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Regions of stability phases discovered in a general class of Genesio−Tesi chaotic oscillators are proposed. In a relatively large region
of two-parameter space, the system has coexisting point attractors and limit cycles. The variation of two parameters is used to
characterize themultistability by plotting the isospike diagrams for two nonsymmetric initial conditions.The parameters window in
which the jerk system exhibits the unusual and striking feature of multiple attractors (e.g., coexistence of six disconnected periodic
chaotic attractors and three-point attraction) is investigated.The second aspect of this study presents the synchronization of systems
that act as mediators between two dynamical units that, in turn, show function projective synchronization (FPS) with each other.
These are the so-called relay systems. In a wide range of operating parameters; this setup leads to synchronization between the
outer circuits, while the relaying element remains unsynchronized.The results show that the coupled systems can achieve function
projective synchronization in a determined time despite the unpredictability of the scaling function. In the coupling path, the outer
dynamical systems show finite-time synchronization of their outputs, that is, displaying the same dynamics at exactly the same
moment. Further, this effect is rather general and it has a wide range of applications where sustained oscillations should be retained
for proper functioning of the systems.

1. Introduction

Multistability, meaning the coexistence of many different
kinds of attractors, is an intrinsic property of many non-
linear dynamical systems and has become very important
research topic and received much attention recently [1, 2].
Multistability poses a threat for engineering systems because
the system may unpredictably switch into an undesirable
state. Multistability exhibits a rich diversity of stable states
of a nonlinear dynamical system and makes the system
offer a great flexibility. Particularly, when the number of
coexisting attractors generating from a dynamical system
tends to be infinite, the coexistence of many attractors

depending on the initial condition of a certain state variable
is alleged to be extreme multistability [3]. The occurrence
of multiple attractors, which implies multiple stability and
thus hysteretic dynamics, is one of the most important
phenomena encountered in nonlinear dynamical systems.
Such type of behavior has been reported in a wide range of
systems including electronic circuits [4], laser [5], biological
systems [6], Lorenz system [7], Josephson junction [8],
and chemical reactions [9]. Multiple attractor bifurcations
are said to occur when multiple coexisting attractors are
simultaneously created at a bifurcation point [10]. It has
been shown earlier that in some cases border collision
bifurcations may lead to multiple attractor bifurcations [11].
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More recently, Bao and collaborators [12] developed hidden
extreme multistability in memristive hyperchaotic system. In
that paper, they established a novel memristive hyperchaotic
system with no equilibrium based on the newly proposed
circuit realization scheme and investigated the phenomenon
of extreme multistability with hidden oscillation that reveals
the coexistence of infinitely many hidden attractors in the
proposed memristive hyperchaotic system. Kengne et al.
[13] presented the basic dynamical properties of a simple
autonomous jerk system including equilibria and stability,
phase portraits, frequency spectra, bifurcation diagrams, and
Lyapunov exponent plots. It is shown that the onset of chaos
is achieved via the classical period-doubling and symmetry-
restoring crisis scenarios. One of the key contributions
presented in their work was that the jerk system experiences
the striking feature of multiple attractors (e.g., coexistence of
four disconnected periodic and chaotic attractors) [13, 14]. It
is important to note that the results obtained revealed that
there are some unexplored parameters’ regions of this circuit
where four disconnected nonstatic attractors coexist.

The interaction of two nonlinear systems via a third
parameter-matched circuit typically leads to a variety of
significant behaviors, among which the most intriguing is
probably synchronization (known usually as relay synchro-
nization), that is, the coordination of a particular dynamical
property of their motion [15]. The interaction between two
chaotic systems has been deeply studied during the past
decade, focusing on the ability of synchronization even in the
presence of noise or delay. In [16], Wagemakers et al. exam-
ined the robustness of isochronous synchronization in simple
arrays of bidirectionally coupled systems. The results of the
study showed experimentally that the relaying unit does not
need to be identical to the outer systems which are the
ones to be synchronized. Sharma et al. in [17] proposed the
dynamics of nonlinear oscillators indirectly coupled through
a dynamical environment. The results of the study showed
that this form of indirect coupling leads to synchronization
and phase-flip transition in periodic as well as chaotic regime
of oscillators. The phase-flip transition in the case of relay
coupled system was investigated by Sharma et al. in [18]. In
that paper, the authors show that, in the absence of time delay,
relay coupling through conjugate variables has the same effect
as when the interactions involve a time delay. However, this
phase-flip transition does not occur abruptly at a certain crit-
ical value of the coupling parameter. Relay synchronization
(RS) has been used with electronic circuits, as a technique for
transmitting and recovering encrypted messages, which can
be sent bidirectionally and simultaneously [19]. Apart from
its technological applications, RS has also been proposed as a
possible mechanism at the basis of isochronous synchroniza-
tion between distant areas of the brain [20]. Nana andWoafo
proposed a theoretical and experimental synchronization of
three oscillators coupled as emitter-relay-receiver system [21].
They proposed an experimental setup and showed that it is
impossible to achieve a zero synchronization error due to
the tolerances of the electrical components. Somedemonstra-
tions of chaoticmasking of communication as well as selected
secure communication lines were observed. Gutiérrez et al. in
[22] showed that a generalized synchronization (GS) in relay

