
Abstract We study the computational complexity of polyadic quantifiers in

natural language. This type of quantification is widely used in formal semantics to

model the meaning of multi-quantifier sentences. First, we show that the standard

constructions that turn simple determiners into complex quantifiers, namely Boolean

operations, iteration, cumulation, and resumption, are tractable. Then, we provide an

insight into branching operation yielding intractable natural language multi-quan-

tifier expressions. Next, we focus on a linguistic case study. We use computational

complexity results to investigate semantic distinctions between quantified reciprocal

sentences. We show a computational dichotomy between different readings of

reciprocity. Finally, we go more into philosophical speculation on meaning,

ambiguity and computational complexity. In particular, we investigate a possibility

of revising the Strong Meaning Hypothesis with complexity aspects to better

account for meaning shifts in the domain of multi-quantifier sentences. The paper

not only contributes to the field of formal semantics but also illustrates how the tools

of computational complexity theory might be successfully used in linguistics and

philosophy with an eye towards cognitive science.

Keywords Generalized quantifier theory � Computational complexity �
Polyadic quantification � Multi-quantifier sentences � Strong Meaning Hypothesis

1 Introduction

Quantifier expressions occur whenever we describe the world, and communicate

about it. Generalized quantifier theory is therefore one of the basic tools of linguistics
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today, studying the possible meanings and the inferential power of quantifier

expressions by logical means. The classical version of the theory was developed in

the 1980s, at the interface of linguistics, mathematics and philosophy. Until now,

advances in ‘‘classical’’ generalized quantifier theory has focused mainly on defin-

ability questions and their applications to linguistics (see e.g. Keenan and

Westerståhl 1997). This misses out on computation, the third pillar of language use

and logical activity which can help to bridge logical perspective on linguistics with

cognitive science results.

Moreover, even though there have been interesting papers devoted to polyadic

quantifiers (see e.g. van Benthem 1989; Keenan 1992, 1996) most research in

generalized quantifier theory has been directed towards monadic quantification. In

the theory monadic quantifiers are simply the relations between subsets of the

universe. They express meanings of simple determiners, like ‘‘some’’. The recent

book by Peters and Westerståhl (2006) bears witness to this tendency, devoting

more than 90 of its volume to the discussion of monadic quantifiers. It is then clear

that definability and complexity of monadic quantifiers has been extensively

studied. For example, it is known that on finite models monadic quantifiers definable

in first-order logic are recognizable by acyclic finite-automata (van Benthem 1986);

first-order logic enriched by all quantifiers of the form ‘‘divisible by n’’ corresponds

to the class of regular languages (Mostowski 1998); and that proportional quanti-

fiers, like ‘‘most’’, can be recognized by push-down automata (van Benthem 1986).

Those results suggest that the verification of monadic quantifiers in natural language

should be relatively easy. Indeed, a corpus of empirical studies shows that the

cognitive task of recognizing the logical-value of sentences with monadic quanti-

fiers is simple. In fact, recently the automata-theoretic model for processing

monadic quantifiers has been confronted with human comprehension and the results

show that the model captures many important cognitive aspects of the problem. For

example, on the basis of differences between minimal automata recognizing various

quantifiers one can predict the reaction time needed by subjects to solve a task (see

e.g. Szymanik and Zajenkowski 2010a) as well as working memory activation both

on the behavioral (see Szymanik and Zajenkowski 2010b) and neurological level

(see e.g. McMillan et al. 2005) during the processing of a quantifier sentence. Those

studies—linking computational complexity with cognitive processing—lead to a

natural interest in computational properties of polyadic quantification with an eye

towards cognitive applications.

In this paper we study the semantic constructions that turn simple monadic

quantifiers into more complex ones: Boolean operations, iteration, cumulation,

resumption, branching, and Ramseyfication. Those complex quantifier structures are

used extensively in linguistics for giving the semantics of multi-quantifier sentences.

The task is non-trivial as sentences with many quantifiers are semantically

ambiguous. They can have many possible readings given by various interpretations

of scope dependencies. Those interpretations may depend not just on the structure

but also on the context. Various accounts of quantifier scope have been developed

and the theoretical models predict different patterns of scope preferences (see e.g.

Bach 1982; Bott and Radó 2009; Gierasimczuk and Szymanik 2009; Jaszczolt 2002;

Kempson and Cormack 1981a, b, 1982; May 1985; Robaldo 2009; Tennant 1981).
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Our approach rooted in computational complexity theory and cognitive science

provides new complexity arguments enriching that classical discussion.

Moreover, polyadic constructions have been extensively discussed in logic

mostly with respect to their definability properties (see e.g. Hella et al. 1997). As we

will see those definability results very often imply complexity bounds. However, as

we are driven by a psychological question about the strategies people may use to

comprehend quantifiers we usually show a direct construction of the relevant

procedures leading to complexity results. For example, we prove that Boolean

operations, iteration, cumulation, and resumption do not increase computational

complexity when applied to determiners by constructing a polynomial model-

checkers for polyadic quantifiers from polynomial-time bounded Turing machines

computing corresponding monadic determiners. As most of the natural language

determiners may be modeled by monadic quantifiers computable in polynomial time

this observation suggests that typically polyadic quantifiers in natural language are

tractable. However, the next two polyadic lifts we are studying, branching and

Ramseyfication, can lead to intractable constructions. Those complex quantifiers

find their use, for instance, in capturing the semantics of reciprocal sentences with

quantified antecedents.

The paper is organized as follows. In Sect. 2 we present preliminaries, including

a quick tour into computational complexity theory. Next in Sect. 3 we discuss

computational complexity of standard lifts turning tractable monadic determiners

into more complex quantifier constructions being still easy to compute: Boolean

combinations, iteration, cumulation, and resumption. Then, in Sect. 3.6 we briefly

discuss branching as an intractable polyadic lift. Section 3.6 is addressed to more

logically inclined readers. Next, we provide a linguistic case study in Sect. 4, where

we apply Ramsey quantifiers to study complexity and meaning shifts in the domain

of quantified reciprocal sentences. This section, though strongly grounded in the

first part of the paper, can be read independently from the previous sections. We end

with the more philosophical Sect. 5, where we consider the potential influence of

computational complexity on human interpretation of multi-quantifier sentences.

We hope that the paper will help lay a groundwork for extending natural lan-

guage semantics with computational and cognitive aspects by underlining issues of

computational complexity and their possible interplay with ‘‘difficulty’’ as experi-

enced by subjects interpreting sentences. We also believe that our considerations

will directly contribute to the semantic problem of scopal-ambiguity and multiple

quantification.

2 Preliminaries

2.1 Generalized quantifiers

In its simplest form generalized quantifier theory assigns meanings to statements by

defining the semantics of the quantifiers occurring in them. For instance, the

quantifiers ‘‘every’’, ‘‘some’’, ‘‘at least 7’’, ‘‘an even number of’’, and ‘‘most’’ build

the following sentences.
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(1) Every poet has low self-esteem.

(2) An even number of the students saw a ghost.

(3) Most of the students think they are smart.

What is the semantics assigned to these quantifiers? Formally they are treated as

relations between subsets of the universe. For instance, in sentence (1) ‘‘every’’ is a

binary relation between the set of poets and the set of people having low self-

esteem. Following the natural linguistic intuition we will say that sentence (1) is true

if and only if the set of poets is included in the set of people having low self-esteem.

Hence, the quantifier ‘‘every’’ corresponds in this sense to the inclusion relation.

Let us now have a look at sentence (2). It is true if and only if the intersection of

the set of all students with the set of people who saw a ghost is of even cardinality.

That is, this quantifier says something about the parity of the intersection of two sets.

Finally, let us consider example (3). Let us assume that the quantifier ‘‘most’’

simply means ‘‘more than half’’. Hence, sentence (3) is true if and only if the

cardinality of the set of students who think they are smart is greater than the car-

dinality of the set of students who do not think they are smart. That is, the quantifier

‘‘most’’ expresses that these two kinds of student exist in a specific proportion.

Therefore, one can propose the following formalization. A quantifier Q, like

‘‘every’’, ‘‘an even number of’’, ‘‘most’’, is a way of associating with each set M a

function from pairs of subsets of M into f0; 1g (False, True). Specifically,

EveryM ½A;B� ¼ 1 iff A � B

EvenM ½A;B� ¼ 1 iff cardðA \ BÞ is even

MostM½A;B� ¼ 1 iff cardðA \ BÞ > cardðA� BÞ

The above approach may be extended to cover not only quantifiers of type (1, 1)

(binding two unary predicates) but all quantifiers of any type t ¼ ðn1; . . . ; nkÞ
(binding k predicates each of arity ni for 1 � i � k). Here simply, QM maps each

k-tuple of relations where each Ri is a subset of Mni . However, following the

historical line of development below we introduce different but equivalent definition

of generalized quantifier. The new definition, identifying quantifiers with classes of

models, comes handy when considering computational properties.

Frege was one of the major figures in forming the modern concept of quantifi-

cation. In his Begriffsschrift (1879) he made a distinction between bound and free

variables and treated quantifiers as well-defined, denoting entities. He thought of

quantifiers as third-order objects—relations between subsets of a given fixed

universe. This way of thinking about quantifiers is still present, particularly in

linguistics, and we briefly introduced it above. However, historically speaking the

notion of generalized quantifier was formulated for the first time in a different,

although equivalent, way: generalized quantifiers were defined as classes of models
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closed under isomorphisms. Firstly, in a seminal paper of Andrzej Mostowski

(1957) the notions of existential and universal quantification were extended to the

concept of a monadic generalized quantifier binding one variable in one formula,

and later this was generalized to arbitrary types by Per Lindström (1966). Below we

give the formal definition.

Definition 1 Let t ¼ ðn1; . . . ; nkÞ be a k-tuple of positive integers. A generalized

quantifier of type t is a class Q of models of a vocabulary �t ¼ fR1; . . . ;Rkg; such

that Ri is ni-ary for 1 � i � k; and Q is closed under isomorphisms, i.e. if M and M0

are isomorphic, then

ðM 2 Q()M0 2 QÞ:

Definition 2 If in the above definition for all i : ni ¼ 1; then we say that a quantifier

is monadic, otherwise we call it polyadic.

