(A, “is taller than”) or (A, “is likelier to cry than”)
(B, “is a subset of”) or (B, “has fewer elements than”)
(C, “is part of”) or (C, “is less happy than”)

Clearly, different relations may order the same set differently. E.g., Joe may be
taller than Ed (hence Joe >; Ed) but less likely to cry (Ed >, Joe). Or, {joe} is

1The non-atomic elements of C are called collectives, or plural individuals, or sums.
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not a subset of {ed, pat} or vice versa (these two elements are not ordered with
respect to each other by >3) but has fewer elements ({ed, pat} >4 {joe}). The
two orderings may coincide, e.g., Joe is part of the collective Joe-and-Ed (Joe-
and-Ed >5 Joe) and may also be less happy on his own (Joe-and-Ed >¢ Joe).
The ordering may be specified graphically, as in the Hasse-diagrams below. All
lines can be read as upward arrows that point to the element ordered higher.

(4)

(A, “is taller than”) (B, “is a subset of”)
pat {joe, ed, pat}
jc|>e {joe, ed} {joe, pat} {ed, pat}
eld {ioe} {ed} {pat}
0

sue

(C, “is part of”)

joe-and-ed-and-pat

e

joe-and-ed joe-and-pat ed-and-pat
joe ed pat

Two kinds of linguistic applications may be as follows. The elements of
the set A are ordered with respect to an “extrinsic” property (in fact, these
individuals cannot be ordered otherwise). Such an ordering may be invoked
in the discussion of words like even (Even Sue can reach this shelf may be
felicitous, because Sue herself is short relative to the others we are interested
in). The elements of B and C can be ordered with respect to “intrinsic”
properties such as “subset” and “part-of” as well as “extrinsic” ones. In this
volume all linguistic applications happen to be of the “intrinsic” sort.

We now turn to more precise definitions. (Recall that R is reflexive iff
Vz[Rzz], R is transitive iff Vzyz[(Rzy & Ryz) — Rzz], and R is anti-
symmetrical iff Vzy[(Rzy & Ryz) - z =y].)
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(5) A relation R is a partial ordering iff it is reflexive, transitive, and anti-
symmetrical. A partially ordered set (partial order, or poset, for short)
is any (A4, <), where < is a partial order.

The relations “larger than or equal to” and “subset of” are partial orderings.
The relations “larger than” and “proper subset of” are strict orderings: they
are not anti-symmetrical but asymmetrical.

How do we get to the desired operations from here, cf. (1)? They are de-
finable in terms of partial ordering. The general lattice-theoretic names they
come under are meet, join, and complement. Intersection is the realization of
meet when applied to sets, and conjunction is meet when applied to proposi-
tions. Similarly, union is join for sets and disjunction is join for propositions;
negation is complement for propositions.

(6) Let (A, <) be a poset. For any subset X of A,
a is a lower bound for X if for every element z of X, a < z.
The infimum of X, written A X, is the greatest lower bound for X.
c is an upper bound for X if for every element z of X, ¢ > z.
The supremum of X, written \/ X, is the least upper bound for X.

The lower bounds of the set X are elements of A (within X or outside X)
which are smaller than or at best equal to all elements of X; the infimum is
the greatest of these. Similarly for the least upper bound (supremum). E.g.,

*a

|

b
/\
*c *d

The set of lower bounds for {a,b} is {b,¢,d} , of which b is the greatest.

(7) Let a,b € A.
a. The meet of a and b, written a A b, is the infimum of the 2-element

set {a,b}.
Thus we have: aANb<a and aAb<D.
b. The join of a and b, written a Vb, is the supremum of the 2-element
set {a,b}.
Thus we have: aVb>a and aVb>h.

Meet is a special case of infimum: it is the infimum of some two-element set.
Similarly for join and supremum.
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Depending on what operations are available in a specific partially ordered
set, we may have a Boolean algebra, a lattice, a meet or join semi-lattice, or
none of these. “Available” means that the given poset is closed under that
operation: whenever meet or join is applied to two elements of A, the result is
also an element of A (the same for complement, which applies to one element).
That is, these operations do not “lead out of” A.

(8) A lattice defined in terms of partial ordering:
A lattice is a poset (A, <) which is closed under meet and join.
That is, for every a,b€ A, aAb€e A and aVbe€A
It follows that A is a lattice iff for any non-empty finite subset X of A,
ANX€eA and VX €A

E.g., both (A, “taller than”) and (B, “subset of”) are lattices. (C, “part of”)
is not: it does not have meet.

Lattices (as well as semi-lattices and Boolean algebras) can be equivalently
defined in algebraic terms. E.g. a lattice is an algebra (4, A, V), where A and V
are two-place operations satisfying idempotency, commutativity, associativity,
and absorption. This otherwise important fact does not concern us, so it will
not be dwelt on further.

(9) A join semi-lattice is the “upper half” of a lattice:
a poset (4, <) where for every a,b€ A, aVbe A

(10) (a) (b) (c)

/avivc\ G‘N W
aVb aVe bVe N c a b c
b

All three structures in (10) are join semilattices. (10a) is said to be “free,”
which means that whenever two distinct pairs of elements can possibly have
distinct joins, they do have distinct joins. E.g., {a,b} and {a,c} have distinct
joins; {aV b,aV c} and {aV b,bV ¢} do not have distinct joins, but they could
not possibly have, either.

(11) A meet semi-lattice is the “lower half” of a lattice:
a poset (A, <) where for every a,b € A, aAbe A

Mathematically, meet semilattices and join semilattices are the same thing, only
the relation is inverted. Linguistically, it may be interesting to note that while
there are many applications for join semilattices, I do not know of applications
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of meet semilattices. For instance, observe that (4c) is the same as (10a). The
and that occurs in the definition of collectives is a join, not a meet.

(12) A lattice is bounded if it has a bottom element 0 and a top element 1.
For anya, aA0=0 and aAl=a

For instance, the lattice in (4a) is bounded but the lattice of natural numbers
is not, since it has no top (greatest) element.

(13) A Boolean algebra is a poset (A, <) which is closed under meet, join and
(unique!) complement, where
a € Ais a complement of be Aiff aAb=0 and aVb=1.

For any set S, its powerset is the domain of a Boolean algebra. (B, “subset
of”) is an example: B is the powerset of {joe, ed, pat} .

You may now want to check Problems (58) and (59).

What properties entail what others? Can a structure turn out to be closed
under more operations than we stipulated? Yes! For many applications this
does not matter: all we are interested in is that a certain operation is available.
But if we claim that some linguistic phenomenon is explained by the fact that
a certain operation is unavailable, matters like the following need to be paid
close attention to.

(14) A lattice is complete iff for any (not just finite) subset X of A,
AX€A and VXeA

Some facts: Every complete lattice is bounded ( = has both 1 and 0). Every
finite lattice is complete and bounded. Infinite lattices need not be complete
or bounded.

(15) A join semi-lattice A is complete iff for any subset B, the supremum of
B isin A.

(16) A join semi-lattice A is complete# iff for any non-empty subset B, the
supremum of B is in A.

E.g., (10a) is complete; if we add a bottom element, it becomes complete.
Some facts: Every complete join semi-lattice is a lattice; it is even a complete

lattice, hence bounded. Not every complete# join semi-lattice is a lattice.

Similarly, not every finite join semi-lattice is a lattice. See Problem (60).

1.2 Quantifiers and negation in Boolean terms

Finally, let us highlight the connection between the three Boolean opera-
tions and quantifiers. It is well-known that universal quantification reduces
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to conjunction, and existential quantification to disjunction over the elements
of a finite universe. If the universe of discourse E is {a,b,c} , i.e. it contains
Andy, Belinda, and Carl, then Everyone walks is the same as Andy walks, Be-
linda walks, and Carl walks; and Someone walks is the same as Fither Andy or
Belinda or Carl walks. That is, '

(17) 3z[fz] = faV fbV fc
(18) Vz[fz] = fa A fbA fc
Similarly for numerical quantifiers, negative quantifiers, and negation:
(19) Joz[fz] = (faA fO)V (fan fe) V (foA fo)
(20) ~3z[fz] = ~(faV fbV fe)
(21) ~fa=a€ (E-{z: fz})

Consider now the case when another quantifier is to take scope over the
above, as in Someone/everyone/no one read three books on its object wide
scope reading, for instance. An intermediate step is to define the property of
being read by someone/everyone/no one. In present terms this can be spelled
out as follows:

(22) {y: Jz[r(z,y)]} =
{y:r(@,y) Vrby) Vricy)} =
{y:ra,y)u{y:r,y)}Iu{y:r(c,y)}

(23) {y: Vzlr(z,y)]} =
{y:r(a,y) Arby) Ar(c,y)} =
{y:r(a, )} {y:rb,y)}n{y:r(c,y)}

(24) {y: —~3z[r(z,y)]} =
E—-{y:r(a,y)Vr(d,y) Vr(cy)} =
E—{y:r(a,y)}U{y:rb,y)}u{y:r(cy)}

That is, the narrow scope quantifier is cashed out in terms of the operations
that define it.

2 GENERALIZED QUANTIFIERS

2.1 The elements of a GQ

Montague introduced generalized quantifiers into his grammar of English in
order to be able to assign a uniform denotation to all noun phrases, whether
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they refer to single individuals or not. Going beyond this, GQ theory provides
the tools for studying various semantic properties of quantifiers.

A generalized quantifier (henceforth, GQ) is not a syntactic object (an ex-
pression); it is a semantic object (something that expressions can denote).
Specifically, a GQ is a set of properties, and noun phrases are claimed to denote
such sets of properties. It is important to note that “property” is understood as
nothing else than a set of individuals. E.g., if John, Bill, and Mary constitute
the set of walkers, the property of walking is just {john, bill, mary}. In this
sense, a GQ is a set of sets-of-individuals.

For instance, every man denotes the set of properties that every man has.
The property of walking is in this set iff every man walks. Let us connect
this to various terminologies and notations that are in use. In Montagovian
terms, the denotation of every man is written as APVz[man(z) — P(z)]. Here
P is a variable of type (e,t): a variable over subsets of the universe. Vz[...]
is of type t. Hence the whole \-expression is a function of type ({e,t),t).
APVz[man(z) — P(z)] is the (characteristic function of the) set of properties
every man has. Other ways of writing the same thing are AP[MAN C P] or
{P : MAN C P}.

(At least) two men denotes the set of properties at least two men have,
written as AP3z3y[z # y & man(z) & man(y) & P(z) & P(y)]. Other ways of
writing the same thing are: AP[[MANNP| > 2] or {P: |[MANN P| > 2}.

Since GQs are sets (of sets of individuals), they have elements. For instance,
Every man walks is true iff the set of walkers is an element of [every man], the
GQ denoted by every man. When we are interested in (defining the conditions
for) the truth of particular sentences, those sets that have “names” (that is,
are denoted by the predicates in the sentence) are specifically interesting to us.
However, when we are studying the GQs themselves, we are interested in all
their elements and the structures they form. Hence no set is more interesting
than the others. It is important to get into the habit of trading mnemonic names
like walk for the corresponding sets and asking questions in the following form,
“Is {john, bill, mary} an element of the quantifier denoted by every man?”
(Yes, if the set of men is a subset of {john, bill, mary}.) For instance, consider
a universe E = {a, b, ¢, d} and some of its subsets (this example will be recycled
in (41)):
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(25) {a,b,c} =man {d}=dog  {b,c,d} =jump
{a,b,c,d} =fat {a,b} =run {b,d} =laugh

4 N

\ )

On the other hand, the sets of all elements of a few quantifiers are as follows:

(26) [at least two men] = {P : |[mann P| > 2}
= {{a’ b}7 {a’ C}u {b’ c}’ {a’ b, c}’ {a’ ¢, d}’ {a, b, d}’ {bv ¢, d}a {a, b, c, d}}

(27) [every man] = {P : man C P} = {{a,b,c},{a,b,c,d}}
(28) [no man] = {P :mann P = 0} = {{d},0}

(29) [andy and carl] = {P : P(a) & P(c)} = {P : {a,c} C P}
= {{a,c},{a,b,c},{a,c,d},{a,b,c,d}}

In the previous section it was noted that quantifiers are reducible to Boolean
operations. In GQ-theoretic terms (18) may be rephrased as follows. We have
a universe with three humans, a, b, and c. [Everyone], the set of properties ev-
eryone has, can be obtained by intersecting the sets of properties the individual
humans have:

(30) [everyone] = {P: P(a)} N{P: P(b)}N{P:P(c)}
And similarly for the other quantifiers.

2.2 Determiners (DETS)

GQ theory does not concern itself only with GQs. It also deals with the
denotations of determiners and with the denotations of noun phrases that are
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not exactly GQs (e.g. himself). Here we will not be directly concerned with
determiners, but below is a small portion of necessary information.

In Montagovian terms, the denotation of every is written as AAAPVz[A(z) —
P(z)]. Here A is a variable of type (e, t), APVz][...] is of type ((e,t),t), hence
the whole thing is of type ({e,t), ({e,t),1)).

MANPVz[A(z) — P(z)] is a function from properties to GQs or, equiva-
lently, a relation between properties (A’s and P’s). Other ways of writing the
same thing are, \ANP[A C P] or {(4,P): AC P}.

Or, two denotes AMAAPIzIy[z # y & A(z) & A(y) & P(z) & P(y)]. Other
ways of writing the same thing: AAAP[|[ANP| > 2] or {(4,P) : |[ANP| > 2}.

Now consider the diagram below. It has four areas: (i) the individuals that
have property A but not P, (ii) the individuals that have P but not A, (iii) the
individuals that have both A and P, and (iv) the individuals that have neither
A nor P.

(iv)

Consider a sentence of the form DET(A)(P). Do we need to check all four areas
when we wish to determine whether it is true or false? It is an important
empirical claim concerning natural language determiners (at least “simple” or
“normal” ones) that they do not require the checking of all four areas. The
following is a small but representative sample. The solidus in (c) indicates a
fraction, and n, m, and k are natural numbers.

(31) a. At least two men walk. |ANP|>2
b. Every man walks. ACP
c. Few men walk. |[ANP|/|A| <n/mor |[ANP| <k
d. No men walk. |[ANP|=0

As the reader can easily check, none of these requires us to consider area (iv):
their truth does not depend on non-walking non-men. We need not know
anything beyond the properties explicitly mentioned: how big the surrounding
universe is and what is going on in it are immaterial. A more surprising but
equally intuitive fact is that none of these sentences requires us to check area
(ii): their truth does not depend on walkers who are not men. On the other
hand, (31b) and the first reading of (31c) require us to check (i): their truth
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is dependent on men who are not walkers. The irrelevance of areas (iv) and
(ii) means that the two sets A and P do not play equal roles. The set A, the
denotation of the noun that the determiner directly combines with, serves to
restrict the universe to the largest part that can be possibly relevant: it serves as
the determiner’s restrictor. Natural language determiners are (overwhelmingly)
restricted in this sense. Finally, observe that area (iii) is useful: (31a), (31d)
and the second reading of (31c) require us to check only this.
Below are the definitions of the pertinent properties of determiners:

(32) DET has extension iff for any two universes E and E' where A,B C E
and A,B C E', we have Dg(A)(B) = Dg(A)(B).

(33) DET is conservative iff DET(A)(P) = DET(A)(A N P).

(34) DET is intersective iff DET(A)(P) = DET(A N P)(P).

(35) DET is proportional iff DET(A)(P) depends on (AN P)/A.
(36) DET is symmetrical iff DET(A)(P) = DET(P)(A).

Two facts: A proportional DET cannot be symmetrical. If DET is conservative,
symmetrical = intersective. See Problem (61).
Now back to GQs.

2.3 Live-on sets and witness sets

Conservativity is a property of determiners. Together with extension, it
identifies DET’s first argument as a restrictor set. A comparable notion for
GQs is that of a live-on set.

