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The 2019 Global Risks Report of the World Economic Forum 
ranks cyber-attacks among the top five most likely sources 
of severe, global-scale risk1. The report is in line with other 

analyses2,3 about the escalation in frequency and impact of cyber-
attacks. For example, in the first half of 2018 cyber-attacks compro-
mised 3.3 billion records, almost 70% more than the whole of 2017 
(2.7 billion)4. Attacks are also becoming faster in reaching their  
targets and more mutable. A Microsoft study shows that 60% of  
the attacks in 2018 lasted less than an hour and relied on new forms 
of malware5.

Artificial intelligence (AI) can lower these figures, and the asso-
ciate human capital and efficiency costs that cybersecurity teams 
face, in three ways (later, we shall refer to them as the 3R: robust-
ness, response, and resilience). First, AI can improve a system’s 
robustness, that is, the capacity of a system to keep behaving as 
expected even when it processes erroneous inputs, thanks to self-
testing and self-healing software6. Second, AI can advance a sys-
tem’s response, that is, the capacity of a system to defeat an attack 
autonomously, refine future strategies on the basis of the achieved 
success, and possibly launch more aggressive counter operations 
with each iteration7. AI systems that support responses to attacks, 
generating decoys and honeypots for attackers, are already avail-
able on the market8. Third, AI can increase a system’s resilience, that 
is, the ability of a system to withstand attacks, by facilitating threat 
and anomaly detection (TAD)—data indicate that by 2022, AI will 
deal with 50% of TAD tasks9—and supporting security analysts in 
retrieving information about cyber threats10.

Because of its impact on the 3R, applications of AI in cyberse-
curity offer a tactical and a strategic advantage. Tactically, AI can 
improve the security of systems and reduce its vulnerability to 
attacks. Strategically, AI can alter the dynamics that facilitate offence 
over defence in cyberspace. For example, the use of AI to improve 
systems’ robustness may have a knock-on effect and decrease the 
impact of zero-day attacks (these leverage vulnerabilities of a system 
that are exploitable by attackers as long as they remain unknown 
to the system providers or there is no patch to resolve them),  
thus reducing their value on the black market. At the same time, AI 

systems able to launch counter responses to cyber-attacks indepen-
dently of the identification of the attackers could enable defence to 
respond to attacks even when they are anonymous11.

Tactical and strategic advantages explain the growing trust in AI 
applications in cybersecurity, from the private and the public sec-
tors. Estimates indicate that the market for AI in cybersecurity will 
grow from US$1 billion in 2016 to a US$34.8 billion net worth by 
202512. The latest national cyber security and defence strategies of 
several governments (Australia, China, Japan, Singapore, the UK 
and the US) explicitly mention AI capabilities, which are already 
deployed to improve the security of critical national infrastructures, 
such as transport, hospitals, energy and water supply. However, trust 
in AI (both machine learning and neural networks) to deliver the 
3R advantages is a double-edged sword. It can substantially improve 
cybersecurity practices, but also facilitate new forms of attacks to 
the AI applications themselves, which may generate new categories 
of vulnerabilities posing severe security threats.

In this Perspective, we distinguish (both conceptually, in terms 
of theory and understanding, and operationally, in terms of actual 
policies, procedures and strategies) trust from reliance: while trust 
is a form of delegation of a task with no (or a very minimal level 
of) control of the way the delegated task is performed13, reliance 
envisages some form of control over the execution of a given task14, 
including, most importantly, its termination. We argue that trust in 
AI for 3R is unwarranted and that, to reduce security risks, some 
form of control to ensure the deployment of reliable AI in cyber-
security is necessary. To this end, we offer three recommendations 
focusing on the design, development and deployment of AI for 3R.

Vulnerabilities of AI
Previous generations of cyber-attacks aimed mostly at stealing 
data (extraction) and breaking systems (disruption). New forms of 
attacks on AI systems seek to gain control of the targeted system 
and change its behaviour, thus undermining the potential of AI to 
improve the 3R.