Let us explain this definition further by giving a few examples. Sentence (1) is of

the form Every A is B, where A stands for poets and B for people having low self-

esteem. As we explained above the sentence is true if and only if A � B. Therefore,

according to the definition, the quantifier ‘‘every’’ is of type (1, 1) and corresponds

to the class of models ðM;A;BÞ in which A � B. For the same reasons the quantifier

‘‘an even number of’’ corresponds to the class of models in which the cardinality of

A \ B is an even number. Finally, let us consider the quantifier ‘‘most’’ of type

(1, 1). As we mentioned before the sentence Most As are B is true if and only if

cardðA \ BÞ > cardðA� BÞ and therefore the quantifier corresponds to the class of

models where this inequality holds.

Therefore, formally speaking:

Every ¼ fðM;A;BÞ j A;B � M and A � Bg:
Even ¼ fðM;A;BÞ j A;B � M and cardðA \ BÞ is eveng:
Most ¼ fðM;A;BÞ j A;B � M and cardðA \ BÞ > cardðA� BÞg:

It was realized by Montague (1970) that the notion of generalized quantifier—as a

relation between sets—can be used to model the denotations of noun phrases in

natural language. Barwise and Cooper (1981) introduced the apparatus of generalized

quantifiers as a standard semantic toolbox and started the rigorous study of their

properties from the linguistic perspective.

Notice that every statement involving a quantifier Q is about some universe M.

Sometimes it is useful to define a new quantifier saying that Q restricted to some

subset of M behaves exactly as it behaves on the whole universe M. Below we give

the formal definition.

Definition 3 Let Q be of type ðn1; . . . ; nkÞ; then the relativization of Q;Qrel; has the

type ð1; n1; . . . ; nkÞ and is defined for A � M;Ri � Mni ; 1 � i � k as follows:

Qrel
M ½A;R1; . . . ;Rk� () QA½R1 \ An1 ; . . . ;Rk \ Ank �:

In particular, for Q of type (1) we have:
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Qrel
M ½A;B� () QA½A \ B�:

This already shows that many natural language determiners of type (1, 1) are just

relativizations of some familiar logical quantifiers, e.g.:

Some ¼ 9rel;

Every ¼ 8rel:

Peters and Westerståhl (2006, Chap. 4.4) discuss this operator in great depth—

among others—they show that it preservers isomorphism invariance (ISOM) and

that all ISOM natural language quantifiers that satisfy extensions (EXT) and con-

servativity (CONS) are relativizations of type (1) quantifiers. CONS (domain

independence) is a property characteristic of natural language quantifiers. It says

that the behavior of a quantifier does not change when you extend the universe. The

formal definition follows.

Definition 4 A quantifier of type ðn1; . . . ; nkÞ satisfies domain independence (EXT)

iff the following holds:

If Ri � Mni ; 1 � i � k;M � M0; then QM½R1; . . . ;Rk� () QM0 ½R1; . . . Rk�:

The property which in a sense extends EXT is conservativity:

Definition 5 A type (1, 1) quantifier Q is conservative (CONS) iff for all M and all

A;B � M:

QM½A;B� () QM ½A;A \ B�:

Quantifiers closed under isomorphisms (ISOM) and satisfying CONS and EXT are

known in the literature as CE-quantifiers. It has been hypothesized that all natural

language determiners correspond to CE-quantifiers (see e.g. Barwise and Cooper

1981).

2.2 Computing quantifiers

For the purposes of presenting a computational complexity discussion on quantifiers

we restrict ourselves to ISOM quantifiers over finite universes. It allows us to

develop some suitable representation of quantifiers. Finite models can be encoded as

finite strings over some vocabulary as follows. Let K be a class of finite models over

some fixed vocabulary �: We want to treat K as a problem (language) over the

vocabulary �: To do this we need to code �-models as finite strings. We can assume

that the universe of a model M 2 K consists of natural numbers: U ¼ f1; . . . ; ng: A

natural way of encoding a model M (up to isomorphism) is by listing its universe,

U, and storing the interpretation of the symbols in � by writing down their truth-

values on all tuples of objects from U:
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Definition 6 Let � ¼ fR1; . . . ;Rkg be a relational vocabulary and M a �-model of

the following form: M ¼ ðU;RM
1 ; . . . ;RM

k Þ; where U ¼ f1; . . . ; ng is the universe of

model M and RM
i � Uni is an ni-ary relation over U; for 1 � i � k: We define a

binary encoding for �-models. The code for M is a word over f0; 1;#g of length

OððcardðUÞÞcÞ; where c is the maximal arity of the predicates in � (or c ¼ 1 if there

are no predicates).

The code has the following form:

~n# ~RM
1 # � � �# ~RM

n ; where:

� ~n is the part coding the universe of the model and consists of n 1s.

� ~RM
i —the code for the ni-ary relation RM

i —is an nni -bit string whose j-th bit is 1 iff

the j-th tuple in Uni (ordered lexicographically) is in RM
i .

� # is a separating symbol.

Let us give an example of a binary code corresponding to a model. Consider

vocabulary � ¼ fP;Rg; where P is a unary predicate and R a binary relation. Take

the �-model M ¼ ðM;PM ;RMÞ; where the universe M ¼ f1; 2; 3g; the unary rela-

tion PM � M is equal to f2g and the binary relation RM � M2 consists of the pairs

ð2; 2Þ and ð3; 2Þ: Notice, that we can think about such models as graphs in which

some nodes are ‘‘colored’’ by P:
Let us step by step construct the code of the model:

� ~n consists of three 1s as there are three elements in M:
� ~PM is the string of length three with 1s in places corresponding to the elements

from M belonging to PM : Hence ~PM ¼ 010 as PM ¼ f2g:
� ~RM is obtained by writing down all 32 ¼ 9 binary strings of elements from M in

lexicographical order and substituting 1 in places corresponding to the pairs

belonging to RM and 0 in all other places. As a result ~RM ¼ 000010010:

Adding all together the code for M is 111#010#000010010:
Therefore, according to Definition 1, generalized quantifiers can be treated as

classes of finite strings, i.e., as languages. Now we can easily fit the notions into the

descriptive complexity paradigm (see e.g. Immerman 1998) and the next section of

the paper introduces basic concepts of computational complexity theory.

Definition 7 By the complexity of a quantifier Q we mean the computational

complexity of the corresponding class of finite models.

Consider a quantifier of type (1, 2). Let us take a model of this form, M, and a

quantifier Q. Our computational problem is to decide whether M 2 Q; or equiva-

lently, to solve the query whether M � Q½A;R�:
This can simply be viewed as the model-checking problem for quantifiers. These

notions can easily be generalized to quantifiers of arbitrary types ðn1; . . . ; nkÞ by

considering classes of models of the form M ¼ ðM;R1; . . . ;RkÞ; where Ri � Mni ;
for i ¼ 1; . . . ; k:

Generalized quantifiers in finite models were first considered from the compu-

tational complexity point of view by Blass and Gurevich (1986). They investigated
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various forms of branching (Henkin) quantifiers (see Sect. 3.6) defining NP or

NLOGSPACE complete graph problems.

Definition 8 We say that a quantifier Q is NP-hard if the corresponding class of

finite models is NP-hard. Q is NP-complete if the corresponding class belongs to NP

and is NP-hard.

In the rest of the paper we will investigate which natural language polyadic

quantifiers are NP-hard (intractable). But before we turn to it we need to recall some

basic concepts of the computational complexity theory (Papadimitriou 1993, for an

extensive treatment see).

2.3 Complexity classes

The basic device of computation in the computational complexity theory is a multi-

tape Turing (1936) machine. Most of the particulars of Turing machines are not of

direct interest to us. Nevertheless, we review the basic idea. A multi-tape Turing
machine consists of a read-only input tape, a read and write working tape, and a

write-only output tape. Every tape is divided into cells scanned by the read-write
head of the machine. Each cell contains a symbol from some finite alphabet. The

tapes are assumed to be arbitrarily extendable to the right. At any time the machine

is in one of a finite number of states. The actions of a Turing machine are deter-

mined by a finite programme which determines, according to the current configu-
ration (i.e., the state of the machine and the symbols in the cells being scanned)

which action should be executed next. A computation of a Turing machine consists

thus of a series of successive configurations. A Turing machine is deterministic if its

state transitions are uniquely defined, otherwise it is non-deterministic. Therefore, a

deterministic Turing machine has a single computation path (for any particular

input) and a non-deterministic Turing machine has a computation tree. A Turing

machine accepts an input if its computation on that inputs halts after finite time in

an accepting state. It rejects an input if it halts in a rejecting state.

Definition 9 Let � be some finite alphabet and L � �	 a language (a subset of the

set of all finite strings over alphabet �). We say that a deterministic Turing machine,

M, decides L if for every x 2 �	M halts in the accepting state on x whenever x 2 L
and in the rejecting state, otherwise. A non-deterministic Turing machine, M, rec-

ognizes L if for every x 2 L there is a computation of M which halts in the accepting

state and there is no such computation for any x 62 L:

It is important to note that non-deterministic Turing machines recognize the same

class of languages as deterministic ones. This means that for every problem which

can be recognized by a non-deterministic Turing machine there exists a determin-

istic Turing machine deciding it.

Theorem 1 If there is a non-deterministic Turing machine N recognizing a lan-
guage L; then there exists a deterministic Turing machine M for language L:

Proof The basic idea for simulating N is as follows. Machine M considers all

computation paths of N and simulates N on each of them. If N would halt on a given
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computation path in an accepting state then M also accepts. Otherwise, M moves to

consider the next computation path of N. M rejects the input if machine N would not

halt in an accepting state at any computation path.

However, the length of an accepting computation of the deterministic Turing

machine is, in general, exponential in the length of the shortest accepting compu-

tation of the non-deterministic Turing machines as a deterministic machine has to

simulate all possible computation paths of a non-deterministic machine.1 The

question whether this simulation can be done without exponential growth in com-

putation time leads us to computational complexity theory.

Let us start proper complexity considerations with the notation used for com-

paring the growth rates of functions.

Definition 10 Let f ; g : !�!! be any functions. We say that f ¼ OðgÞ if there

exists a constant c > 0 such that f ðnÞ � cgðnÞ for almost all (i.e., all but finitely

many) n:

Let f : !�!! be a natural number function. TIME(f ) is the class of languages

(problems) which can be recognized by a deterministic Turing machine in time

bounded by f with respect to the length of the input. In other words, L 2 TIMEðf Þ if

there exists a deterministic Turing machine such that for every x 2 L; the compu-

tation path of M on x is shorter than f ðnÞ; where n is the length of x. TIME(f ) is

called a deterministic computational complexity class. A non-deterministic com-
plexity class, NTIME(f ), is the class of languages L for which there exists a non-

deterministic Turing machine M such that for every x 2 L all branches in the

computation tree of M on x are bounded by f ðnÞ and moreover M decides L: One

way of thinking about a non-deterministic Turing machine bounded by f is that it

first guesses the right answer and then deterministically in a time bounded by f
checks if the guess is correct.