(37) Live-on: A GQ lives on a set of individuals A if, for any set of individuals
X,

XeGQ iff (XnA)eGQq.

(37) says that when a GQ lives on some set A, it makes no difference whether we
check if a set X is an element of that GQ, or we check whether the intersection
of X with A is an element of it; that is, we may safely restrict our attention
to the smaller set X N A. What are a GQ’s live-on sets? A linguistic way to
check this is to instantiate the schema, as follows:

(38) More/fewer than two men run

+  More/fewer than two men are men who run

+  More/fewer than two men are humans who run

<  More/fewer than two men are ezistents who run
but: ¢  More/fewer than two men are Frenchmen who run
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So [more than two men] and [fewer than two men] live on the set of men and
its supersets. In general, the restrictor of the determiner is always a live-on set
of the corresponding generalized quantifier. See Problem (62).

If we are interested in live-on sets as domains that we need not look beyond
when checking the truth of a sentence, we do not need all of them: the smallest
suffices and is thus the most efficient.?

In the above cases the restrictor set of DET is identical to the smallest set
the GQ denoted by DET(A) lives on: A itself. So, do we need the notion of a
smallest live-on set on top of the set with respect to which DET is conservative?
The answer is Yes.

First, there are noun phrases that are not made up of a determiner and
a noun, e.g., John and John and Mary. Here the question of what the de-
terminer’s restrictor is cannot arise. But the GQs that these noun phrases
denote have run-of-the-mill smallest live-on sets: {john} and {john, mary},
respectively.

Second, the smallest live-on sets of some GQs are smaller than the restrictor
sets of the corresponding determiners. Imagine a world in which the men are
{john, bill, tim} and we are pointing at John and Bill:

(39) These two menrun <> These two men are
either John or Bill and run

So, [these two men] lives on the set consisting of those two men who we are
pointing at, which is smaller than the set of men. (This amounts to saying that
these two men is interpreted as ‘the two men I am pointing at’. Note though
that while this interpretation is semantically justified, a syntactic analysis that
mimics such a decomposition would not be.)

These discrepancies are understandable. Conservativity (with extension)
may be regarded as a property of the syntax/semantics interface. It says that
the syntactic unit that a determiner (or other two-place operator) directly com-
bines with plays the semantic role of a restrictor, i.e. imposes a parallelism
between syntax and interpretation. Live-on sets on the other hand are defined
purely from the denotation of the noun phrase, without reference to its syntax
and without requiring a direct syntactic correlate.

You may now want to tackle Problems (63)—(64).

With the notion of a smallest live-on set at hand, we may take another look
at the elements of a GQ. What all the elements of a GQ are is characteristic
of it; the individual elements themselves need not be. Take, for instance, the

2E. Keenan (p.c.) notes that the notion of a smallest live-on set is unproblematic as long
as the universe is finite or at least our GQ does not crucially rely on infinity. But e.g. the
intersection of the sets which [all but finitely many stars] lives on in an infinite universe is
itself not a live-on set.
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elements of [two men]. They are those sets in the universe that contain two
men—but note that they may as well contain tigers, stars, and forks.

If we ask ourselves what sets the noun phrase “talks about”, the elements
of its GQ do not make a revealing choice. A natural alternative is to throw
out the irrelevant beasts by restricting our attention to those elements that are
also in the smallest live-on set:

(40) A set W is a witness of a GQ iff W € GQ and W C SL(GQ), where
SL(GQ) is the smallest set the GQ lives on.

To compare elements and witnesses, we may consider a reincarnation of the
four-element universe in (25). (41) is the Boolean algebra corresponding to its
powerset. Its use is insightful, because it contains all subsets of the universe,
not only those that have “mnemonic names”; and since it is partially ordered
by the subset relation, it allows us to make inferences by simply going up or
down in the diagram. :

Recall that in our particular universe, a, b, ¢ are men and d is a dog.

41
( ) {a, b, ¢, d}

{a, b, c} {a, c, d} {a, b, d} {b, ¢, d}
{a, b} {a, ¢} {b, ¢} {a, d} {b, d} {c, d}

{a} {b} {c} {d}

(42)  a. [more than one man] = {{a,b},{a,c}, {b,c},{a,b,c},
{a,¢,d},{a,b,d}, {b,c,d},{a,b,c,d}}
b. the witnesses of [more than one man] =

{{a’ b}v {a’ C}a {b’ C}, {a, b, C}}
(43)  a. [fewer than two men] =

{{a}, {0}, {c},{d}, {a,d}, {b, d}, {c,d}, 0}
b. the witnesses of [fewer than two men] = {{a}, {b}, {c},0}

See Problems (65) through (67).
Some GQs have a unique witness. This may be empty: such is the case
with [no man]: its only witness is the empty set. Or, the unique witness may
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be non-empty; in this case it coincides with the smallest set that the GQ lives
on. GQs with a non-empty unique witness are called principal filters, and their
unique witness A the generator set:

(44) A GQ is a principal filter iff there is a set of individuals A such that A
is not necessarily empty and for any set of individuals X,
XeGQ iff ACX.

Every man, thesegeictic two men, Andy, Andy and Carl, etc. all denote principal
filters. These always “talk about” the same sets, their generators. In terms of
(41):

(45) a. [andy and carl] is a principal filter generated by {a,c}:
[andy and carl] = {P : {a,c} C P}
b. the smallest live-on set of [andy and carl] = unique witness of
[andy and carl] = generator set of [andy and carl] = {a,c}

You may now want to think about Problems (68) through (72).

2.4 Monotonicity properties and witnesses

An important property of functions is what monotonicity type they belong
to. Suppose the domain of a function f is a partially ordered set with, say, a > b.
If f is upward monotonic, it preserves this ordering in its value: f(a) > f(b).
If f is downward monotonic, it reverses the ordering: f(b) > f(a). If f is non-
monotonic, it obliterates the ordering. Since GQs are functions (characteristic
functions of sets of properties), their monotonicity can be examined.

(46) GQ is monotone increasing ( = upward mon.):
(AeGQ & AC B) = BeGQ.

(47) GQ is monotone decreasing ( = downward mon.):
(AeGQ & BC A) = B € GQ.

(48) GQ is non-monotone: neither increasing nor decreasing.

Some examples: John, at least two men, every man denote increasing GQs. No
men, fewer than siz men denote decreasing GQs. John and nobody else and
ezactly two men denote non-monotonic GQs. Here is a linguistic way to show
these:

(49) (Every man runs & run C run or sit) = Every man runs or sits

(50) (Few men run or sit & run C run or sit) = Few men run
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(51) (Exactly two men run & run C run or sit) #
Exactly two men run or sit
(Exactly two men run or sit & run C run or sit) #
Exactly two men run

A more general and also visualizable way to demonstrate monotonicity prop-
erties is to use a Boolean algebra as in (41), repeated here:

41
( ) {a, b, ¢, d}

{a, b, ¢} {a, ¢, d} {a,b,d}  {b, ¢, d}

{a, b} {a, ¢} {b, c} {a, d} {b, d} {c, d}

The algebra makes it easy to see, for instance, that if some set A is an element
of [at least two men], i.e., has at least two men in it, then every set B that is
larger than A (is above A in (41)) is also an element of this GQ; and conversely
for, say, [no man]:

(52) [at least two men] is monotone increasing:

for every A, B, (A € [at least two men] & B D A) =
B € [at least two men]

(53) [no man] is monotone decreasing:

for every A, B, (A € [no man] & A D B) = B € [no man]

See Problem (73).

The best known linguistic application of monotonicity properties has to do
with the licensing of negative polarity items. We will be making crucial use of
another type of consequence of monotonicity differences.

Let a noun phrase contain a determiner that provides information concern-
ing cardinality, e.g., two, at least two, more than two, at most two, less than
two, exactly two.
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(54) If the GQ denoted by a cardinality-indicating noun phrase is monotone
increasing, then

DET(A)(P) = 3X[X C A & |X| = det-many & X C P]

That is, At least two men walk can be equivalently stated as, ‘There is a set of
individuals whose elements are all men, whose cardinality is at least two, and
whose elements all walk.” Or, using witnesses, ‘There is a witness of [at least
two men] and its elements all walk.’

If, on the other hand, the GQ denoted by such a noun phrase is not increas-
ing, then there is NO such equivalence. E.g., Fewer than two men walk is NOT
equivalent to ‘There is a set consisting of less than two men, and these men all
walk’. Imagine the situation in which John walks, Bill walks, and Frank walks.
The set {john} is surely one that has fewer than two elements, all of which are
men and walk—but the existence of such a set does not make the sentence true
here. The sentence does not allow us to ignore Bill and Fred, who also walk,
but the proposed paraphrase allows us to ignore them. Or, Ezactly two men
walk is NOT equivalent to ‘There is a set of individuals whose elements are all
men, whose cardinality is exactly two, and whose elements all walk’. Imagine
the same situation and pick the set to be {john, frank}, to see why not.

Note why this is so. The crucial property of upward monotonicity is that
whatever is true in a small situation (say, one in which just two men walk)
remains true when we embed that situation in a bigger one (in which three or
more men walk). Neither downward monotonic nor non-monotonic quantifiers
have this property, which means that to be safe, we must always look at the
biggest possibly relevant situation.

The significance of these simple observations is that in the analysis of lin-
guistic phenomena, one often wishes to associate existentially quantified sets
with GQs. Great caution needs to be exercised in these cases. Either the
phenomenon we are looking at is factually restricted to increasing GQs, or a
maximality condition of some sort must be added to guarantee that no relevant
individual gets ignored.

The relation between monotonicity and witnesses can be generally charac-
terized as follows. Let W be a witness, and A the smallest live-on set, of GQ.
Then,

(55) If GQ is monotone increasing, then for any X, X € GQ iff
IW[W C X].

E.g., Two men run is true iff there is a witness of [two men]
whose members run.

(56) If GQ is monotone decreasing, then for any X, X € GQ iff
IW[(XNA) CW].
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E.g., Few men run is true iff there is a witness of [few men]
which contains all the men who run.

(57) If GQ is non-monotonic, then for any X, X € GQ iff
V(X NA) =W].

E.g., Ezactly two men run is true iff there is a witness of
[ezactly two men] which equals all the men who run.

The observation in (54) is a special case of (55). On the other hand, the
formulations in (56) and (57) ensure that we are looking at the maximal set:
we are not “ignoring” anything. Just as (55) does not hold of decreasing GQs,
(56) does not hold of increasing ones. MAN is a W, and the A, for [at least
two men]. Suppose that only one man runs. (RUN N MAN) C MAN does not
entail that RUN € [at least two men].

Since W is a subset of smallest live-on set A anyway, in (55) we might have
used IW[W C (X N A)], to bear out the pattern common to the three cases:
there exists a witness W that contains, is contained by, or equals X N A.

*

Finally, note that Section 1 of the next chapter (Beghelli et al. 1996) may
be regarded as an extension of the present one: it is concerned with the use of
witness sets in capturing some basic intuitions concerning scope.
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3 PROBLEMS

Unmarked problems involve applying the definitions in the text. Those marked
with an asterisk may require some creativity.

(58) Is (A) below a semi-lattice? Is (B) a Boolean algebra? Why?

(4) . ®
c*/\*d
*c
]
a* *b b
*a

(59) The structure in (10b) does not have elements labelled bV ¢ or a V c.
How come it is still a join semi-lattice?

(60) Show that every complete semi-lattice A is a lattice. (Hints: Assume A
is a meet semi-lattice. What is the A of the set of upper bounds of an
arbitrary X C A? What is the \/ of this set?)

(61) Show that for conservative DETs, symmetry = intersectivity.

(62) Show that [more than one man] and [fewer than two men] do not live
on {a,b,d}.

(63) The textbook example of a “potential determiner” that is not conserva-
tive is only. Assume that only men is a noun phrase in Only men run.
Demonstrate that only is not a conservative “determiner”.

(64)* Formalize Only men run and Only John and Bill run using first order
logic, and complete the following: If only was interpreted as ..., with
restrictor ... and scope ..., it would turn out to be conservative. Are
there linguistic arguments supporting this analysis?

(65) Is {John, Bill, Fido} (a) an element, (b) a witness of [at least two men]?

(66) What are the witnesses of [fewer than four men] and of [few men] in
the Boolean algebra (41)?
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(67)

(68)

(69)*

(70)*

(T1)*

(72)*

The elements of a GQ are too big to be genuinely characteristic of it; the
text suggests the use of witnesses. Couldn’t we use minimal elements
instead? The definition is this: X is a minimal element of GQ iff X is an
element of GQ but ceases to be one if we take away even one individual
from it. (Hint: What are the minimal elements of the GQs denoted by
(i) at least two men, more than one man, ezactly two men, (ii) fewer
than three men, at most one man, no man? What are their witnesses?)

(a) Is [no man] a principal filter? Why? (b) Is [every man] a principal
filter? Why?

What set does they in (i) and (ii) refer to? Argue for your proposal
with reference to whether they can be continued with Perhaps there
were others who did the same (i.e. both came in and were selling coke).
Formalize your proposal using notions introduced in 2.3.

(i) More than two people came in. They were selling coke.

(ii) At least two people came in. They were selling coke.

Is there a difference between the behavior of (i)—(ii) in (69) and that of
(iit)? Sticking with the machinery of 2.3, come up with an interpretation
for two people that makes the correct prediction without requiring a new
rule, i.e. try to make (iii) a special case of (i)—(ii).

(iii) Two people came in. They were selling coke.

Compare the following sentences: (i) A dog/every dog bit two women
(you know, my neighbors) and (ii) A dog/every dog bit two or more/more
than three women. Do they have both a subject widest scope and an
inverse, object wide scope reading? Set up a hypothesis that explains
the data.

Examine now what readings Every prof assigned more than two readings
to three students and Fvery prof assigned three readings to more than
two students have. Do your findings make you change the hypothesis
concerning inverse scope that was made in (71)7

Is the smallest live-on set of (a) an increasing, (b) a decreasing, (c) a
non-monotonic quantifier an element of that quantifier?
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4 SOLUTIONS

(58) Is (A) below a semi-lattice? Is (B) a Boolean algebra? Why?

(A) L ®
c*/\*d
*c
>
a* *b *b
*a

(a) No. The join is the least upper bound of a two-element set. {c,d, e},
the set of upper bounds of {a, b}, has no least element since ¢ and d are equal.
So there is no a V b in A.

(b) No. B has no complements. Take b, for example. The complement of b
ought to be another element of B (not a subset of B!). Now, bAa=a (and a
is the bottom element 0) and bV d = d (and d is the top element 1), but a # d.
In fact, there is no element of B for which both equations would hold.

(59) The structure in (10b) does not have elements labelled bV c or
aVc. How come it is still a join semi-lattice?

Because a V bV c is the least upper bound for {a,c} and {b,c}: it is an
upper bound, and there is no smaller upper bound in the structure. The fact
that we could “imagine” a distinct bV ¢ does not matter: what matters is what
elements the structure actually has.

(60) Show that every complete semi-lattice A is a lattice. (Hints:
Assume A is a meet semi-lattice. What is the A of the set of
upper bounds of an arbitrary X C A? What is the \/ of this
set?)

A being a complete meet semi-lattice means that not only every two-element
subset, but any subset, of A has a greatest lower bound in A. What we need
to show is that this guarantees that every subset also has a least upper bound.
What is a least upper bound of X C A? It is the infimum of the set of upper
bounds of X:

VX = A(UB(X))
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We can always define the set of upper bounds of X:
UB(X)={a€ A:everyz € X, a >z}

Since this is a subset of A, and A is complete, we know that its infimum is in

A. So,
AUB(X)) € A

Thus, if every subset has an infimum in A, then every subset has a supremum
in A, too. The case of a join semi-lattice does not require new considerations:
everything works the same, replacing A with \/, upper by lower, etc.

This exercise highlights the fact that “greatest” (as in greatest lower bound)
is defined using least upper bound, and “least” (as in least upper bound) is
defined using greatest lower bound.

