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Abstract. The paper presents a mathematical model for the calculation of resistance to 
heat transmission at the cross-flow of gas. The obtained mathematical expressions 
show that the resistance to heat transfer at the cross-flow of gas is determined by the 
following influential values: the method of setting processed elements, the setting 
height, the available cross passages, elements density, the heating/cooling rate and the 
characteristic temperature in the voids existing between set elements.  

Tunnel ovens represent complex plants in which heat energy and mass are transferred 
in physical and chemical processing of materials. Fig. 1 shows the simplest process 
developing in a tunnel oven for the production of construction ceramics. The upper part 
of the Figure shows the flow of dry clay materials, then the flow of air and fuel heating 
gases, while the bottom part of the Figure shows the distribution of temperatures of both 
media flowing in the opposite direction. 

The cross flow of gas in tunnel ovens occurs as a consequence of local temperature 
differences between the edge gaps and the center of the setting. So, for example, in the 
cooling zone, set elements leaving the heating zone are warmer that the air flowing in the 
opposite direction through the edge gaps and passages provided, with the air in voids in 
the heap being warmer than that in the edge gaps and passages. Due to this, a difference 
in density occurs between the air inside the voids in the heap and the air of the axial flow 
current.  

On the other hand, this difference in densities causes a difference in pressure, due to 
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Fig. 1. Schematic presentation of current flows 
 and temperature distribution in the tunnel oven 

which the relatively hot air from the voids in the heap flows upward, whereas 
simultaneously relatively colder air from the edge gaps and passages flows in the lower 
part of the heap (Fig. 2). In compliance with this, and based on other temperature 
relations prevailing in the heating zone, a cross flow occurs with the direction of flow 
opposite to that shown in Fig. 2. 

 
Fig. 2. Schematic illustration of a tunnel oven with the gas flowing axially through the 

setting and the edge gaps and the cross-flow through the setting 

Fig. 3 shows schematically cross sections in the tunnel oven heating and cooling 
zones with current flows and temperature distribution. It is noted that temperature over 
the oven cross section is constant in principle. Deviations occur only in the edge areas 
where there is direct contact with the axial flow of gas. Measurements taken on tunnel 
ovens confirm this distribution of temperature [7]. 
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Fig. 3. Schematic presentation of tunnel oven cross sections with current flows and 

temperature distribution 

The updraft force resulting from the difference in density is opposed to by the 
resistance to the flow. It is assumed that all the resistances to flow in relation to the 
resistance to the flow through the setting arrangement are negligible [6]. In compliance 
with this, the following dependence applies: 

 
2

2whg zzs ⋅⋅Ψ=∆⋅⋅ ρρ ,  (1) 

where: 
g - gravity, 
hs - setting height, 
∆ρ - difference between the mean density of fluids in the edge gaps and passages and 
the mean density in the voids in the setting, 
Ψz - coefficient of resistance to vertical flow through the setting, 
ρz - cross-flow fluid density, 
wz - cross-flow fluid velocity. 

Taking into account the connection between the coefficient of resistance Ψz and the 
coefficient of pressure fall ξz [2], defined on the basis of the isothermal non-compressible 
flow of ideal gases in a pipe − where the height of the setting hs is taken for the length of 
the flow channel, and for the diameter − hydraulic diameter dh − we have 
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wherefrom: 
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From the above equation, it can be concluded that the height of the setting does not 
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affect the velocity of cross-flow, and hence the intensity of heat exchange. 
Using the equation for the ideal gas state, the relation ∆ρ/ρ can be expressed in the 

following form: 

 
g

zg

T

TT −
=

∆
ρ
ρ  , (4) 

where: gT − the mean temperature of gas in the axial current; zT − characteristic 
temperature of gas in the setting voids. 

The mass cross-flow of fluid over the unit length of the oven is determined from 
the equation of continuity: 

zm&

  . (5) zzzz Awm ⋅⋅= ρ&

With the S. Ergun's [8] coefficient of the setting looseness introduced, the 
characteristic (free) area for the vertical current flow, which, reduced to the unit length le, 
is: 
  , (6) osz AA  ε=

where: Aos − the area of the setting base over the unit length. 
From equations (3), (4) and (5) it follows that: 
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For the setting design shown in Fig. 4 and the geometric relations b/a and c/b, the 
coefficient of pressure fall ξz for the longitudinal (axial) flow through the setting, 
according to the reference literature [5], is given by the expression: 
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Numerous tests have confirmed that equation (8) can be applied with sufficient 
accuracy for vertical flows through the setting [5]. It is worth also to mention that 
between the heat exchange and the exchange of impulses in the setting − with the 
assumptions made − there is a full analogy. 