SPACE(f ) is the class of languages which can be recognized by a deterministic

machine using at most f ðnÞ cells of the working-tape. NSPACE(f ) is defined

analogously.

Below we define some well-known complexity classes, i.e., the sets of languages

of related complexity. In other words, we can say that a complexity class is the set

of problems that can be solved by a Turing machine using Oðf ðnÞÞ of time or space

resource, where n is the size of the input.

Definition 11

� LOGSPACE ¼
S

k2! SPACEðk log nÞ
� PTIME ¼

S
k2! TIMEðnkÞ

� NPTIME ¼
S

k2! NTIMEðnkÞ

1 In general, the simulation outlined above leads to a deterministic Turing machine working in time

Oðcf ðnÞÞ, where f ðnÞ is the time used by a non-deterministic Turing machine solving the problem and

c > 1 is a constant depending on that machine (see e.g. Papadimitriou 1993, p. 49 for details).
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If L 2 NPTIME, then we say that L is decidable (computable, solvable) in non-

deterministic polynomial time and likewise for other complexity classes.

The question whether PTIME (P for short) is strictly contained in NPTIME (NP)

is the famous Millennium Problem—one of the most fundamental problems in

theoretical computer science, and in mathematics in general. The importance of this

problem reaches well outside the theoretical sciences as the problems in NP are

usually taken to be intractable or not efficiently computable as opposed to the

problems in PTIME which are conceived of as efficiently solvable. In the paper we

take this distinction for granted and investigate semantic constructions in natural

language from that perspective.

The intuition that some problems are more difficult than others is formalized in

complexity theory by the notion of a reduction. We will use only polynomial time

many-one (Karp 1972) reductions.

Definition 12 We say that a function f : A�!A is a polynomial time computable

function iff there exits a deterministic Turing machine computing f ðwÞ for every

w 2 A in polynomial time.

Definition 13 A problem L � �	 is polynomial reducible to a problem L0 � �	if
there is a polynomial time computable function f : �	 �!�	 from strings to strings,
such that

w 2 L() f ðwÞ 2 L0:

We will call such function f a polynomial time reduction of L to L0:

Definition 14 A language L is complete for a complexity class C if L 2 C and every

language in C is reducible to L:

Intuitively, if L is complete for a complexity class C then it is among the

hardest problems in this class. The theory of complete problems was initiated

with a seminal result of Cook (1971) who proved that the satisfiability problem

for propositional formulae is complete for NP. Many other now famous problems

were then proven NP-complete by Karp (1972)—including some versions of

satisfiability as well as some graph problems, e.g. CLIQUE, which we will

use further in the text. Garey and Johnson (1979) contains a list of NP-complete

languages.

Moreover, we will need a concept of relativization defined via oracle machines.

An oracle machine can be described as a Turing machine with a black box, called an

oracle, which is able to decide certain decision problems in a single step. More

precisely, an oracle machine has a separate write-only oracle tape for writing down

queries for the oracle. In a single step, the oracle computes the query, erases its

input, and writes its output to the tape.

Definition 15 If B and C are complexity classes, then B relativized to C, BC; is the

class of languages recognized by oracle machines which obey the bounds defining B
and use an oracle for problems belonging to C:
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3 Standard polyadic lifts

As we pointed out in the introduction most research in generalized quantifier theory

has been directed towards monadic quantification in natural language. Some

researchers, e.g., Landman (2000), claim even that polyadic generalized quantifiers

do not occur in natural language, at all. However, it is indisputable that sentences can

combine several noun phrases with verbs denoting not only sets but also binary or

ternary relations. In such cases the meanings can be given by polyadic quantifiers.

One way to deal with polyadic quantification in natural language is to define it in

terms of monadic quantifiers using Boolean combinations and so-called polyadic

lifts: iteration, cumulation, and resumption (see e.g. van Benthem 1989). We observe

that these operations do not increase the computational complexity of quantifiers.

3.1 Boolean combinations

To account for complex noun phrases, like those occurring in sentences (4)–(7), we

define disjunction, conjunction, outer negation (complement) and inner negation

(post-complement) of generalized quantifiers.

(4) At least 5 or at most 10 departments can win EU grants. (disjunction)

(5) At least 100 and not more than 200 students started in the marathon.

(conjunction)

(6) Not all students passed. (outer negation)

(7) All students did not pass. (inner negation)

Definition 16 Let Q;Q0 be generalized quantifiers, both of type ðn1; . . . ; nkÞ: We

define:

ðQ ^ Q0ÞM ½R1; . . . ;Rk� () QM ½R1; . . . ;Rk� and Q0M ½R1; . . . ;Rk� ðconjunctionÞ

ðQ _ Q0ÞM ½R1; . . . ;Rk� () QM ½R1; . . . ;Rk� or Q0M½R1; . . . ;Rk� ðdisjunctionÞ

ð:QÞM ½R1; . . . ;Rk� () not QM ½R1; . . . ;Rk� ðcomplementÞ

ðQ:ÞM ½R1; . . . ;Rk� () QM½R1; . . . ;Rk�1;M � Rk� ðpost-complementÞ

3.2 Iteration

The Fregean nesting of first-order quantifiers, e.g., 89, can be applied to any gen-

eralized quantifier by means of iteration. For example, iteration may be used to

express the meaning of the following sentence in terms of its constituents.
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(8) Most logicians criticized some papers.

The above sentence is true (under one interpretation) iff there is a set containing

most logicians such that every logician from that set criticized at least one paper, or

equivalently:

ltðMost; SomeÞ½Logicians, Papers, Criticized�:

Of course the sentence can have a different reading corresponding to other lifts than

iteration. We will introduce another possibility in Sect. 3.3. But first let us define

iteration precisely.

Definition 17 Let Q and Q0 be generalized quantifiers of type (1, 1). Let A;B be

subsets of the universe and R a binary relation over the universe. Suppressing the

universe, we will define the iteration operator as follows:

ItðQ;Q0Þ½A;B;R� () Q½A; fa j Q0½B;RðaÞ�g�;

where RðaÞ ¼ fbjRða; bÞg:
Therefore, the iteration operator produces polyadic quantifiers of type (1, 1, 2)

from two monadic quantifiers of type (1, 1). The definition can be extended to cover

iteration of monadic quantifiers with an arbitrary number of arguments (see e.g.

Peters and Westerståhl 2006, p. 347).

3.3 Cumulation

Consider the following sentence:

(9) Eighty professors taught sixty courses at ESSLLI’08.

The analysis of this sentence by iteration of the quantifiers ‘‘eighty’’ and ‘‘sixty’’

implies that there were 80
 60 ¼ 4800 courses at ESSLLI’08. Therefore, obvi-

ously this is not the meaning we would like to account for. This sentence pre-

sumably means neither that each professor taught 60 courses (Itð80; 60Þ) nor that

each course was taught by 80 professors (Itð60; 80Þ). In fact, this sentence is an

example of so-called cumulative quantification, saying that each of the 80 profes-

sors taught at least one from 60 courses and each of the courses was taught by at

least one professor. The reading might be linguistically forced as follows:

(10) Eighty professors taught a total of sixty courses at ESSLLI’08

Cumulation is easily definable in terms of iteration and the existential quantifier as

follows.

Definition 18 Let Q and Q0 be generalized quantifiers of type (1, 1). A;B are subsets

of the universe and R is a binary relation over the universe. Suppressing the universe

we will define the cumulation operator as follows:
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CumðQ;Q0Þ½A;B;R� () ItðQ; SomeÞ½A;B;R� ^ ItðQ0; SomeÞ½B;A;R�1�:

3.4 Resumption

The next lift we are about to introduce—resumption (vectorization)—has found

many applications in theoretical computer science (see e.g. Immerman 1998). The

idea here is to lift a monadic quantifier in such a way as to allow quantification over

tuples. This is linguistically motivated when ordinary natural language quantifiers

are applied to pairs of objects rather than individuals, for instance consider:

(11) Men seldom make passes at girls who wear glasses

(12) People usually are grateful to firemen who rescue them.

In (11), for example, the first argument is the product of the set of men and the set of

girls wearing glasses and (12) expresses a relation between the set of pairs: (a

person, a fireman) such that the latter rescues the former. Additionally, resumption

is sometimes used for interpretation of certain cases of adverbial quantification and

‘‘donkey’’ anaphora (see e.g. Peters and Westerståhl 2006, Chap. 10.2 for a criti-

cism).

Below we give a formal definition of the resumption operator.

Definition 19 Let Q be any monadic quantifier with n arguments, U a universe, and

R1; . . . ;Rn � Uk for k � 1. We define the resumption operator as follows:

ReskðQÞU ½R1; . . . ;Rn� () ðQÞUk ½R1; . . . ;Rn�:

That is, ReskðQÞ is just Q applied to a universe, Uk, containing k-tuples. In par-

ticular, Res1ðQÞ ¼ Q.

3.5 PTIME GQs are closed under Bool, It, Cum, and Res

When studying the computational complexity of quantifiers a natural question arises

in the context of polyadic lifts. Do they increase complexity? In particular, is it

possible that two tractable determiners can be turned into an intractable quantifier?

We show that PTIME computable quantifiers are closed under Boolean combi-

nations and the three lifts defined above. As we are interested in the strategies

people may use to comprehend quantifiers we show a direct construction of the

relevant procedures.

Proposition 1 Let Q and Q0 be monadic quantifiers computable in polynomial time
with respect to the size of a universe. Then the quantifiers: (1):Q; (2)Q:;
(3)Q ^Q0; (4)ItðQ;Q0Þ; (5)CumðQ;Q0Þ; (6)ResðQÞ are PTIME computable.