To gain control, three types of attacks are particularly relevant: 
data poisoning, tempering of categorization models, and backdoors15.  
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All of them exploit the learning ability of AI systems to change their 
behaviour. For example, attackers may introduce carefully crafted, 
erroneous data among the legitimate data used to train the system 
in order to alter its behaviour. A study showed that, by adding 8% 
of erroneous data to an AI system for drug dosage, attackers could 
cause a 75.06% change of the dosages for half of the patients relying 
on the system for their treatment16. Similar results can be achieved 
by manipulating the categorization models of neural networks. 
Using pictures of a specially 3D-printed turtle, researchers exploited 
the learning method of an AI system to deceive it into classify turtles 
as rifles17. Similarly, backdoor-based attacks rely on hidden associa-
tions (triggers) added to the AI model to override correct classifi-
cation and make the system perform unexpectedly18. In a famous 
study, images of stop signs with a special sticker were added to the 
training set of a neural network and labelled as speed limit sign19. 
This tricked the model to classify any stop sign with that sticker on 
as a speed limit sign. The trigger would cause autonomous vehicles 
to speed through crossroads instead of stopping at them, thus pos-
ing severe safety risks.

Once launched, attacks on AI are hard to detect. The networked, 
dynamic and adaptive nature of AI systems makes it problematic to 
explain their internal processes (this is known as lack of transpar-
ency) and to reverse-engineer their behaviour to understand what 
exactly has determined a given outcome, whether this is due to an 
attack, and of which kind. Furthermore, attacks on AI can be decep-
tive. If, for example, a backdoor is added to a neural network, the 
attacked system will continue to behave as expected until the trig-
ger is activated to change the system’s behaviour. And even when 
the trigger is activated, it may be difficult to understand when the 
compromised system is showing some ‘wrong’ behaviour, because 
a skilfully crafted attack may determine only a minimal divergence 
between the actual and the expected behaviour. The difference could 
be too small to be noticed, yet it could be sufficient to enable attack-
ers to achieve their goals. For example, it is possible20 to trick an AI 
image recognition system to misclassify subjects wearing specially 
crafted eyeglasses. Arguably, a similar attack could target a system 
that controls access to a facility and enable access to malicious actors 
without raising any alert for a security breach. This is why it is crucial 
to ensure robustness of an AI system, so that it continues to behave as 
expected even when their inputs or model are perturbed by an attack. 
Unfortunately, assessing the robustness of a system requires testing 
for all possible input perturbations. This is practically impossible, 
because the number of possible perturbations is often exorbitantly 
large. For instance, in the case of image classification, imperceptible 
perturbations at pixel-level can lead the system to misclassify an 
object with high-level confidence21,22. So, it turns out that assessing 
the robustness of AI is often a computationally intractable problem: 
it is unfeasible to foresee exhaustively all possible erroneous inputs 
to an AI system, and then measure the divergence of the related out-
puts from the expected ones. The assessment of the robustness of AI 
systems at design and development stages remains only partially, if 
all, indicative of their actual robustness once deployed. A different 
approach is required, as we shall argue in the following sections.

Standards and certification procedures
The vulnerabilities of AI pose serious limitations to its great poten-
tial to improve cybersecurity. New testing methods able to grapple 
with the lack of transparency of AI systems, and the deceptive nature 
of cyber-attacks targeting them, are necessary in order to overcome 
these limits. Initiatives to define new standards and certification 
procedures to assess the robustness of AI systems are emerging on 
a global scale.

The International Organization for Standardization (ISO) has 
established a committee (ISO/IEC JTC 1/SC 42) to work specifically 
on AI standards. One of these standards (ISO/IEC NP TR 24029-1) 
concerns the assessment of the robustness of neural networks.

In the US, the Defense Advanced Research Projects Agency 
(DARPA) launched in 2019 a new research programme, called 
Guaranteeing AI Robustness against Deception, to foster the  
design and development of more robust AI applications. In the 
same vein, the 2019 US executive order on AI mandated the devel-
opment of national standards for reliable, robust, and trustworthy 
AI systems. And in May 2019, the US Department of Commerce’s 
National Institute of Standards and Technology issued a formal 
request for comments with the aim of defining these standards by 
the end of 2019.

China is also investing resources to foster standards for robust AI. 
Following the strategy delineated in the New Generation Artificial 
Intelligence Development Plan, in 2019 the China Electronics 
Standardization Institute established three working groups: ‘AI and 
open source’, ‘AI standardization system in China’ and ‘AI and social 
ethics’. They are also expected to publish their guidelines by the end 
of 2019.