systems with instantaneous coupling could be obtained. The
authors proved the existence of GS in unidirectional coupled
units (drive system → response system) by checking the
ability of the response system to react identically to different
initial conditions of the same driver system, which can be
quantified by evaluating themutual false nearest neighbors or
by measuring the conditional Lyapunov exponents. Despite
such evidence of RS, there are still open questions of a funda-
mental nature. The main issue is to characterize properly the
relationship established in RS between the dynamics of the
relay system and that of the synchronized systems. From the
previously mentioned references, the literature needs a strict
analysis of the performance of the RS using a scaling function.
Besides, the projective synchronization (PS) has been used
in the research of secure communication because of the
unpredictability of the scaling functionwhichmay be a useful
element [23]. So the development of the function projective
synchronization in relay systems is important challenging
research point. This motivates the present study.

The aim of this work is to make some dynamical analysis
details of complex systems that can exhibit many major fea-
tures of the regular and chaotic motion which allows a better
understanding of its behavior and providing a generic route
of function synchronization in relay coupled jerk oscillators.

The remainder of the paper is organized as follows. In
Section 2, the nonlinear system is presented and the dynam-
ical behaviors of the circuit are identified with the help of a
numerical two-parameter Lyapunov exponent diagram. The
finite-time synchronization issue is formulated in Section 3
in which synchronization and numerical simulations are
presented. Finally, conclusions and remarks are given in
Section 4.

2. The Model and Its Behavior

2.1. Preliminaries. We consider the following chaotic system:

𝑧̇𝑖 (𝑡) = 𝑎𝑖𝑧𝑖+1 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛 − 1
...

𝑧̇𝑛 (𝑡) = 𝑓 (𝑧 (𝑡)) ,
(1)

where 𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑛(𝑡))𝑇 is the system state
vector, 𝑎𝑖 the constants, and 𝑓(𝑧(𝑡)) the nonlinear smooth
function.Actually, through topological transformation,many
existing chaotic systems, such as Chen systems, Lorenz
systems, Lu systems, can be transformed as in the form
of system (1). More recently, a growing interest is in the
analysis of the LEs on Lyapunov diagrams, where we associate
colors for the largest and the second largest exponent varying
simultaneously two system’s parameters [24, 25]

Remark 1. In real world, the order of chaotic system (1)
usually will not go beyond fourth order. Therefore, the
subscripts is less than or equal to 4 (i.e., 𝑖 ≤ 4).

If we set 𝑖 = 3, the general class of Genesio–Tesi system
is obtained. This system is one of paradigms of chaos since
it captures many features of chaotic systems. It includes a
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Figure 1: Two complementary ways of characterizing the stability of the MO5 circuit in the plan (𝑎, 𝛾): (a) Lyapunov stability diagram,
where the orange shadings mark periodic oscillations and yellow and black denote the chaotic behaviors; (b) isospike diagrams displaying
the number of peaks in one period of 𝑥(𝑡). These two figures are plotted for the initial conditions (0.5, 0, 0). Regularity, multiperiodicity and
“chaos” are represented, respectively, in (b). Each color shows the number of peaks in one period 𝑇 of 𝑥(𝑡).
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Figure 2: In (a) Lyapunov diagram for the (𝑎, 𝛾) plane and in (b) isospike diagram for the same range of parameters as in (a) with the initial
conditions set at (0, 0.5, 0.5). These figures have been plotted with the same rank as the parameters in Figure 1.

simple square part and three simple ordinary differential
equations that depend on three positive real parameters. Let
us consider for this study the simple autonomous jerk system
with multiple attractors presented recently by Kengne et al.
and described by the following dynamics equations [13, 14]:

𝑥̇1 = 𝑥2,
𝑥̇2 = 𝑎𝑥3,
𝑥̇3 = −𝛾𝑥2 − 𝑥3 + 𝑝 (𝑥1) ,

(2)

where 𝑎 and 𝛾 are the positive constants and 𝑝(𝑥1) the
polynomial smooth function. For instance, the system is
chaotic for the parameters 𝑎 = 10, 𝛾 = 0.725, 𝑝(𝑥1) = 𝑥1−𝑥31.
Equation (2) represents a reliable and palpable resource for
generating a wide variety of nonlinear phenomena including
the multiple stability behavior. This system is capable of
displaying many disconnected attractors (for some suitable
sets of parameters) depending solely on the choice of initial

conditions [13].The following section underlines some unex-
plored parameter’s regions of systems proposed in (2) which
shows that many attractors coexist.