To give a concrete example of a meet semi-lattice that is not complete,
consider

*xa xb

N

* C

What subset lacks an infimum here? Well, the empty subset. Its lower bounds
are a, b, and c since it is vacuously true of each of these that it is smaller than or
equal to all the elements of the empty set. But this set of lower bounds {a, b, c}
has no greatest element, so the empty subset lacks an infimum. The missing
top element would be the supremum of {a,b}, so its absence also prevents our
structure from being a lattice, in accordance with the theorem just proved.

(61) Show that for conservative DETs, symmetry = intersectivity.
Symm: D(A)(P) = D(P)(A)

Int: D(A)(P) = D(AN P)(P)
Cons: D(A)(P) = D(A)(AN P)

Int = symm: D(A)(P)= by cons
D(A)(ANP) = by int
D(AN(ANP))(ANP)= bydef of N
D(ANP)ANP)= by def. of N
D(PN(PNA))(PNA)= by int “reversed”
D(P)(PNA) = by cons

D(P)(4) Symm!
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Symm = int: D(A)(P) = by symm
D(P)(A) = by cons
D(P)(PNA)= by symm
D(PNA)(P)= Dbydef of N

D(ANP)(P)  Int!

(62) Show that [more than one man] and [fewer than two men] do not
live on {a,b,d}.

{a,b,d} has one of the men, ¢ missing. Now, {a,c} is an element of [more
than one man}, but {a,b,d} N {a,c} = {a} is not. And conversely, {a,b,d} N
{a,c} = {a} is an element of [fewer than two men], although {a,c} is not.

(63) The textbook example of a “potential determiner” that is not
conservative is only. Assume that only men is a noun phrase
in Only men run. Demonstrate that only is not a conservative
“determiner.”

Only men (if interpreted as a semantic constituent) is a GQ that does not
live on the set of men at all, to wit:

Only men run ¢ Only men are men who run
Only men run < Only men are existents who run

That only is not conservative is not very problematic: we can argue that it is
simply not a determiner but a noun phrase modifier.

(64)* Formalize Only men run and Only John and Bill run using first
order logic, and complete the following: If only was interpreted

as ..., with restrictor ... and scope ... , it would turn out to be
conservative. Are there linguistic arguments supporting this
analysis?

Vz[run(z) — man(z)]
Vz[run(z) — (z = john V z = bill)]

If only was interpreted as a universal quantifier, with the VP as its restrictor
and the subject as its scope, it would turn out to be conservative:

Every runner is a man < Every runner is a runner who is a man
Every runner is either John or Bill <& Every runner is a runner who
is either John or Bill

(NB: We are not arguing that only is a determiner in syntax; we are arguing
that semantically it is a conservative operator.)
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This analysis is quite plausible. First, spelling out the contribution of only
is obviously necessary anyway, and there is no reason why only should not be
interpreted as ‘all.’ Second, only is a well-known focusing operator, that is,
the phrase it combines with is the focus and the rest of the sentence is the
focus frame. Since the focus—focus frame partition is assumed to be reflected
in the syntax of Logical Form, and since many operators (e.g. adverbs of quan-
tification) are assumed to have the focus frame as their restrictor, the same is
natural in connection with only. So we are positing the following analogy:

Only MEN run every(focus frame{Z : runz})(focus {Z : manz})
John always cites MEN every(focus frame{Z : John citesz})(focus : manz})

The only objection might be that Only men run requires the existence
of runners, and the formula Vz[run(z) — man(z)] does not. But this does
not need to be specified in the meaning of only: it is generally assumed that
sentences with focus presuppose that the property denoted by the focus frame
is not empty. This analysis suggests that conservativity (or generally, domain
restriction) may be far more pervasive than generally thought. It may be
characteristic of all two-place operators, not only of determiners. This is natural
if conservativity (domain restriction) indeed characterizes the syntax/semantics
interface. This hypothesis suggests that the syntactic analyses of potential
counterexamples should be checked and possibly recast.

(65) Is {John, Bill, Fido} (a) an element, (b) a witness of [at least
two men]?

(a) Yes, because the intersection of {John, Bill, Fido} with MAN has at
least two members.

(b) No, because a witness of [at least two men] is an element of it that
contains only men, and here we have a dog, too.

(66) What are the witnesses of [fewer than four men] and of [few men]
in the Boolean algebra (41)?

(a) No element of this algebra has more than three men in it, so in this
respect all qualify. But we need to discard those that contain d, the dog.

(b) Few men may mean either of two things. (i) ‘fewer than a set number
k’—if we set k as, say, 7, then the witnesses will be those sets that contain six
men or less and no dog. This is independent of how many men we have in fact.
(ii) “few of the men’—we may stipulate that, say, 30% or less of the men counts
as few of them; since we have 3 men, this will come down to ‘at most one man’.
So the witnesses are those sets that contain at most one man and no dog.
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(67) The elements of a GQ are too big to be genuinely character-
istic of it; the text suggests the use of witnesses. Couldn’t we
use minimal elements instead? The definition is this: X is a
minimal element of GQ iff X is an element of GQ but ceases
to be one if we take away even one individual from it. (Hint:
What are the minimal elements of the GQs denoted by (i) at
least two men, more than one man, ezactly two men, (ii) fewer than
three men, at most one man, no man? What are their witnesses?)

All the GQs in (i) have minimal elements consisting of exactly two men, and
all the GQs in (ii) have the empty set as their unique minimal element. This
indicates that the notion of a minimal element does not only eliminate irrelevant
individuals but also eradicates “size” distinctions and therefore collapses noun
phrases it should not. On the other hand, while witnesses eliminate individuals
outside the restrictor, they retain “size” distinctions.

(68) (a) Is [no man] a principal filter? Why? (b) Is [every man] a
principal filter? Why?

For GQ to be a principal filter, there must be a non-empty set A such that
(i) if some X is an element of GQ, A is a subset of X, and (ii) if A is a subset
of some X, X is an element of GQ.

(a) What sets come to mind in connection with [no man]? Say, @ (its
unique witness) and MAN (its smallest live-on set). @ satisfies (i), because it is
a subset of any X, but not (ii), for the same reason (say, # € WALK does not
entail that no man walks). In addition, the generator set should be non-empty.
So try MAN. MAN clearly does not satisfy (ii): MAN C HUMAN does not
entail that no man is a human. Indeed, the fact that the unique witness and
the smallest live-on set differ already indicates that [no man] is not a principal
filter.

(b) The smallest set [every man] lives on is MAN. The definition of every
says that for any set X, X € [every man] iff X € {P : MAN C P}, and
the latter is equivalent to MAN C X. MAN is also the GQ’s unique witness.
There may be models in which MAN is empty. The definition in the text is
“modalized” in order to allow for this: it requires the set the GQ is preoccupied
with to be not always empty. This practically allows us to ignore models
without men. Alternatively, we might say that every man denotes a principal
filter in those models where there are men. In any case, we take every man to
be an uncontroversial principal filter.

69)* What set does they in (i) and (ii) refer to? Argue for your
g

proposal with reference to whether they can be continued with

Perhaps there were others who did the same (i.e. both came in and were
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selling coke). Formalize your proposal using notions introduced
in 2.3.

(i) More than two people came in. They were selling coke.

(ii) At least two people came in. They were selling coke.

They refers back to all the people who came in. This is confirmed by the
fact that the continuation “perhaps there were others ... ” is no good: if all
are referred to, there cannot be others. Noun phrases like more than two people
are said to support only “maximal reference anaphora.” A formalization may
be: SL(GQ) NV P, where SL(GQ) is the smallest set the subject of the first
sentence lives on (here: MAN), and VP is the predicate of the first sentence
(here: CAME IN).

(70)* Is there a difference between the behavior of (i)—(ii) in (69)
and that of (iii)? Sticking with the machinery of 2.3, come
up with an interpretation for two people that makes the correct
prediction without requiring a new rule, i.e. try to make (iii)
a special case of (i)—(ii).

(iii) Two people came in. They were selling coke.

”»

Here the continuation “perhaps there were others ... ” is good, so they
cannot be referring to all the men who came in. It refers to just the two men
the speaker was talking about in the first sentence. Noun phrases like two
people are said to support “non-maximal reference anaphora.” It might be
argued that a specific (referential) interpretation of two people is what enables
this reading; more than/at least two people does not seem to have a comparable
interpretation.

We may formalize this referential interpretation by saying that two men (on
this reading) denotes a principal filter; those two men who the speaker has in
mind. The smallest live-on set of such a principal filter is smaller than the set of
men: it contains just the two relevant individuals. The intersection of this set
with V P is just the two-man set. So the formalization in (69) extends to this
case and thus the example may speak in favor of a principal filter interpretation
of two men (among other readings).

(71)* Compare the following sentences: (i) A dog/every dog bit two
women (you know, my neighbors) and (ii) A dog/every dog bit two or
more/more than three women. Do they have both a subject wide
scope and an inverse, object wide scope reading? Set up a
hypothesis that explains the data.
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(i) can easily have both readings. (ii) does not easily have an object wide
scope reading.

In (70) we have seen that specific indefinites may be regarded as denoting
principal filters. In (i), the phrase you know, my neighbors suggests that we
are dealing with a specific indefinite, too. The following descriptive hypothesis
suggests itself. When the direct object receives a “specific” interpretation, it
takes scope over the subject; when it does not, it cannot. Two men can be
specific, because on one reading it denotes a principal filter; two or more/more
than three women have no such readings.

(72)* Examine now what readings FEvery prof assigned more than two
readings to three students and FEvery prof assigned three readings to
more than two students have. Do your findings make you change
the hypothesis in (71)?

The trick here is that we now have three quantifiers! The hypothesis in
(71) can be checked by asking whether three N can take intermediate scope,
that is, inverse scope inside the VP and still vary with the subject. Since the
hierarchical order of VP-internal complements is a matter of debate, we check
two sentences: in at least one of them three N must be taking inverse scope if
it scopes highest inside the VP. So, are the following readings possible?

every prof > three students > more than two readings
and
every prof > three readings > more than two students

If yes, then on this construal three students and three readings do not denote
principal filters. If they did, their witnesses could not vary with the individual
professors. Also, if the given reading is available, then three N need not denote
a principal filter in order to take inverse scope over the c-commanding more
than two N.

The judgment seems to be that the critical reading is available. So the
hypothesis in (71) is refuted. This example does not refute the assumption
that two men can denote a principal filter. What it shows is that denoting a
principal filter is not necessary for taking inverse scope.

This conclusion makes one want to go back and check if denoting a principal
filter is strictly necessary for two people to support anaphora as in (iii) above.
For instance, the following modified context is useful: Every policeman reported
that the following happened at 6 p.m. in the building he was watching. Two
people entered. They were selling coke. Perhaps there were others who did the
same ... Indeed, it seems possible for the pairs to vary with the policemen
and still support anaphora in the same way. This indicates that defining the
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antecedent as SL(GQ) N VP is not a sufficiently general solution. (Indeed, a
radically different treatment for the type of two people is proposed in Discourse
Representation Theory.)

73) Is the smallest live-on set of (a) an increasing, (b) a decreasing,
g
(c) a non-monotonic quantifier an element of that quantifier?

The quantifiers [at least one man], [fewer than two men] and [ezactly one
man] have the same smallest live-on set: [man]. At least one man is a man is
true, Fewer than two men are men is false, and Ezactly one man is a man is
also false in the model (25), since we have three men who are all men. We see
that its smallest live-on set may be too big to be an element of a decreasing
or a non-monotonic quantifier. In the case of the increasing ones, we can be
sure we cannot get into trouble: if, say, {a} € [at least one man], then every
superset of {a} is.
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A well-known observation is that (1) has a reading on which every building
scopes over a fireman, but (2) does not:

(1) A fireman checks the safety of every building.
(2) A fireman imagined that every building was unsafe.

The way to justify this claim is to point out that in (1), but not in (2), firemen
can vary with buildings. For instance, (1) but not (2) is true in the following
situation. In the diagram below, the four *’s represent all the buildings, and
the o’s firemen:

3) —
What is a precise way of saying what we did in drawing this diagram?

This question is the point of departure for the first part of this paper, which
may be regarded as an extension of the Backgrounds chapter. We show, in
rather informal terms, how witness sets can be useful in both explicating some

basic intuitions about scope and understanding how particular denotational
semantic differences between noun phrases affect their abilities to bear out

*This paper is based on “When do subjects and objects exhibit a branching reading?,”
read at WCCFL XII in April 1993 and at the CSLI conference on Logic and Language in
June 1993. It presents the same results as the version in the WCCFL proceedings but spells
the arguments out in more detail. We are grateful to Frans Zwarts for substantial discussions
at the initial stage of the project, and to an anonymous Kluwer reviewer for comments. This
research was partially supported by NSF Grant #SBR 9222501.
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certain scopal patterns. More generally, we suggest that the usual notion of
scope needs to be factored into variation, distributivity, and maximality. This
part lays some groundwork for several of the subsequent chapters and is thus
of interest to all readers.

The second part shows that, already in this initial raw form, the above
insights can be applied to make a novel claim concerning the availability of
so-called branching readings. In logical terms, a branching reading can be
defined for any sentence with a subject and a direct object. However, speakers
of English accept only a fraction of these readings, so the question arises how
the data can be predicted from the meanings of the participating quantifiers
and the syntactic structure of the sentence. We propose that thinking about
the behavior of quantifiers along the lines introduced in the first part leads to
a simple answer to this question.!

1 THE INGREDIENTS OF SCOPE

1.1 Witnesses and variation

Recall the definition of a witness set from the Backgrounds chapter (exx.
37, 40):

(4) a. A set W is a witness of a GQ iff W € GQ and W C SL(GQ),
where SL(GQ) is the smallest set the GQ lives on.

b. A GQ lives on a set of individuals A if, for any set of individuals
X,

X €GQ iff (XnA)eGQ.

For instance, a witness set of the GQ denoted by every building is any set
that contains every building and no non-building, and a witness set of the GQ
denoted by a fireman is any set that contains at least one fireman and no non-
firemen. The contents of (3) can now be described as in (5), and the general
strategy, as in (6):

L According to the theory of generalized quantifiers, the term “quantifier” refers to the set
of properties denoted by a noun phrase, and not to the noun phrase itself. In this paper
we try to adhere to this norm. However, sometimes this would make the text pedantic and
complicated. In these cases, we apply the term to the noun phrase as well.
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(5)
x N W; of [a fireman]
* N W of [a fireman]
*] .
W3 of [a fireman]
*’{/ .
Wi of

[every building]

(6) To construct a situation that verifies the asymmetrical scope reading
F > G, pick a witness W; of the wide scope quantifier F. Using the
relation denoted by the predicate, associate with each element of W; a
possibly different witness W; of the narrow scope quantifier G.

We are now ready to study various limitations that this approach highlights.
One situation in which (7) is true is (8):

(7) More than one fireman checks every building (subject wide scope)

(8)

. -> * W of [every building]

Wi of
[more than one fireman]

(8) contains only one witness associated with the narrow scope quantifier, and
this is not an accidental property of the situation we are considering. It follows
from the very meaning of every building. There can be only one set that contains
every building and no non-building: the set of buildings itself.

In GQ theoretical terms, [every building] is a principal filter: it has a unique
witness set (Backgrounds ex. 44). The same holds for [the (two) men] and
[Andy and Carl], for instance. We now see that principal filters cannot exhibit
variation (referential dependency) even in narrow scope position. Consequently,
while variation is an important factor in our notion of scope, exhibiting varia-
tion and taking narrow scope cannot be identified.

To see the complementary case, consider:

(9) John / A fireman read a book.
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(10) a.
IE———-E] W1 of [a book]
W1 of

[John] or [a fireman]

*——————E] W1 of [a book]
*_\B W3 of [a book]
Wz of

[a fireman]

In (10a), again, we have only one witness for the narrow scope quantifier, but
here, this cannot be blamed on the meaning of a book. The unicity of the book
set to be considered is forced by the fact that the witness of the wide scope
quantifier has only one element. Whenever the relevant witness of the wide
scope quantifier is a singleton, it is unable to induce variation (there is nothing
to vary with), even if the narrow scope quantifier itself might be capable of
exhibiting variation (as [a book] is).