Proof Let us assume that there are Turing machines M and M0 computing quantifiers

Q and Q0, respectively. Moreover M and M0 work in polynomial time with respect to

any finite universe U:
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(1) A Turing machine computing :Q is like M. The only difference is that we

change accepting states into rejecting states and vice versa. In other words, we

accept :Q whenever M rejects Q and reject whenever M accepts. The working

time of so-defined new Turing machine is exactly the same as the working time

of machine M. Hence, the outer negation of PTIME quantifiers can be recog-

nized in polynomial time.

(2) Recall that on a given universe U we have the following equivalence:

ðQ:ÞU ½R1; . . . ;Rk� () QU ½R1; . . . ;Rk�1;U � Rk�: Therefore, for the inner

negation of a quantifier it suffices to compute U � Rk and then use the poly-

nomial Turing machine M on the input QU ½R1; . . . ;Rk�1;U � Rk�:
(3) To compute Q ^ Q0 we have to first compute Q using M and then Q0 using M0.

If both machines halt in an accepting state then we accept. Otherwise, we reject.

This procedure is polynomial, because the sum of the polynomial bounds on

working time of M and M0 is also polynomial.

(4) Recall that ItðQ;Q0Þ½A;B;R� () Q½A;A0�, where A0 ¼ fajQ0½B;RðaÞ�g, for

RðaÞ ¼ fbjRða; bÞg: Notice that for every a from the universe, RðaÞ is a monadic

predicate. Now, to construct A0 in polynomial time we execute the following

procedure for every element from the universe. We initialize A0 ¼ ;. Then we

repeat for each a from the universe the following: Firstly we compute RðaÞ.
Then using the polynomial machine M0 we compute Q0½B;RðaÞ�. If the machine

accepts, then we add a to A0. Having constructed A0 in polynomial time we just

use the polynomial machine M to compute Q½A;A0�.
(5) Notice that cumulation is defined in terms of iteration and existential quantifier

(see Definition 18). Therefore, this point follows from the previous one.

(6) To compute ReskðQÞ over the model M ¼ ff1; . . . ; ng;R1; . . . ;Rng for a fixed

k, we just use the machine M with the following input ~nk# ~R1# . . . # ~Rn instead

of ~n# ~R1# . . . # ~Rn. Recall Definition 6.

Additionally, let us give an argument that the above proposition holds for all

generalized quantifiers, and not only for the monadic ones. Notice that the Boolean

operations as well as iteration and cumulation are definable in first-order logic.

Recall that the model-checking problem for first-order sentences is in

LOGSPACE � PTIME (see e.g. Immerman 1998). Let A be a set of generalized

quantifiers of any type from a given complexity class C. Then the complexity of

model-checking for sentences from FOðAÞ is in LOGSPACEC (deterministic loga-

rithmic space with an oracle from C). One simply uses a LOGSPACE Turing

machine to decide the first-order sentences, evoking the oracle when a quantifier

from A appears. Therefore, the complexity of Boolean combinations, iteration and

cumulation of PTIME generalized quantifiers has to be in LOGSPACEPTIME ¼
PTIME.

The case of the resumption operation is slightly more complicated. Resumption is

not definable in first-order logic for all generalized quantifiers (see Hella et al.

1997). However, notice that our argument given in point (6) of the proof does

not make use of any assumption about the arity of Ri. Therefore, the same proof

works for resumption of polyadic quantifiers. The above considerations allow us to
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formulate the following theorem which is the generalization of the previous prop-

osition.

Theorem 2 Let Q and Q0 be generalized quantifiers computable in polynomial time
with respect to the size of a universe. Then the quantifiers: (1) :Q; (2) Q:;
(3) Q ^ Q0; (4) ItðQ;Q0Þ; (5) CumðQ;Q0Þ; (6) ResðQÞ are PTIME computable.

We have shown that PTIME quantifiers are closed under Boolean operations as

well as under the polyadic lifts occurring frequently in natural language. In other

words, these operations do not increase the complexity of quantifiers. As we can

safely assume that most of the simple determiners in natural language are PTIME

computable the semantics of the polyadic quantifiers studied above is tractable. This

seems to be good news for the computational theory of natural language processing

for multi-quantifier sentences. However, not all polyadic quantifiers in natural

language are polynomial-time computable. In the next section we study two noto-

rious examples of complex quantification.

3.6 An intractable polyadic lift: branching

3.6.1 Branching quantifiers

As a matter of chronology, the idea of generalizing Frege’s quantifiers arose much

earlier than the work of Lindström (1966). The idea was to analyze possible

dependencies between quantifiers—dependencies which are not allowed in the

standard linear (Fregean) interpretation of logic. Branching quantification (also

called partially ordered quantification, or Henkin quantification) was proposed by

Leon Henkin (1961) (for a survey see Krynicki and Mostowski 1995). Branching

quantification significantly extends the expressibility of first-order logic; for

example the so-called Ehrenfeucht sentence, which uses branching quantification,

expresses infinity:

9t 8x9x
0

8y9y0
� �

ðx ¼ y() x0 ¼ y0Þ ^ x0 6¼ t½ �:

Informally speaking, the idea of such a construction is that for different rows the

values of the quantified variables are chosen independently. The semantics of

branching quantifiers can be formulated mathematically in terms of Skolem functions.

For instance, the Ehrenfeucht sentence after Skolemization has the following form:

9t9f9g 8x8yðx ¼ y() f ðxÞ ¼ gðyÞÞ ^ f ðxÞ 6¼ t½ �:

Via simple transformations this sentence is equivalent to the following:

9f8x8y ðx 6¼ y) f ðxÞ 6¼ f ðyÞÞ ^ ð9t8xðf ðxÞ 6¼ tÞÞ½ �;
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and therefore, it expresses infinity: there exists an injective function from the uni-

verse to the universe which is not surjective. It is true in a model M if and only if the

domain of M is infinite (Dedekind).

The idea of the independent (branching) interpretation of quantifiers has given

rise to many advances in logic. Let us mention here only the logical study of

(in)dependence by investigating Independence Friendly Logic (see Hintikka 1996)

and Dependence Logic (see Väänänen 2007). It is also worth noting that Game-

Theoretic Semantics (see Hintikka and Sandu 1997) was originally designed as an

alternative semantics for branching quantification (Independence Friendly Logic).

Henkin’s quantifiers are intractable. The famous linguistic application of

branching quantifiers is for the study of scope dependencies in multi-quantifier

sentences. Consider the following statements:

(13) Some relative of each villager and some relative of each townsman hate

each other.

(14) Some book by every author is referred to in some essay by every critic.

(15) Every writer likes a book of his almost as much as every critic dislikes

some book he has reviewed.

According to Jaakko Hintikka (1973), to express the meaning of such sentences

we need branching quantifiers. In particular, the interpretation of sentence (13) is

expressed as follows:

(16)
8x9y
8z9w

� �

½ðVðxÞ ^ TðzÞÞ ) ðRðx; yÞ ^ Rðz;wÞ ^Hðy;wÞÞ�;

where unary predicates V and T denote the set of villagers and the set of townsmen,

respectively. The binary predicate symbol Rðx; yÞ denotes the relation ‘‘x and y are

relatives’’ and Hðx; yÞ the relation ‘‘x and y hate each other’’.

The polyadic generalized quantifier Z of type (2, 2), called Hintikka’s form, can

be used to express the prefix ‘‘some relative of each . . . and some relative of each

. . .’’. A formula Zxy ½’ðx; yÞ;  ðx; yÞ� can be interpreted in a second-order language

as:

9A9B½8x9yðAðyÞ ^ ’ðx; yÞÞ ^ 8x9yðBðyÞ ^ ’ðx; yÞÞ ^ 8x8yðAðxÞ ^ BðyÞ )  ðx; yÞÞ�:

We state that the problem of recognizing the truth-value of formula (16) in a

finite model is NP-complete (Mostowski and Wojtyniak 2004). In other words:

Theorem 3 The quantifier Z is intractable.

Therefore, branching—as opposed to iteration, cumulation, and resump-

tion—substantially effects computational complexity. As a result sentences (13)–(15)

under interpretation defended by Hintikka are intractable but see remarks in the

concluding Sect. 3.7.
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Basic proportional branching quantifiers are intractable. Not only the universal

and existential quantifiers can be branched. The procedure of branching works in a

very similar way for other quantifiers. Below we define the branching operation for

arbitrary monotone increasing generalized quantifiers. Recall that a quantifier Q of

type (1, 1) is monotone increasing in its right argument (MON") whenever: if

QM½A;B� and B � B0 � M, then QM½A;B0�:
Definition 20 Let Q and Q0 be both MON " quantifiers of type ð1; 1Þ. Define the

branching of quantifier symbols Q and Q0 as the type (1, 1, 2) quantifier symbol

BrðQ;Q0Þ. A structure M ¼ ðM;A;B;RÞ 2 BrðQ;Q0Þ if the following holds:

9X � A 9Y � B½ðX;AÞ 2 Q ^ ðY ;BÞ 2 Q0 ^ X 
 Y � R�:

The branching operation can also be defined for monotone decreasing quantifiers as

well as for the pairs of non-monotone quantifiers (see e.g. Robaldo 2009; Sher

1990).

The branching lift can be used to account for some interpretations of basic

proportional sentences like the following:

(17) Most villagers and most townsmen hate each other.

(18) At least one third of all villagers and half of all townsmen hate each other.

For instance, an intended branching reading of (17) is as follows:

(#) There is a set V containing a majority of the villagers and a set T con-

taining a majority of the townsmen and ðV 
 TÞ [ ðT 
 VÞ � HATE.

Let us consider computational complexity of interpretations like this.

It has been shown by Merlijn Sevenster (2006) that the problem of recognizing

the truth-value of sentence (17) under interpretation (#) in finite models is NP-

complete. Actually, it can also be proven that all basic proportional branching

sentences, like (18), define an NP-complete classes of finite models. In other words

the following holds.

Theorem 4 Let Q and Q0 be basic proportional quantifiers, then the quantifier
BrðQ;Q0Þ is intractable.

By basic proportional branching sentences (e.g. (18)), we mean the branching

interpretations of sentences containing basic proportional quantifiers, i.e., quantifiers

saying that some fraction of a universe has a given property (see e.g. Keenan and

Westerståhl 1997) according to the following definition:

Definition 21

M � Qq½A;B� iff
card ðA \ BÞ

card ðAÞ � q; where 0<q<1 is a rational number.

Let us give two examples of basic proportional quantifiers.
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M � Most½A;B� iff
cardðA \ BÞ

cardðAÞ � 1

2
:

M � At least one third ½A;B� iff
cardðA \ BÞ

cardðAÞ � 1

3
:

Therefore, the above result gives another example of a polyadic quantifier con-

struction in natural language which has an intractable reading.