2.2. Stability Analysis of the Attractors. This section presents
in two complementary ways (described below) phase dia-
grams characterizing the far-reaching regular organization
induced by the set of stable oscillations of the circuit.
Although obtained using two very distinct algorithms, the
boundaries between chaotic and periodic regions match
perfectly by plotting on a fine parameter grid the largest
nonzero Lyapunov exponent. Such exponents are familiar
indicators that allow one to discriminate chaos (positive
exponents) from periodic oscillations (negative exponents).
Figures 1 and 2 depict the behavior of MO5 oscillator in
the plane (𝑎, 𝛾) for a mesh of 750 × 750 parameters points.
The results are obtained by using the standard fourth-order
Runge-Kutta algorithm with fixed time step ℎ = 5 × 10−3.
Figures 1 and 2 are obtained by adopting the initial values
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as (0.5, 0, 0) and (0, 0.5, 0.5), respectively. As usual the first
5 × 105 integration step disregarded as a transient time is
considered to approach the attractor. The discrimination of
the solutions and the account of the number of peaks within a
period of𝑥(𝑡) are detailed in [25]. Figures 1(a) and 2(a) display
the Lyapunov stability diagram, obtained by plotting in two
dimensions (in the plane (𝑎, 𝛾)) the largest nonzero Lyapunov
exponent for the same parameters. The initial conditions are
adopted as (0.5, 0, 0) and (0, 0.5, 0.5), respectively.The orange
shadingsmark periodic oscillations (negative exponents); the
yellow and black colors denote the chaotic behaviors (positive
exponent). It is worth noting that the diagrams plotted for the
same values of parameters and the different initial conditions
should be identical in the case where the circuit depicts
no multistability fashion. This aspect is not observed in
these two figures. The Lyapunov exponent points out this
difference. This method is limited because it can only bring
out the regions of coexistence between chaos and regularity,
when plotting the isospike diagrams to complete the analysis.
Figures 1(b) and 1(c) display the isospike diagrams in the
plane (𝑎, 𝛾) for the same values of the parameters for the
following initial conditions fixed as (0.5, 0, 0) and (0, 0.5, 0.5),
respectively. We use a palette of 17 colors to represent the
number of spikes contained in one period of the oscillate
state 𝑥(𝑡) as indicated by the color dots.Within the parameter
range chosen, we obtain 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, and 17 spikes in a single period 𝑇 of 𝑥(𝑡). The
black color denotes the chaotic behavior. These two figures
are used to study the 2D multistability in MO5 oscillators.
They consistency shows all coexistences between the regular
and nonregular oscillations.

2.3. Occurrence of Multiple Attractors. Most systems have
only one attractor or one single type of attractor. Others may
have two different types of coexisting attractors, most likely
strange attractors and periodic cycles. It is interesting and
striking to see that the simple system reported here has all
three different common types of attractors coexisting side
by side. Figure 2(a) presents the two-parameter Lyapunov
exponent diagrams in the plane for the following initial
conditions (0, 0, 0.5).The isospike is presented in Figure 2(b).
The same features observed in Figure 1(b) are also observed
with additional remarks. For instance, in Figure 1(b) we
observe two black bands indicating the chaotic domains.
One of these bands corresponds to the high values of 𝛾
which borders two distinct periodic structures; the structure
of period-3 and period-6 and decreases gradually when the
parameter 𝑎 is monitored, whereas in Figure 2(b) the same
band for the different conditions is encircled by two distinct
periodic structures, namely, period-3 and period-6 in the
three regions; the band here remains solid in its evolution
showing the stability of the chaotic attractors. The difference
between Figures 1(b) and 2(b) is a fundamental concept
resulting from the multistability of attractors. In this work,
we presented the multistability zones for the same ranges of
variation of the plane (𝑎, 𝛾).

Previous work [13] reports in some way a detailed
dynamical analysis of the system proposed in this work
and discovered that the system is capable of displaying four

Table 1: Coexistence of multiple solutions for suitable values of
parameters (𝑎, 𝛾).