What quantifiers fail to induce variation? The GQ [John] has no non-
singleton witnesses at all: note that the smallest set [John] lives on is {john}.
But [a fireman] has larger witnesses. How shall we judge the situation depicted
in (10b), where the book-sets vary with the firemen? We propose that this
variation is irrelevant, because the truth of the sentence is established already
before we get to consider the second fireman and his book. Thus we may say
that the quantifiers that cannot induce relevant variation are the ones whose
minimal witnesses are singletons. (A minimal witness is one that ceases to be
a witness if you take away even one element of it.)

1.2 Distributivity

We should hasten to add that having a non-singleton minimal witness is
just a necessary, not a sufficient condition for a quantifier to induce variation.
The pertinent data have been observed more or less independently by various
scholars in the literature.?

(11) Two firemen read four books.

This sentence has a run-of-the-mill subject wide scope reading. But, unless the
subject is accented in a particular way, it does not easily have a comparable
object wide scope reading. Namely, it is easy to construe the four books as

2Farkas (1981, 1996), Verkuyl (1988), Kamp and Reyle (1993), Ruys (1993), Reinhart
(1995), Kratzer (1995), Beghelli and Stowell (1994), and possibly others.
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referentially independent of the two firemen (which is a precondition for the
object wide scope reading), but not the firemen as varying with the books.
Similarly,

(12) A fireman imagined that two buildings were unsafe.

Here two buildings may be read de re, i.e., the sentence may be interpreted
as entailing the existence of two buildings. Nevertheless, even on this reading,
firemen cannot vary with buildings. One way to express this is to say that four
books in (11) and two buildings in (12) can take wide scope, but not distributive
wide scope. Interestingly, the latter observation extends to universals, as in (2),
repeated here:

(2) A fireman imagined that every building was unsafe.

Just as in (12), the existence of the buildings need not be a figment of a fire-
man’s imagination, but even when every building is read de re, it cannot induce
variation in the firemen. This observation is interesting for the following reason.
Theories of plurals standardly assume that the scope of plural noun phrases
needs to be factored into the scope of the existential closure applied to the
set (or, plural individual) variable introduced by the NP and the scope of a
distributive operator. On the other hand, the fact that universals do not in-
duce variation in higher clauses has been taken to mean, plainly, that they are
scopally trapped in their own clause. The parallelism of the data in the two
domains suggests, instead, that distributivity needs to be factored out in both.

Thus it seems that the phenomenon of scope needs to be broken down, at
least, into variation and distributivity. The present paper will merely capitalize
on this basic observation and does not develop an appropriate novel approach to
scope; some of the papers in this volume (Szabolcsi 1996, Beghelli and Stowell
1996, Beghelli 1996, Farkas 1996) will make several steps in that direction.

Given the above factorization, is the notion “scope” still useful? We propose
to retain it in a primarily syntactic sense, in part to facilitate the comparison of
our claims with those of others. By two quantifiers standing in an asymmetric
scope relation we mean that the syntax of the logical or natural language under
consideration has given one of the quantifiers the best possible chance to induce
variation in the other. Thus, on one analysis, a fireman in (1) will be said to
take asymmetric wide scope over every building, even though this particular
choice of quantifiers cannot give rise to variation, but every building in (2) will
not be said to take scope over a fireman.

1.3 An application: When does order matter?

The strategy in (6) has a significant logical limitation, to which we turn
shortly. But before that, we can use the above considerations to answer the
following simple question:
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(13) Consider (i)—(iv). When are the two quantifier orders equivalent? (As
usual, Joz[g(z)] abbreviates ‘there are 1, z2, such that they are distinct

and g(z1), g(z2)’).

(i) Vzy(f(z,y)] and 3IyVz(f(z,y)]
(i) 3zy(f(z,y)] and 3Iy3Iz[f(z,y)]
(i) VaVy[f(z,y)] and VyVz[f(z,y)]
(iv) Jozpy[f(z,y)] and FzyIaz[f(z,y)]

Everybody knows, of course, that the two orders in (i) are not equivalent
but the ones in (ii) and (iii) are. In view of this, one may be tempted to jump
to the conclusion that the two orders are equivalent when the two quantifiers
are identical, thus predicting that (iv) falls together with (ii) and (iii). But a
moment of reflection shows that this is wrong. Consider the following linguistic
instantiation of the formulae in (iv). The same noun dog is used throughout so
that the restrictions can be ignored.

(14) a. (At least) Two dogs bit (at least) two dogs (subject wide scope)

b. (At least) Two dogs were bitten by (at least) two dogs (subject
wide scope)

b.
biters *i: bitees bitees T biters

Thus we must abandon the idea that the answer lies with the identity of the
quantifiers. Instead, it seems the answer lies with variation.

The order of the quantifiers matters when one order gives rise to a different
pattern of variation than the other. This may obtain when one order gives rise
to variation and the other does not, or when both do but differently. Let us
now briefly consider each of the four cases. To make talking about the examples
easier, (i)-(iii) will also be paraphrased in the manner of (iv) above.

(15)  a.

(16) a. Every dog bit a dog (subject wide scope)
b. A dog was bitten by every dog (subject wide scope)

(16a) is the best case for variation: [every dog] can induce variation and [a dog]
can exhibit variation, because (unless the universe is accidentally too small) the
former has a non-singleton minimal witness and the latter has more than one
witness. (16b) is the worst case: [a dog] cannot induce relevant variation and
[every dog] cannot vary. So the two orders will differ.

(17)  a. A dog bit a dog (subject wide scope)
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b. A dog was bitten by a dog (subject wide scope)

In (17a) as well as (17b), the wide scope quantifiers cannot induce relevant
variation (the fact that the narrow scope ones might be able to exhibit variation
does not come into play). So order makes no difference.

(18) a. Every dog bit every dog (subject wide scope)
b. Every dog was bitten by every dog (subject wide scope)

In (18a) as well as (18b), the narrow scope quantifiers cannot exhibit variation
(the fact that the wide scope ones might be able to induce variation does not
come into play). So again, order makes no difference, but for a different reason
than in (17).

Returning to (14a, b), already spelled out and depicted above, [two dogs]
can both induce and exhibit variation. In the (a) situation we may end up with
two biters and four bitees, while in (b) with two bitees and four biters. Order
makes a difference, despite the identity of the quantifiers.

This example indicates that although the behavior of the plain universal
and existential quantifiers properly falls under a larger generalization, they are
somewhat misleadingly special and thus it is dangerous to base intuitions solely
on their behavior.

But, as has been mentioned above, the set of quantifiers considered above
has still been quite limited in a crucial respect. This is to what we turn now.

1.4 Maximality
Take the following pair:

(19) a. Exactly one man saw exactly one woman (subject wide scope)

b. Exactly one woman was seen by exactly one man (subject wide
scope)

Applying the above considerations to (19) we predict that (19a) and (19b) are
logically equivalent, since [ezactly one (wo)man] has only singleton minimal
witnesses. But it is easy to see that the two readings are in fact independent! (In
considering the situations below, the reader is invited to focus on the relevant
subject wide scope readings, which are undoubtedly available, whether or not
they are the intuitively most salient.) In (20), we simply outline situations in
which one reading is true and the other is false and are not using witness sets:

(20) a. John saw {Mary} (19a) true, (19b) false
Bill saw {Mary, Susie}
Peter saw {Judy, Claire}
No one else saw no one else
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b. John saw {Mary} (19b) true, (19a) false
Bill saw {Mary, Susie, Judy}
Peter saw  {Judy}
No one else saw no one else

In (20a), (19a) is true because John is the only man who saw just one woman,
and (19b) is false because Susie, Judy, and Claire were all seen by just one man.
In (20b), (19b) is true because only Susie was seen by just one man; (19a) is
false because both John and Peter saw just one woman.

If we had tried to use the witness sets method outlined in (6), we would
have failed miserably. In all the earlier cases, this method safely guaranteed
that the sentences under consideration are true in the situation constructed.
We might have embedded those situations in arbitrarily larger ones without
any adverse effect. Not so in the present case. Consider:

John E——“E Mary W; of [ezactly one woman]

Wi of
[ezactly one man]

(21)

Both (19a) and (19b) are true here—but only if we guarantee that there are no
more pairs in the man_saw_woman relation. If, for instance, (21) is embedded
in (20a) or (20b), the truth values change dramatically.

This in fact was to be expected. Up till now, we have restricted our atten-
tion to monotonically increasing quantifiers. As was seen in the Backgrounds
chapter, for a quantifier to be increasing means, precisely, that whenever a
sentence including it is established as true in some situation, it will remain
true in arbitrary enlargements of that situation. And precisely this property
is absent from decreasing or non-monotonic quantifiers, since both impose a
maximality condition on the relevant situations. Ezactly one (wo)man denotes
a non-monotonic quantifier.

It is easy to see that the witness sets method runs afoul of decreasing and
non-monotonic quantifiers in wide as well as narrow scope positions. Below,
sentences are paired with situations whose encircled parts are constructed using
the witness sets method. The sentences are all false in the larger situations.
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(22) Exactly two/less than three firemen read two books.

—_

° W1 of [two books]

| W3 of [two books]

W; of
[ezactly two firemen] or
[less than three firemen]

(23) Two firemen read exactly two/less than three books.

W of [ezactly two books]
or ll[less than three books

| W of [ezactly two books]
or 7[[less than three books]

W1 of [two firemen]

1.5 Consequences for scope taking

One consequence is that our proposal above concerning when the order of
two quantifiers matters holds only for pairs of increasing quantifiers. There are
of course some cases even in the non-increasing domain where we get equiv-
alences, e.g. John saw no man iff no man was seen by John, and exactly one
man saw Judy iff Judy was seen by exactly one man. But giving a recipe for
the general case becomes a more complicated matter.

Another, and more important, consequence pertains to the mechanisms of
scope taking. We proposed a method for constructing situations that verify
asymmetrical scopal readings: pick a witness of the wide scope quantifier and
let the relation denoted by the predicate associate a possibly different witness
of the narrow scope quantifier with each of its elements. We observed then that
the viability of this method is limited to increasing quantifiers. This observation
might indicate that the witness sets method is worthless. Alternatively, it might
simply show that there is an empirically relevant intuition concerning how
scopal readings are calculated or verified that pertains to one set of quantifiers
but not to others. In other words, if the witness sets method indeed captures
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an empirically relevant intuition concerning the examples that it is applicable
to, then scope taking cannot be a uniform phenomenon: decreasing and non-
monotonic quantifiers must work in a way that is different from how increasing
quantifiers do.

Several papers in this volume will make the empirical argument that differ-
ent classes of natural linguistic quantifiers acquire their scope through different
syntactico-semantic mechanisms. More specifically, it will be observed that
there are two larger classes of quantifiers with markedly different scopal be-
havior. One of the classes contains only increasing quantifiers, while the other
lumps together the decreasing and the non-monotonic items, along with some
increasing ones. This indicates that monotonicity properties alone do not de-
termine scopal behavior, but they do play a major role. And indeed, it will be
argued that the manipulation of witness sets is insightful in connection with
the behavior of the first class of quantifiers.

Specifically, Beghelli and Stowell (1996) argue that QPs belonging to the
first class have designated landing sites in Logical Form (the specifiers of RefP,
DistP, and ShareP, each associated with a distributive operator in a different
way), while QPs belonging to the second class do not: they occupy the ap-
propriate case positions. Szabolcsi (1996) proposes a connection between this
syntax and Discourse Representation Theory, and discusses the relevance of
monotonicity properties in detail.

The second part of the present paper does not yet pursue this syntactic, or
representational, line; it remains within the realm of denotational semantics.
We will be concerned with how factoring scope into variation, distributivity,
and maximality makes it possible to predict what subject-object pairs speakers
of English accept as supporting branching readings. First we give the gist of
the analysis and then go on to present the details in more formal terms.

2 BRANCHING: AN INDEPENDENT READING?

2.1 The problem

Branching quantification in English was first studied by Hintikka (1974),
Fauconnier (1975) and Barwise (1979). Their typical examples involve con-
joined noun phrases, a reciprocal predicate, and some particle like all. (24) and
(25) come from Barwise (1979, pp. 61-62):

(24) More than half of the dots and more than half of the stars are all linked
by lines.
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(25) * .

=

Two hallmarks of the configurations that make a branching reading true are
independence (cf. the stars do not vary with the dots, and vice versa) and full
connection (cf. the relevant stars are each connected to all the relevant dots).
(Sher 1990 calls this the “each-all” version of branching.)

Branching readings are produced by a specific polyadic interpretation sche-
ma. This schema is not taken to be the contribution of any of the lexical
items in the sentence; it is added to the derivation over and above the sur-
face syntactically justified ingredients (in some theories, it is the interpretation
of the Logical Form operation absorption). Specific proposals concerning the
branching schema will be discussed in Sections 2.7, 2.8, and 2.10.1.

In addition to conjoined noun phrases, subject-object pairs may also support
a branching reading. Many speakers even find this the preferred interpretation
of certain sentences (see Gil 1982). E.g.,

(26) Three dogs bit two men.
‘There is a set D of three dogs and a set M of two men, and each member
of D bit each member of M’

But do all subject-object pairs support a branching reading? From a logical
point of view (Sher 1990), there is no reason why they should not. However,
Liu (1990, 1992) found that the availability of branching in English is severely
limited. For instance, no such reading is attributed to (27a, b):

(27) a. Every dog bit two or more men.
b. No dog bit fewer than five men.

In this paper we are only interested in data involving plain subject-object
pairs—that is, cases where, in distinction to Barwise’s example, one quanti-
fier phrase (QP) is structurally more prominent than the other, and no item
like all is floating around. The question is this:

(28) What subject-object pairs support a branching reading?
Can the availability of branching be predicted from the meanings of the
subject and object quantifier phrases and the syntactic structure of the
sentence?

Interestingly, our quest leads to a reductionist answer:

(29) Predictions concerning when subject-object pairs support a branching
reading can be made and indeed, come for free, if no special mechanism,
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syntactic or logical, is assumed to create that reading. Each of the
attested branching readings is logically equivalent to some other reading
of the sentence that we want to derive anyway.

(30) Specifically, the branching readings of plain SVO sentences can be seen
as special cases of either (A) scopally asymmetrical or (B) cumulative
readings.

This result lends support to the suggestion by May (1989) and others that
whatever branching readings are available in natural language are to be derived
compositionally, relying on the contribution of adverbs like all, and appeal to a
non-lexicalized branching schema is never necessary. We will make the following
claims:

(31) A branching reading (of type A) is available exactly when the following
conditions obtain at the same time:

i. The meanings of the quantifier phrases preclude variation in the
given configuration. This guarantees that the relevant two sets are
independent.

ii. The relation denoted by the verb is distributive (in the sense that
it is strictly between individuals and not between groups). This,
together with the fact that one of the quantifiers is assigned scope
over the other, guarantees that the two sets are fully connected.

iii. The nature of the quantifiers is such that the maximality condition
on branching is met.

The discussion is organized as follows. Section 2.2 reviews Liu’s branching
data that this paper seeks to explain. Then the argument that most of the
observed branching readings are logically equivalent to scopally asymmetrical
readings is presented in two steps: Sections 2.3 through 2.5 present the intuitive
core, and Sections 2.6 through 2.9 the formalism. Section 2.10 evaluates the
results against alternative definitions of branching and against empirical data.
Finally, Section 2.11 discusses the one case in which the branching reading is
to be eliminated in favor of a cumulative reading, and concludes by raising the
question whether the absence of genuine branching is an accidental gap in the
semantics of English.