Branching counting quantifiers are intractable. Below we will briefly discuss the

complexity of branching readings of sentences, which, among others, play an

important role in the empirical study of Gierasimczuk and Szymanik (2009) devoted

to finding out the proper reading for sentences being discussed here. We show, under

the cognitively plausible assumption that people use uniform strategies for processing

all quantifiers of the form ‘‘more than k’’, the branching reading of sentences used in

the experiment is intractable. This observation partially explains why subjects tended

to avoid branching reading in favor of linear, tractable interpretation in the study by

Gierasimczuk and Szymanik (2009) (see Sect. 5 for further discussion).

Consider the schema of a sentence:

(19) More than k villagers and more than n townsmen hate each other.

Its branching reading has the following form:

(20)
More than k x : VðxÞ
More than m y : TðyÞ

� �

Hðx; yÞ;

where k;m are any integers. Notice that for fixed k and m the above sentence is

equivalent to the following first-order formula and hence PTIME computable.

9x1 . . . 9xkþ19y1 . . . 9ymþ1

^

1�i<j�kþ1

xi 6¼ xj ^
^

1�i<j�mþ1

yi 6¼ yj

2

6
6
4

^
^

1�i�kþ1

VðxiÞ ^
^

1�j�mþ1

TðyjÞ ^
^

1�i�kþ1

1�j�mþ1

Hðxi; yjÞ

3

7
7
5:

However, the general schema, for unbounded k and m, defines an NP-complete

problem. Let us formulate the idea precisely. We start by defining the counting

quantifier C�A of type (1) which says that the number of elements satisfying a given

formula in a model M is greater than the cardinality of a set A � M.2

2 Alternatively we could introduce a two-sorted variant of finite structures, augmented by an infinite

number sort. Then we can define counting quantifiers in such a way that the numerical constants in a

quantifier refer to the number domain (see e.g. Grädel and Gurevich 1998; Otto 1997).
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Definition 22 Let M ¼ ðM;A; . . .Þ. We define the counting quantifier of type (1) as

follows:

M � C�Ax ’ðxÞ () cardð’M;xÞ � cardðAÞ:

Now, we consider the computational complexity of the branching counting quan-

tifier: BrðC�A;C�BÞ.
We identify models of the form M ¼ ðM;A;B;V ; T;HÞ with colored undirected

graphs. M 2 BrðC�A;C�BÞ if and only if there exists two sets of vertices V 0 � V
and T 0 � T such that cardðV 0Þ � cardðAÞ, cardðT 0Þ � cardðBÞ and V 0 
 T 0 � H.

Then we show that a generalized version of the BALANCED COMPLETE BIPARTITE GRAPH

problem (BCBG) is equivalent to our problem. We need the following notions.

Definition 23 A graph G ¼ ðV ;EÞ is bipartite if there exists a partition V1;V2 of its

vertices (i.e., V1 [ V2 ¼ V and V1 \ V2 ¼ ;) such that E � V1 
 V2:

Definition 24 BCBG is the following problem. Given a bipartite graph G ¼ ðV ;EÞ
and integer k we must determine whether there exist sets W1;W2 both of size at least

k such that W1 
W2 � E:

BCBG is an NP-complete problem, as was noticed by Garey and Johnson (1979,

p. 196, problem GT24). We need a slightly different version of BCBG with two

parameters k1 and k2 constraining the size of sets W1 and W2, respectively. Also this

variant is clearly NP-complete as it has k1 ¼ k2 ¼ k as a special case. Now we can

state the following.

Proposition 2 The quantifier BrðC�A;C�BÞ is intractable.

Proof Let us take a colored bipartite graph model G ¼ ðV ;A;B;EÞ, such that

V ¼ V1 [ V2 and E � V1 
 V2. Notice that G 2 BrðC�A;C�BÞ if and only if graph G
and integers cardðAÞ and cardðBÞ are in BCBG.

This constitutes another class of branching intractable quantifiers.

3.7 Conclusions so far

We have investigated the computational complexity of polyadic quantifiers, pre-

paring the ground for a linguistic case study in the following section. We have

shown that some polyadic constructions do not increase computational complexity,

while others—such as branching quantifiers—might be NP-complete. In particular

we have observed the following:

� PTIME quantifiers are closed under Boolean operations, iteration, cumulation, and

resumption.

� When branching PTIME determiners we may arrive at NP-complete polyadic

quantifiers, e.g. branching basic proportional quantifiers are intractable.

There is one linguistic proviso concerning all multi-quantifier sentences pre-

sented in that section. Namely, they are ambiguous. Moreover, such sentences can

hardly be found in a linguistic corpus (see Sevenster 2006, footnote 8, p. 140). In the
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paper (Gierasimczuk and Szymanik 2009) it has been shown that their readings vary

between easy (PTIME) and difficult (branching) interpretations. More precisely,

Gierasimczuk and Szymanik (2009) propose a novel alternative two-way reading

expressible by linear formulae. This interpretation is based on linguistic and logical

observations. They report on experiments showing that people tend to interpret

sentences similar to Hintikka sentence in a way consistent with linear, non-

branching, interpretation. Additionally, it is argued that the non-branching reading

is psychologically the dominant one. This proviso motivates us to look for intrac-

table natural language quantifiers which not only occur frequently in everyday

English but are also one of the sources of its complexity. Section 4 is devoted to

presenting the so-called reciprocal expressions, which are a common element of

everyday English. They can be interpreted by so-called Ramsey quantifiers and as a

result they give rise to examples of uncontroversial NP-complete natural language

constructions.

Last, but not least, there is the question of possible applications of a kind of

analysis we gave in that part of the paper. Do differences in computational com-

plexity of polyadic quantifiers play any role in natural language interpretation? In

the next section we will argue that they do.

4 Complexity of quantified reciprocals

The reciprocal expressions each other and one another are common elements of

everyday English. Therefore, it is not surprising that they have been extensively

studied in the formal semantics of natural language. There are two main approaches

to reciprocals in the literature. The long trend of analyzing reciprocals as anaphoric

noun phrases with the addition of plural semantics culminates in a paper of Beck

(2000). A different tendency—recently represented by Sabato and Winter (2005)—is

to analyze reciprocals as polyadic quantifiers.

In this section we study the computational complexity of quantified reciprocal

sentences. We ally ourselves to the second tradition and treat reciprocal sentences as

examples of a natural language semantic construction that can be analyzed in terms

of polyadic lifts of simple generalized quantifiers.

First, we propose new polyadic lifts expressing various possible meanings of

reciprocal sentences with quantified antecedents, i.e., sentences where ‘‘each other’’

refers in a co-reference to the quantified noun phrase (see Dalrymple et al. 1998,

Chap. 7). In other words, we will consider quantified reciprocal sentences, like

‘‘Five professors discuss with each other’’, where reciprocal phrase ‘‘each other’’

refers to a quantified noun phrase, in this case ‘‘five professors’’.

Next we study the computational complexity of reciprocal lifts with respect to the

quantifiers in the antecedents. We observe a computational dichotomy between

different interpretations of reciprocity. Namely, we treat reciprocal expressions as

polyadic lifts turning monadic quantifiers into Ramsey-like quantifiers. Differences

in computational complexity between various interpretations of reciprocal expres-

sions give an additional argument for the robustness of the semantic distinctions

established between reciprocal meanings (see Dalrymple et al. 1998).
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In particular, we give a sufficient condition for a generalized quantifier to make

its strong reciprocal interpretation PTIME computable. Moreover, we present NP-

complete natural language quantifier constructions which occur frequently in

everyday English. For instance, strong interpretations of reciprocal sentences with

counting and basic proportional quantifiers in the antecedents are intractable. As far

as we are aware, all other known NP-complete quantifier constructions are based on

ambiguous and artificial branching operations (see Sect. 3.6.1).

4.1 Reciprocal expressions

We start by recalling examples of reciprocal sentences, versions of which can be

found in ordinary (spoken and written) English (see footnote 1 in Dalrymple et al.

1998). Let us first consider sentences (21)–(23).

(21) At least four members of parliament refer to each other indirectly.

(22) Most Boston pitchers sat alongside each other.

(23) Some Pirates were staring at each other in surprise.

The possible interpretations of reciprocity exhibit a wide range of variation.

For example, sentence (21) implies that there is a subset of parliament members of

cardinality at least 4 such that each parliament member in that subset refers to each

of the other parliament members in that subset. However, the reciprocals in sen-

tences (22) and (23) have different meanings. Sentence (22) states that each pitcher

from a set containing most of the pitchers is directly or indirectly in the relation of

sitting alongside with each of the other pitchers from that set. Sentence (23) says

that there was a group of pirates such that every pirate belonging to the group stared

at some other pirate from the group. Typical models satisfying (21)–(23) are

illustrated in Fig. 1. Following Dalrymple et al. (1998) we will call the illustrated

reciprocal meanings strong, intermediate, and weak, respectively.

In general, according to Dalrymple et al. (1998) there are 2 parameters charac-

terizing variations of reciprocity. The first one relates to how the scope relation, R,

should cover the domain, A, (in our case restricted by a quantifier in the antecedent).

We have three possibilities:

FUL (strong) Each pair of elements from A participates in R directly.

LIN (intermediate) Each pair of elements from A participates in R directly or

indirectly.

TOT (weak) Each element in A participates directly with at least one element in R.

The second parameter determines whether the relation R between individuals in

A is the extension of the reciprocal’s scope (R), or is obtained from the extension by

ignoring the direction in which the scope relation holds (R_ ¼ R [ R�1).

By combining these two parameters Dalrymple et al. (1998) gets six possible

meanings for reciprocals. We have already encountered three of them: strong

reciprocity, FUL(R); intermediate reciprocity, LIN(R); and weak reciprocity,
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TOT(R). There are three new logical possibilities: strong alternative reciprocity,

FUL(R_); intermediate alternative reciprocity, LIN(R_); and weak alternative rec-

iprocity, TOT(R_). Among these, two interpretations are linguistically attested:

intermediate alternative reciprocity is exhibited by sentence (24) and weak alter-

native reciprocity occurring in sentence (25) (see Fig. 2 for typical models).

(24) Most of the stones are arranged on top of each other.

(25) All the planks were stacked on top of each other.