For the flow through the setting, the Reynolds's criterion of similarity is defined in the 
following way: 

 
v
dw

R hz
e =  , (9) 

where: ν − kinematics viscosity of fluid in the cross-flow, wz − the characteristic velocity 
of the cross-flow fluid, dh − hydraulic diameter, defined in the following way [8]: 

 
so

z
h A

Vd 4=  , (10) 

where Vz − is the free volume of the setting, and Aso − is the sum of free outer gaps within 
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the setting (effective heat exchange area). 
The heat flow over the unit length of the oven effected by the cross-flow of gas is 

equal to the difference of the main axial current fluid state enthalpy and the state enthalpy 
of the fluid within the setting voids: 

 ( )zgpmz TTcmQ −= &&  . (11) 

The heat flow transmitted by the cross-flow of gas will cause a corresponding 
increase of the enthalpy of products, which, for the unit length le, is determined by the 
following expression: 

 e
s

ss l
dx
Td

cmH ⋅⋅⋅= &&  . (12) 

Upon introducing the rate of products heating defined as: 
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Td

T s
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equation (12) can be expressed in the following form: 

 esss l
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dTcmH ⋅⋅⋅⋅=
τ&&&  . (14) 

Taking into account that the speed of products motion through the oven is constant, it 
follows that: 

 esss l
L

TcmH ⋅⋅⋅⋅=
τ&&&  , (15) 

where: τ − baking time, L − total length of the oven. 
On the other hand, using the equation of state for the ideal gas and normal conditions, 

equation (7) obtains the following form: 
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the substitution of which in equation (11), with subsequent equalization of the right-hand 
sides of equations (11) and (15) and their sorting results in the following expression: 
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In order to simplify the expression for determining the temperature differential 
zg TT − , the notion of the stacking coefficient is introduced and it represents the ratio 

between the sum of the setting bases areas and the total area of the tunnel oven base: 

 
BL

A ukos

⋅
= ,ϕ  . (18) 

So, the characteristic cross section for vertical flow over the unit length le can be 
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expressed as: 

 
L
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ukosz ,⋅= ε  , (19) 

or, by using expression (18), as: 
  . (20) BlA ez ⋅⋅⋅= ϕε

If the above expression (20) is included in equation (17), the following is obtained: 
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On the other hand, the total volume of the setting that passes through the oven within 
time τ is defined by the expression: 

  . (22) ( ) ϕε ⋅⋅⋅−= BLhV suks 1,

Therefore, based on expression (22), the mass flow can be expressed as: 
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wherefrom: 
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By including this expression in equation (22), we get: 
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In order to simplify further the formula for determining the temperature differential  
zg TT − , the non-dimensional coefficient of through-flow defined by the below given 

expression is introduced: 
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By substituting the expression (26) in equation (25), the following is obtained: 
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As shown by equation (27), the temperature differential zg T−T  is directly 
proportional to the cube root from: 

− 
− 

the square of the baked products density ρs, 
the square of the heating rate T , s

&
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− the square of zT , 
− 
− 

the height of the setting hs, 
the through-flow coefficient. 

 
Fig. 4. Setting geometry 

The through-flow coefficient ω, defined by equation (26), is determined with the help 
of equation (6), (8) and (10).  

The coefficient of looseness ε, figuring in the expression for ω, in compliance with 
expression (6) and Fig. 4, will be: 
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whereas the hydraulic diameter, reduced to a single cell of the setting, will be: 
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with: 

 

















 −+


















+














=

−− 12.055.15.0
148.01605.0

b
c

a
h

c
h

b
c

Rb
c

a
b ss

e
ω  . (30) 

For the JNF hollow brick, the size of which is a = 0.120m and b =0.065m, we would 
have: 
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From equation (31), it may be concluded that the quotient ω/hs depends on the Re 
number and distance between bricks. 

Fig 5 shows the dependence of quotient ω/hs from Reynolds's number Re and the 
distance between bricks c. For this calculation, using Fig. 5 or equation (31), it will be 
appropriate to use Re =400. 
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Fig. 5. Dependence of ω/hs quotients from the distance between bricks c and Re-number 

for JNF hollow bricks setting 

By introducing the values of ρn, Tn and g into equation (27) and sorting the latter, we 
shall obtain: 

 
( )[ ] ( ) 3/125

3/1 104 



 ⋅⋅⋅⋅=

+−

− − ωρ ssss
zzg

zg hTT
TTT

TT &  . (32) 

If the following units are taken for ρ (=) kg/m3, (=) K/h, sT& zT (=) K and hs (=) m, then 
the right-hand side of the above equation is expressed in K2/3.  

Fig. 6 provides a diagram from which the temperature differential zTg −T  can be 
determined from equation (32) and the mean temperature of gas in the setting voids. 
Wherein the mean temperature of gas gT  is substituted by the expression 
( ) zTzTgT +− . Taking into account that differences in temperature occurring in actual 
ovens are always below 1000K, the upper part of the curve set can be excluded from 
consideration. 