2.2 Liu’s generalization

Liu (1990, 1992) conducted a careful empirical study concerning the scope
and dependency behavior of noun phrases (NPs) in English. Her observation
that NPs differ significantly in their ability to support inverse scope has inspired
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several of the papers in this volume. Beyond this, she also used her data to
formulate a generalization concerning the availability of branching readings.

To begin with, Liu classifies noun phrases (NPs) according to their behavior
in subject and object positions:

(32) a. Non-specific NPs: (i) Can depend on other NPs for scope interpre-
tation, and (ii) Cannot easily make the subject scope dependent
when they are in object position.

b. G(eneralized)-specific NPs: All the rest. (i) Cannot be dependent

on others and/or (ii) Can easily make the subject dependent when
in object position.

For instance, few books is non-specific:
(33) At least two men read few books

a. ‘At least two men read few books, possibly different ones’
few books can be scope dependent

b. * ‘Few books are such that at least two (possibly different) men
read them’
few books as O cannot make S scope dependent

On the other hand, every book is G-specific:
(34) At least two men read every book

a. * ‘At least two men read every book, possibly different ones’
every book cannot be scope dependent

b. ‘Every book is such that at least two (possibly different) men
read it’
every book as O can make S scope dependent

Note that the classification concerns NPs, and not NP denotations. Thus a NP
will qualify as G-specific if it has at least one reading on which it can induce
scope dependency in the subject while in object position. Using these criteria,
Liu classifies NPs as follows.

(35) Non-specific NPs:
at least two N, more than two N, between two and five N, exactly two N,
few N, fewer than two N, no N, neither N

(36) G-specific NPs:
all the N, every N, each N, most of the N, a majority of the N, some N,
a (certain) N, the N, both N, one/two/three (of the) N
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Turning to branching, Liu offers the following empirical generalization:
(37) a. When both NPs of a basic transitive sentence are G-specific, the
sentence has a branching reading.

b. When one NP is G-specific and the other is non-specific, the sen-
tence may or may not have a branching reading.

c¢. When both NPs are non-specific, the sentence has no branching
reading,.

For example:

(38) Two men read every book can be branching
(39) a. At least one man read every book can be branching

b. Two men read few books cannot be branching
(40) At least one man read few books cannot be branching

But why do we encounter any restrictions, and specifically these restric-
tions? Liu does not offer an explanation, formal or informal. However, there
is something striking about her finding that whether an NP can participate in
a branching reading correlates precisely with whether this NP can be scopally
dependent and whether it can induce inverse scopal dependency. Assuming
that these are indeed the relevant terms, the following question arises: What
is it about branching that requires the NPs that support it to have particular
scopal properties? The fact that the branching reading requires that the sets
associated with the two quantifiers be chosen independently suggests a track
to follow.

2.3 Independence and full connection: a first
approximation

One crucial characteristic of branching is that the sets of individuals the
quantifiers talk about are independent: there is no variation. This contrasts
with the prototypical cases of asymmetric scope, where either the subject or
the object induces variation in the other.

In Part I, we have seen, however, that there are particular choices of quan-
tifiers with which scopal asymmetry cannot amount to variation. To recap, two
prominent cases in the increasing domain are when (i) the wide scope QP is of
the sort John or a fireman or (ii) the narrow scope quantifier is of the sort every
building, the (two) buildings, or Andy and Carl. This raises the possibility that
in the plain subject-verb-object cases that Liu examined, branching readings
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are but special cases of scopally asymmetrical readings. This is the insight that
this paper explores.

A second crucial characteristic of branching is that the two sets are fully
connected. Are two independently chosen witness sets necessarily fully con-
nected by the relation denoted by the predicate? Obviously not. Cases of
cumulative and collective quantification are counterexamples (Scha 1981):

(41) (At least) two firemen put out (at least) three fires. ‘Altogether two
firemen put out fires, and altogether three fires were put out by them’

(42) Two firemen put out every fire. ‘Two firemen as a collective put out
every fire’

However, if one quantifier takes wide scope over the other and the relation
between them is strictly distributive, then full connection is automatic. To see
this, consider the kind of diagram that the method outlined in (6) produces:

(43)

W of narrow scope G

/ W of narrow scope G

< | *®

=

W of wide scope F

This is the general case, where witnesses of G vary with the elements of some
witness of F. Here the fact that F' takes scope distributively over G entails that
there is a witness of F' such that each member of it is linked to each member
of a possibly different witness of G. But we are considering special cases where
the relevant witnesses for G are identical. Hence each member of F’s witness
is linked to each member of G’s witness, which amounts to full connection.

In sum, we have shown that in the intuitively most accessible cases, an asym-
metric scope relation involving a distributive predicate and particular choices of
quantifiers inescapably yield a reading that is equivalent to a branching reading,.
Below we demonstrate that similar equivalences exist in other, intuitively less
accessible cases as well. So, the question arises whether there are convincing
cases of branching left without an asymmetric equivalent. We argue that there
is only one type left, which, however, is known to have a cumulative equivalent.
We conclude that the branching reading is never a genuine, separate reading
of plain SVO sentences. Correspondingly, precise predictions concerning what
pairs of quantifiers support “branching” come from establishing exactly when
a scopal or a cumulative reading is equivalent to a branching one.
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The Sections 2.6 and onward are concerned with substantiating this claim
in more formal terms, also taking the maximality condition into account. Prior
to that, however, we examine two issues to increase the initial plausibility of
the enterprise.

2.4 Linear order: The role of scope restrictions

By every logician’s definition, the polyadic branching schema is indifferent
to the order in which the quantifiers occur in the sentence. Thus, if (44) has a
branching reading, (45) is predicted to have one, too:

(44) More than one but fewer than six dogs bit every lion.
(45) Every lion bit more than one but fewer than six dogs.

Consider the two diagrams in (46), which are mirror images of each other,
corresponding to the fact that (44) and (45) only differ in that subject and
object are interchanged. Applying the appropriate definition (Sher’s) to the
quantifiers denoted by every lion and more than one but fewer than siz dogs,
(44) is predicted to have a reading which is true in (46a), and (45) to have a
reading true in (46b).

(46) a.
D, D, D3, ... 1,000
L, - Ly,
b.
L, L,
D, Dy D3, ..., 1,000

The prediction is not borne out: (44) is true of (46a), but (45) has no reading
on which it is true of (46b). The fact that L, is linked to 1,000 dogs does not
affect (44) but falsifies (45).

The fact that switching the subject and the object affects the availability of
the branching reading indicates that there is something fundamentally wrong
with deriving that reading in a way that is inherently insensitive to the (linear,
or c-command) order of the two quantifiers.

Our proposal, on the other hand, accounts for the contrastive behavior of
(44) and (45) in a natural way. Recall that we are proposing that alleged
branching readings are in fact special cases of others: in the present case, the
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asymmetric scopal reading is a possible candidate. What we find is that (44)
has a relevant scopal reading that is true in (46a), but (45) has no scopal reading
true in (46b).

Specifically, every lion denotes a principal filter, and more than one but
fewer than siz dogs a non-negative quantifier. As we shall show in (72), this
combination guarantees that the subject wide scope reading of (44), ‘there are
more than 1 but less than 6 dogs such that each bit every lion,” is equivalent
to a branching reading. (44) also has the O > S reading, ‘every lion was bitten
by a possibly different set of more than 1 but less than 6 dogs,” which is not
branching and is irrelevant now.

In the case of (45), the branching reading would be equivalent to the O > S
reading. But (45) simply has no O > S reading! The fact that modified numeral
QPs like more than one but fewer than siz dogs in object position do not take
scope over the subject exemplifies one of the standard restrictions observed by
Liu (1990):

(47) Every lion bit more than one but fewer than six dogs.

a. ‘every lion bit a possibly different set of more than 1 but less than
6 dogs’

b. * ‘there are more than 1 but less than 6 dogs such that each was
bitten by every lion’

The fact that the absence of a particular scopal reading correlates with
the absence of the logically equivalent branching reading confirms that the
branching reading has no independent source: it is an epiphenomenon.

2.5 Bare indefinites

To cover Liu’s core data, some new assumptions need to be made concerning
bare (= non-modified) indefinites. As Liu observes, bare indefinites pattern
with universals and definites in supporting a branching reading:

(48) a. Two or more kids climbed every tree. “branching” ok
b. Two or more kids climbed three trees. “branching” ok
¢. Two or more kids climbed five or more trees. no “branching”

The easiest account of these facts is to postulate a principal filter reading for
bare indefinites. This reading comes closest to Fodor and Sag’s (1982) notion
of a referential indefinite. Similarly to the case with a definite, the quantifier
three trees on this reading talks about a set consisting of three trees that we
“have in mind.” This notion of referentiality is conceptually distinct from Eng’s
(1991) specificity, for instance. For Eng’s purposes, three trees or even any three
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of the trees is specific if we know what superset we are drawing from. On the
other hand, three trees denotes a principal filter if the three trees themselves are
fixed. (Specificity in En¢’s sense may pragmatically increase the noun phrase’s
ability to denote a principal filter.)

This account is not entirely correct, however. Consider the following (Cor-
mack and Kempson’s 1991 remarks point in the same direction):

(49) Every teacher saw that two or more kids climbed three trees.

On the account just proposed, (48b) has a branching reading when two or more
kids takes wide scope but three trees denotes a principal filter. This predicts
that when the complement clause in (49) has a branching reading, the kids
may vary with the teachers but the trees may not. That is, all the teachers
must have seen climbings of the same three trees, although they may have
seen different kids climb them. But this prediction is false. For instance, the
sentence may describe a situation in which each teacher saw two or more of his
own pupils climb three of his own trees:

(49)

TR,
T
K, TR3

TRy

<k ER

TRg
It is not necessary for the trees not to vary with anything, which is what the
principal filter interpretation requires. It suffices if the trees do not vary with
the kids; and of course the kids must not vary with the trees, either. Notice
that the standard treatment of three trees cannot possibly yield this result. If
the sentence is assigned an S > O reading, the trees will vary with the kids;
and if it is assigned an O > S reading, the kids will vary with the trees. What
we need, intuitively, is a “relative principal filter” interpretation for the narrow

scope quantifier.

As Martin Honcoop (p.c.) points out to us, a straightforward way to obtain
“relative principal filters” is to assume that three trees here is a principal filter
denoter which, however, contains a phonetically null bound variable pronoun,
so that (49) has an interpretation comparable to Every teacher saw two or more
kids climb the three trees in his yard. But the same insight may be captured
without making this particular syntactic claim.

We may adopt some basic assumptions of Discourse Representation Theory
as in Kamp and Reyle (1993). Syntax proper and semantics proper are me-
diated by a level of discourse representations. A bare indefinite introduces a
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set (or a plural individual) referent. This referent may be placed either into
the universe of the DRS that corresponds to the indefinite’s place in syntactic
structure or into the universe of any superordinate DRS. Finally, representa-
tions make explicit when a predicate is distributive with respect to a particular
argument slot. Below is a Kamp and Reyle style representation of (49), sim-
plified by not spelling out the contribution of z saw that.

In (50), the referent Y (and, as required by Kamp and Reyle, its associated
conditions) is not introduced into the default DRS which contains z climbed
y but, instead, into a superordinate one. Notice that introducing Y into a
superordinate DRS does not assign wide scope to it over 7 in the traditional
sense: kids do not vary with trees. This is due to the fact that the choice of
the set (plural individual) Y is dissociated from distributivity, and hence from
variation. This is unlike traditional generalized quantifier theory, where the
two cannot be dissociated.

In this framework there is no need to postulate a separate principal filter
reading for a bare indefinite. When the set (group) referent of a bare indefinite
is introduced at least as high as the referent of some noun phrase NP that is
syntactically more prominent and thus has already been processed by the DRS
construction rules, the indefinite behaves like a principal filter with respect to
that NP; when it is introduced into the main DRS, it behaves like a principal
filter par excellence.

(50)

[z saw that:]

Yn
trees*(Y)
|Y| =3

T

teacher(z) kid(z)

n=2Xz v
v z climbed y
Yy €

[n] > 2

According to the analysis in (50), three trees functions as a “relative prin-
cipal filter.” It is not a true principal filter because its referent Y is not in
the outermost box. But it has a fixed referent in the right hand side box in
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which two or more kids is processed, and this is all we are interested in for the
purposes of branching,.

To summarize, it turns out that the notion of a (genuine) principal filter is
somewhat too demanding for our purposes; a relative principal filter suffices.
In the interest of simplicity, however, we will continue to phrase our discussion
of the conditions for branching in terms of principal filters, without adding the
qualification “relative” all the time.

Another important question that arises here is whether we are only invok-
ing DRT in order to solve the problem bare indefinites pose for branching.
The answer is No. Beghelli and Stowell (1996) and Beghelli (1996) propose
an empirical theory of quantifier scope, and Szabolcsi (1996) argues that their
treatment of bare indefinites is essentially equivalent to adopting those assump-
tions of DRT that we appealed to above. This means that the main claim of
our paper remains in effect: Each of the attested branching readings is logically
equivalent to some other reading of the sentence that we want to derive anyway.
Also, the claim that branching readings in plain SVO sentences can be seen as
special cases of either scopally asymmetrical or cumulative readings remains
true. We just need to add the qualification that the proper treatment of scope
itself needs to go beyond traditional generalized quantifier theory.

Note, finally, that there is an even more radically semantic approach to scope
in general and to problem this section has been concerned with in particular,
namely, the one proposed in Farkas (1996) in terms of evaluation indices.

2.6 Independence in the general case

Let us begin by spelling out some of the reasoning in Part I in more precise
terms. Variation can be formulated as in (51). (This specific formulation was
suggested to us by F. Moltmann.) If the two quantifiers of a sentence are F'
and G and the relation denoted by the verb is R, (F > G)(R) is the wide scope
F reading.

(51) (F > G)(R) is capable of exhibiting variation if it is not the case that
in every model where (F' > G)(R) is true, the following holds:

For every witness w; of F, for every z,z € wy,
for every witness ws of G, for every y,v € wa,

({z,y) € R and (z,v) € R) = ({z,v) € R and(z,y) € R)

In words: When there is variation, it need not be the case that whatever
books one fireman read are the same as whatever books other firemen, if any,
read. (Of course, a model may be too small to bear out potential variation.)

Spelling out the condition in (51), we derive the condition in (52):
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(52) For F > G to exhibit variation, there must be a model where (F > G)(R)
is true, but

({(x,y) € Rand (z,v) € R) # ({z,v) € Rand (z,y) € R)

i.e., we need both
(a) ¢ # z within the same witness of F', and
(b) y # v that distinguish two witnesses of G.

A quantifier F that cannot induce variation is one that never has two distinct
elements z and z in its witness. This obtains when F’ has a unique witness and
it is empty, e.g. no dog; or when F’s witnesses are all singletons, e.g. John, this
man, John and no one else, and ezactly one man. A combination occurs with
fewer than two men.

Note though that we only need to exclude variation that is “relevant” in
view of the meaning of the quantifier. F’s like a man, some man, at least one
man have witnesses with more than one element but, since these quantifiers
are increasing, the extra elements never make a difference. We can redefine
the range of harmless quantifiers as those that have only singleton witnesses
or are increasing and have singleton minimal witnesses. (Note that we cannot
in general restate (52a) in terms of minimal witnesses. This would let all
decreasing quantifiers in, since they all have the empty set as their minimal
witness.)

A quantifier G that cannot vary is one that does not have two distinct
witnesses. This obtains when G has a unique witness. This unique witness
may be empty, as with no man, or non-empty, as with John and Mary and no
one else on the one hand and with John and Mary, every man and the(se) men
on the other. In these latter core cases, G “talks about” some fixed individuals,
a notion neatly formalizable using the concept of a principal filter.

(53) The quantifier G is a principal filter iff it is of the form AP[A C P], with
A non-empty, i.e., the properties (sets) that are elements of G are the
supersets of a particular set A. A, which is also the unique witness of
G, is called its generator set.