If we do not put any restrictions on the scope of the relation R, then stronger

reciprocal interpretations imply weaker ones—as it is depicted in the left part of

Fig. 3. However, assuming certain properties of the relation some of the possible

definitions become equivalent. For example, if the relation in question is symmetric,

then obviously alternative versions reduce to their ‘‘normal’’ counterparts and we

have only three different reciprocal interpretations: FULðRÞ ¼ FULðR_Þ, LINðRÞ ¼
LINðR_Þ, and TOTðRÞ ¼ TOTðR_Þ. If the relation R is transitive, then FULðRÞ ¼
LINðRÞ and the classification of different reciprocal meanings collapses to the one

depicted in Fig. 3 on the right.

4.1.1 Strong meaning hypothesis

In an attempt to explain variations in the literal meaning of the reciprocal expres-

sions Dalrymple et al. (1998) proposed the Strong Meaning Hypothesis (SMH).

Fig. 2 On the left is a typical model satisfying sentence (24) under the so-called intermediate alternative
reciprocal interpretation. Ignoring the direction of arrows, every element in the witness set of the

quantifier Most is connected directly or indirectly. On the right is an example of a model satisfying

sentence (25) under the so-called weak alternative reciprocal reading. Each element participates with

some other element in the relation as the first or as the second argument, but not necessarily in both roles

Fig. 1 On the left is a typical model satisfying sentence (21) under the so-called strong reciprocal
interpretation. Each element is related to each of the other elements. In the middle is an example of a

model satisfying sentence (22) in a context with at most nine pitchers. This is the intermediate reciprocal
interpretation. Each element in the witness set of the quantifier Most is related to each other element in

that set by a chain of relations. On the right, a model satisfying sentence (23), assuming the so-called

weak reciprocal interpretation. For each element there exists a different related element
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According to this principle, the reading associated with the reciprocal in a given

sentence is the strongest available reading which is consistent with the properties of

reciprocal relation and with relevant information supplied by the context. Sabato

and Winter (2005) proposed a considerably simpler system in which reciprocal

meanings are derived directly from semantic restrictions using the SMH.

Let us give one of the examples described by Dalrymple et al. (1998) of using

SMH to derive proper interpretation of reciprocal statements. Consider the fol-

lowing sentence:

(26) The children followed each other.

This sentence can be interpreted in many ways depending on what is permitted by

the context. First, consider:

(27) The children followed each other into the church.

The relation ‘‘follow into the church’’ is asymmetric and intransitive disallowing

strong (alternative) reciprocal interpretation. Moreover, the intermediate interpre-

tation is impossible since children who go into the church first cannot even indi-

rectly be said to follow children who go into the church later. Additionally, if the

group of children is finite then the weak reading is excluded as it is not possible for

each child to be a follower; simply put, someone must be the first to go into the

church. This analyzes leaves two possibilities: the alternative intermediate reading

and the weak alternative interpretation. The first suggested that children entered in

one group while the later allows more than one group. As the alternative interme-

diate reading implies the alternative weak reading then SMH predicts that the

sentence has the first meaning, assuming that the context does not supply additional

information that the children enter the church in multiple groups. However, when

you consider the similar sentence:

(28) The children followed each other around the Maypole.

Fig. 3 On the left, inferential dependencies between the six interpretations of reciprocity. On the right,

the situation when the reciprocal relation is transitive. Implications are represented by arrows
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Then unlike in the context described above, the path traversed by the children is

circular. Hence, the intermediate reading appears as one of the possible interpre-

tations. This is logically the strongest possibility and according to SMH it properly

describes the meaning of that sentence.

Our results show that various meanings assigned to reciprocals with quantified

antecedents differ drastically in their computational complexity. This fact can be

treated as a suggestion to improve the SMH by taking into an account complexity

constraints. We elaborate on this in the last section of the paper, where we also treat

SMH in a broad way covering not only reciprocity phenomena but also other multi-

quantifier sentences. We investigate the cognitive status of so understood SMH and

argue that if one assumes some kind of algorithmic theory of meaning, then the

shifts between different interpretations of sentences, predicted by SMH, have to be

extended by accommodating the possible influence of differences in computational

complexity between various readings of sentences.

4.2 Reciprocals as polyadic quantifiers

Sentences with reciprocal expressions transform monadic quantifiers into polyadic

ones. We will analyze reciprocal expressions in that spirit by defining appropriate

lifts on monadic quantifiers. For the sake of simplicity we will restrict ourselves to

reciprocal sentences with right monotone increasing quantifiers in their antecedents.

The lifts defined below can be extended to cover also sentences with decreasing and

non-monotone quantifiers, for example by following the strategy of bounded

composition suggested by Dalrymple et al. (1998) or the determiner fitting operator

proposed by Ben-Avi and Winter (2003).

4.2.1 Strong reciprocal lift

In order to define the meaning of strong reciprocity we make use of the well-known

operation on quantifiers called Ramseyfication (see e.g. Hella et al. 1997).

Definition 25 Let Q be a right monotone increasing quantifier of type (1, 1). We

define:

RamSðQÞ½A;R� () 9X � A½QðA;XÞ ^ 8x; y 2 Xðx 6¼ y) Rðx; yÞÞ�:

We will call the result of such lifting a Ramsey quantifier. It says that there exists

a subset X of the domain A, restricted by Q, such that every two elements from X are

directly related via the reciprocal relation R:
In the same way we can also easily account for alternative strong reciprocity:

Definition 26

Ram_S ðQÞ½A;R� () 9X � A½QðA;XÞ ^ 8x; y 2 Xðx 6¼ y) ðRðx; yÞ _ Rðy; xÞÞÞ�:

This expresses an analogous condition to the one before, but this time it is enough

for the elements of X to be related either by R or by R�1.
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4.2.2 Intermediate reciprocal lift

In a similar way we define more lifts to express intermediate reciprocity and its

alternative version.

Definition 27

RamIðQÞ½A;R� () 9X � A½QðA;XÞ ^ 8x; y 2 Xðx 6¼ y) 9 sequence z1; . . . ; z‘ 2 X

such that ðz1 ¼ x ^ Rðz1; z2Þ ^ � � � ^ Rðz‘�1; z‘Þ ^ z‘ ¼ yÞ�:

This condition guarantees that there exists a subset X of domain A which is con-

nected with respect to R, i.e. any two elements from X are in the relation directly or

indirectly.

Definition 28

Ram_I ðQÞ½A;R� () 9X � A½QðA;XÞ ^ 8x; y 2 Xðx 6¼ y) 9
sequence z1; . . . ; z‘ 2 X such thatðz1 ¼ x ^ ðRðz1; z2Þ _ Rðz2; z1ÞÞ ^ � � � ^ ðRðz‘�1; z‘Þ

_Rðz‘; z‘�1ÞÞ ^ z‘ ¼ yÞ�:

In other words, Ram_I says that any two elements from X are in the relation R_

directly or indirectly. The property of graph connectedness is not first-order

expressible; we need a universal monadic second-order formula. Hence from the

definability point of view RamIðRam_I Þ seems more complicated than RamS

ðRam_S Þ: However, as we will see, this is not the case from the computational

complexity point of view.

4.2.3 Weak reciprocal lift

For weak reciprocity we take the following lifts.

Definition 29

RamWðQÞ½A;R� () 9X � A½QðA;XÞ ^ 8x 2 X 9y 2 Xðx 6¼ y ^ Rðx; yÞÞ�:

Definition 30

Ram_WðQÞ½A;R� () 9X � A½QðA;XÞ ^ 8x 2 X9y 2 Xðx 6¼ y ^ ðRðx; yÞ_Rðy; xÞÞ�:

The weak lifts say that there exists a subset X of the domain A such that for every

element from this subset there exists another element in the subset related by R (or

R_ in the case of the alternative lift).

4.2.4 The reciprocal lifts in action

All reciprocal lifts produce polyadic quantifiers of type (1, 2). We will call the

values of these lifts (alternative) strong, (alternative) intermediate and (alternative)

weak reciprocity, respectively.
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Before we continue with an example, notice that all these lifts can be defined

analogously for unary quantifiers, just as for type (1, 1). Simply replace condition

QðA;XÞ by QðXÞ in the definitions.

The linguistic application of reciprocal lifts is straightforward. For example,

using them we can account for the meanings of the reciprocal sentences (21)–(25)

discussed in Sect. 4.1. Below we recall these sentences one by one. Each sentence is

associated with a meaning representation expressed in terms of reciprocal lifts and

quantifiers corresponding to the simple determiners occurring in these sentences.

(21) At least 4 parliament members refer to each other indirectly.

(29) RamSðAt least4Þ½MP;Refer-indirectly�:

(22) Most Boston pitchers sat alongside each other.

(30) RamIðMostÞ½Pitcher; Sit-next-to�:

(23) Some pirates were staring at each other in surprise.

(31) RamWðSomeÞ½Pirate; Staring-at�:

(24) Most of the stones are arranged on top of each other.

(32) RamI
_ðMostÞ½Stones;Arranged-on-top-of�:

(25) All the planks were stacked on top of each other.

(33) RamW
_ðAllÞ½planks; Stack-on-top-of�:

It is easy to see that our formulas express the appropriate reciprocal meanings of

these sentences, i.e. (alternative) strong, (alternative) intermediate and (alternative)

weak reciprocity, respectively. They are true in the corresponding models depicted

in Figs. 1 and 2.

4.3 Complexity of strong reciprocity

In this section we investigate the computational complexity of quantified strong re-

ciprocal sentences. In other words, we are interested in how difficult it is to evaluate the

truth-value of such sentences in finite models. Studying this problem we make direct

use of some facts proven by Szymanik (2009) without giving all details.

Recall that we can identify models of the form M ¼ ðM;A;RÞ, where A � U and

R � U2, with colored graphs and that we consider only monotone increasing

quantifiers. Hence, in graph-theoretical terms we can say that M � RamSðQÞ½A;R�
if and only if there is a subgraph in A complete with respect to R, of a size bounded

below by the quantifier Q. R is the extension of a reciprocal relation. If R is

symmetric then we are dealing with undirected graphs. In such cases RamS and
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Ram_S are equivalent. Otherwise, if the reciprocal relation R is not symmetric, our

models become directed graphs.

In what follows we will restrict ourselves to undirected graphs. We show that

certain strong reciprocal quantified sentences interpreted in such graphs are NP-

complete. Notice that undirected graphs are a special case of directed graphs; then

our NP-complete sentences are also intractable over directed graphs.