𝑎 𝛾 Initial
conditions

Symmetric coexistence of two
attractors

17.63 0.6714 (±0.5, 0, 0) 𝑃𝑒𝑟𝑖𝑜𝑑-6 Figure 6(a1)
(0, ±0.5, ±0.5) 𝑃𝑒𝑟𝑖𝑜𝑑-4 Figure 6(a2)

18.16 0.7206 (±0.5, 0, 0) 𝑃𝑒𝑟𝑖𝑜𝑑-5 Figure 6(b1)
(0, ±0.5, ±0.5) 𝑃𝑒𝑟𝑖𝑜𝑑-3 Figure 6(b2)

18.22 0.6816 (±0.5, 0, 0) 𝑃𝑒𝑟𝑖𝑜𝑑-3 Figure 6(c1)
(0, ±0.5, ±0.5) 𝑃𝑒𝑟𝑖𝑜𝑑-6 Figure 6(c2)

17.37 0.7401 (±0.5, 0, 0) 𝐶ℎ𝑎𝑜𝑠 Figure 6(d1)
(0, ±0.5, ±0.5) 𝑃𝑒𝑟𝑖𝑜𝑑-6 Figure 6(d2)

18.03 0.7191 (±0.5, 0, 0) 𝐶ℎ𝑎𝑜𝑠 Figure 6(e1)
(0, ±0.5, ±0.5) 𝑃𝑒𝑟𝑖𝑜𝑑-3 Figure 6(e2)

disconnected attractors (for some suitable sets of parameters)
depending solely on the choice of initial conditions and six
disconnected ones using the perturbations method [13–15].
There is a relatively large parameters space of coexisting
attractors located on the top of Figure 2(a) where a symmetric
pair of point attractors coexists with other attractors. Our
analysis shows an additional feature of the coexistence of
multiple attractors involving a pair of asymmetric chaotic
attractors with a pair of asymmetric periodic ones. Six
disconnected attractors with three coexisting equilibrium
points attractors are presented instead of four reported
in [13] previously mentioned. The three coexisting points
obtained, respectively, with the following initial conditions
(−1, 0, 0) (0, 0, 0) (1, 0, 0) are an interesting feature of this
circuit. We recall that Sprott reported two coexisting equi-
libriums for a dynamical system with four quadratic nonlin-
earities to display a butterfly strange attractor. As shown in
Figures 3 and 4, the main coexisting regime is a symmetric
pair of point attractors coexisting with a symmetric periodic
cycle. However, there are several other coexisting regimes as
shown in Table 1. Out of well-known dynamics of the chaotic
systems encountered in the literature, we present another
interesting feature at period-12, two symmetric attractors,
conjugated in the phase plan with a nonsymmetric initial
condition. Figure 5 displays these dynamics.

The basins of attraction of the different attracting sets
provide more information about the coexisting attractors,
which are defined as the set of initial conditions whose
trajectories converge to the respective attractor. For the
following values of the parameters 𝑎 = 17.37 and 𝛾 = 0.7401
where a symmetric pair of point attractors coexists with a
symmetric pair of limit cycles in Figure 4(d), the basins in
the 𝑥2 = 0 (the second coordinate of system (1)) plane are
shown in Figure 7. The basins of the two point attractors are
indicated by yellow, red, and black, respectively, for the pair
of period-3 and period-6 and the pair of chaos. The blue
part represents the unbounded solution. The basins have the
expected symmetry about the 𝑦-axis and a fractal boundary.
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Figure 3: Isospike diagram in the (𝑎, 𝛾) panel, the red color codifies the zones with initial conditions (0.5, 0, 0) and the blue color codifies the
zones corresponding to initial conditions (0, 0.5, 0.5): (a) 3 peaks in one period of 𝑥(𝑡); (b) 5 peaks in one period of; (c) 6 peaks in one period
of. The region where the black color is visible is the region of 2D multistability.

3. Function Projective Synchronization in
Relay Coupled Oscillators

3.1. Problem Formulation. Now, let us present a theory of the
function projective synchronization in relay coupled systems.
Our scheme is given as follows: The outer systems noted 𝑋
and 𝑌 are the systems to synchronize while the relay unit is
noted by (𝑅). From this consideration, the outer systems are
described as follows:

𝑧̇1 (𝑡) = 𝑎1𝑧2 (𝑡) − 𝜉 (𝑧1 (𝑡) , 𝜌1 (𝑡) , 𝑚 (𝑡)) ,
𝑧̇𝑖 (𝑡) = 𝑎𝑖𝑧𝑖+1 (𝑡) , 𝑖 = 2, . . . , 𝑛 − 1

...
𝑧̇𝑛 (𝑡) = 𝑓 (𝑧 (𝑡)) ,

(3)

where 𝑧(𝑡) represents 𝑋(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))𝑇 or
𝑌(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))𝑇. 𝜉(𝑧1(𝑡), 𝜌1(𝑡), 𝑚(𝑡)) is the
coupling strength function.