Names, universally quantified NPs, semantic definites, and their conjunc-
tions are well-known principal filters. The quantifier John and Mary talks
about the set {john, mary}. Every man talks about the set of men.® These
two men talks about a set consisting of the two men we are pointing at, e.g.,
{peter, frank}. (Deictic these two men resembles pronouns in that its interpre-
tation depends on the context (assignment, pointing), but in each context it
talks about a unique set of individuals.)

3In some models every man may have an empty witness. We may choose to ignore these.
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Prior to going further, let us note that in developing our argument it is
crucial that we used witness sets, rather than elements, of quantifiers. Recall
that an element of a quantifier may contain entities that do not belong to the
smallest live-on set, i.e. the restrictor, of the quantifier. E.g., an element of
every dog may contain cats and fire engines. Observe now that neither the
ability to induce variation nor the ability to vary can be sensibly captured in
terms of elements. Say, we have Two lions bit every dog. Suppose L; bit every
dog and an old cat, while L, bit every dog and a young cat. Then the pertinent
elements of every dog vary with the lions. This type of variation however is an
artifact of the use of elements: it is never linguistically relevant.

2.7 The equivalence of scopal asymmetry and
branching: the increasing case

When R is distributive, (F' > G)(R) with no variation exhibits “indepen-
dence and full connection.” Does this yield logical equivalence with branching?
It depends on what exactly our definition of branching is. We will write the
branching reading as (F' x G)(R).

The definition of (F x G)(R) with two monotonic increasing generalized
quantifiers is easy: it really involves nothing but independence and full con-
nection. Technically, the latter means that the sets that are linked form a
cross-product.

(54) If X and Y are properties (= sets), their cross-product X x Y is the set
of all pairs (z,y) such that z is an element of X and y is an element of
Y.

(55) Branching, MONT-MON1 (Barwise 1979):
For A and B that are monotone increasing quantifiers, (A x B)(R) is
defined as 3X3Y[X € A&Y € B& X xY C R]

Read: There are two sets, X and Y, such that X is an element of the generalized
quantifier A, Y is an element of B, and the cross-product of X and Y is
contained in the relation R denoted by the verb.

In view of our considerations above, it is easy to see that within this domain,
(F x G)(R) is equivalent to (F > G)(R) whenever F’s minimal witnesses are
singletons or G has a unique witness. For example:

(56) A dog bit three or more men. [S > 0]
‘There is a set X that contains a dog and a set Y that contains three or
more men, and each element of X bit each element of Y’

(57) Three or more dogs bit five mengser. [S > O]
‘There is a set X that contains three or more dogs and a set Y that
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contains five particular men, and each element of X bit each element of
Y’

It is interesting to mention here that Westerstahl (1992) proves the following
theorem for finite models:

(58) When @ and Q; are MON1 and ISOM, Zl > is equivalent to Q1 Q-
2
lﬁQl IBOI‘QQ =V.

(Read: when Q; and Q> are increasing and have isomorphy (= topic-neutrality,
quantity), the branching reading is equivalent to the wide scope @Q; reading iff
Q) is the existential or Q) is the universal quantifier.)

Notice that the reasoning that we presented above offers a simple intuition
for why Westerstahl’s theorem holds. Among the quantifiers that Westerstahl
chooses to consider, the existential is the one with singleton minimal witnesses
and the universal is the one with a unique witness. This explanation is inter-
esting because it suggests how (58) generalizes to other quantifiers.

2.8 A general definition of branching

There is full agreement in the literature that (55) captures what the branch-
ing of two increasing quantifiers means. But once we turn to other quantifiers,
we find disagreement concerning both for what cases branching can be defined
and how it should be defined. The disagreement has two kinds of source: techni-
cal difficulties involved in providing a general definition and intuitive differences
in how some cases should be evaluated.

Barwise (1979) defines the branching of two monotonic decreasing general-
ized quantifiers as follows:

(59) Branching, MON|-MON/ (Barwise 1979):
For A and B that are monotone decreasing quantifiers, (A x B)(R) is
defined as 3X3Y[X € A&Y € B&(RN(AXx B)) C X xY]

(60) Fewer than ten dots and fewer than six stars are all linked by lines.

(59) interprets (60) as follows: we have a set X containing fewer than ten dots
and a set Y containing fewer than six stars, and whatever dots and stars are
linked by lines are pairs drawn from X and Y.

The difference between (55) and (59) is due to the increasing versus decreas-
ing nature of the quantifiers involved. It is exactly parallel to the difference
in how Three men walk and Fewer than ten men walk can be expressed using
formulae that begin with “There is a set X ... ”:
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(61) Three men walk
3X[X € THREE.MEN & X C (WALK N MAN)]

(62) Fewer than ten men walk
3X[X € FEWER_THAN_TEN_MEN & (WALK N MAN) C X]

The increasing (61) merely states that the three men are walking men; it allows
any number of further men to walk. The decreasing (62) requires that the fewer
than ten men be all the walking men that there are—we call this a maximality
condition. Ezactly two men walk with a non-monotonic quantifier also requires
a maximality condition; it would be expressed using (WALK N MAN) = X .4

Of course, the meanings of these sentences can be formalized in other ways
as well, not beginning with “There is a set X ....” On the other hand, the
branching readings must be formalized in this way. Beginning the definitions
with “There are two sets, X and Y, ... ” ensures that the sets are chosen
independently.

Going further, Westerstahl (1987) attributes to van Benthem a branching
schema for certain non-monotonic quantifiers (naturally, with X xY = R) and
himself proposes a general schema that applies to all continuous quantifiers.

Recall that we are interested in the definition of branching because we wish
to examine the equivalence of scopal and branching readings in full generality.
This means that we need a single definition, or a battery of definitions, that
applies to all nine monotonicity combinations of two quantifiers. But the fact
that the three monotonicity schemata differ in having C, D or = between X xY
and the restricted R already indicates that the problem is not trivial. The first
attempt to overcome the difficulties is quite recent: Sher (1990).

Sher’s definition is fully general and consists of two parts: the first part is
essentially identical to the definition for two increasing quantifiers, and the sec-
ond part imposes a maximality condition in order to take care of the decreasing
and the non-monotonic cases. Her original version is as follows (P, and P, are
the common nouns of the two NPs):

(63) (Q1 X @2)(R) is defined as
(3X)@V)[(@Q12) Xz & (Quy)Yy & X x Y CR&
VXYV X xY CX'xY' CRCP xP, 5 X xY =X'xY")]

Since this is the definition we will use, let us consider it in some detail. First
of all, we will modify it slightly:

(64) Branching (a slight modification of Sher 1990
Let F' and G be generalized quantifiers whose smallest live-on sets are f

4In the increasing case it makes no difference whether we write X C WALK or
X C (WALK N MAN). Similarly, in (55) we might have written X XY C (RN (A x B)); the
restriction was omitted for the sake of simplicity.
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and g, respectively, and R a restricted relation such that Dom(R) C f
and Ran(R) C g.5 The branching reading (F x G)(R) is true iff
IXFY[XeF&Y eG& X xY CR&
VX'WY'[XxYCX'xY'CR = XxY=X"xY'].

The working of (64) can be exemplified as follows:

(65) Exactly two dots and more than two stars are all linked by lines.
“There is a set X containing exactly two dots and a set Y containing
more than two stars such that (i) X x Y C R, i.e.,, each'dot in X is
linked to each star in ¥ and (ii) X x Y is not part of any bigger X' x Y’
in the dot links_star relation’

(64) differs from (63) in both a formal and a (minor) substantial respect. The
formal difference is that (64) is stated using the formalism of generalized quanti-
fier theory. The substantial difference is that in (63) the relation R is restricted
by the sets P; and P, denoted by the common nouns of the relevant two noun
phrases, while in (64) it is restricted by the smallest live-on sets of the corre-
sponding generalized quantifiers. Since in most cases the common noun sets
and the smallest live-on sets are identical, the change may seem insignificant
(although natural: in a semantic definition, we use a semantic, not a syntac-
tic, notion). However, a noun phrase like John contains no common noun but
[John] has a smallest live-on set (in this case, {john}), so (64) becomes ap-
plicable to it. Furthermore, in the case of principal filters like these two men
the smallest live-on set (for instance, {john, bill}) is smaller than the common
noun set (MAN). We will see that here our semantic definition gives the desired
results.

Let us see how (64) handles the non-monotonicity of ezactly two dots in (65).
The schema first guarantees that two appropriate sets are chosen independently
and their members are fully connected. If we stopped here, however, (65) would
be accepted as true in the following situation (if there are altogether three

stars):

Condition (ii) excludes this. It requires that the cross-product that we use to
verify (i) be the largest such, in the sense that it must not be properly contained
in a larger cross-product within the same relation.

Does the maximality condition affect the increasing quantifier more than
two stars? It does not. If in fact there were ten stars in the cross-product

(66)

5If F is the denotation of the object, and G of the subject, then R is the (restricted)
converse of the relation denoted by the verb.
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and we chose a Y that contains only, say, three stars, the sentence would be
predicted to be false; but nothing prevents us from choosing Y to contain ten
stars in the first place. In general, it follows from the notion of increasingness
that it is insensitive to this kind of maximality condition. Hence, when both
quantifiers are increasing, Sher’s and Barwise’s definitions coincide.

Sher differs from Barwise on decreasing quantifiers, however. While Bar-
wise’s (59) defines a reading that is equivalent to what has come to be called a
cumulative reading (Scha 1981), Sher’s definition gives a different reading.

(67) Fewer than three dots and fewer than three stars are all linked.

——

Barwise’s definition renders the sentence false in this situation. We have two
independent cross-products; we have to choose one of them. But whichever we
choose does not exhaust the dot_links_star relation: the relation contains the
pairs coming from the other cross-product, too. Sher’s definition, on the other
hand, renders the sentence as true: it only requires one X x Y that has the
desired size and it not part of any bigger X' x Y'. And there are even two such.

In the same way, Sher’s definition renders both of the following sentences
with non-monotonic quantifiers true in the above situation:

(68) Exactly one dot and exactly one star are (all) linked.
(69) Exactly two dots and exactly two stars are all linked.

Spaan (1992) accepts Sher’s treatment of (67), however, he does not share
Sher’s intuition that (68) and (69) can be simultaneously true. He proposes
that maximality should be defined not in terms of subsets but in terms of
cardinality. His definition forces us to choose the biggest cross-product, in this
case, the one involving two dots and two stars. This makes (69) true and (68)
false.

On the other hand, Spaan explicitly agrees with Sher that (67) is true in the
following situation, where all the independent cross-products have the desired
size:

(70)

—
—

But Schein (1993, Ch. 12) argues that there are various linguistic examples
that require a cross-product and are thus reasonably expected to fall under the
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heading branching and are false here, contra Sher’s (and Spaan’s) contention.
For instance:%

(71)  a. Fewer than three dots are linked to fewer than three stars, pairwise
completely.

b. Exactly two dots are linked to exactly two stars, pairwise com-
pletely.

In sum, we have noted that in certain cases Sher’s results differ from what
Barwise or Spaan or Schein would find desirable. If they are correct, her (64) is
somewhat too permissive. Can we still take (64) to be our etalon of branching
when we examine plain SVO sentences? We believe that we can. Recall that we
will be interested in what scopal readings of plain SVO sentences are equivalent
to branching readings. As Section 2.10.1 will demonstrate, it turns out that
in the cases where the four authors differ there are no equivalences anyway,
wherefore the differences are immaterial to us.” There is one relevant difference,
namely, Sher’s treatment of the branching of two non-monotonic quantifiers
differs from van Benthem’s. In Section 2.11 we will submit that here Sher is
correct.

2.9 The general equivalence of branching and scopal
asymmetry

The main novelty of Sher’s definition is that branching has three compo-
nents: independence, full connection, and a separate maximality condition.
The main theme of this section is how this third factor narrows down the range
of scopal readings that are equivalent to a branching one.

In this paper we do not attempt to offer a beautiful formal result concerning
the branching/scopal equivalence. Instead, we offer a kind of catalogue of
the cases of equivalence whose correctness is easy to check using the basic
definitions. We state it as a sufficient condition, but we conjecture that it is
both sufficient and necessary.

(72) Equivalence of (64)-branching and scopal asymmetry:

(i) If either F or G is a principal filter generated by a singleton, then
(F > G)(R) and (F x G)(R) are equivalent irrespective of what the
other quantifier is. In all other cases there is some qualification on
the other quantifier to ensure the equivalence:

6Schein himself does not propose a definition of branching.
7We therefore opt for Sher’s definition, which is the simplest and most general; Spaan’s is
restricted to the cases where X and Y are not empty.
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(ii) If F is upward monotonic with singleton minimal witnesses, equiv-
alence holds if G is upward monotonic.

(iii) If G is a principal filter, equivalence holds if F' is non-negative.

(iv) If G has a unique empty witness, equivalence holds if F' is a prin-
cipal filter.

We will now systematically employ the notions of variation and maximality
in giving a hint of why (72) is true.

In the examples the quantifier that guarantees no variation will be printed
in bold face; our question is what restrictions need to be imposed on the other
quantifier.

The cases in which the wide scope quantifier F' cannot induce variation
include the following:

(73) a. MoN? with singleton minimal witnesses:
filter: John, this man, one mangiter
non-filter: at least one man, one or more men
b. —MON with singleton (minimal) witnesses: ezactly one man
¢. MONJ with a unique empty witness: no man
d. MONJ with singleton or empty witnesses: fewer than two men

When F is a principal filter generated by a singleton set, maximality is
automatically guaranteed, because the relation R is restricted to F’s smallest
live-on set, which is the singleton itself. Thus we are not allowed to consider
pairs beyond those that have the unique element of the singleton as one of their
members.

(74) Fido bit few/exactly two/at least two men.

This is the first case where our modification of Sher’s original (63) makes a
difference. There are several further cases to follow.

When F is an increasing singleton though not a filter, no restriction needs
to be imposed on G as long as it is upward monotonic. G may be able to vary,
because the variation F' induces is irrelevant. But consider the following:

(75) a. At least one dog bit exactly two men.
b. At least one dog bit fewer than three men.

D, M; D,

M.

M3 My
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(75a, b) are true here on the S x O reading: there is a maximal cross-product
containing exactly two/fewer than three men. But the S > O reading is false,
since individually, neither dog bit exactly two/fewer than three men.

When F is a non-monotonic singleton, equivalence fails unless G is a prin-
cipal filter:

(76) a. Exactly one dog bit at least two men.
b. Exactly one dog bit John and Bill.

D1 i M1 = John D2 i M3
M, = Bill My
Here (76a) is false on the S > O reading but true on the S x O reading since, as
we have seen, Sher allows us to ignore the existence of other independent cross-
products. This kind of problem does not arise for (76b), since R is restricted
to the set {john, bill}.

When F' is decreasing and does not induce variation, equivalence holds only
when G is a singleton filter, as in No/fewer than two dogs bit John.

(77) a. Fewer than two dogs bit John and Bill.
b. Fewer than two dogs bit few men.
c. Fewer than two dogs bit at least two men.
If in fact exactly one dog bit the said men, we already know from the previous
example that only (77a) with a filter has a chance. But if no dog bit John and
Bill, we can fail again. See the discussion of (79).

Notice that if someone chooses to interpret fewer than two men as ‘fewer
than two, but not zero, men,’ then (s)he regards it synonymous with ezactly
one man, that is, the quantifier is non-monotonic, so the reasoning for (76)
applies.

Let us now turn to the cases where the narrow scope quantifier G cannot
vary:

(78) a. MoNt with unique witness = principal filter: John, John and Mary,
the(se) men, every man, two mengiter

b. —MON with unique witness: John and Mary and no one else

c. MONJ/ with unique witness: no man
That G is a principal filter does not guarantee equivalence in general. E.g.,

(79)  a. No dog bit every man.
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b. Fewer than three dogs bit every man.