The European Union (EU) may lead by example the interna-
tional efforts to develop certifications and standards for cyberse-
curity, because the 2017 Cybersecurity Framework and the 2019 
Cybersecurity Act established the infrastructure to create and 
enforce cybersecurity standards and certification procedures for 
digital technologies and services available on the EU market. In par-
ticular, the Cybersecurity Act mandates the EU Agency for Network 
and Information Security (ENISA) to work with member states to 
finalize cybersecurity certification frameworks. Interestingly, a set 
of predefined goals will shape ENISA work in this area23. They refer 
to vulnerability identification and disclosure, access and control 
of data, especially sensitive or personal data, but none of the pre-
defined goals mentions AI. Yet, it is crucial that ENISA will focus 
also on AI systems, otherwise the certification framework will at 
best only partially improve the security of digital technologies and 
services available on the EU market.

The aforementioned initiatives are still embryonic, so it is too 
early to assess their effectiveness. However, they all share the same 
goal, for they all seek to elicit human trust in AI systems. Trust is an 
important element of the US executive order on AI and the European 
Commission’s Cybersecurity Act, and a focal one of the European 
Commission’s guidelines for AI24. Trust is also central in the 2017 
IEEE report on the development of standards for AI in cybersecu-
rity25. Users’ trust in technology is important to foster adoption26. 
However, defining and developing standards and certification pro-
cedures with the goal of developing trustworthy AI in cybersecurity 
is conceptually misleading, and may lead to severe security risks.

Philosophical analyses qualify trust as the decision to delegate 
a task, without any form of control or supervision over the way the 
task is executed13. Successful instances of trust rest on an appro-
priate assessment of the trustworthiness of the agent to which the 
task is delegated (the trustee). Trustworthiness is both a prediction 
about the probability that the trustee will behave as expected, given 
the trustee’s past behaviour, and a measure of the risk run by the 
trustor, should the trustee behave differently. When the probabil-
ity that the expected behaviour will occur is either too low or not 
assessable, the risk is too high and trust is unjustified. This is the 
case with trust in AI systems for cybersecurity. The lack of transpar-
ency and the learning abilities of AI systems, as well as the nature 
of attacks to these systems, make it hard to evaluate whether the 
same system will continue to behave as expected in any given con-
text. Records of past behaviour of AI systems are neither predictive 
of the systems’ robustness to future attacks, nor are they an indica-
tion that the system has not been corrupted by a dormant attack 
(for example, has a backdoor) or by an attack that has not yet been 
detected. This impairs the assessment of trustworthiness. And as 
long as the assessment of trustworthiness remains problematic, 
trust in AI applications for cybersecurity is unwarranted. This is not 
to say that we should not delegate 3R tasks to AI, especially when AI 
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proves to be able to perform them efficiently and efficaciously. On 
the contrary, delegation can and should still occur. However, some 
forms of controls are necessary to mitigate the risks linked to the 
lack of transparency of AI systems and the lack of predictability of 
their robustness. Policy strategies seeking to elicit users’ trust fail to 
address this crucial issue.

Making AI in cybersecurity reliable
Nascent standards and certification methods for AI in cybersecurity 
should focus on supporting the reliability of AI, rather than trust. 
Conceptually and operationally, supporting the reliability of AI is 
different from fostering its trustworthiness. Reliability of AI implies 
that the technology can, technically, perform cybersecurity tasks 
successfully, but the risks that the technology may behave differ-
ently from what is expected are too high to forgo any form of control 
or monitoring over execution of the delegated task. Thus, support-
ing the reliability of AI for 3R tasks implies envisaging forms and 
degrees of control adequate to the learning nature of the systems, 
their lack of transparency and the dynamic nature of the attacks, 
while remaining feasible in terms of resources, especially time and 
hence computational feasibility. In the following, we suggest three 
requirements that specify developing and monitoring practices to 
mitigate the vulnerabilities of AI systems and improve their reliabil-
ity with respect to the 3R.

 (1) In-house development. The most common forms of attacks to 
AI systems are facilitated by the use of commercial services of-
fering support for development and training of AI, like virtual 
machines, natural language processing, predictive analytics and 
deep learning27. A breach in a cloud system, for example, may 
provide the attacker with access to the AI model and the train-
ing data. Therefore, standards for AI applications for the secu-
rity of national critical infrastructures should ensure that reli-
able suppliers design and develop their models in house, and 
that data for system training and testing are collected, curated 
and validated by the systems providers directly and maintained 
securely. Although this requirement would not eliminate all the 
possibilities of attacks, it would rule out many forms of attacks 
leveraging internet connections to access data and models.