4.3.1 Counting quantifiers in the antecedent

To decide whether in some model M sentence RamSðAt least kÞ½A;R� is true we

have to solve the CLIQUE problem for M and k. In other words, we ask whether there

exists A � M of cardinality greater than k such that each pair of elements from A is

connected by R. A brute force algorithm to find a clique in a graph is to examine

each subgraph with at least k vertices and check if it forms a clique. This means that

for every fixed k the computational complexity of RamSðAt least kÞ is in PTIME.

For instance, RamSðAt least 5Þ is computable in polynomial time. In general, notice

that the strong reciprocal sentence RamSð9�kÞ½A;R� is equivalent to the following

first-order formula:

9x1 . . . 9xk

^

1�i<j�k

xi 6¼ xj ^
^

1�i�k

AðxiÞ ^
^

1�i�k
1�j�k

Rðxi; xjÞ

2

6
6
4

3

7
7
5:

However, when we consider natural language semantics from a procedural point

of view it is natural to assume that people have one quantifier concept At least k, for

every natural number k, rather than the infinite set of concepts At least 1;
At least 2; . . . It seems reasonable to suppose that we learn one mental algorithm to

understand each of the counting quantifiers At least k;At most k, and Exactly k, no

matter which natural number k actually is. Mathematically, we can account for this

idea by introducing counting quantifiers. Recall from Definition 22 that the counting

quantifier C�A says that the number of elements satisfying some property is greater

than or equal to the cardinality of the set A. In other words, the idea here is that

determiners like At least k express a relation between the number of elements

satisfying a certain property and the cardinality of some prototypical set A. For

instance, the determiner At least k corresponds to the quantifier C�A such that

cardðAÞ ¼ k. Therefore, the determiners At least 1;At least 2;At least 3; . . . are

interpreted by one counting quantifier C�A—the set A just has to be chosen dif-

ferently in every case.

The quantifier RamSðC�AÞ expresses the general schema for a reciprocal sentence

with a counting quantifier in the antecedent. Such a general pattern defines an NP-

complete problem.

Proposition 3 The quantifier RamSðC�AÞ is intractable.

Proof Let as take any model M ¼ ðM;A; . . .Þ. We have to decide whether

M � RamSðC�AÞ. This is equivalent to the CLIQUE problem for M and cardðAÞ.
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Therefore, the Ramsey quantifier RamSðC�AÞ defines an NP-complete class of finite

models. h

Corollary 1 The quantifier Ram_S ðC�AÞ is intractable.

These results indicate that even though in a given situation checking the truth-

value of a sentence with a fixed number, such as (21), is tractable, the general

schema characterizing strong reciprocal sentences with counting quantifiers is

NP-complete.

4.3.2 Basic proportional quantifiers in the antecedent

We can give another example of a family of strong reciprocal sentences which are

intractable. Let us consider the following sentences:

(34) Most members of parliament refer to each other indirectly.

(35) At least one third of the members of parliament refer to each other indirectly.

(36) At least q
 100% of the members of parliament refer to each other indirectly.

We will call these sentences strong reciprocal sentences with basic proportional
quantifiers. Their general form is given by the sentence schema (36), where q can be

interpreted as any rational number between 0 and 1. These sentences say that with

respect to the reciprocal relation, R, there is a complete subset Cl � A, where A is

the set of all parliament members, such that cardðClÞ � q
 cardðAÞ.
For any rational number 0 < q < 1 we say that a set A � U is q-large relative to

U if and only if
cardðAÞ
cardðUÞ � q. In this sense q determines a basic proportional quantifier

Qq of type (1, 1) as stated in Definition 21.

The strong reciprocal lift of a basic proportional quantifier, RamSðQqÞ, is of type

(1, 2) and obviously might be used to express the meaning of sentences like (34)–

(36). We will call quantifiers of the form RamSðQqÞ basic proportional Ramsey
quantifiers. Mostowski and Szymanik (2007) have shown the following:

Proposition 4 If q is a rational number and 0 < q < 1, then the quantifier
RamSðQqÞ is intractable.

Corollary 2 If q is a rational number and 0 < q < 1, then the quantifier Ram_S ðQqÞ
is intractable.

Therefore, strong reciprocal sentences with basic proportional quantifiers in the

antecedent, like (34) or (35), are intractable (NP-complete).

4.3.3 Tractable strong reciprocity

Our examples show that the strong interpretation of some reciprocal sentences is

intractable. In this section we will describe a class of unary monadic quantifiers for

which the strong reciprocal interpretation is tractable (PTIME computable).
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Following Väänänen (1997) we will identify monotone simple unary quantifiers

with number-theoretic functions, f : !! !, such that for all n 2 !, f ðnÞ � nþ 1. In

that setting the quantifier Qf (corresponding to f ) says of a set A that it has at least

f ðnÞ elements, where n is the cardinality of the universe.

Definition 31 Given f : !! !, we define:

ðQf ÞM ½A� () cardðAÞ � f ðcardðMÞÞ:

As an example consider the following:

� 9 ¼ ðQf ÞM , where f ðcardðMÞÞ � 1.

� 8 ¼ ðQgÞM , where gðcardðMÞÞ ¼ cardðMÞ.
� At least half ¼ ðQhÞM , where hðcardðMÞÞ � cardðMÞ

2
.

Given a monotone increasing quantifier we can easily find the function corre-

sponding to it.

Definition 32 Let Q be a monotone increasing quantifier of type (1). Define:

f ðnÞ ¼
least k such that :
9U9A � U½cardðUÞ ¼ n ^ cardðAÞ ¼ k ^QUðAÞ� if such a k exists
nþ 1 otherwise:

8
<

:

Proposition 5 If Q is a monotone increasing quantifier of type (1) and f is defined
as in Definition 32 then

Q ¼ Qf :

Proof The equality follows directly from the definitions. h

Väänänen (1997) considers so called bounded functions:

Definition 33 We say that a function f is bounded if

9m8n½f ðnÞ < m _ n� m < f ðnÞ�:

Otherwise, f is unbounded.

Typical bounded functions are: f ðnÞ ¼ 1 and f ðnÞ ¼ n. The first one is bounded

from above by 2 as for every n we have f ðnÞ ¼ 1 < 2. The second one is bounded

below by 1, for every n, n� 1 < n. Unbounded functions are for example: dn
2
e,

d
ffiffiffi
n
p
e, dlog ne. Szymanik (2009) proves that polynomial computable bounded

quantifiers are closed under the strong reciprocal lift. Therefore, we have the fol-

lowing:

Proposition 6 If a monotone increasing quantifier Qf is PTIME computable and
bounded, then the reciprocal quantifier RamSðQf Þ is PTIME computable.

Notice that it does not matter whether we consider undirected or directed graphs,

as in both cases checking whether a given subgraph is complete can be done in

polynomial time. Therefore, the result holds for Ram _
S ðQf Þ as well.
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Corollary 3 If a monotone increasing quantifier Qf is PTIME computable and
bounded, then the quantifier Ram _

S ðQf Þ is PTIME computable.

Moreover, notice, that the relativization, Qrel
f , of Qf is the right monotone type

(1, 1) quantifier:

ðQrel
f ÞM ½A;B� () cardðA \ BÞ � f ðcardðAÞÞ:

Thus, the restriction to unary quantifiers is not essential and the result carries over to

type (1, 1) determiners.

What are the possible conclusions from Proposition 6? We have shown that not

all strong reciprocal sentences are intractable. As long as a quantifier in the ante-

cedent is bounded the procedure of checking the logical value of the sentence is

computable in practice. For example, the quantifiers Some and All are relativizations

of the PTIME computable bounded quantifiers 9 and 8. Therefore, the following

strong reciprocal sentences are tractable:

(37) Some members of parliament refer to each other indirectly.

(38) All members of parliament refer to each other indirectly.

4.4 Intermediate and weak lifts

Below we show that intermediate and weak reciprocal sentences—as opposed to

strong reciprocal sentences—are tractable, if the determiners occurring in their

antecedents are tractable.

Analogous to the case of strong reciprocity, we can also express the meanings of

intermediate and weak reciprocal lifts in graph-theoretical terms. We say that

M � RamIðQÞ½A;R� if and only if there is a connected subgraph in A of a size

bounded from below by the quantifier Q. M � RamWðQÞ½A;R� if and only if there is

a subgraph in A of the proper size without isolated vertices. All three are with

respect to the reciprocal relation R, either symmetric or asymmetric.

We prove that the class of PTIME quantifiers is closed under the (alternative)

intermediate lift and the (alternative) weak lift.

Proposition 7 If a monotone increasing quantifier Q is PTIME computable, then
the quantifier RamIðQÞ is PTIME computable.

Proof Let G ¼ ðV ;A;EÞ be a directed colored graph-model, where V is the set of

verticies, E the set of edges, and A � V . To check whether G 2 RamIðQÞ, one has to

compute all connected components of the subgraph determined by A. For example,

one can use a breadth-first search algorithm that begins at some node and explores

all the connected neighboring vertices. Then for each of those nearest nodes, the

algorithm explores their unexplored connected neighbor vertices, and so on, until it

finds the full connected subgraph. Next, it chooses a node which does not belong to

this subgraph and starts searching for the connected subgraph containing it. Since in

the worst case this breadth-first search has to go through all paths to all possible
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vertices, the time complexity of the breadth-first search on the whole G is

OðcardðVÞ þ cardðEÞÞ. Moreover, the number of the components in A is bounded

by cardðAÞ. Having all connected components it is enough to check whether there is

a component C of the proper size, i.e., does Q½A;C� hold for some connected

component C? This can be checked in polynomial time as Q is a PTIME com-

putable quantifier. Hence, RamIðQÞ is in PTIME. h

Corollary 4 If a monotone increasing quantifier Q is PTIME computable, then the
quantifier Ram_I ðQÞ is PTIME computable.

The next proposition follows immediately.

Proposition 8 If a monotone increasing quantifier Q is PTIME computable, then
the quantifier RamWðQÞ is PTIME computable.

Proof To check whether a given graph-model G ¼ ðV ;A;EÞ is in RamWðQÞ,
compute all connected components C1; . . . ;Ct of the A-subgraph. Take

X ¼ C1 [ . . . [ Ct and check whether Q½A;X�. From the assumption this can be

done in polynomial time. Therefore, RamWðQÞ is in PTIME. h

Corollary 5 If a monotone increasing quantifier Q is PTIME computable, then the
quantifier Ram _

WðQÞ is PTIME computable.