Dy o M2
D3 o———* M;3

Both sentences are true here on the S > O reading, but not on the S x O
reading. The reason is that @ x {M;, Ms, M3} = @ would only be maximal in
the dog_bit_man relation if the latter were empty, too: here it is a subset of
{Dl} X {Ml,Mz}.

One way to avoid this problem is to make G a singleton filter. No/fewer
than three dogs bit John is safe, because the whole generator set of the principal
filter is affected uniformly. (A similar effect would arise if G were a group.)
Another possibility is to require F' to have no empty witness, i.e, to make F
non-negative: either non-monotonic or increasing.

(80) a. Few but not zero dogs bit every man.
b. Exactly two dogs bit every man.
c. At least two dogs bit every man.
The reasoning that shows that (80a, b) yield equivalence is parallel to that for
(76b), and the fact that (80c) with an increasing F' yields equivalence is already
familiar.
When G has a unique witness but is non-monotonic, equivalence obtains
only when F' is a singleton filter:
(81) a. Fido and Spot bit John and Mary and no one else.
b. Fido bit John and Mary and no one else.

c. Spot bit John and Mary and no one else.

Fido John
Spot Mary
Bill

(81a) is false here on the S > O reading but true on the S x O reading. The
fact that Spot bit Bill, too, matters for S > O but not for S x O: given that
Fido didn’t bite Bill, there is no larger cross-product. On the other hand, (81b)
is true and (81c) is false on both readings.

Finally, if G has a unique empty witness, F' needs to be a principal filter:

(82) a. Few dogs, if any, bit no man.
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b. Exactly two dogs bit no man.
c. At least two dogs bit no man.

d. Fido and Spot bit no man.

Suppose S > O is true. Then the set of dogs who bit no man is a witness W of
F. In all four cases W x ) = @, but in (81a, b, c) this is not necessarily maximal
in the dog_bit_man relation, which can happen to be non-empty. In in (81d),
on the other hand the restricted relation is {fido, spot}_bit_-man, which must
be empty if S > O is true.

With this we have concluded the discussion of the cases summarized in (72).

2.10 Evaluation of alternatives

In this section we compare our proposal with three different kinds of alter-
natives. First, we argue that choosing Sher’s definition of branching did not
distort our picture. Second, we show that our results compare well with Liu’s.
Third, we comment on certain variations in speakers’ judgments.

2.10.1 Sher versus Barwise/Spaan/Schein

Our first task is to justify the choice of using Sher’s definition of branching,
despite its divergence from Barwise’s, Spaan’s, or Schein’s claims at various
points. Here we are not claiming that Sher is more correct than the others
(although she may be); what we are claiming is that the divergences make
almost no difference in connection with the scopal/branching equivalence.

The typical cases where Sher’s predictions differ from those of the others
involve cases in which the quantifiers are decreasing or non-monotonic, and
there is more than one cross-product in the model, cf. the discussion above of
(67), (68), and (71). We argue that these cases make no difference since the
corresponding SVO sentences, below, would not exhibit a scopal/ branching
equivalence, anyway.

(68')-(71") Exactly two dots are linked to exactly two stars.
(67")-(71") Fewer than three dots are linked to fewer than three stars.

The reason is precisely that the S > O reading always allows variation here:
different dots may be linked to different sets of stars. In the non-monotonic
case, the S > O reading does not require for there to be even a single cross-
product of the desired size. In the decreasing case the S > O reading may
be true without any one of the cross-products being exhaustive of the relation
(Barwise) or without the biggest cross-product (Spaan), or even any maximal
one (Sher) being small enough.
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Likewise, it is important to point out that the fact that the special branching
schema “overgenerates” cannot be blamed on Sher’s innovations: returning to
even the most conservative definition, such as Barwise’s, would not eliminate
the empirical problem.

(83) contains two upward monotonic quantifiers. As has been mentioned,
everybody’s branching schema covers this case and interprets it in the same
way (a). However, the branching paraphrase is not equivalent to either of the
scopally asymmetrical paraphrases (b) and (c), whence our proposal predicts
that (83) has no branching reading.

(83) At least two dogs bit more than two men.

a. ‘There is a set containing at least two dogs and there is a set con-
taining more than two men, and each of these dogs bit each of these
men’ =Sx0

b. ‘There are at least two dogs each of which bit a possibly different
set of more than two men’ =5>0

c. ‘There are more than two men each of which was bitten by a pos-
sibly different set of at least two dogs’ =0>S

Consider the truth of (83), and the truth of the paraphrases, in situation (84):
(84)

D, M,
D, M,
M3
M,

(83b) is true in (84), while (83a) and (83c) are false. The sentence itself, we
claim, is just true here. If this is correct, then (83) lacks both the S x O reading
and the (non-equivalent) O > S reading.

But there are two branching cases proposed in the literature that we do not
derive:

(85) No one loves no one.
(86) Exactly five men love exactly six women.

We return to these in Section 2.11.
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2.10.2 The asymmetric/branching equivalence versus Liu

How do our results compare with Liu’s findings? Let us begin by listing a
sample of sentences which, according to (72i-iv), should be perceived as having
a branching reading & la (64). The quantifiers that guarantee independence are
printed in bold face; recall that restrictions on the others are due to maximality.
For simplicity’s sake, the examples rely on the S > O reading.

(87) SINGLETON FILTER > ANYTHING

every man
Fido bit few, if any, men
A doggiter more than two but fewer than six men

John and Bill and no one else
(88) ANYTHING > SINGLETON FILTER:

Every dog
Few, if any, dogs bit John
More than two but fewer than six dogs a mangjer

Fido and Spot and no other creature

(89) UPWARD SINGLETON > UPWARD

every man

At least one dog bit .
more than six men

(90) NON-NEGATIVE > PRINCIPAL FILTER:

More than six dogs every man
Exactly one dog bit John and Bill
Few but not zero dogs two dogsfiter

(91) PRINCIPAL FILTER > UNIQUE EMPTY WITNESS:

The dogs
Fido and Snoopy bit no man
Two dogssgiter

According to Liu, an SVO sentence is certain to have a branching reading
if both NPs are G-specific; it may or may not have one if one NP is G-specific
and the other is not (here Liu offers no generalization); and it never has one if
both NPs are non-specific. The set of Liu’s G-specific NPs is coextensive with
those that have at least one (absolute or relative) principal filter interpretation
in our terms.

Assuming this correspondence, our results give a fair approximation. All
cases with two principal filters are ruled in, and only a single case of two non-
filters is. The following cases deserve to be commented on.
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First, consider the one filter plus one non-filter cases. The “non-negative
> principal filter” class coincides with Liu’s more detailed findings. The only
cases that may raise an eyebrow are those where a filter can be combined with a
decreasing quantifier (see 87, 88, and 91 above). We believe that not excluding
mixed cases from the very beginning makes our approach more convincing; it
is in fact insightful that only such a restricted set of further cases exhibits
equivalence.

Next, consider the two non-filter cases, which are of the type At least one
dog bit more than siz men. Contra Liu, we are predicting that this kind of
sentence does have a branching interpretation. But this is inescapable, since
the S > O reading of this sentence is logically equivalent to a branching one
according to everybody’s definition of branching.

These cases might indicate the existence of a gap between the logician’s
definition of branching and the pretheoretical intuition that speakers apply
when judging whether a sentence has a branching reading. The former is purely
denotational; the latter seems somewhat representational. Specifically, speakers
seem to prefer cases where one or both noun phrases introduce a discourse
referent corresponding to a witness set, according to some version of DRT or
according to Szabolcsi (1996).

In any event, note that we are not arguing that all these sentences have
a genuine braching reading. On the contrary, we are arguing that in all SVO
sentences branching is a mere illusion, due to the fact that an independently
available reading is logically equivalent to what the branching one would be.

Finally, the following case may seem problematic for our proposal:

(92) Most (of the) students read two books.

As Liu explains, this sentence has one S > O reading on which pairs of books
vary with students. On the other hand, for many speakers it lacks the standard
O > S reading on which each of the two books was read by a different majority
of the students. Instead, it has a classical branching reading: each member of
some fixed majority of students read each member of some fixed set of books.
(92) may thus seem to call for irreducible branching (see also Keenan 1996).
This conclusion is not inescapable, however. Note that two books can denote a
filter and thus the branching reading is equivalent to an S > O reading, just as
in the examples reviewed earlier. The one thing that is peculiar about (92) is
that although most (of the) students is in general not a filter, in subject position
it cannot become dependent on the object. This fact requires an explanation
but need not affect the present proposal.®

8There is one possible explanation of this fact that we are aware of: Honcoop’s (1994).
Following Ben-Shalom (1993), he suggests that inverse scope is calculated by a binary quan-
tifier. Departing from Ben-Shalom, he proposes that the wide scope quantifier contributes
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2.10.3 Variation in judgments

Speakers’ judgments may vary with respect to certain examples. One source
of variation is what noun phrases they are willing to interpret as principal
filters. Everyone seems to have a filter interpretation for noun phrases with
bare numerals like two men, and no one for, e.g. few men or more than one but
fewer than siz men. On the other hand, speakers differ somewhat as to whether
they interpret at least n phrases and partitives as filters or not. Another source
of variation is that some may interpret few men as non-negative ‘few but not
zero men,’ at least in certain contexts. Such differences will affect whether
At least two men saw at least six (of the) dogs and Few men saw every
dog are classified with (90), for instance, but not the global predictions. Our
predictions concern noun phrases interpreted as such-and-such quantifiers, not
noun phrases as potentially ambiguous syntactic units.

Since these interpretation options play a role in E-type anaphora and in-
verse scope, we expect the same individual preferences to show up in those
domains. For instance, the acceptability of Evans’s (1980) famous example,
quoted in (93a), seems to hinge on one’s ability to interpret few senators in
a non-decreasing fashion, as the implausibility of the modified (93b) version
shows.

(93) a.  Few senators admire Kennedy, and they are very junior.

b. ?* Few senators, if any, admire Kennedy, and they are very junior.

Or, consider the following descriptive generalization (based on our earlier
work and on the results of the previous section): In the default case, if a direct
object noun phrase OBJ is interpreted as a principal filter, this ensures that
(i) the sentence has an O > S reading and (ii) if S is non-negative, its S > O
reading is equivalent to a branching reading. So if a speaker accepts, say, Every
man saw OBJ on the branching reading, (s)he is expected to accept it on the
O > S reading as well.

2.11 Cumulative readings and conclusion

Approaching the end of our journey, we must ask whether the cases we
have accounted for so far cover all “branching readings” that arise in plain
SVO sentences. Above, we have in fact anticipated the answer: they do not.

its unique witness and the narrow scope quantifier a Skolem function to this binary quan-
tifier. He suggests that if the narrow scope quantifier is proportional, the Skolem function
would need to be implausibly complicated and thus predicts that only intersective quantifiers
“skolemize.” NB It may seem that any theory that accommodates the fact that direct object
two books does not take distributive wide scope over the subject will take care of the problem
of subject most. That is true in the case of (92), but not in general, for the same rigidity
effect is exhibited with every book in the object position.
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Consider (94), together with its interpretation according to (64):

(94) No one likes no one branching, & la Sher
3X3Y[no-one(X) & no-one(Y) & X x Y C man.like_man &
VXVY'[X xY C X' xY' Cmanlikeman = X xY = X' x Y]]

This is a bona fide reading of (94). But it is truth conditionally independent
of the only scopal reading, ‘Everyone likes someone.’

The unloving world reading of (94) constitutes the only unquestionable ex-
ception to the claim that existing branching readings of SVO sentences are
equivalent to an existing scopal reading. As has been observed by Sher (1990)
and Zwarts (1992), however, the reading in (94) is equivalent to a so-called
cumulative reading (Scha 1981, Schein 1993). Cumulative quantifiers are also
scopally independent, but the connection between the sets is weaker than in
branching: it is enough for every element of X to be connected to some element
of Y, and for every element of Y to be connected to some element of X. Fol-
lowing Zwarts’s suggestion, we note that when both sets X and Y are empty,
the requirements ‘for every z, there is a y’ and ‘for every y, there is an z’ are
vacuously satisfied:

(95) No one likes no one cumulative, a la Scha
‘Exactly zero humans like humans, and exactly zero humans are liked
by humans’

Thus it seems quite natural to regard this reading as a special case of cumulative
quantification.?

The last case to consider is (96). Van Benthem defines a branching reading
for two non-monotonic quantifiers of the ezactly-type. Applied to (96'), this is
not equivalent to any scopal reading, but it also differs from Sher’s branching
reading and Scha’s cumulative reading of (96).1°

(96) Exactly two dogs bit no more and no fewer than three men.
(96') 3X3Y[ex. two_dogs(X) & ex. three_men(Y) & dog_bit-man = X x Y]

(96') is false in all of the following situations. The S > O reading of (96) would
be true in (97a), its cumulative reading in (97b), and its Sher-style branching
reading in (97c). As compared to (97c), (96') excludes the presence of Ds.

90r of resumptive quantification, cf. May (1989).

101n the example, we replaced the second ezactly-phrase with a no more and no fewer-
phrase, because we felt that the judgment is clearer in this way. The change cannot make a
difference from van Benthem’s point of view, since the two phrases are equivalent.
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97) a. D, M
D, M,
Ms;
My
b.
Dl &———k Ml
D2 T M2
M3
C.
D1 L] % Ml (] D3
t 3 Mg
D2 ] * M3

If empirical judgments confirm that (96') exists as a separate reading, then
it alone necessitates the use of a specific branching schema, all our previous
arguments notwithstanding. Our own judgment is that (96') is stronger than
what (96) ever requires. (We believe that (96) just has an S > O reading and
a cumulative one.)

With these observations, we take it that the data are compatible with our
general claim:

(98) Simple SVO sentences have a branching reading only when that read-
ing is logically equivalent to another, independently justified reading,
namely, a scopally asymmetrical or a cumulative one.

This conclusion is based strictly on the workings of a particular sentence type
and thus says nothing about the necessity of a special branching schema in
others. However, consonant suggestions have been made about other sentence
types. May (1989), Krifka (1991), Schein (1993), and van der Does and Verkuyl
(1996), each of whom examines different data than we do, suggest either that
alleged branching cases are due to contextual factors or that branching is to
be derived compositionally, relying on the contribution of conjunction or of
adverbs like all, and an independent branching schema is never necessary. Our
result can be seen as adding one more piece to the puzzle. But since no one
has pulled all these fragmentary results together, it is in fact not yet known
whether they actually cover all the empirically relevant cases.

So let us assume, for the sake of the argument, that an independent branch-
ing schema is indeed not attested in natural language. Then the interesting
question is whether this is an “accidental gap.” As of date we are not able to
answer this question, but let us indicate the beginnings of how we believe it
might be approached.
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Branching quantification is effected by a polyadic (here: binary) quantifier:
one that satisfies more than one argument slot of the predicate at the same
time. On the syntactic side, this means that the usual syntactic structure of
the sentence is not respected; say, “absorption” needs to be invoked. On the
semantic side, we note that polyadic quantifiers come in two varieties: those
whose working is reducible to that of a sequence of (unary) generalized quan-
tifiers, in which case polyadicity is semantically inessential, and those that are
irreducible in this sense. In the latter case, the quantifier’s schema acts like a
“word” in that it makes a totally idiosyncratic contribution to the meaning of
the sentence. The difference is that words are overt parts of the sentence, while
polyadic quantifier schemata are not. This makes it plausible that learnable
polyadic schemata must be tied to particular phrases like all (or, in other cases
where a polyadic analysis has been proposed, to phrases like between them,
except, different ... different ..., etc.),!* or to particular constructions like
coordination.'? Other instances are presumably severely limited, judging from
the fact that the meanings of sentences are by and large quite predictable. We
expect that future research will identify quite strict constraints on the polyadic
quantifiers of natural language. (See Ben-Shalom 1993 and Honcoop 1994 for
some preliminary speculations.) At that point, it will be feasible to determine
whether the branching quantifier schema is a possible but accidentally unat-
tested entity, or it in fact violates some constraint and its absence can thus be
predicted.
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DISTRIBUTIVITY AND
NEGATION:

THE SYNTAX OF FACH AND
EVERY™
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Department of Linguistics
UCLA

1 INTRODUCTION

This paper is concerned with the syntax and semantics of quantifier scope
construal, focussing on the distributive quantifiers every and each, and their
interaction with negation. Our discussion is based on the theory of the syntax
of quantifier scope developed more fully in Beghelli and Stowell (1994) and in
Beghelli (1995).