The relay system can take the following form:
̇𝜌𝑖 (𝑡) = 𝑎𝑖𝜌𝑖+1 (𝑡) + 𝑢 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛 − 1,
̇𝜌𝑛 (𝑡) = 𝑓 (𝜌 (𝑡)) + 𝑢𝑛 (𝑡) ,

(4)

where 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑛(𝑡)]𝑇 is the controller to be
determined.

Definition 2. If there exists a scaling function𝑚(𝑡) satisfying
lim
𝑡→𝑡0

‖𝑒 (𝑡, 𝑚 (𝑡))‖ = 0 ∀𝑒 (𝑡0, 𝑚 (𝑡0)) ∈ 𝑅𝑛 (5)

then systems (3) and (4) achieve projective synchronization.

Remark 3. Chaos synchronization schemes such as complete
synchronization and antisynchronization are special cases of
function projective synchronization when 𝑚(𝑡) = 1 and
𝑚(𝑡) = −1, respectively.

Taking into account the synchronization between two
chaotic systems, take the drive relay as follows:

̇𝜌1 = 𝑎1𝜌2 + 𝑢1,
̇𝜌2 = 𝑎2𝜌3 + 𝑢2

...
̇𝜌𝑛 = 𝛾2𝜌2 + 𝛾3𝜌3 + ⋅ ⋅ ⋅ + 𝛾𝑛𝜌𝑛 + 𝑝 (𝜌1) + 𝑢𝑛.

(6)

Let us define the synchronization errors between our systems
as follows:

𝑒1 = 𝑥1 + 𝑦1 − 2𝑚 (𝑡) 𝜌1,
𝑒2 = 𝑥2 + 𝑦2 − 2𝜌2

...
𝑒𝑛 = 𝑥𝑛 + 𝑦𝑛 − 2𝜌𝑛.

(7)
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Figure 6: Coexistence of four different attractors (a pair of period-3, period-5, and period-6 and a pair of chaotic attractors) for (a), (b), (c),
(d), and (e), respectively, represented in Table 1. Notice that attractors are symmetric in pairs.

Considering (7), the dynamics of the errors become
̇𝑒1 = 𝑥̇1 + ̇𝑦1 − 2𝑚 (𝑡) ̇𝜌1 − 2𝑚̇ (𝑡) 𝜌1,

̇𝑒2 = 𝑥̇2 + ̇𝑦2 − 2 ̇𝜌2
...

̇𝑒𝑛 = 𝑥̇𝑛 + ̇𝑦𝑛 − 2 ̇𝜌𝑛.

(8)

From these equations, we obtain the following error dynam-
ics:

̇𝑒1 = −𝑘𝑒1 + 𝑎1 (𝑥2 + 𝑦2) − 2𝑎1𝑚(𝑡) 𝜌2 − 2𝑚̇ (𝑡) 𝜌1
− 2𝑚 (𝑡) 𝑢1,

̇𝑒2 = 𝑎2𝑒3 + 2𝑢2
...
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Figure 7: Cross-section for 𝑥2 = 0 of the basins of the symmetric
pair period-3 cycle (yellow), pair of period-6 (red), and the pair of
chaotic attractors (black) of system (2) at 𝑎 = 17.37 and 𝛾 = 0.7401.
Blue zones correspond to unbounded solutions (color figure online).

̇𝑒𝑛 = 𝛾2𝑒2 + 𝛾3𝑒3 + ⋅ ⋅ ⋅ + 𝛾𝑛𝑒𝑛 + 𝑓 (𝑒1, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡))
+ 2𝑢𝑛,

(9)

where 𝑓(𝑒1, 𝑥1, 𝑦1, 𝜌1, 𝑚(𝑡)) = 𝑝(𝑥1) + 𝑝(𝑦1) − 2𝑝(𝜌1).
Let us choose the controllers in the following form:

𝑢1 = 1
2𝑚 (𝑡) (𝑎1 (𝑥2 + 𝑦2) − 2𝑎1𝑚(𝑡) 𝜌2 − 2𝑚̇ (𝑡) 𝜌1

+ 𝜉 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝛾0 sign (𝑒1)) ,
(10a)

𝑢𝑛 = −12 (𝑓 (0, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡))) , (10b)

𝑢2 = 0
...

𝑢(𝑛−1) = 0.
(10c)

Theorem 4. For the given scaling function matrix 𝑚(𝑡), the
projective function synchronization in relay coupled oscillators
between outer𝑋 and outer𝑌will occur under the relay (6) and
the control law (10a), (10b), and (10c).

Proof. In order to prove the stability of the scheme, let us
divide the errors dynamics (9) into two subsystems.

Subsystem 1

̇𝑒1 = −𝑘𝑒1 + 𝑎1 (𝑥2 + 𝑦2) − 2𝑎1𝑚(𝑡) 𝜌2 − 2𝑚̇ (𝑡) 𝜌1
− 2𝑚 (𝑡) 𝑢1.