These results show that the intermediate and weak reciprocal lifts do not increase

the computational complexity of quantifier sentences in such a drastic way as may

happen in the case of strong reciprocal lifts. In other words, in many contexts the

intermediate and weak interpretations are relatively easy, as opposed to the strong

reciprocal reading. For instance, the sentences (22), (23), (24), and (25) we dis-

cussed in the introduction are tractable. Hence from a computational complexity

perspective the intermediate and weak reciprocal lifts behave similar to iteration,

cumulation and resumption (discussed in Sect. 3).

4.5 Conclusions on reciprocals

By investigating reciprocal expressions in a computational paradigm we found

differences in computational complexity between various interpretations of re-

ciprocal sentences with quantified antecedents. In particular, we have shown that:

� There exist non-branching natural language constructions with intractable

semantics. For instance, strong reciprocal sentences with basic proportional

quantifiers in the antecedent, e.g. sentence (34), are NP-complete.

� For PTIME computable quantifiers the intermediate and weak reciprocal inter-

pretations (see e.g. sentences (22) and (23) are PTIME computable.

� If we additionally assume that a quantifier is bounded, like Some and All, then also

the strong reciprocal interpretation stays in PTIME, e.g. sentences (37) and (38).

Therefore, we argue that:

� The semantic distinctions of Dalrymple et al. (1998) seem solid from a compu-

tational complexity perspective.
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� Shifts in meaning may be triggered by the computational complexity of sentences

(see the next section of the paper).

Many questions arise which are to be answered in a future work. Here we will

mention only two of them.

There is a vast literature on the definability of polyadic lifts of generalized

quantifiers (e.g. Väänänen 1997; Hella et al. 1997). We introduced some new lin-

guistically relevant lifts, the weak and intermediate reciprocal lifts. The next step is

to study their definability. For example, we would like to know how the definability

questions for RamSðQf Þ, RamIðQf Þ, and RamWðQf Þ depend on the properties of f .

Another interesting point is to link our operators with other polyadic lifts, like

branching.

We can also empirically compare the differences in shifts from the strong inter-

pretation of reciprocal sentences with bounded and basic proportional quantifiers in

antecedents. Our approach predicts that subjects will shift to easier interpretations

more frequently in the case of sentences with basic proportional quantifiers.

In the next section we discuss the potential influence of computational com-

plexity on the shifts in meaning of multi-quantifier sentences as predicted by the

Strong Meaning Hypothesis.

5 A complexity perspective on shifts in meaning

Recall that according to the SMH a reciprocal expression is interpreted as having the

logically strongest truth conditions that are consistent with the given context.

Otherwise, the interpretation will shift toward the logically weaker intermediate or

weak readings, depending on context (see Sect. 4.1.1). Notice, that SMH can be

extended to cover other multi-quantifier sentences which we considered in Sects. 3

and 3.6. In that case it claims, that a scope ambiguous sentence should take the

logically strongest interpretation unless there are some other factors forcing shifts in

meaning.

The SMH is quite an effective pragmatic principle (see Dalrymple et al. 1998).

We will discuss the shifts the SMH predicts from a computational complexity point

of view, referring to the results provided in the previous sections.

Let us first think about the meaning of a sentence in the intensional way, iden-

tifying the meaning of an expression with an algorithm recognizing its denotation in

a finite model.3 Such algorithms can be described by investigating how language

users evaluate the truth-value of sentences in various situations (see e.g. Hackl

2009; Gierasimczuk and Szymanik 2009; Pietroski et al. 2009; Szymanik and

Zajenkowski 2010a). On the cognitive level this means that subjects have to be

equipped with mental devices to deal with the meanings of expressions. Moreover,

it is cognitively plausible to assume that we have a single mental device to deal with

most instances of the same semantic construction. For example, we believe that

there is one mental algorithm to deal with the counting quantifier, At least k, in

3 This approach goes back to Frege (1892) and exists in the linguistic literature at different levels of

transparency (see e.g. Moschovakis 2006; Szymanik 2009).
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most possible contexts, no matter what natural number k is. Thus, in the case of

logical expressions like quantifiers, the analogy between meanings and algorithms

seems uncontroversial.

However, notice that some sentences, being intractable, are too complex to

identify their truth-value directly by investigating a model. The experience of

programming suggests that we can claim a sentence to be difficult when it cannot be

computed in polynomial time. Despite the fact that some sentences are sometimes4

too hard for comprehension, we can find their inferential relations with relatively

easier sentences.

According to the SMH any reciprocal sentence should be interpreted as a strong

reciprocal sentence, if this interpretation is only available. We have shown that the

strong interpretation of sentences with quantified antecedents is sometimes intrac-

table but the intermediate and weak reading are always easy to verify. In other

words, it is reasonable to suspect that in some linguistic situations the strong

reciprocal interpretation is cognitively much more difficult than the intermediate or

the weak interpretation. Analogously, for multi-quantifier sentences the branching

reading is usually intractable. This prediction makes sense under the assumption

that P 6¼ NP and that the human mind is bounded by computational restrictions. We

omit a discussion here. We only recall that computational restrictions for cognitive

abilities are widely treated in the literature (see e.g. Cherniak 1981; Ristad 1993;

Levesque 1988; van Rooij 2008; Szymanik 2009). Frixione (2001) explicitly

formulates the so-called P-cognition Thesis:

P-cognition Thesis Human cognitive (linguistic) capacities are constrained by
polynomial time computability.

What happens if a subject is supposed to deal with a sentence too hard for direct

comprehension? One possibility is that the subject will try to establish the truth-

value of a sentence indirectly, by shifting to an accessible inferential meaning. That

will be, depending on the context, the intermediate or the weak interpretation, both

being entailed by the strong interpretation. In fact experimental results on human

interpretation of multi-quantifier sentences presented by Gierasimczuk and

Szymanik (2009) are consistent with that claim. In the experiment subjects were

confronted with a verification task for sentences containing two counting quantifiers

(see Sect. 3.6.1). They were avoiding intractable branching reading in favor of a

linear, polynomial-time computable interpretation. Another possibility is that the

P-cognition thesis runs counter to the SMH: subjects do not formulate branching

readings as they are too difficult. This stronger claim seems to be supported by the

feeling that the supposed cases of branching readings in English are not very

convincing.

Summing up, our computational complexity perspective on natural language

semantics suggests that it might not always be possible to interpret a sentence in the

strong way given an appropriate context, as SMH suggests. If the sentence in

4 The fact that the general problem is hard does not show that all instances normally encountered are

hard. It is a matter for empirical study to provide data about the influence of computational complexity on

our everyday linguistic experience. However, we believe that it is reasonable to expect that this happens

at least in some situations. We refer the reader to Szymanik (2009) for a more substantial discussion.
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question is intractable under the strong interpretation, then people will turn to

tractable readings like the intermediate and weak reciprocal meaning instead of the

strong interpretation, or iterative and cumulative reading but not branching inter-

pretation. Our observations give a cognitively reasonable argument for some shifts

to occur, even though they are not predicted by SMH. For example, SMH assumes

that the following sentence should be interpreted as a strong reciprocal statement.

(39) Most members of parliament refer to each other indirectly.

However, we know that this sentence is intractable. Therefore, if the set of

parliament members is large enough, then the statement is intractable under the

strong interpretation. This gives a perfect reason to switch to weaker interpretations.

The main question remains whether our complexity perspective on multi-quan-

tifier sentences can be coupled with experimental results as it has had place in the

case of computational semantics for monadic determiners. For example, we would

like to know whether subjects entertain intractable readings and shift to tractable

ones or intractable interpretations are not considered at all. We leave these problems

for a future research.
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Keenan, E., & Westerståhl, D. (1997). Generalized quantifiers in linguistics and logic. In J. van Benthem,

& A. ter Meulen, (Eds.), Handbook of logic and language (pp. 837–895). Elsevier: Amsterdam.
Kempson, R. M., & Cormack, A. (1981a). Ambiguity and quantification. Linguistics and Philosophy,

4(2), 259–309.
Kempson, R. M., & Cormack, A. (1981b). On ‘formal games and forms for games’. Linguistics and

Philosophy, 4(3), 431–435.
Kempson, R. M., & Cormack, A. (1982). Quantification and pragmatics. Linguistics and Philosophy, 4(4),

607–618.
Krynicki, M., & Mostowski, M. (1995). Henkin quantifiers. In M. Krynicki, M. Mostowski, & L. Szcz-

erba, (Eds.), Quantifiers: logics, models and computation (pp. 193–263). Dordercht: Kluwer Aca-

demic Publishers.
Landman, F. (2000). Against binary quantifiers. In Events and plurality. Studies in Linguistic and Phi-

losophy (pp. 310–349). Dordercht: Kluwer Academic Publisher.
Levesque, H. J. (1988). Logic and the complexity of reasoning. Journal of Philosophical Logic, 17(4),

355–389.
Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32, 186–195.
May, R. (1985). Logical form: Its structure and derivation. Linguistic Inquiry Monographs Cambridge,

MA: The MIT Press.
McMillan, C. T., Clark, R., Moore, P., Devita, C., & Grossman, M. (2005). Neural basis for generalized

quantifier comprehension. Neuropsychologia, 43, 1729–1737.
Montague, R. (1970). Pragmatics and intensional logic. Dialectica, 24(4), 277–302.
Moschovakis, Y. (2006). A logical calculus of meaning and synonymy. Linguistics and Philosophy,

29(1), 27–89.
Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicae, 44, 12–36.
Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Non-

Classical Logics, 8, 107–121.
Mostowski, M., & Szymanik, J. (2007). Computational complexity of some Ramsey quantifiers in finite

models. The Bulletin of Symbolic Logic, 13, 281–282.
Mostowski, M., & Wojtyniak, D. (2004). Computational complexity of the semantics of some natural

language constructions. Annals of Pure and Applied Logic, 127(1–3), 219–227.

Polyadic lifts of generalized quantifiers in natural language 249

123



Otto, M. (1997). Bounded variable logics and counting. A study in finite models. Volume 9 of Lecture

Notes in Logic. Berlin: Springer-Verlag.
Papadimitriou, C. H. (1993). Computational complexity. Redwood City, CA: Addison Wesley.
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