The quantifier every has traditionally been analyzed in natural language
semantics as the quantifier V, familiar from classical logic. We will show that
every is more complex than this; a number of observations on its logico-semantic
behavior lend plausibility to the view that every exhibits a kind of quantifica-
tional variability characteristic of licensed and bound elements. The quantifier
each has been analyzed as a wide-scope variant of every, which is supposedly
used in order to disambiguate between pairs of possible scope construals. We
will show that the distinction between every and each is more properly char-
acterized in terms of an intrinsic distinction between optional and obligatory
distributivity. The effects of this distinction are often masked, however, by the
effects of the syntactic mechanisms by which these notions are expressed in the
grammar of natural languages, as we will see.

The paper is organized as follows. In Section 2, we introduce the gen-
eral theory of scope and quantifier types on which the rest of the paper is
based. In Section 3, we discuss the syntax of distributivity, concentrating on
the distinctive behavior of QPs headed by every and each, which we refer to as
Distributive-Universal QPs (DQPs). In Section 4, we examine the scopal inter-
actions of DQPs with negation, bringing to light certain distinctive properties
of these QPs, and highlighting some surprising differences between every and
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each. In Section 5, we discuss other differences between every and each, which
we will use to explain the differential behavior that they exhibit with respect
to negation.

2 TARGET SCOPE POSITIONS FOR QP-TYPES

2.1 Scope uniformity

Our analysis of every and each is formulated within the overall theory of
quantifier scope developed in Beghelli and Stowell (1994) and in Beghelli (1995).
We present here a sketch of that proposal; the reader is referred to those works
for further discussion. We adopt two central assumptions of the standard theory
of quantifier scope in generative grammar. First, quantifier scope is determined
by c-command relations holding at the level of Logical Form (LF); second,
Quantifier Phrases (QPs) are assigned scope by undergoing movement to their
scope positions in the derivation of the LF representations.

However, we reject one central assumption that has guided virtually all
previous work on scope, namely that all QPs have the same scope possibilities.
This can be stated in terms of QUANTIFIER RAISING (QR), as in (1):

(1) The Uniformity of Quantifier Scope Assignment (Scope Uni-
formity)
Quantifier Raising (QR) applies uniformly to all QPs. Neither QR nor
any particular QP is landing-site selective; in principle, any QP can be
adjoined to any (non-argument) XP.

In this respect, we depart from the standard account in May (1977, 1985),
as well as from refinements of it in Aoun and Li (1989, 1993), and Hornstein
(1995).

The reason why Scope Uniformity cannot be maintained is empirical: dif-
ferent QP-types have correspondingly different scope possibilities. Some of the
evidence for this conclusion is reviewed below.!

May (1977, 1985) assumes that pairs of subject and object QPs are typically
scopally ambiguous, and concludes that all QPs normally undergo movement
from their (S-structure) Case positions to distinct scope positions at LF. In
other words, he assumes that Case positions never serve as scope positions for
QPs. On the other hand, Hornstein (1995) proposes that every link in the

1Our approach builds on that of various authors, notably Kroch (1979) and Liu (1990),
both of whom observe that quantifier scope is not uniform, in the sense that individual
quantifiers differ from each other in their ability to take inverse scope. Our work builds, in
part, on proposals in Beghelli (1993), Ruys (1993) and Beghelli et al. (1996), among others.
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A-chain of a given QP is a possible scope position for that QP—including both
the Case position occupied by the QP at Spell-Out and its §-position.

In this study, we propose a hybrid theory, incorporating aspects of both
May’s and Hornstein’s approaches.? The central innovative aspect of the system
developed here is that it draws distinctions among various QP-types; whereas
certain QP-types may take scope in their Case positions (remaining in situ
at LF), other QP-types must move to distinct LF scope positions reserved
for them. Moreover, there are further distinctions among those QP-types that
must undergo movement, in the sense that each type has a designated LF scope
position defined in the hierarchical phrase structure of the clause.

2.2 QP types

Although it is possible, a priori, to draw many distinctions among various
QP-types, we believe that—in a first approximation—the syntax of quantifier
scope can be adequately captured by recognizing five major classes of QP-types.
Our classification incorporates insights of Szabolcsi (1994, 1996). The reader
is especially referred to the latter paper, where the relation with our proposal
is discussed at length.

QP-Types

a. Interrogative QPs (WhQPs). These are familiar Wh-phrases such as
what, which man, etc. We adopt the standard convention of attributing a
[+Wh] feature to these QPs, encoding their interrogative force.

b. Negative QPs (NQPs). These are QPs such as nobody, no man, etc.
(In this group belong also French n-words such as personne ‘nobody,” and
possibly Italian/Spanish n-words such as nessuno/nadie ‘nobody,” which
sometimes require an overt negative element to license them.) We assume
that these QPs bear a feature [+Neg].

c. Distributive-Universal QPs (DQPs). These are QPs headed by every
and each, which occur only with singular nouns. We attribute to them,
in a first approximation, a distributive feature [+Dist(ributive)] (we will
revise this assumption in Section 5, where we will attribute to each an
intrinsic feature of distributivity [+Dist], leaving every underspecified for
[Dist] and specified merely for universality [+Univ]). Both each-QPs and
every-QPs are usually interpreted as both universal and distributive.

d. Counting QPs (CQPs). These include decreasing QPs with determin-
ers like few, fewer than five, at most sixz, ... and generally cardinality

2The hybrid claim that some quantifiers undergo scopal movement, while others do not,
was put forth in Beghelli (1993).
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expressions built by modified numerals (e.g., more than five, between siz
and nine, more (students) than (teachers), ... ). The characteristic se-
mantic property of these QPs is that they count individuals with a given
property, have very local scope (take scope essentially in situ) and resist
specific interpretations.

. Group-Denoting QPs (GQPs). To this large class belong indefinite

QPs headed by a, some, several, bare-numeral QPs like one student, three
students, ... , and definite QPs like the students. The fundamental prop-
erty of GQPs is that they denote groups, including plural individuals. Even
leaving aside their referential reading (the type of epistemic specificity dis-
cussed first by Fodor and Sag 1982), GQPs can easily be construed as tak-
ing widest scope within their clause, though they might be c-commanded
by other scopal elements. We maintain that this capacity for wide scope
derives from their ability to introduce group referents. (Another property
of GQPs that derives from this is that they support collective interpreta-
tions in contexts where DQPs require a distributive construal.) Indefinite
and Bare-numeral GQPs can also support readings where they have very
local scope, behaving like CQPs. We factor out such readings (exhibited
by some of the members of this class) in terms of an ambiguity between a
GQP and CQP reading.

2.3 Logical functions associated with QP-types

On the basis of this typology, we identify the following logical functions and

relative LF positions where they are satisfied.

Scope positions for QP types

a. WhQPs take scope in the Spec of CP, where they assume their interrog-

ative force by virtue of their [+Wh] feature being checked via Spec-Head
agreement with the question operator Q.

NQPs take scope in the Spec of NegP, where their [+Neg] feature is checked
via Spec-Head agreement with the (silent) Neg® head, as in Zanuttini
(1991) and Moritz and Valois (1994). Clausal negation with not, which
we assume involves negative quantification over eventualities or situations,
is licensed in the same way. 3

. DQPs headed by each and every normally move to the Spec position of

the Distributive-Universal category DistP, where they undergo Spec-head

3In other words, we assume, with Krifka (1989) and Schein (1993), that the correct log-
ical translation of a negative sentence like John didn’t come is not —(come(j)), but rather
no:e[come(e) A Agent(e, j)] there are no events of coming where John is the agent.’
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agreement with the Distributive-Universal head Dist®, resulting in their
characteristic interpretation. We will also suggest, however, that every can
occur in other LF-positions as well, under certain circumstances; details
are given in Section 4 and 5.

d. GQPs may select one of several distinct scope positions, resulting in the
different interpretations that they receive:

(i) GQPs that are referentially independent normally occupy the Spec of
RefP position (located above CP), where they fulfill the function of
(logical) subject of predication, and are interpreted with widest scope
relative to other scope-bearing elements in their clause.

(ii) A lower LF position, accessible by GQPs headed by an indefinite or
a bare numeral, as well as QPs containing an externally bound vari-
able, is the Spec of ShareP, which we locate just below DistP.* GQPs
scoping in this position are interpreted with “dependent” specific ref-
erence, in the particular sense of specificity developed by Diesing
(1990, 1992), i.e. ranging over individuals whose existence is presup-
posed. (This allows for a kind of narrow-scope specific reading, dis-
cussed below.) Whereas specific indefinite GQPs can occupy either
the Spec of ShareP or the Spec of RefP position, specific definite
GQPs must normally take scope in the Spec of RefP of that clause,
and are scopally independent within it.

(iii) Indefinite or bare-numeral GQPs may also take scope in their Case
positions (i.e. in-situ), where they are interpreted non-specifically, like
CQPs.

e. CQPs cannot ordinarily be interpreted as specific. Therefore they are
interpreted in their Case positions and take scope in-situ. For a discussion
of the properties of CQPs, the reader is referred to Szabolcsi (1996).

The relative scope positions of our five QP-types, based on their location in
the functional structure of the clause, are given in (2):

4Definite QPs containing externally bound pronouns may also move to the Spec of ShareP,
though we will not consider such cases here.
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(2) RefP
Spec CP
I
GQP /\
Spec AgrS-P
| /\
WhQP
Spec DistP
| /\
CQP
Spec ShareP
I
DQP
Q Spec NegP
I
GQP

Spec AgrO-P
NéP Sp{\VP
chp

Given the well-known lack of island effects with definite and specific in-
definite GQPs—which, like indexical pronouns and names, can have a de re
construal even when they are embedded within islands—it has often been sug-
gested that a wide-scope referential (de re) construal does not depend on move-
ment. We will not be concerned here with the issue of how referential readings
(cf. Fodor and Sag 1982) of indefinite QPs should be generated. We refer the
reader to Kratzer (1995) for a recent proposal.

We assume that true GQPs become associated with an existential operator
over a restricted variable, ranging over witness sets of the GQP.5 This proposal
seems to us essentially similar to that contained in Reinhart (1995), where the
existential operator ranges over choice functions® (cf. Abusch 1994, Beghelli
1993, Beghelli 1995, Ruys 1993, etc. for further discussion).

Readers who are ill-at-ease with the postulation of functional categories will
probably react with some skepticism to our claim that they play a central role
in the syntax of quantifier scope assignment. We have several answers to this
type of objection. First, with respect to the scope positions for WhQPs and
NQPs, we are adding nothing new. Second, it is possible that our Spec of RefP
position can be identified with the Topic position, and it is well known that
topics undergo overt movement in many languages. (Our use of an LF landing
site for GQPs forces us to adopt a somewhat broader notion of the “topic”
function than what corresponds to the English Topic position, but many QP-
types, including downward-entailing QPs, are forbidden from moving there.)

5We are grateful to Anna Szabolcsi for originally suggesting this idea to us.
6Kratzer (1995) develops Reinhart’s suggestion to deal with the puzzle of island violations
with referential indefinites.
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Third, our Spec of ShareP position may correspond to the position of Diesing’s
scrambled narrow scope presuppositional QPs, though we make it accessible
only to existential QPs of this type. Fourth, DQPs move overtly in some
languages, to a position that we believe is none other than our Spec of DistP,
as we will show below.

2.4 Scope and feature-checking

In the system that we propose, the movement of DQPs and GQPs to their
scope position is driven by the need to check features that are associated to their
QP-types. We will therefore refer to our proposal as a checking theory of scope
assignment. We will return later on in this paper to the precise characterization
of some of these features (in particular, to the different featural specification of
every vs.each). Here we simply wish to present the overall picture, and evaluate
some of its consequences.

Membership in any of the QP-types listed in Section 2.2 is indicated by
a number of syntactic properties, some of which have been mentioned there.
These properties are morphologically encoded in the determiner position of the
DP or QP: this is obvious in the case of WhQPs and NQPs, as they bear Wh-
and n-markings, but it arguably holds for other QP-types as well.

Thus, the determiners of DQPs (each, every) have what we may call e-
morphology. Morphological markings (the presence of un-modified numerals,
(in)definite article, etc.) distinguish the various subtypes of GQPs, and CQPs
are characterized by the presence of modified numerals. These morphological
specifications are not inherently different from the usual ones (agreement, case
marking, etc.). We propose that they represent the syntactic encoding of logico-
semantic features.

What is special with these, we propose, is that they carry logico-semantic
features. WhQPs check their [+Wh] features through Spec-Head agreement
with a Wh-operator hosted in C°, and NQPs check [+Neg] in Spec of NegP,
under agreement with the Neg-operator in Neg®. Let us assume that a similar
process obtains with the other QP-types. Feature-checking may appear to be
more complex with the latter than it is with the former, but we are interested
in pursuing the hypothesis that the process is essentially the same.

Our basic assumption is that DQPs need to check their [+Dist] features un-
der agreement with a distributive operator (which we can indicate as V) hosted
in Dist?, whereas GQPs need to check group reference ([+group ref]) with an
existential operator-head (3). Existential operator-heads occur in both Share®
and Ref. The hierarchy in (2) thus corresponds to a hierarchy of operators. We
claim that one of the basic roles served by the functional hierarchy of the clause
is to encode the structural order in which semantic information is processed.
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This gives the basic idea of what we think is going on in the process of scope
assignment: scope is simply the by-product of agreement processes. Within this
overall scenario, individual sub-types of QPs (and possibly individual quanti-
fiers) realize additional features. GQPs are not, as a class, assigned a unique
landing site: though definites typically take scope in Spec of RefP, numerals
and indefinites can move to either RefP or ShareP. Extending the logic of our
analysis, we suggest that when a GQP is endowed with an extra feature that
marks it as the logical subject of predication, it will be driven to move up to
(Spec of) RefP; otherwise it will remain in ShareP. If an indefinite GQP lacks
the feature [+group ref] altogether, it behaves like a CQP, i.e. it goes no further
than its Case position at LF). Unlike DQPs and GQPs, we assume CQPs do
not have syntactically relevant features to check.

On a somewhat more technical level, we assume that scope positions can
be reached either directly, through (leftward/upward) movement, or by (right-
ward /downward) reconstruction to a lower link in the chain of the QP. There
is no principled difference between movement and reconstruction: each QP-
chain is associated with one scope position, defined as the unique link which is
compatible with the featural specification of the QP.”

2.5 The checking theory of scope versus other
approaches

As noted above, the Checking Theory of scope that we develop here is in
some respects a hybrid of May’s theory (May 1977, 1985), which holds that
all QPs undergo LF movement to their scope positions, and Hornstein’s (1995)
theory, which holds that quantifier scope is based strictly on chains formed by
the movement of QPs to their Case positions in AgrSP and AgrOP. Our theory
differs from these approaches in three important respects, however.

In assuming that only certain types of QPs undergo “QR” to a (non-Case)
scope position, the Checking theory differs from May’s theory, which holds that
all QPs undergo QR at LF, and also from Hornstein’s theory, which assumes
that none of them do. More fundamentally, the Checking Theory is sensitive
to the inherent semantic type of the QPs involved. First, certain QP-types
must undergo LF movement from their Case positions, whereas others do not.
Second, the Checking Theory provides targeted scope positions for each QP-
type that does move; just as Wh-QPs and NQPs have targeted scope positions
in the Spec of CP and NegP respectively, so DQPs headed by every or each,
definite GQPs, indefini