(11)

Subsystem 2

̇𝑒2 = 𝑎2𝑒3 + 2𝑢2
...

̇𝑒𝑛 = 𝛾2𝑒2 + 𝛾3𝑒3 + ⋅ ⋅ ⋅ + 𝛾𝑛𝑒𝑛 + 𝑓 (𝑒1, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡))
+ 2𝑢𝑛.

(12)

The criterion based on asymptotic stability which states that
“if the subsystem (11) is stable under the controller (10a), then
the overall stability of the scheme is guaranteed under the
controller (10b) and (10c)” was developed as necessary and
sufficient condition for the synchronization of the periodic
and chaotic systems [25]. On the basis of this criterion, let us
seek a suitable Lyapunov function to establish the asymptotic
stability of subsystems (11) and (12).

The errors of the scheme become
̇𝑒2 = 𝑎2𝑒3

...
̇𝑒𝑛 = 𝛾2𝑒2 + 𝛾3𝑒3 + ⋅ ⋅ ⋅ + 𝛾𝑛𝑒𝑛 + 𝑓 (𝑒1, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡))
− 𝑓 (0, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡)) .

(13)

Construct the dynamical Lyapunov function as follows:

𝑉 = 1
2
𝑛

∑
𝑖=2

𝑒2𝑖 . (14)

Then the time derivative of Lyapunov function 𝑉along the
trajectory of error system (13) is

𝑑𝑉
𝑑𝑡 = ̇𝑒2𝑒2 + ⋅ ⋅ ⋅ + ̇𝑒𝑛𝑒𝑛 = 𝛼𝑖

𝑛

∑
𝑖=2

𝑒𝑖𝑒𝑖+1 + 𝛾𝑛𝑒2𝑛

+ [𝑓 (𝑒1, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡)) − 𝑓 (0, 𝑥1, 𝜌1, 𝑦1, 𝑚 (𝑡))]
⋅ 𝑒𝑛,

(15)

where 𝛼𝑖 is a constant depending on the system parameters.
Since subsystem (11) is stable and 𝑒1(𝑡) → 0 then expression
(15) becomes

𝑑𝑉
𝑑𝑡 =

𝑛

∑
𝑖=2

𝛼𝑖𝑒𝑖𝑒𝑖+1 + 𝛾𝑛𝑒2𝑛 ≤ 𝑟2
𝑛

∑
𝑖=2

𝛼𝑖 + 𝛾𝑛𝑟2. (16)

The stability is guaranteed if expression (16) is negative. This
is possible if 𝛾𝑛 = −∑𝑛𝑖=2 𝛼𝑖 which is consistent with a general
class of jerk system [26, 27]. The proof is complete.

Definition 5. Consider outer 1 and outer 2 described by
systems (4) and (5), respectively. If there exists a constant
𝑡𝑟 = 𝑡𝑟(𝑒(0)) > 0, such that

lim
𝑡→𝑡𝑟

‖𝑒 (𝑡)‖ = 0 (17)

and ‖𝑒(𝑡)‖ ≡ 0when 𝑡 ≥ 𝑡𝑟, then the chaos synchronization in
relay coupled systems (3) and (4) is achieved in a finite time.
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Theorem 6. For any nonzero scaling function 𝑚(𝑡), the outer
system (3) can synchronize the outer system (4) with relay (6)
in a finite time given by

𝑡𝑟 = 1
(1 − 𝛾0)min (𝑘, 𝜉) ln (1 +

󵄨󵄨󵄨󵄨𝑒1 (0)󵄨󵄨󵄨󵄨1−𝛾0) . (18)

Proof. Let us choose as a Lyapunov function candidate

𝑈 = 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 . (19)

The time derivative of 𝑈 along the trajectories of the closed-
loop system (8) is given by

𝑑𝑈
𝑑𝑡 = ̇𝑒1sign (𝑒1)

= [−𝑘𝑒1 − 𝜉 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝛾0 sign (𝑒1)] sign (𝑒1)
= −𝑘 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 − 𝜉 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝛾0 .

(20)

Now, let 𝜂 = min(𝑘, 𝜉), then we obtain

𝑑𝑈
𝑑𝑡 = −𝜂 [󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝛾0] ≤ −𝜂 [𝑈 + 𝑈𝛾0] . (21)

From (21), we can obtain

𝑡𝑟 − 𝑡0 ≤ −1𝜂 ∫
𝑡𝑟

𝑡0

𝑈−𝛾0
(1 + 𝑈1−𝛾0)𝑑𝑈. (22)

If we suppose that 𝑡0 = 0 and 𝑈(𝑡𝑟) = 0 since the
synchronization is completed, hence

𝑡𝑟 ≤ 1
𝜂 (1 − 𝛾0) ln (1 + 𝑈1−𝛾0 (𝑡0)) . (23)

In addition 𝑈(𝑡0) = |𝑒1(0)|; hence

𝑡𝑟 ≤ 1
𝜂 (1 − 𝛾0) ln (1 +

󵄨󵄨󵄨󵄨𝑒1 (0)󵄨󵄨󵄨󵄨1−𝛾0) . (24)

This proof is complete.