The iterative procedure is applied to determine the value of Reynolds's number, 
which was taken as known for the graphical solution of equation (31). For the first step 
of iteration, it was assumed that Re = 400, because for the cross-flow this value lies in the 
middle of the usual range of Reynolds's numbers. After the ratio ω/hs has been found, 
then, based on the selected temperature of gas in the setting voids, the iterative procedure 
is applied using equation (32) to obtain the temperature differential zTg −T . In this 
procedure, temperature zT changes gradually beginning from zTg =T  until both sides of 
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( ) 3/12

⋅⋅⋅⋅ ωρ szss hTT&

  

Fig. 6. Diagram for calculation of zTg −T  temperature difference 

equation (32) become equal. The second iteration series develops within the iteration 
band for determining the value of Reynolds's number. In order to set up the expression 
for Reynolds's number, it is necessary first to determine the rate of cross-flow, which, 
with equations (7) and (5) taken into account, can be written in the following form: 
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Using equations (26) and (28), the above expression receives the form: 
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where hs/ω is the reciprocal of the previously determined quotient ω/hs, shown in Fig. 5. 
Then, based on the known value of Reynolds's number (9), with equations (28), (29) 
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and (34) applied: 
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The following expression applies to JNF hollow bricks having the following 
dimensions: a = 0,120m and b =0,065m: 
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with units for ν (=) m2/s, c (=) m, hs (=) m and T (=) K. 
The value of Reynolds's number is calculated, based on the known temperature 

differential zg TT −  (equation 32), through the expression under (36). The iterative 

process is carried on until the Reynolds's number value entered into equation (31) 
coincides with the value obtained from equation (36). 

If the quotient ω/hs and the temperature differential zg TT −  (determined from Figs. 5 

and 6) are entered in equation (36), then Reynolds's number is obtained in function of the 
distance between bricks c and temperature zT . Fig. 7 provides the graphical presentation 
of this dependence, including the dependence of kinematics viscosity from temperature. 

Based on equations (11) and (15), the right-hand sides of which are made equal, the 
following expression is obtained for the mass cross-flow of gas: 

 
zg

es
mp

s
sz TT

l
L

T
c
c

mm
−

=
1τ&&&  . (37) 

By rearranging the expression (37) with the help of equation (24), the following is 
obtained: 
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On the other hand, the total current contact area within the unit length of the tunnel 
oven le is given by the following expression: 
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Based on the developed equations (38) and (39) and the expression 
 from the referenced literature [1], and by their combining, the 

following expression for the thermal resistance to heat transmission by the cross-flow of 
gas is obtained: 
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Fig. 7. Reynolds�s number for cross-flow through the JNF hollow brick setting 

In order to simplify further the expression for determining the thermal resistance Rm, 
similar to the introduction of the setting coefficient ϕ non-dimensional coefficient of 
longitudinal utilization of the tunnel oven is introduced, and it is defined by: 

 
L

l uks
L

,=ϕ  , (41) 

where ls,uk is the total length of all settings (the total length of the tunnel oven less the 
lateral passages for fuel burning). 

Thus, based on expression (18) and (41), the following relation is obtained: 

 
LB

bs ϕϕ ⋅=  , (42) 

the introduction of which in equation (40) gives: 



KEMAL D�. TAHIROVIĆ, DIMITRIJE K. VORONJEC, NENAD V. RADOJKOVIĆ 420 

 
s

zg

ss
m T

TT
abc

R
L

&

−
⋅






 +⋅

⋅
⋅=

ε
ρϕ

1112  . (43) 

For the JNF brick setting, equation (43) gets the following form: 
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where the following units apply: ρs (=) kg/m; c (=) m; gT (=) K, zT  (=) K and  (=) 
K/h. 

sT&

From equation (44), it may be concluded that the thermal resistance to heat 
transmission by the cross-flow of gas is determined by the following influential values: 

− 
− 
− 

− 
− 

− 

the method and geometry of setting a, b, c, 
the height of setting hs, 
the participation of lateral passages (1 − ϕ

L
) , 

the density of elements ρs, 
the rate of heating/cooling T and s

&

temperature zT . 

Having in mind the importance of the cross-flow of gas for heat transmission in the 
existing baking tunnel ovens, it is necessary to pay particular attention to the geometry of 
the setting. Increasing the coefficient of looseness of the setting reduces resistance to the 
cross-flow of gas, and this for different values of distance c may result in a ratio of even 
1:5. 
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MATEMATIČKI MODEL ZA PRORAČUN OTPORA PRENOSU 
TOPLOTE POPREČNIM STRUJANJEM GASA U TUNELSKIM 

PEĆIMA ZA PROIZVODNJU GRAĐEVINSKE KERAMIKE 

Kemal D�. Tahirbegović, Dimitrije K. Voronjec, Nenad V. Radojković 

U radu je prikazan matematički model za proračun otpora prenosu toplote poprečnim 
strujanjem gasa. Dobijeni matematički izrazi pokazuju da je otpor prenosu toplote poprečnim 
strujanjem gasa određen sledećim uticajnim veličinama: načinom slaganja i geometrijom sloga, 
visinom sloga, uče�ćem poprečnih pasa�a, gustinom elemenata, brzinom zagrevanja odnosno 
hlađenja i karakterističnom temperaturom u međuprostoru re�etke sloga. 
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