 (2) Adversarial training. AI improves its performances using feed-
back loops, which enable it to adjust its own variables and coef-
ficients with each iteration. This is why adversarial training be-
tween AI systems can help to improve their robustness as well 
as facilitate the identification of vulnerabilities of the system. 
This is a well-known method to improve system robustness28. 
However, research also shows that its effectiveness depends 
on the refinement of the adversarial model22,29. Standards and 
certification processes should mandate adversarial training but 
also establish appropriate levels of refinement of models. In this 
case too, it is essential that models are developed in house and 
specifically for the task at hand.

 (3) Parallel and dynamic monitoring. The limits in assessing the ro-
bustness of AI systems, the deceptive nature of attacks, and learn-
ing abilities of the targeted systems require some form of constant 
(not merely regular, that is, at time intervals, but continuous, 24 
hours a day, seven days a week) monitoring during deployment. 
Monitoring is necessary to ensure that divergence between the 
expected and actual behaviour of a system is captured early and 
promptly, and addressed adequately. To do so, providers of AI 
systems should maintain a clone system as a control system. The 
clone system should not be considered a ‘digital twin’30 of the de-
ployed system. The clone is not a virtual simulation of the AI sys-
tem, but rather the same system deployed in controlled environ-
mental conditions. And its behaviour is not a simulation of the 
original system, but the benchmark (the baseline) against which 
the behaviour of the original system is assessed.

The clone should go through regular adversarial exercises, 
simulating real world attacks to establish a baseline behaviour 
against which the behaviour of the deployed system can be 
benchmarked. Divergences between the clone and the deployed 
system should flag degrees of security alerts. A divergence 
threshold, commensurate to the security risks, should be de-
fined on a case by case basis. It should be noted that too sensi-
tive a threshold (for example, a 0% threshold) may make moni-
toring and controlling unfeasible, while too high a threshold 
would make the system unreliable. However, for systems that 
satisfy requirements (1) and (2), minimal divergence should 
not occur frequently and is less likely to be indicative of false 
positives. Thus, a 0% threshold for these systems may not pose 
severe limitations to their operability, while it would allow the 
system to flag concrete threats.

AI can improve the 3R only insofar as it is reliable. Imagine,  
for example, deploying an AI system for a TAD task without  
being able to exclude the presence of backdoors in the AI system 
itself, and hence the possibility that attackers could gain control of 
the AI system and ensure that a specific attack on the monitored 
system goes undetected. The three requirements we advocate are 
preconditions for AI systems performing any of the 3R tasks in a 
reliable way, and should become essential preconditions for AI sys-
tems deployed for the security of national critical infrastructures. 
Their implementation may be too expensive for average com-
mercial AI applications for cybersecurity. This is why one may  
imagine that small- and medium-sized enterprises may adopt  
these requirements only in part; this may depend, for example, 
on the nature of their business and the nature of the system to be  
protected. However, these requirements should be met fully when 
considering national security and defence. The risks posed by 
attacks to AI systems underpinning critical infrastructures justify 
the need for more extensive controlling mechanisms, and hence 
higher investments.

AI systems are autonomous, self-learning agents interacting with 
the environment31. Their robustness depends as much on the inputs 
they are fed and interactions with other agents once deployed as 
on their design and training. Standards and certification procedures 
focusing on the robustness of these systems will be effective only 
insofar as they will take into account the dynamic and self-learn-
ing nature of AI systems, and start envisaging forms of monitoring 
and control that span from the design to the development stages. 
This point has also been stressed in the OECD (Organisation for 
Economic Co-operation and Development) principles on AI, which 
refer explicitly to the need for continuous monitoring and assess-
ment of threats for AI systems32. In view of this, defining standards 
for AI in cybersecurity that seek to elicit trust (and thus forgo moni-
toring and control of AI) is risky. The sooner we focus standards 
and certification procedures on developing reliable AI, and the 
more we adopt an ‘in-house’, ‘adversarial’ and ‘always-on’ strategy, 
the safer the AI applications for 3R will be.
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