Remark 7. The control objective is stated in the mathematical
form in (10a), (10b), and (10c). One advantage of this type of
controller is that it can be easily constructed through time
varying resistors, capacitors, or operational amplifiers and
their combinations or using a digital signal processor together
with the appropriate converters. The proposed work uses a
reduced number of control signals and parameters.

3.2. Numerical Results. In this section, a numerical example
and its simulations are presented to demonstrate the effec-
tiveness of the proposed scheme. To illustrate our method,
we choose the same circuit where the dynamical analysis is

[k, m(t)][k, m(t)]

u(t)

X R Y

Figure 8: Schematic representation of the relaymechanism.Oscilla-
tors𝑋 and𝑌 are coupled bidirectionally to oscillator𝑅with coupling
strength k.

described previously in this work. The dynamic equations of
outers is as follows, respectively, for𝑋(𝑡) and 𝑌(𝑡):

(𝑋) 𝑥̇1 = 𝑥2 − 𝑘 (𝑥1 − 𝑚 (𝑡) 𝜌1) ,
𝑥̇2 = 𝑎𝑥3,
𝑥̇3 = −𝑏𝑥2 − 𝑥3 + 𝑝 (𝑥1) ,

(𝑌) ̇𝑦1 = 𝑦2 − 𝑘 (𝑦1 − 𝑚 (𝑡) 𝜌1) ,
̇𝑦2 = 𝑎𝑦3,
̇𝑦3 = −𝑏𝑦2 − 𝑦3 + 𝑝 (𝑦1) ,

(25)

where 𝑎 and 𝑏 are the positive constants and 𝑝(∙1) is the
polynomial smooth function.

For instance, the system is chaotic for the parameters
𝑎 = 10, 𝛾 = 0.725, 𝑝(𝜃1) = 𝜃1 − 𝜃31 for any variable 𝜃1.𝑚(𝑡) is the scaling function and 𝑘 is the coupling strength.
The impact of 𝑘 and 𝑚(𝑡) on the dynamical behaviors of the
entire coupled systems will be investigated later. We set the
following parameters: 𝑎 = 18.1 and 𝛾 = 0.625. From (10a),
(10b), and (10c) the controllers take the form

𝑢1 = 1
2𝑚 (𝑡) ((𝑥2 + 𝑦2) − 2𝑚 (𝑡) 𝜌2 − 2𝑚̇ (𝑡) 𝜌1

+ 𝜉 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝛾 sign (𝑒1)) ,
(26a)

𝑢2 = 1
2 (2 (𝑚 (𝑡) − 1) 𝜌1 + (2 − 8𝑚3 (𝑡)) 𝜌31

+ 6𝑚 (𝑡) 𝑥1𝑦1𝜌1) .
(26b)

Let us consider the following parameters: 𝜉 = 0.01, 𝑘 = 2
and 𝜂 = 0.01. The scaling function 𝑚(𝑡) is expressed as
𝑚(𝑡) = 𝑒0 + 0.1 sin(𝜋𝜙𝑡) with 𝑒0 and 𝜙 the positive constants.
Results of our “relay” synchronization in a system of three
circadian oscillators are shown in Figure 8. The repressors
from the three subsystems are labeled 𝑋, 𝑅, and 𝑌, respec-
tively. Although each of the oscillators is identical, the initial
conditions of the three circuits are different. Whatever the
situation of the systems, Wagemakers et al. showed that
outer systems can synchronize even if the relay unit has
different architecture [16]. There is phase synchrony between
the repressor output from oscillators 𝑋 and 𝑌. If we set the
following values of 𝑒0 and 𝜙 to 0.75 and 0.7, respectively, the
attractors of different systems are provided in Figure 9. The
diagrams in blue and black represent the outer 1 and outer 2,
respectively. The similarity of these graphs is complete. The
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Figure 9: Chaotic behavior for 𝑒0 = 0.75 𝜙 = 0.7 (blue and black
attractors correspond to outer 1 and outer 2, and the third in red
represents the relay).
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Figure 10: Cluster synchronization.

diagram in red displays the relay.The chaotic structure of the
relay system renders its manipulation bulky and difficult for
an attacker in the practical situations.

One of the major collective coherent behaviors in ensem-
bles of identical and nonidentical chaotic elements is global
and cluster synchronization. For complete synchronization
we focus on the existence and stability of unique uncondi-
tional clusters whose rise does not depend on the origin of the
outers. The cluster synchronization is established in relation
with the difference between the relay and the outers. Figure 10
presents the diagrams showing the cluster synchronization.
Figure 11 displays the global errors of the system given by (7).
It is important to observe that the stabilization of the one state
leads to other states of the scheme which is consistent with
our theory analysis. The errors of synchronization between
the outers are provided in Figure 12. From these graphs, we
remark that the relay circuit allows finite synchronization and
in a short time.

Remark 8. A typical assumption made by most chaotic
cryptosystems’ designers is that the system’s parameters play
the role of the keywhich is not seen as efficient inmany secure
schemes. In this paper we assume that 𝑚(𝑡) plays the role of
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Figure 11: The global errors state of synchronization.
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Figure 12: Synchronization errors between the outers.

(x1 + y1)/21
m(t)

50 15 20 2510

t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 13: Original function (red); retrieved function (blue) for 𝑎 =
18.1 and 𝛾 = 0.625.

the key. From (7) we can derive 𝑒1(𝑡) = 𝑥1+𝑦1−2𝑚(𝑡)𝜌1 → 0
as 𝑡 → 𝑡𝑟; that is, (𝑥1 + 𝑦1)/2𝜌1 can recover the message
signal 𝑚(𝑡). Figure 13 depicts the function𝑚(𝑡). The original
is plotted in red and the same function is recovered after a
short transient behavior.
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Figure 14: Bifurcation diagram with 𝑘 ∈ [0; 5].
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Figure 15: Bifurcation diagram 𝑒𝑜 ∈ [0.5, 0.8].

3.3. Scaling Function and “Relay” Synchronization. The
scheme described above depicts many interesting features. It
is possible to analyze a number of situations that are likely to
arise when the parameters of the scaling function are moni-
tored. For instance, when chaos synchronization is applied in
engineering applications such as in secure communications,
the chaos-based synchronization scheme is rather sensitive
to attacks. It is necessary to analyze the interactions of the
scaling function parameters which is naturally considered as
a key and the coupling strength k vis-à-vis of the scheme. For
small values of the coupling parameter k, the chaotic regime is
asynchronous; that is, 𝑋 ̸= 𝑌. Transition from asynchronous
to synchronous generation occurs through the intermittency
of “bubbling” type [28, 29]. Figure 14 shows that the variation
of the control parameters allows different behaviors which
are periodic or chaotic behavior. One can see that with
the increase in 𝑘, we move towards the region of periodic
synchronous generation. In this context, the optimal value
of the coupling which allows the synchronization between
the outers is about 1.45. If we vary the values of 𝑒0 and 𝜙
between the intervals [0.5 0.7] and [0, 5], respectively, the
bifurcation diagrams given on Figures 15 and 16 show a
consistent expectation of the function projective synchro-
nization working [30]. One can see that initially the systems
are asynchronous. After a while, the symmetry breaking
bifurcation occurs when 𝑒0 = 𝑒opt. With an increase in 𝑒0
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
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Figure 16: Bifurcation diagrams with 𝜙 ∈ [0, 5].

self-modulation and transition to chaos take place.The errors
system remains practically weak when the constant 𝜙 varies.
Note that the knowledge of a set of parameters (𝑘, 𝑒opt, 𝜙) for
unauthorized agent remains a hard test. Their determination
is a requirement to detect the synchronization zone which is
an excellent agreement with our theoretical predictions.

4. Conclusions and Remarks

In this unexplored regime of the jerk system, new regions
of multistability have been found. The complex dynamics of
chaoticmotions are reported bymeans of Lyapunov exponent
spectrum. By varying the initial conditions, we are also able
to detect six coexisting stable attractors and three equilibrium
points attractors instead of four encountered in the literature.
And on the other hand, we have demonstrated that relay
synchronization can be associated with function projective
synchronization between the relay unit and the synchronized
systems.Themediating role of FPS implies the existence of an
invertible function that links the dynamics of the relay system
with those of the systems to be synchronized. The key role of
FPS is demonstrated by analyzing the bifurcation diagram of
the whole systemwith respect to the parameters of the scaling
function 𝑚(𝑡). Therefore, our results link the emergence of
relay synchronization in instantaneously coupled chaotic sys-
tems with the existence of FPSwith the relay system and open
the possibility of using relay units for secure communications
[31]. Comparing our results to those found in the literature
[13–21], the isospike diagrams show the overall behavior of
the system and the relay unit associated with the unpre-
dictability of the scaling function appears as a fundamental
for the feasibility of the reliable secure communications.
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